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Abstract

Coastal nature-based solutions (NbS) have emerged as powerful tools to enhance sustainable development and ecological
restoration goals. As a rapidly growing field spanning across social, political, ecological, economic, and engineering disci-
plines, it is critical that researchers working in coastal NbS regularly attempt to identify emerging focal areas for scientific
inquiry. Following the 27th Biennial meeting of the Coastal and Estuarine Research Federation, we provide a transdisciplinary
perspective (including biologists, engineers, oceanographers, geoscientists, economists, and facilitators of workforce training
programs) of pertinent research questions that, if answered, will advance the effectiveness, sustainability, and widespread
adoption of coastal NbS. These suggestions for future research highlight the necessity for diverse expertise and perspectives

at every stage in planning, design, implementation, and monitoring coastal NbS.
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Introduction

In 2019, the United Nations (UN) General Assembly passed
Resolution 73/284, declaring 2021-2030 the Decade on
Ecosystem Restoration and building a global movement
to reverse the degradation of ecosystems (United Nations
Environment Agency, 2019). Nature-based solutions
(NbS), actions that leverage nature to safeguard people,
infrastructure, and biodiversity, have the potential to sub-
stantially contribute to achieving UN Sustainable Develop-
ment Goals pertaining to climate change, biodiversity, and
human well-being (IUCN, 2020; Seddon et al., 2020a). In
the coastal landscape, there is growing interest in the use
of NbS to enhance coastal resilience to hazards (Sutton-
Grier et al., 2015; Moraes et al., 2022; O’Leary et al., 2023;
Paxton et al., 2024). This subset of NbS, hereto referred to
as “coastal NbS”, encompasses a diverse array of practices
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that restore or create coastal ecosystems with or without
engineered structures (Sutton-Grier et al., 2015). Coastal
NbS are specifically designed to provide coastal protection
services and are considered “ecologically friendly” alterna-
tives to traditional shoreline armoring as they also provide
co-benefits such as biodiversity. As living systems, coastal
NbS are idealized as an anticipatory response to adapt to
changing environmental conditions, for example, by accret-
ing elevation or migrating landward in response to sea level
rise (Doelle & Puthucherril, 2023).

Recent publications have identified important factors lim-
iting the use of NbS in coastal and estuarine regions, includ-
ing societal attitudes within coastal communities, ecological
knowledge gaps, lack of monitoring data, and climate uncer-
tainty (Arkema et al., 2017; Saunders et al., 2020; Smith
et al., 2020; Lebbe et al., 2021; Cohn et al., 2021; Favero
& Hinkel, 2024; Huynh et al., 2024). Solutions to these
limitations span scientific, socio-political, and economic
domains. For example, van Rees et al. (2023) highlighted the
need for a global dialogue that included under-represented
groups to mainstream NbS in coastal infrastructure design
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and development. van der Meulen et al. (2023) identified
the need for cost—benefit analyses. O’Leary et al. (2023)
emphasized the need to establish guidance on effective
designs within broader spatial scales and increase scientific
communication to stakeholders. Palinkas et al. (2022) iden-
tified the need to integrate robust monitoring of projects.
Saleh and Weinstein (2016) emphasized the need to evalu-
ate site-specific conditions that may influence coastal NbS
effectiveness. Further, multiple studies have identified a need
to better understand coastal NbS resilience to storm events
(Saleh & Weinstein, 2016; Spiering et al., 2021). Despite the
significant contributions of these and many other studies to
our knowledge base, there are still knowledge gaps. Now, at
a mid-point in the UN’s Decade on Ecosystem Restoration,
we offer our suggested focal areas for research to increase
the effectiveness (defined as the ability for NbS to meet eco-
system service provision goals), sustainability (defined as
longevity in functionality and adaptability to changing envi-
ronmental conditions), and widespread adoption (defined
as willingness and preparedness to adopt NbS across broad

change.

geographic regions and socioeconomic settings) of coastal
NbS (Fig. 1).

Advancing the rapidly developing field of coastal NbS
requires perspectives from multiple fields, including but not
limited to biology, geology, hydrology, engineering, policy,
outreach and education, social science, environmental eco-
nomics, and industry. The session “Nature-based solutions
for coastal ecosystems: successes, failures, and lessons
learned” at the 27th Biennial meeting of the Coastal and
Estuarine Research Federation brought together research-
ers and practitioners working on coastal NbS from the U.S.,
Australia, and Southeast Asia. As a collaborative team, we
generated a list of scientific questions that, if answered,
would advance the capacity for coastal NbS to provide struc-
tural, ecological, and societal benefits now and in the future.
Questions were grouped by common themes and then prior-
itized within each group. We emphasize research themes that
aim to improve the achievement of project outcomes (effec-
tive), increase project adaptability over time (sustainable),
and/or promote wider adoption of coastal NbS (widespread),

Research Needs for Effective Coastal NbS:

Effective coastal NbS are defined by their ability to meet ecosystem service provision goals.

» Quantify the effects of project design and materials on achievement of ecosystem service
provision goals.

* Explore trade-offs in achieving multiple project goals (e.g., protection of human assets vs.
ecological habitat provision) across varied hydrogeographic and socioecological settings.

* Refine understanding of changes in ecosystem service provision over time for varied and
under-researched services.

* Expand studies comparing coastal NbS with alternative approaches(i.e., shoreline armoring).

Research Needs for Sustainable Coastal NbS:
Sustainable coastal NbS are defined by their longevity in functionality and adaptability to

« Identify barriers to long-term persistence of ecosystem service provision.

* Assess best practices for designing adaptable coastal NbS to cope with environmental
change or unforeseen threats.

* Refine decision criteria for assessing when coastal NbS are not feasible.

Research Needs for Widespread Adoption of Coastal NbS:
Widespread coastal NbS are defined by willingness and preparedness to adopt practices
across broad geographic and socioeconomic settings.
* Understand and improve best practices for transdisciplinary communication and
knowledge transfer.
* Advance best practices for implementation of training programs, guideline development,
and materials used to support the implementation of NbS.
* Understand differences in stakeholder perceptions and preferences that influence NbS
decisions.
¢ Advance economic valuation of NbS for improved tradeoffs assessment in support of

policy development, governance, and decisions.

Fig.1 Framework illustrating recommended areas of research
needed to improve the effectiveness, sustainability, and widespread
use of nature-based solutions (NbS) in coastal settings. Thicker blue
arrows emphasize the idealized chain of events: coastal NbS should
be proven effective and sustainable before becoming widespread. The
thin black arrows show the iterative and reciprocal nature of these
feedbacks in practice. While achieving these three goals concur-
rently may be possible, each may be achieved in isolation. For exam-
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ple, NbS that show immediate effectiveness may gain widespread
adoption before evidence of their sustainability emerges. If a NbS is
shown to be sustainable, it may or may not provide desired coastal
protection benefits. In certain cases, widespread implementation of
coastal NbS projects may increase collective effectiveness and sus-
tainability. Images were created using Meta Al with Llama 3. Image
of Earth modified from open access image database 123RF
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in isolation or in combination (Fig. 1). Finally, we dem-
onstrate our proposed approach to developing research in
each of and across these themes using specific case study
examples from diverse coastal NbS from around the world
(Supplementary Figs. 1-3).

Research for Effective Coastal NbS

Unlike traditional shoreline armoring approaches, coastal
NbS aim to provide coastal protection as well as ecologi-
cal, economic, and social co-benefits (hereby referred to
as “effectiveness”). There is a growing body of evidence
that supports the capacity for coastal NbS to provide these
benefits (Isdell et al., 2021; Jordan & Frohle, 2022; Morris
et al., 2018; Schoonees et al., 2019; Smith et al., 2020), but
most evidence stems from studies conducted at local spatial
and short temporal scales (Paxton et al., 2024). Further, this
evidence is highly variable and often related to site-specific
dynamics (e.g., hydrogeomorphic setting, connectivity)
(Chambers et al., 2021; Morris et al., 2022; Pittman et al.,
2022; Smith et al., 2020; Young et al., 2023). Several studies
have identified a lack of design guidance and uncertainties in
benefits as a barrier to implementation (Bilkovic et al., 2016;
Gijsman et al., 2021; Morris et al., 2024). Here, we highlight
several overarching research needs (roman numerals) and
key questions (bullet points) that, if answered, would inform
coastal NbS designs and reduce uncertainties regarding eco-
system services (Fig. 1).

i. Quantify the Effects of Project Design
and Materials on Achievement of Ecosystem Service
Provision Goals

Coastal NbS cover a broad range of solutions that include
the creation of habitats, the enhancement of existing habi-
tats, and the ecological enhancement of existing coastal
structures (Pontee, 2022). Hence, a diverse array of designs
and materials can be configured to address coastal hazards
and provide co-benefits (Sakr & Altieri, 2025). Additionally,
site-specific factors (e.g., wind waves, shoreline type, upland
and shoreline slope, shoreline width, water depth, erosion
rate, and sunlight exposure) often influence NbS designs and
materials. However, the efficacy of coastal NbS with similar
designs and materials may vary across diverse coastal set-
tings (Marino et al., 2025). Thus, research has focused on
understanding how designs and materials affect the provi-
sion of ecosystem services (Morris et al., 2022; Bianciardi
et al., 2023). For example, laboratory and field studies have
increased our understanding of how size, shape, and ori-
entation of both biogenic habitats and engineered coastal
structures influence wave attenuation (e.g., Barry et al.,

2025; Dunlop, 2016; Morris et al., 2021; Phan et al., 2019).
Longitudinal field studies have been important in quantify-
ing how a variety of coastal NbS impact ecosystem structure
and function over time, such as rates of vegetation growth
(Davis et al., 2022; Payne et al., 2021; Raposa et al., 2023),
carbon dynamics (Puchkoff & Lawrence, 2022), and accre-
tion rates (Fitri et al., 2015; Mai Van et al., 2021). More
recently, computer models have been developed to predict
ecosystem development of coastal NbS (Familkhalili et al.,
2023; Morris & Staver, 2024; Staver et al., 2024) and iden-
tify designs and materials that maximize ecosystem services
(Huff et al., 2022; Wang et al., 2023; Zhu et al., 2023). While
these previous studies have advanced our understanding of
best practices for designing coastal NbS, additional studies
are needed to optimize designs and materials for specific
environmental conditions. We encourage researchers to con-
tinue exploring innovative designs (e.g., material placement
and configuration), refine and expand the use of computer
models, and rigorously test novel designs and materials (e.g.,
non-plastic, low-cost, biodegradable materials, and concrete
alternatives with a lower carbon footprint). Importantly,
research approaches are needed in both controlled settings
and in the field where the influence of complex site hetero-
geneity can be evaluated.

Additionally, we encourage continued refinement of met-
rics to determine those that are most informative for assess-
ing coastal NbS effectiveness. Physical metrics such as wave
height reduction and shoreline change rate are commonly
employed, as these are directly correlated with a project’s
capacity to provide shoreline protection. But additional
research is needed to understand variability in the relation-
ships between these physical metrics and project outcomes.
Metrics selected to assess whether the project is providing
desired ecological co-benefits are more nebulous. Often,
selected metrics prioritize a few focal species (e.g., habitat-
building plant or mollusk species) but overlook non-habitat-
building taxa (e.g., birds, fish, and mammals) or taxa that are
challenging to sample (e.g., microbial communities). Addi-
tionally, assessments of metric quantification approaches
(e.g., remote sensing vs. field-collections) are needed to
determine best practices for measuring a project’s effective-
ness. For example, what methods and spatiotemporal resolu-
tions are adequate for characterizing complex biological and
physical dynamics at a site to optimize accuracy and time-/
cost-effectiveness?

Key Questions
e Which placement configurations or shapes of coastal NbS

structures accelerate the establishment of habitat-forming
species, and how do these choices impact the provision

@ Springer
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of desired physical processes such as sedimentation and
wave attenuation?

¢ How do novel construction materials and designs com-
pare to more conventional materials in terms of shoreline
protection and recruitment of habitat-forming species?

ii. Explore Trade-Offs in Achieving Multiple
Project Goals Across Varied Hydrogeographic
and Socioecological Settings

Advancing the effectiveness of coastal NbS will require
that analysis of their service provision encompass a range
of metrics applied at greater spatial and temporal scales.
The biophysical conditions of shorelines vary geographically
along a continuum; for example, coastal settings may be
lagoonal, open coast, or deltaic depending on dominant
forcings and hydrogeomorphic setting (Rogers, 2017; Yando
et al., 2023). Performance of coastal NbS, thereby, depends
on their relative position in these settings. For example, an
analysis of 52 nature-based shoreline protection projects
from around the world found that coral reefs and salt
marshes are some of the most effective natural systems for
reducing wave heights, but their effectiveness depends on
the ratio of wave height to water depth (reefs) or vegetation
height (marshes) (Narayan et al., 2016). Mangroves are
documented as more effective in sediment accretion than
salt marshes, whereas hybrid coastal NbS (ecosystem
restoration/creation complemented with an engineered
structure) perform better to reduce flood risks than soft
coastal NbS (restoration or creation of ecosystems alone)
(Huynh et al., 2024). These examples highlight trade-offs
between types of ecosystems and interventions to achieve
specific goals. Research should focus on understanding
the underlying mechanisms that drive observed variation
in coastal NbS effectiveness and evaluate them under a
variety of settings (Toft et al., 2023). The need for these
evaluations is especially dire for understudied settings, such
as soft sediment coastlines in the Global South (Yasmeen
et al., 2024). Broader quantification of NbS effectiveness
across the coastal continuum throughout the world will aid
in scaling projects from pilot and local scales to landscape
and regional spatial scales.

Key Questions

e What are the distinctions and trade-offs between design
elements that prioritize coastal protection versus those
that prioritize habitat creation for flora and fauna?

e How does the effectiveness of coastal NbS strategies shift
along environmental gradients?

@ Springer

iii. Refine Understanding of Changes in Ecosystem
Service Provision Over Time for Varied
and Under-Researched Services

As living and changing systems, coastal NbS are expected
to be dynamic in their provision of various ecosystem
services over time. However, the rate at which many
ecological metrics change over time is not well documented
in coastal NbS (White et al., 2021). Coastal NbS usually
involve the establishment of habitat-forming species, such
as marsh vegetation, mangroves, seagrasses, shellfish, or
corals, sometimes assisted by engineered structures. The
time needed for these communities to establish is inherently
affected by the NbS approach, site history, and landscape
context (Tomscha & Gergel, 2016; Tomscha et al., 2016).
Some NbS projects may strive to reach the functional
equivalency of a natural coastal ecosystem, but the timeline
needed to achieve these goals far surpasses the timelines for
providing coastal protection. One key research gap is simply
understanding variability in the rate at which different
ecosystem metrics develop after project installation.
Previous work in constructed and restored marshes has
shown that while many ecological attributes (vegetation
diversity, biological productivity, marsh structure) establish
quickly after project implementation (< 5 years), parameters
like soil development (sediment accretion, carbon, organic
matter, and microbial processes) may require longer
time spans (e.g., a decade or more) (e.g., Ballantine &
Schneider, 2009; Chambers et al., 2021; Craft et al., 2002,
2003; Currin et al., 2008; Davis et al., 2015; Isdell et al.,
2021; Morris & Staver, 2024). Similarly, La Peyre et al.
(2014) demonstrated variability in ecosystem services over
time in created oyster reefs. Research is needed to refine
these timelines to assess appropriate points for adaptive
management intervention and accurately evaluate carbon
offsets from projects over time. Creative approaches that
accelerate colonization of habitat-forming species have
the potential to expedite ecosystem development to better
accommodate urgency in coastal resiliency strategies.
Recent examples of such research include experimentation
on plant preparation techniques (Pausch, 2024), planting
configurations (Huang et al., 2022), or placement of
structures relative to the elevation of vegetation (Fuentes
et al., 2020; Toft et al., 2021).

Key Question
e How do ecological attributes of coastal NbS vary over

time? What factors expedite or slow the rates of change
for these attributes?
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iv. Expand Studies Comparing Coastal NbS
with Alternative Approaches

Finally, quantitative comparisons between coastal NbS
and traditional shoreline armoring in terms of the provi-
sion of ecosystem services are still limited (Huynh et al.,
2024; Morris et al., 2018). While shoreline armoring is
one approach to reduce the impacts of storm surge, natural
coastal ecosystems such as beach dunes and marshes have
shown less erosion compared to armored shorelines follow-
ing storm events (Gittman et al., 2014, 2015). While research
has been adept at comparing NbS to control areas without
interventions, without direct comparisons between NbS
and traditional shoreline armoring, we are ill equipped to
assess their efficacy (Morris et al., 2018). As we continue to
address gaps in our understanding of the ecological and eco-
nomic trade-offs between NbS and engineered approaches in
the coming decade, Seddon et al. (2020b) recommend focus-
ing on their synergies rather than framing these approaches
as alternatives.

Key Questions

e How do novel construction materials and designs com-
pare to more conventional materials in terms of shoreline
protection and recruitment of habitat-forming species?

e Under what coastal settings and/or environmental condi-
tions are NbS an effective coastal protection strategy as
opposed to traditional shoreline armoring?

e How quickly and to what extent do coastal NbS provide
the protections afforded by traditional shoreline armor-
ing? Does the addition of natural components to armored
shorelines provide valuable benefits without compromis-
ing the performance of the armored structure?

Research for Sustainable Coastal NbS

Persistence of ecosystem service provision and adaptability
to change over time (hereby referred to as sustainability) are
the cruxes of NbS. Although nature-based coastal protection
and habitat creation projects have taken place for decades,
unifying them under the term “nature-based solution” has
only occurred since 2008 (MacKinnon et al., 2008); meaning
that for many of these projects, we are only now reaching the
point to assess their performance on a decadal time scale.
Lessons from more mature fields, like restoration ecology
and ecological succession (Connell & Slayter, 1977; Mori,
2011; Suding, 2011), can be applied to circumvent threats
to NbS establishment of self-sustaining biotic communities.
As research and implementation in this field flourish, we
have opportunities and responsibility to refine the design of

coastal NbS now to ensure these projects are long-lived and
adaptable for the future.

i. Identify Barriers to Persistence of Ecosystem
Service Provision

Newly constructed coastal NbS are initially vulnerable
to failure as biological components, such as vegetation,
establish (O’Donnell, 2017). Ultimately, the sustainabil-
ity of coastal NbS depends on the survival and growth
of biotic communities beyond this establishment period.
Slow rates of species recruitment, low transplant survival,
high levels of predation, herbivory, disease, or introduc-
tion of invasive species are notable factors that limit the
ecosystem’s perpetuation (Bilkovic et al., 2021; Suyker-
buyk et al., 2016; Vanderklift et al., 2020; Williams &
Grosholz, 2008). Failure or degradation of non-living
structural components (e.g., cement substrate, coconut
fiber logs) over time may compromise the ability for more
species to recruit and persist. Unfortunately, many NbS
are installed with no long-term monitoring plan to allow
managers to counter these threats (Dario et al., 2024). In
exemplary cases, coastal NbS projects identify account-
able parties to monitor and maintain the project for the
foreseeable future. Created marshes in Louisiana typically
require a minimum 20-year life span (Coastal Protection
& Restoration Authority of Louisiana, 2017, 2023), but
this is not the case for all NbS. Monitoring change, spe-
cifically degradation, of both coastal NbS structures and
biotic communities is an important issue that is currently
under-researched.

NbS are frequently evaluated for their abilities to provide
specific goal-oriented ecosystem services (Almenar et al.,
2021), but ecosystem function is more complex and
must be evaluated using a holistic suite of indicators and
longer timeframes (Isdell et al., 2021; Yando et al., 2021).
Researchers are encouraged to identify the most informative
indicators for assessing whether project sustainability is on
track. Currently, a plethora of studies exist that focus on
primary foundation species as indicators of habitat function
in coastal NbS. However, only a few studies have focused
on secondary non-focal species. For example, mussels
have been documented as direct competitors that threaten
the long-term sustainability of living shoreline projects
in the Gulf of Mexico, yet in other estuaries, the presence
of multiple bivalve species has been shown to enhance
project service provision by increasing water filtration
(La Peyre et al., 2017; Gedan et al., 2014). These studies
demonstrate the importance of non-focal species in the
functioning of living shorelines. Although studies have
investigated relationships between non-focal species and
trophic interactions in ecology in general, this research

@ Springer
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is still needed in the context of coastal NbS specifically.
Rates of elevation change (e.g., subsidence and accretion)
can serve as an indicator of how vegetation and other biotic
communities shift, but further work is needed to refine
these relationships for many species. Perhaps the proximity
between coastal NbS and natural habitats influences
project longevity, but these questions require long-term
monitoring to answer. When long-term on-the-ground
monitoring is not feasible, geospatial analysis can be used
to hindcast ecological monitoring at large spatial scales
(Polk & Eulie, 2018). Long-term monitoring, combined with
sharing of lessons learned when projects fail, will enhance
identification of failure points for various services, which
is crucial to prolong the sustainability of these projects
(Bilkovic et al., 2016).

Key Questions

e What is the rate of ecological development for engi-
neered or created coastal NbS?

e When should adaptive management decisions be made
to keep created ecosystem trajectories on track?

e Which under-researched taxa serve as indicators of eco-
logical development in variable coastal NbS?

ii. Assess Best Practices for Designing Adaptable
NbS to Cope with Environmental Change
and Unforeseen Threats

Sustainable coastal NbS must be designed today with the
future in mind. Project designs should anticipate expected
future changes, including but not limited to sea level rise,
increasing oceanic and atmospheric temperatures, increased
frequency of coastal storms, and the compounding effects of
increasing human development. Quantitative modeling has
helped inform how coastal NbS will perform under future
scenarios. For example, sustainability of created habitats
can be dependent on geophysical features such as landform
and fetch (La Peyre et al., 2015; Toft et al., 2023), as well
as design features such as the extent of shoreline alteration
(Des Roches et al., 2024). Persistence of created ecosystems
constrained to narrow intertidal zonation, such as oyster
reefs, must also factor in site-specific relative sea level rise
rates to ensure biotic communities will be sustained (Ridge
et al., 2015). Numerous models have predicted the effects
of variable future storm surge and flooding scenarios on
coastal ecosystems (Friess et al., 2022; Passeri et al., 2018;
Pillai et al., 2022). While several studies have evaluated the
shoreline protection capacities of coastal NbS over decadal
time spans (Polk & Eulie, 2018; Scyphers et al., 2011;
Wellman et al., 2021), there remain many unknowns. The
risks and uncertainties associated with NbS sustainability

@ Springer

are predicted to increase with rising sea levels (Gijsman
et al., 2021; Kwan et al., 2025). Even less understood are
the effects of future environmental changes on the complex
interactions between ecological, societal, and institutional
structures within larger social-ecological systems. While
many studies have begun to consider social-ecological
dynamics related to coastal sustainability (e.g., Anderies
et al., 2019; Glaser & Glaeser, 2014), linked ecosystem-
human community model analyses are needed to evaluate
human behavioral feedbacks over time (DeAngelis et al.,
2020; Hong et al., 2024; Scyphers et al., 2020).

As biological components are key to NbS, their
introduction should be done so with attention toward
creating resilient communities. Habitat creation projects
tend to employ a few selected species suited to deliver
a specific goal. Such efforts neglect the importance of
biotic interactions at the community level, which could be
enhanced by incorporating diverse species to support wider
habitat niches and ecosystem resilience (Su et al., 2022).
More research is needed to understand how variability
in the source populations of biological components may
impact the outcomes of coastal NbS. Native ecotypes
(genotypes) are adapted to local conditions (Hufford &
Mazer, 2003) and have been shown to have greater fitness,
adaptability, resilience to disturbance, and resistance to
disease compared to their non-local counterparts (Beck
& Gustafson, 2012; Bucharova et al., 2017; Durka et al.,
2017; Gratani, 2014). For these reasons, some have called
for the inclusion of diverse native genotypes in the biological
components of coastal NbS design to increase resiliency and
adaptation (Cohn et al., 2021). A counter-argument may be
to bioengineer species, or select species from non-local
populations with more desirable traits, that are better adapted
or acclimatized to forecasted conditions. Such efforts have
been explored in mollusks (Belgrad et al., 2021), seagrasses
(Nimbs et al., 2024), and emergent macrophytic plants
(Brancaleoni et al., 2018; Pausch, 2024). The relationships
between source population and site-specific fitness and
function are critically under-researched for many species.
This information is particularly salient in a field where the
design and placement of incorporated species (e.g., plant
material or oyster seeding) may prioritize cost and logistics
versus suitability and population genetics.

Key Questions

e How will sea level rise impact the longevity of NbS
designed for current environmental conditions? What
considerations need to be made regarding project physi-
cal design elements, geophysical site characteristics, and
landscape dynamics to ensure coastal NbS longevity in the
face of environmental change and anthropogenic activities?
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e How do ecological factors such as proximity of source
populations, interspecific interactions, population genet-
ics, and genetics of transplanted biota influence the suit-
ability of various coastal NbS strategies and their con-
tinued recruitment of habitat-forming species? What
ecological design elements maximize or accelerate spe-
cies recruitment and ecosystem development?

e What factors influence the resilience of coastal NbS fol-
lowing discrete disturbance events, such as storms and
heat waves, versus more gradual disturbance threats,
such as sea level rise, introduction of invasive species,
or increasing urbanization?

iii. Refine Decision Criteria for Assessing When
Coastal NbS Are Not Feasible

Although an important tool in the proverbial resilience tool-
box, NbS are not the panacea for all problems. It is important
to determine where and when these interventions are appro-
priate. For example, coastal NbS (e.g., mangrove planting
with bamboo fences) often require more time and space to
reach their full capacity for coastal defense than grey infra-
structure (e.g., seawalls, revetments, breakwaters) and may
not withstand immediate threats from extreme storm events
(Morris et al., 2020; Winterwerp et al., 2020). Coastal habi-
tat creation will be limited by future sea level rise (Saintilan
et al., 2023), land-use conflicts (e.g., agriculture, aquacul-
ture, urban development), management priorities (e.g., cre-
ating fisheries habitat versus restored habitat, Ellison et al.,
2020; Friess et al., 2016), or may not be possible due to
extensive shoreline armoring (Friess, 2017). When coastal
NbS creation requires a conversion of existing habitat (e.g.,
fill of subtidal bottom habitats) or impact to adjacent habitats
(Smith et al., 2009), conflicts between management goals
can obstruct the project. Research is needed to further under-
stand trade-offs between coastal NbS, natural systems, and
the built- and socio-economic human environment (Bilkovic
& Mitchell, 2013). Research should seek to understand the
degree to which coastal NbS services are perceived as sub-
stitutable (e.g., aesthetics, recreation, other services would
presumably be directly substitutable) or even a disservice
(e.g., habitat perceived as source of pests or disease). Ulti-
mately, part of assessing the longevity of coastal NbS in
a changing world involves confronting the possibility that,
under some circumstances, NbS are not as suitable as tra-
ditional shoreline armoring to provide desired protective
services in critical timeframes (Firth et al., 2020; La Peyre
et al., 2015; Moody et al., 2013).

Key Question

e  What factors determine whether the long-term benefits of
traditional shoreline armoring outweigh those of a NbS?

Research for Widespread Use of Coastal NbS

Coastal NbS are diverse in their design and can be imple-
mented by a wide range of stakeholders to address different
challenges. When adopted by multiple stakeholders across
diverse geographic settings (hereby referred to as wide-
spread), their benefits may be maximized. However, miscon-
ceptions and uncertainties around coastal NbS threaten wide-
spread adoption of these approaches (Mednikova et al., 2023;
O’Leary et al., 2023, Guthrie et al., 2023). Public and politi-
cal support for coastal NbS depends on bridging the science-
to-practice communication gap. This bridge requires transfer
of knowledge and best practices between NbS practitioners
and decision-makers, integration of stakeholder perceptions
and preferences into coastal management, and advancing eco-
nomic valuation of NbS. There are several means by which
the research community can assist in providing the building
blocks needed to support widespread use of coastal NbS.
Here, we share our perspectives on areas on which research-
ers should focus to address these limitations and share case
study examples of successes, while acknowledging that many
in this field already employ these practices.

i. Understand and Improve Best Practices
for Transdisciplinary Communication
and Knowledge Transfer

Smith et al. (2020) identified that the lack of accessibility
to scientific journal articles by practitioners and managers
is one barrier to communicating NbS science. While Smith
et al. (2020) recommended increasing funding for publica-
tion in open access journals, researchers also should com-
municate findings via other mediums (e.g., conferences,
professional workshops, trade and other non-academic
publications, web-based resources, public outreach events,
relationships with practitioners and municipalities, or serv-
ing as a technical advisor to policy). Other studies recom-
mend establishing transdisciplinary networks to encourage
the use of science-based NbS (Mednikova et al., 2023). One
example of such a networking tool is the National Spatial
Data Infrastructure system for NbS co-benefits, a GIS tool
that accumulates comprehensive multidisciplinary datasets
for NbS in the U.S. (Castro & Rifai, 2021). Another example
of a species-specific network is the Native Olympia Oyster
Collaborative (NOOC), which has the mission to maintain
a network of oyster scientists, practitioners, educators, and
aquaculturists. NbS communities of practice can provide a
mechanism to scale up implementation of NbS in a science-
based, coordinated way. These collaboratives can create the
“safe” space needed to facilitate dialogues among different
groups on project failures and successes, share resources,
and develop best practices. One example is the Coastal Zone
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Canada Association that supports regional coastal NbS com-
munity of practice groups to share knowledge and support
the development of design standards (https://coastalzon
ecanada.org/nbcs/). Another example is Florida’s regional
Estuarine Restoration Teams, informal groups of practi-
tioners (including Federal and State agencies, universities,
NGOs, and private firms) that serve as working groups to
share ideas and plan and implement estuarine restoration
at the aquascape scale within their respective regions (V.
Encomio, personal communication).

Key Questions

e What are the best practices for facilitating communi-
cation between science, practice, and policy regarding
coastal NbS? Where are barriers to knowledge transfer?

e How can project success stories and challenges encoun-
tered be communicated to obtain support for monitoring
and assessment?

ii. Advance Best Practices for Implementation

of Training Programs, Guideline Development,

and Materials Used to Support the Implementation
of NbS

Implementation of NbS also depends on the available work-
force. Although not a limiting factor in every coastal region,
the need to scale up training programs specifically designed
to educate and train professionals working in coastal NbS
(e.g., landscapers, engineers, marine contractors, landscape
architects, urban planners, policy makers, and local gov-
ernment resilience and sustainability managers) has been
recognized as a global limitation to the implementation of
NbS (Davies & Lafortezza, 2019; Morris et al., 2024). Pre-
vious successes in addressing this need include Sea Grant
and state partners in the U.S. that have developed trainings
specifically targeted toward those industries (Martin et al.,
2024; North Carolina Living Shorelines Academy, 2024).
Professional training programs, such as in the Chesapeake
Bay region (e.g., Chesapeake Bay Landscape Professionals
(2024)), and national-level certifications (e.g., Waterfront
Edge Design Guidelines; Waterfront Alliance, 2024) provide
models for developing training and implementation stand-
ards that can be applied at multiple scales. Further, devel-
opment of decision-making tools and guidelines, geared
toward diverse stakeholders, is needed to determine coastal
NbS site suitability. Examples of these guidelines include
the Shoreline Management Model, which has been adapted
for use in many coastal regions in the United States (Nunez
et al., 2022) and Temmerman et al.’s (2023) comprehensive
modeling of risk reduction provided by tidal marshes and
mangroves. The Nature Conservancy developed a mangrove
restoration potential mapping tool (https://maps.coastalres
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ilience.org/mangrove-restoration/) to identify areas with
the highest restoration potential, considering ecological,
socio-economic, and environmental factors (Worthington
and Spalding, 2018).

Widespread implementation of coastal NbS also depends
on the availability of materials from the industries that
underlie project construction. Materials may include plants
that are genetically diverse, sourced from local provenances,
or strains with desirable traits (Bhatt et al., 2022; Reyn-
olds et al., 2012; Ryan et al., 2007), uncontaminated local
sediment (Bell et al., 2021; Piercy et al., 2023), biosecure
bivalve shell (Fitzsimons et al., 2020), sediment trapping
structures (Eichmanns et al., 2021), or desired genotypes of
reef-building species (Howie & Bishop, 2021). Researchers
and practitioners working in coastal NbS need to communi-
cate with these industries to develop a common understand-
ing of the preferred product specifications and barriers to
production. These industries may require additional finan-
cial support and reliable forecasts of material demands to
scale up their production. There exist many opportunities
for research to build upon existing knowledge of best mate-
rial specifications for projects as well as how to best address
economic, logistical, or communication barriers to sourcing
those materials.

Key Questions

e What are recommendations, or model case studies, for
coastal NbS training and workforce development pro-
grams? How can these programs be adapted for other
regions/industries?

e What decision-making tools and guides exist for poli-
cymakers and professionals? What are the most useful
universal methods to evaluate the effectiveness of these
decision-making tools for expanding use of coastal NbS?
How can science, policy, and practitioners facilitate the
underlying industries that support coastal NbS?

e How can coastal NbS be scaled up from local-scale case
studies to broadscale implementation?

e What are the best practices for identifying or developing
sources of materials for the implementation of coastal
NbS (e.g., shell, plant sources, and sediment fill)?

iii. Understand Differences in Stakeholder
Perceptions and Preferences that Influence NbS
Decisions

The decision to implement NbS depends on multiple factors,
including whether it is an individual or group decision, prior
experiences, belief, culture, and economics (Bennett, 2016;
Guthrie et al., 2023; Mukherjee et al., 2016; Scyphers et al.,
2015). Individual perception of coastal NbS can be highly
influenced, for example, by both external opinions and
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individual knowledge of local coastal management initia-
tives (Barry et al., 2024; Dario et al., 2024; Josephs & Hum-
phries, 2018; Leichenko et al., 2018; Scyphers et al., 2015).
Understanding factors influencing NbS decisions within
multiple socioeconomic and environmental contexts can
provide insight into effective ways to drive behavior toward
NbS use (e.g., targeted messaging, policy actions, financial
incentives). NbS effectiveness, costs, and time scales can
be important decision factors (Chairat & Gheewala, 2024).
Research on coastal community perceptions and preferences
is needed to inform the development of decision tools to
evaluate trade-offs in project types over multiple spatiotem-
poral scales (Smith et al., 2017).

Involving diverse stakeholders throughout a coastal NbS
project is crucial to building popular and political support.
We encourage engaging property owners, regulators, practi-
tioners, policy makers, industry, Tribal and Indigenous com-
munities and Traditional Owners, and community members,
in the co-production of coastal NbS priorities to ensure the
project meets the community’s goals (i.e., effectiveness) and
ties directly into their persistence (i.e., sustainability). From
conceptualization to post-installation monitoring and adap-
tive management, active participation fosters investment and
commitment while imparting transparency and legitimacy
to the decisions made. Engaging all partners in conceptu-
alization and planning with multi-criteria frameworks and
Q-methodology (a mixed methods approach used to study
subjective opinions) can facilitate multifaceted decision-
making and increase acceptance across groups with dis-
parate interests (Apine & Stojanovic, 2024; Ferreira et al.,
2020; Giordano et al., 2020; Ruangpan et al., 2021).

Key Question

e How do various stakeholders differentially value the
coastal protection services of NbS compared to other
ecosystem services? What drives these discrepancies?

iv. Advance Economic Valuation of NbS for Improved
Trade-Off Assessment in Support of Policy
Development, Governance, and Decisions

Coastal natural capital assets are not fully recognized or
included in traditional economic accounting, challenging
sustainable development globally (Fenichel et al., 2020).
While there are national natural capital accounting efforts
underway (e.g., Friess et al., 2020; Thiagarajah et al., 2015;
Wielgus et al., 2023), variability in the valuation of NbS is
driven by local environmental conditions and human per-
ceptions and behaviors. There is a need to develop natural
capital accounting frameworks for coastal NbS that capture

the heterogeneity in ecosystem service provision and valu-
ation (Guerry et al., 2015). Additional site-specific studies
that model behavioral responses in response to storm and
flood risk (e.g., install NbS, armor shoreline, or do nothing)
can be used to understand community-scale trade-offs and
inform value estimates that can be generalized to similar
coastal communities. Numerical physical modeling paired
with models of economic behavior can be further used to
simulate future scenarios of coastal NbS benefits (e.g.,
Kwan et al., 2025; Stewart-Sinclair et al., 2021; van Zelst
et al., 2021). Assessing the monetary value of coastal NbS
ecosystem services can be used to guide policy and man-
agement decisions, inform market development (e.g., blue
carbon trading, Koh et al., 2021; Macreadie et al., 2021),
and increase awareness and motivation to use NbS (Ng et al.,
2023; Scheld et al., 2024; Ying et al., 2024).

Key Questions

e How can different stakeholder needs and values be best
shared with the research community to promote and
guide actionable research?

e What increases stakeholder confidence in coastal NbS
(e.g., empirical research, first-hand experience, input
from trusted individuals, consistency of results), and
conversely, how does uncertainty in science influence
stakeholder perception? How is public support devel-
oped?

Conclusion

The aforementioned research questions represent priority
focal areas to advance (1) the effectiveness, (2) sustainabil-
ity, and (3) widespread adoption of coastal NbS. As with any
attempt to identify priority research questions in a manner
of broad interest to this field, the complexities of the indi-
vidual research questions are simplified (Sutherland et al.,
2009). We recognize that the research and professional com-
munities working in coastal NbS are both discipline-rich
and globally expansive. Thus, research on topics covered
here may already exist or be in a state of progress; how-
ever, refinement of all research answers is needed for the
intricacies of site-specific and regional conditions. Properly
addressing these research gaps will require diversity in terms
of the disciplines involved, stakeholders consulted, and geo-
graphic regions tested. We have applied our research gap
framework (Fig. 1) to develop specific research questions for
arange of coastal NbS projects across various global regions
(Supplementary Figs. 1-3) as demonstration for adoption by
others. At the midpoint in this decade on ecosystem restora-
tion, we hope our perspectives provide cause for reflection
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on how far research in this young field has come as well as
a re-evaluation of the direction for transdisciplinary future
research.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12237-025-01571-8.
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