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Abstract 

The white abalone, Haliotis sorenseni, is an endangered marine gastropod that has shown 

no signs of population recovery despite fishery closure and protective status.  To better 

understand the energetic demands, hypoxia tolerance, and critical habitat of this species, we 

measured oxygen consumption rates over a size range of captive-reared H. sorenseni at different 

environmental oxygen concentrations and temperatures in comparison to the more common red 

abalone, H. rufescens. We found that H. sorenseni has a relatively low metabolic rate that likely 

contributes to generally slow growth that can hamper recovery efforts. We also discovered that 

both H. sorenseni and H. rufescens appear to partially conform to ambient oxygen conditions by 

lowering their metabolism to deal with increasing hypoxia while still retaining an aerobic scope 

until reaching a critical oxygen concentration (Pcrit), at which point they become oxylimited.  For 

species exhibiting such relationships, determining the P90, P75, P50, and P25 (dissolved oxygen 

value at which oxygen consumption is 90%, 75%, 50%, and 25% of resting metabolic rate), as 

well as the Pcrit and oxygen supply capacity, are useful metrics to compare hypoxia sensitivities 

among species and individuals. Variability in these metrics suggest potential fitness differences 

for H. sorenseni individuals spawned and raised in captivity for restoration outplanting.  Higher 

temperatures also led to an increase in P90, P75, P50, P25, and Pcrit and decrease in factorial aerobic 

scope for H. sorenseni, revealing the potential compounding effects of high temperature and low 

oxygen.  Our results thus provide a suite of physiological metrics on which to test the health and 

fitness of captive-reared abalone and can help inform selection of appropriate outplanting sites 

for endangered H. sorenseni. 

Keywords: critical oxygen level, invertebrate, metabolic scaling, oxyconformer, 

oxyregulator, respiration, temperature 
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1. Introduction 

In 2001, the white abalone, Haliotis sorenseni, was the first marine invertebrate to be 

listed as endangered by the United States under the Endangered Species Act (Federal Register 66 

FR 29046).  The collapse of the species resulted from serial depletion through overfishing and 

inadequate fishery regulations, and was likely compounded by disease (Davis et al., 1996, 

Karpov et al., 2000, Hobday et al., 2001).  Like other abalone species, the white abalone is a 

broadcast spawner, and spawning individuals need to be in close proximity (less than 3 m apart) 

for successful fertilization, suggesting that white abalone densities less than approximately 2,000 

abalone ha-1 are not sustainable (NMFS, 2008, Stierhoff et al., 2012).  Unfortunately, estimates 

based off the most recent surveys suggest densities well below this threshold at <1 abalone ha-1 , 

and there has been minimal evidence of successful H. sorenseni recruitment since the 1990s 

(Stierhoff et al., 2014, Catton et al., 2016, DiNardo et al., 2021). Thus, even despite the closure 

of the white abalone fishery in 1996 and its listing as federally “Endangered” in 2001, H. 

sorenseni has not shown signs of natural recovery, and the number of surviving wild white 

abalone continues to decline as the remaining isolated adults age. 

In response, the White Abalone Recovery Consortium comprised of various academic 

institutions, state and federal government entities, commercial abalone growers, and non-

government organizations (e.g., public aquaria) was formed to help recover the species through 

continued assessment of wild populations, spawning and rearing white abalone in captivity, and 

outplanting captive-bred abalone back into the wild (Rogers-Bennett et al., 2016).  Since the start 

of this recovery program, thousands of H. sorenseni have been successfully reared in captivity, 

and outplanting operations began in 2019.  However, because of their historically low biomass 

(the pristine population size of H. sorenseni in California was estimated at about 360,000 
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individuals) and fast exploitation rate (the boom and bust of the H. sorenseni fishery is thought 

to have occurred in just a few years from 1969-1977), little is known about their preferred habitat 

and environmental tolerances, which have important implications for selecting sites for 

outplanting (Karpov et al., 2000, Hobday et al., 2001, Rogers-Bennett et al., 2002, DiNardo et 

al., 2021). 

H. sorenseni is the deepest dwelling abalone species on the west coast of the United 

States, being found most abundantly at depths of 20-60 m, often near the lower margins of kelp 

forests (Davis et al., 1996, Butler et al., 2006).  Such habitat is vulnerable to intermittent 

exposure to local upwelling with cold, hypoxic water that can negatively affect coastal marine 

organisms (Grantham et al., 2004, Vaquer-Sunyer and Duarte, 2008, Frieder et al., 2012, Boch et 

al., 2018, Kekuewa et al., 2022).  As a benthic gastropod with limited mobility, H. sorenseni 

likely has limited ability to actively avoid the adverse effects of hypoxic upwelling (Parnell et 

al., 2020).  This is particularly concerning in that hypoxia has been shown to decrease both the 

growth and survivorship of several abalone species (Harris et al., 1999, Kim et al., 2013, Morash 

and Alter, 2016, Calderón-Liévanos et al., 2019, Nam et al., 2020, Shen et al., 2020, Shen et al., 

2022), and changes to abalone metabolism and growth can occur with even slight reductions in 

environmental dissolved oxygen in some species (Jan and Chang, 1983, Gaty and Wilson, 1986, 

Harris et al., 1999).  Despite being one of the deepest dwelling abalone and most likely to 

regularly encounter hypoxia, little is known about the physiological response of H. sorenseni to 

low environmental oxygen. 

Here we examined basic metabolic parameters and the hypoxia tolerance of H. sorenseni 

by assessing the effects of graded reductions in environmental dissolved oxygen on the rate of 

oxygen consumption using closed respirometry techniques. Specifically, understanding the 
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effects of reduced environmental oxygen on oxygen consumption (a proxy for metabolic rate), 

provides insight into how metabolically-expensive processes such as internal ion balance, 

predator avoidance, growth, and reproduction may be affected by suboptimal dissolved oxygen 

levels. In addition, metabolic parameters were made over a range of body sizes and at two 

temperatures (11°C and 15°C – representing the mean seasonal temperature range encountered in 

deep kelp forest habitat where white abalone are currently being outplanted) to assess the 

impacts of abalone size and environmental temperature. Such metabolic data are valuable in 

identifying 1) potentially suboptimal dissolved oxygen levels and temperatures, and 2) abalone 

sizes or life stages that may be more or less hypoxia tolerant, both of which can help inform 

outplanting decisions and restoration efforts for the species. Measures of white abalone 

metabolic parameters and hypoxia tolerance were made in comparison to red abalone, H. 

rufescens, another abalone species that often inhabits overlapping temperatures and depths with 

H. sorenseni in southern California, but exhibits faster growth rates and has proved more 

resilient to population decline associated with overfishing and disease. 

2. Materials and methods 

2.1. Abalone husbandry 

H. sorenseni (n = 29, 4.6 – 103.3 g, 34.8 – 91.5 mm in length) examined in this study 

were raised from larvae produced by the White Abalone Recovery Consortium from three 

different cohorts.  H. rufescens (n = 29, 7.7 – 103.3 g, 39.1 – 94.0 mm) were derived from larvae 

from two cohorts, one from the Cultured Abalone Farm (Goleta, CA) and one from the Abalone 

Farm (Cayucos, CA).  Abalone were reared in long-term culture tanks with temperature-

controlled filtered seawater and fed ad libitum a variety of brown algae (mostly giant kelp, 



 
 

 
 

   

     

   

  

  

  

  

  

     

   

   

  

  

    

 

  

     

   

  

  

  

 

  

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

6 

Macrocystis pyrifera) harvested locally, as well as dulse, Palmaria mollis, grown onsite.  

Abalone were tagged for identification with flexible shellfish tags (FT-LF-97, 1/8 x ¼”, Floy Tag 

& Mfg., Inc., Seattle, WA) using a cyanoacrylate adhesive (CorAffix, Two Little Fishies Inc., 

Miami Gardens, FL).  All abalone husbandry and experimentation were performed in accordance 

with SWFSC Animal Care and Use Committee Protocol #SW1702 and ESA permit #14344-2R. 

2.2 Respirometry trials to determine metabolic parameters and hypoxia tolerance 

Respirometry experiments were performed to examine the effects of environmental 

oxygen on abalone oxygen consumption (a proxy for metabolic rate) in order to better 

understand the hypoxia tolerance of H. sorenseni over a potential size range for outplanting 

(~30-100 mm) in comparison to H. rufescens. Prior to experimentation, each abalone was gently 

dislodged from its home tank by inserting a plastic spatula or card under the foot.  The abalone 

was then placed on a 6.7 mm thick PVC disk (57, 77, or 95 mm in diameter depending on 

abalone size), surrounded by fine mesh netting, and suspended in a holding tank to fast the 

animal for a minimum of 48 h prior to respirometry measurements.  Following the fasting period, 

the abalone (attached to the PVC disk) was transferred from the holding tank to the respirometer 

via a plastic beaker, which allowed the abalone to remain submerged in seawater and attached to 

its substrate in order to minimize handling stress and prevent the introduction of air bubbles 

under the shell and into the respirometry system.  

The respirometer consisted of a cylindrical acrylic holding chamber and a recirculating 

loop composed of flexible plastic polymer tubing, a small pump (Brushless DC pump, 12V; 

ZKSJ; Shenzhen, China), two sensor ports (for dissolved oxygen and temperature sensors), and 

two 3-way stopcocks (to allow for opening and closing the system to the surrounding 
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temperature-controlled buffer-tank water) (Fig. S1).  The abalone holding chamber (62 x 25 mm, 

80 x 30 mm, or 100 x 40 mm; inner diameter x inner height; Loligo Systems; Tjele, Denmark) 

was matched to the size of the abalone and corresponding PVC disk size in order to minimize the 

water volume within the respirometer to enhance the oxygen consumption signal.  Once placed 

in the respirometer, an abalone was given a one-hour acclimation period, following which the 3-

way stopcocks were closed to isolate the respirometer from the surrounding buffer tank for 

oxygen consumption measurements.  Longer acclimations times (e.g., overnight or several days) 

were not used as preliminary trials showed that longer acclimation did not result in lower resting 

oxygen consumption rates (Fig. S2A) and led to an increased bacterial load within the 

respirometer, which increased the background respiration rate.  The abalone’s respiration caused 

the system to become progressively hypoxic over time, allowing resting oxygen consumption 

rate to be monitored until the oxygen level reached approximately 5-10% air saturation.  Oxygen 

level and temperature (°C) were monitored with a fiber optic oxygen probe and a temperature 

sensor connected to either a Fibox 3 system (PreSens Precision Sensing; Regensburg, Germany), 

which could monitor one abalone respirometer at a time, or a Witrox 4 oxygen meter system 

(Loligo Systems; Viborg, Denmark) that could monitor up to four abalone respirometers at once.  

Following completion of the respirometry trial, the abalone was removed from both the chamber 

and PVC disk to measure its mass, length, and volume (abalone volume was measured via 

displacement in a graduated cylinder).  The respirometry system was flushed for at least 15 

minutes and then resealed with the PVC disk inside, but without the abalone, for a minimum of 

one hour to obtain measurements of background bacterial respiration. 

Respirometry experiments were first conducted for all abalone at 15°C.  In order to 

examine the effects of temperature on metabolism and hypoxia tolerance, respirometry trials 
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were repeated at 11°C on a subset of each species from the middle of the examined body-size 

range (H. sorenseni, 24.4 - 50.5 g, n = 10; H. rufescens, 21.7 – 35.2 g, n = 12).  Temperatures of 

15°C and 11°C were chosen as these temperatures represent approximate mean seasonal 

(summer vs winter) temperatures encountered in deep kelp forest habitat in the Southern 

California Bight where both species can be found (Frieder et al., 2012). Abalone were 

acclimated to their experimental temperature for at least 30 days prior to respirometry trials. 

2.3. Data analysis for metabolic and hypoxia tolerance parameters 

For each respirometry trial, abalone oxygen consumption rate (𝑀𝑀O2 
in mg O2 h-1) was 

determined over 5% oxygen saturation intervals (e.g., the mean 𝑀𝑀O2 
was calculated when the 

dissolved oxygen level of the respirometer was between 95-100% air saturation, 90-95% 

saturation, down to 5-10% saturation (Fig. 1).  This analysis method was chosen based on 

preliminary data showing near immediate reductions in abalone 𝑀𝑀O2 
with declining 

environmental oxygen (e.g., Fig. S2B) and based on similar previous analyses for other abalone 

species (Jan and Chang, 1983, Harris et al., 1999).  The relationship of abalone 𝑀𝑀O2 
versus 

environmental oxygen level displayed as either a logarithmic or linear function (compare Figs. 

1A and 1B), and the best-fit model was chosen for each individual using an ordinary least 

squares analysis via lm() function in base R package v4.4.1 (R Core Team, 2024).  Preliminary 

model fitting of this relationship between 𝑀𝑀O2 
and environmental oxygen level occasionally 

revealed rare outlier points (e.g., abnormally high or low 𝑀𝑀O2 
values, defined here as greater 

than 30% different than the predicted value of the best-fit function; outliers comprised less than 

2% of the data).  These outliers, which were likely associated with abalone activity within the 

chamber, were removed and the modeled function was refit.  Resting 𝑀𝑀O2 , a proxy for resting 
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metabolic rate (RMR), was estimated using the best-fit function for each individual abalone at 

100% air saturation (=P100) (Fig. 1), which supplementary trials showed was similar to the q0.25 

of MO2 measurements over several days (Fig. S2C) and thus a good estimation of RMR (Chabot 

et al., 2016; Reemeyer & Rees, 2019). The P90, P75, P50, and P25 (dissolved oxygen level at 

which oxygen consumption was 90%, 75%, 50%, and 25% of RMR) were also estimated using 

-1)the best-fit functions as shown in Figure 1. The oxygen supply capacity (α in mgO2 h-1 %O2 

was calculated as the maximum rate of oxygen uptake per 5% oxygen bin (Fig. 1C,D), which 

was used to estimate the Pcrit and theoretical maximum metabolic rate (MMR) and aerobic scope 

(Fig. 1E,F) (Seibel and Deutsch, 2020, Seibel et al., 2021). Comparison of multi-day 

respirometry data (Fig. S2A) with progressive hypoxia curves (Fig. S2B) showed the oxygen 

supply capacity accurately predicted the maximum metabolic rate of abalone observed over the 

course of five days in the respirometer (Fig. S2C). Likewise, examination of rare elevated MO2 

outliers for individual abalone across varying dissolved oxygen levels showed good agreement 

with the oxygen supply capacity (Fig. S3). Pcrit was estimated where the difference between the 

oxygen supply capacity and oxygen consumption curve was lowest (approximate intersection – 

see Fig. 1E,F). 

The relationship of resting oxygen consumption with total body mass (including the mass 

of the shell) was determined according to the power-law equation: 

𝑀𝑀O2 
= 𝑎𝑎𝑀𝑀𝑏𝑏 (1) 

Where MO2 is the oxygen consumption rate, a is the oxygen consumption rate intercept at a mass 

of 1 g, M is mass in grams, and b is the mass scaling exponent or allometric slope. Because the 

shell is not metabolically active, the relationship of MO2 with just the wet tissue mass (excluding 

the shell) was also estimated.  This was estimated using data on shell and wet tissue mass from 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

220

225

230

235

240

10 

96 H. sorenseni (0.5 – 37.6 g, 13.6 – 64.4 mm in length) and 533 H. rufescens  (42.0 – 237.4 g, 

70.0 – 115.0 mm in length) that were measured for unrelated work (J. Moore, California  

Department of  Fish and Wildlife, unpublished data).  These data showed the ratio of wet tissue  

mass to total body mass (including the shell) was  0.683 ± 0.054 for  H. sorenseni  and 0.711 ±  

0.049 for  H. rufescens. This ratio did not change with body size for either species.  

 The Q10, the factor by which oxygen consumption increases with a 10°C temperature  

change,  was calculated according to the equation:        

10�  � 𝑀𝑀𝑄𝑄 = � �
𝑇𝑇2−𝑇𝑇O

       
12(2) 

10      (2)  
𝑀𝑀O2(1) 

where 𝑀𝑀O2(1)  and 𝑀𝑀O2(2)  represent oxygen consumption rates at  T1  (11°C) and T2  (15°C) 

respectively.  In order to account for differences in body size between the  11 and 15°C trials, the  

𝑀𝑀O2 
of  each individual abalone was scaled to a mass of 40 g (the approximate mean mass of  

abalone sampled) using the species-specific mass scaling coefficients calculated in Equation 1.  

 

2.4. Statistical analyses  

 Statistical analyses were completed using R v4.4.1 (R Core Team, 2024).  Means are 

presented as ± standard deviation unless otherwise indicated.  When testing the various  

respirometry  parameters  (RMR,  α,  MMR,  factorial aerobic scope,  P90, P75,  P50, P25, Pcrit) for 

significant differences between species  at 15°C, assumptions of normality and homogeneity were  

assessed using a Shapiro-Wilk test and Bartlett’s  test.   Normally-distributed and homogeneous  

data were analyzed using a t test, while non-normally distributed and homogeneous  datasets were 

tested using a non-parametric Wilcoxon test.  Likewise, for the subset of  abalone examined at  

both 11 and 15 °C, metabolic and hypoxia tolerance  parameters were examined using either a 

paired t test (if normality and homogeneity assumptions were met) or  a paired samples Wilcoxon 
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test (if assumptions were not met) to find differences within each species at each temperature. 

Significant differences in the Q10 between species were tested using a Wilcoxon test. 

For metabolic scaling data, a bootstrap regression analysis (10,000 replicates with 

replacement) (Frank et al., 2021) was used to determine if the relationship between RMR (mg O2 

h-1 at 100% environmental oxygen level) and body mass differed between white and red abalone. 

Significant difference in RMR between species was determined if < 5% of the bootstrap 

regressions intersected over the range of body masses being compared.  This bootstrap regression 

analysis was also used to assess if white and red abalone 𝑀𝑀O2 
(mg O2 h-1) differed significantly 

over the environmental dissolved oxygen level (% air saturation) range examined. 

3. Results 

3.1. Metabolic parameters 

The relationships between resting metabolic rate (mg O2 h-1) and total body mass 

(including the shell) for H. sorenseni and H. rufescens are shown in Figure 2.  Bootstrap analysis 

revealed that H. sorenseni had significantly lower resting metabolic rates than H. rufescens for 

the entire overlapping body mass range tested (7.7 to 103.3 g).  When considering just the 

metabolically active tissue (e.g., total mass – shell mass), RMR for H. rufescens was also 

significantly higher than that of H. sorenseni for the entire overlapping tissue mass range (5.5 to 

70.5 g) (Fig. S4). Likewise, when RMR for each individual was scaled to a common mass of 40 

g using species-specific scaling equations determined in Fig. 2, H. sorenseni RMR (0.928 ± 

0.186 mgO2 h-1) was significantly lower than that of H. rufescens (1.483 ± 0.218 mgO2 h-1) (t 

test, t =10.42, df =54.59, P <0.001; Table 1). Estimates of α and MMR were also significantly 

lower in H. sorenseni in comparison to H. rufescens (t test; t = 7.76, df = 53.29, P < 0.001), 
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12 

while factorial aerobic scopes were similar between the species (t test, t = 0.09, df = 39.53, P = 

0.926; Table 1).  

3.2. Hypoxia tolerance 

Representative graphs showing the relationship between individual abalone MO2 and 

environmental oxygen (% saturation) are shown in Figure 1.  For most individuals from both 

abalone species, MO2 showed a logarithmic relationship with environmental oxygen, with MO2 

decreasing faster at lower oxygen concentrations (Fig. 1A). Specifically, a logarithmic 

relationship between oxygen consumption and dissolved oxygen level was observed in 24 of 29 

H. sorenseni and all 29 H. rufescens when examined at 15°C.  For five of the 29 white abalone 

trials, the MO2 profiles more accurately displayed as a linear relationship (Fig. 1B) with MO2 

decreasing faster at higher environmental oxygen concentrations than under a logarithmic curve.  

When data for all individuals were standardized to a common mass and combined, this 

relationship presented as a logarithmic curve for both H. sorenseni and H. rufescens (Fig. 3). 

Bootstrap analysis revealed that the mean MO2 for H. rufescens was significantly higher (P < 

0.05) than that of H. sorenseni across the entire environmental dissolved oxygen range (Fig. 3). 

Mean P90, P75, P50, P25, and Pcrit values were determined for each species based on 

individual MO2 vs dissolved oxygen curves (Table 1, Fig. 1, S5).  Mean P90, P75, P50, and P25 

values were not significantly different between H. sorenseni and H. rufescens (Wilcoxon test, W 

= 465, P = 0.497). However, H. sorenseni showed greater P90, P75, P50, and P25 variability, 

having higher outliers associated with the linear MO2 functions of some individuals (Figs. 1, S5). 

Mean Pcrit was also not significantly different between H. sorenseni and H. rufescens (Wilcoxon 

Test, W = 346, P = 0.342). In order to examine how abalone size potentially influences hypoxia 
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tolerance, P50 values for both abalone species were graphed in relation to abalone shell length, a 

common metric recorded in both field and laboratory settings (Fig. S6).  There was no significant 

relationship between abalone size and P50 for either H. sorenseni or H. rufescens over the size 

range examined. 

3.3. Temperature effects on metabolism and hypoxia tolerance 

For the subset of H. sorenseni for which metabolic parameters were estimated at both 11 

and 15°C, RMR was significantly higher at 15°C (n = 10, paired t test, t = -3.63, df = 9, P = 

0.005) resulting in a Q10 of 2.89 ± 1.74 (Table 2). However, α and MMR were not significantly 

different in H. sorenseni between 11°C and 15°C (paired t test; t = -0.86, df = 9, P = 0.411; 

Table 2).  This led to a significantly lower factorial aerobic scope for H. sorenseni at 15°C 

(paired t test; t = 3.01, df = 9, P = 0.015; Table 2). P90, P75, P50, P25, and Pcrit values for H. 

sorenseni were higher at 15°C than at 11°C, but these differences were only significant for P25 

(paired samples Wilcoxon test, V = 3, P = 0.010) and Pcrit (paired samples Wilcoxon test; V = 5, 

P = 0.020; Table 2, Fig. S7A) 

For H. rufescens, RMR was also significantly higher at 15°C than 11°C (n = 12, paired t 

test, t = -5.41, df = 11, P < 0.001) with a calculated Q10 of 2.24 ± 0.63 (Table 2). In contrast to 

H. sorenseni, α and MMR were both significantly elevated at 15°C (paired t test; t = -3.94, df = 

11, P = 0.002; Table 2) while factorial aerobic scope was not significantly different between 

11°C and 15°C (paired t test; t = 0.50, df = 11, P = 0.625; Table 2).  For H. rufescens, there were 

also no significant differences in P90, P75, P50, P25, and Pcrit values between 11°C and 15°C 

(paired t test, df = 11, P > 0.05 for all comparisons; Table 2, Fig. S7B). 
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The calculated Q10 values between H. sorenseni and H. rufescens were not statistically 

different (Wilcoxon test; W = 59, P = 0.974); however, H. sorenseni did have a higher standard 

deviation for its Q10 value in comparison to H. rufescens. 

4. Discussion 

This study establishes valuable baseline metrics on the metabolism and hypoxia 

sensitivity of the endangered white abalone in comparison to other abalone species.  Specifically, 

our results show that H. sorenseni has relatively low resting and maximum metabolic rates as 

well as a low oxygen supply capacity (α) in comparison to H. rufescens and other abalone 

species. This likely reflects its generally deep habitat where food may be less abundant and 

energy likely needs to be conserved.  In addition, H. sorenseni (and H. rufescens) oxygen 

consumption rates generally show an atypical relationship with decreasing dissolved oxygen that 

suggest some level of active metabolic depression that may allow for increased hypoxia 

tolerance in comparison to some other abalone species that are less likely to regularly encounter 

hypoxia.  Here we discuss our results in the context of previous abalone research and ongoing 

restoration efforts to help recover H. sorenseni. 

The resting metabolic rate of H. sorenseni is one of the lowest of any abalone studied to 

date, being significantly lower than that of H. rufescens and several other abalone species after 

correction for temperature and body mass (Table 3).  This lower metabolic demand is likely 

functionally adaptive to the deeper depths typically inhabited by H. sorenseni (20-60 m), 

particularly in areas outside the outer margins of kelp forests where they are largely reliant on 

drift kelp settling down from shallower depths for food.  The generally low metabolic demand of 

H. sorenseni should thus allow for enhanced survival in less optimal habitat with scarcer food 
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availability.  However, the intrinsically low metabolism of H. sorenseni will also likely 

contribute to comparatively slow growth rates, which could prolong captive growout and, 

ultimately, population recovery times.  

In addition to a low metabolic rate, H. sorenseni shows an atypical relationship between 

oxygen consumption rate and environmental dissolved oxygen that is best represented as a 

logarithmic function (Fig. 3).  This pattern suggests that H. sorenseni is partially conforming to 

ambient oxygen levels as metabolism decreases with progressive hypoxia. This rate of metabolic 

decline increases at lower oxygen levels until reaching a critical oxygen level (Pcrit), at which 

point H. sorenseni appears to lose the ability to oxyregulate and becomes completely oxylimited.  

Prior to reaching the Pcrit, our data suggest that both H. sorenseni (and H. rufescens) retain an 

aerobic scope that can be estimated by the aerobic supply capacity (Fig. 1, S2) as seen in high 

MO2 outlier points in some of our individual respirometry trials (Fig S3).  Retention of an aerobic 

scope with decreasing oxygen levels suggests that H. sorenseni and H. rufescens are actively 

lowering their metabolism.  This would offer some protection against hypoxia exposure by 

limiting energetically expensive processes to times when dissolved oxygen is higher and not 

risking incursion of an oxygen debt that cannot be repaid under prolonged or increasingly severe 

hypoxia (Guppy and Withers, 1999, Seibel, 2011, Seibel et al., 2014). It could also allow for 

emergency movements under hypoxia to either avoid predation or perhaps emerge from rocky 

crevices in search of better water flow and oxygen. This logarithmic-shaped pattern differs from 

that of most oxyregulating species, including most fishes, which typically display a broken stick 

relationship where the animal has a relatively stable oxygen consumption rate at oxygen levels 

above the Pcrit (Farrell and Richards, 2009, Rogers et al., 2016, Ultsch and Regan, 2019) as well 

as that of most oxyconforming species, which generally show a more linear or constant decrease 
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in MO2 concomitant with decreasing oxygen and oxylimitation (Pörtner et al., 1985, Pörtner and 

Grieshaber, 1993). Abalone, and invertebrates in general, appear to express a wide range of 

metabolic and behavioral responses to hypoxia (Herreid II, 1980, Pörtner et al., 1985, Pörtner 

and Grieshaber, 1993, Grieshaber et al., 1994, Riedel et al., 2014, Galic et al., 2019), and thus 

determining species-specific reactions to low oxygen is especially important.  The logarithmic 

response to decreased dissolved oxygen in H. sorenseni and H. rufescens in this study may 

reflect their deeper and upwelling-prone habitat, in which they are more likely to regularly 

encounter episodic hypoxia and may thus actively lower their metabolic rate with decreasing 

environmental oxygen, while shallower-dwelling abalone species (which are less likely to 

encounter regular hypoxia) may attempt to maintain higher oxygen consumption rates until 

hitting a critical oxygen concentration at which point metabolic demands can no longer be 

maintained (Harris et al., 1999, Alter et al., 2016, Chen et al., 2020).  

The shape of the metabolic response to decreasing environmental oxygen affects reported 

metrics of hypoxia tolerance (e.g., determination of Pcrit) (Yeager and Ultsch, 1989, Marshall et 

al., 2013, Claireaux and Chabot, 2016).  Past studies on abalone metabolic responses to hypoxia 

have generally attempted to fit their data to the more commonly used broken-stick model in 

order to estimate a Pcrit (Jan and Chang, 1983, Harris et al., 1999, Taylor and Ragg, 2005), 

although our review of these datasets suggest that many may be more accurately described by a 

logarithmic relationship as observed here for H. sorenseni and H. rufescens. In this study, we 

used recent techniques by Seibel and colleagues (Seibel and Deutsch, 2020, Seibel et al., 2021) 

to quantify the oxygen supply capacity (α) which allows for determination of a Pcrit despite a lack 

of a defined broken stick function and breakpoint (Fig. 1).  We also quantified the effects of 

ambient oxygen level on metabolism by determining P90, P75, P50, and P25 values, the dissolved 
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oxygen level when metabolic rate was 90%, 75%, 50%, and 25% of resting metabolic rate, which 

provide useful insight into how metabolism is affected by decreasing environmental oxygen.  For 

example, while there were no observed significant differences in P90, P75, P50, P25, and Pcrit 

between the H. sorenseni and H. rufescens at 15°C (Table 1, Fig. S5), the P50s of H. sorenseni 

(26.7% air saturation) and H. rufescens (23.3%) were much lower than that of H. laevigata (68% 

at 18°C) (Harris et al., 1999).  Thus, despite the immediate dampening of H. sorenseni and H. 

rufescens metabolic rate due to its logarithmic relationship with environmental oxygen, it 

appears that these species are both much more hypoxia tolerant than the shallower-dwelling H. 

laevigata at lower oxygen concentrations (e.g., the metabolic rate of H. laevigata was reduced to 

50% at 68% air saturation, while that of H. sorenseni and H. rufescens was not reduced to 50% 

until 23-27% saturation). 

These species-specific metabolic responses to reductions in environmental oxygen provide 

critical insight into the effects of hypoxia on abalone health and fitness.  For example, when held 

under varying levels of hypoxia, H. laevigata showed reductions in food consumption, growth 

rates, and survival rates that mirrored its metabolic relationship with dissolved oxygen (Harris et 

al., 1999).  This indicates that mild reductions in dissolved oxygen are less likely to have 

significant impacts on more hypoxia tolerant species such as H. sorenseni and H. rufescens. 

However, despite the apparent enhanced hypoxia tolerance of H. sorenseni and H. rufescens in 

comparison to species like H. laevigata, exposure to lower oxygen levels is still likely to have 

both sublethal and potentially lethal effects.  While the baseline metabolic data determined 

herein can thus inform comparative measures of hypoxia sensitivity for H. sorenseni, additional 

long-term growout studies under reduced oxygen levels would provide added quantifiable 
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insights into the effects of hypoxia on H. sorenseni survival, growth, feeding, behavior, and 

reproduction. 

The negative effects of hypoxia on abalone can be further compounded by other 

environmental variables such as temperature (Tripp-Valdez et al., 2017, Calderón-Liévanos et 

al., 2021). Indeed, the cumulative stress of low oxygen and high temperatures is of particular 

concern in abalone aquaculture in which marine heat waves and environmental warming can 

have deleterious effects on densely packed and hypoxia-prone abalone farms in coastal surface 

waters (Nam et al., 2020, Shen et al., 2020, Shen et al., 2021, Shen et al., 2022).  Likewise, our 

results show that H. sorenseni metabolism is fairly sensitive to changes in temperature 

(Q10=2.89), which appears to lead to decreased hypoxia tolerance at warmer temperatures as 

represented by increasing trends in P90, P75, P50, P25, and Pcrit values and a decreased factorial 

aerobic scope with a change in temperature from 11°C to 15°C.  While H. sorenseni live at 

deeper depths that are somewhat insulated from more extreme temperature fluctuations seen in 

surface-oriented coastal abalone farms, our results highlight the potential temporal, regional, and 

climatic impacts of the simultaneous shoaling of the oxygen minimum zone and an increase in 

coastal water temperatures (Grantham et al., 2004, Bograd et al., 2008, Low et al., 2021). 

Although H. sorenseni and H. rufescens were shown to have similar mean P90, P75, P50, P25, 

and Pcrit values, H. sorenseni generally exhibited a larger range in individual values compared to 

H. rufescens (Fig. S5). Such variation in hypoxia tolerance for H. sorenseni appears associated 

with the different shaped oxygen-sensitivity curves for some individuals, with 5 of 29 H. 

sorenseni showing a linear relationship (likely indicating increased oxyconformation and 

oxylimitation) that resulted in higher (less hypoxia-tolerant) P90, P75, P50, P25 values and a lower 

oxygen supply capacity, MMR, and aerobic scope in comparison to those displaying the more 

https://Q10=2.89


 
 

 
 

 

 

  

    

 

      

    

    

  

  

  

  

     

 

   

    

  

    

   

 

    

  

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

19 

typically-observed logarithmic curves.  Such differences in the shape of the relationship between 

oxygen consumption and dissolved oxygen level have been observed previously in abalone and 

other invertebrates and have often been attributed to differences in animal size or physiological 

state (e.g., fasted vs. unfasted) (Bayne, 1971, Gaty and Wilson, 1986).  However, as all animals 

in the present study were in the same physiological state (all were fasted for 48 h) and there did 

not appear to be correlation of the shape of the relationship (log vs linear) with body size, we 

hypothesize that these differences likely indicate health and or fitness differences between 

individuals and possibly cohorts. Indeed, three out of the four highest P50 values determined 

came from abalone in the same cohort (H. sorenseni used in this experiment came from three 

cohorts spawned in 2014, 2016, and 2019; Fig. S8). This finding thus highlights the potential 

ramifications for fitness differences (i.e., reduced hypoxia tolerance, slower growth rates, etc.) in 

captive-bred H. sorenseni individuals or cohorts.  In aquaculture optimization experiments, 

collection of H. rufescens from different areas along the California coast exposed to variable 

amounts of upwelling has shown inherent differences in tolerance to ocean acidification, 

highlighting natural variability and population level differences to regional environmental 

stressors (Swezey et al., 2020).  For the critically-endangered H. sorenseni, with limited 

broodstock within the White Abalone Recovery Consortium captive breeding program, the 

genetic diversity of captive spawned animals is a serious challenge that requires consideration of 

the phenotypic expression of tolerance to hypoxia, temperature, and other environmental factors 

to enhance potential outplanting success and ultimate recovery of the species in the wild.  Only 

limited work on the genetic diversity of H. sorenseni has been conducted to date (Gruenthal and 

Burton, 2005, Masonbrink et al., 2019), and expanded analysis to quantify the genetic diversity 
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of captive broodstock and offspring and its potential contribution to phenotypic variability in 

tolerance to environmental stressors is needed. 

As a main goal of the White Abalone Recovery Consortium is to rear H. sorenseni for 

successful outplanting into the wild, we were particularly interested in examining the extent to 

which abalone size may impact hypoxia sensitivity in order to determine if there is a potential 

minimum size threshold for outplanting (for many marine species smaller individuals are more 

sensitive to adverse environmental conditions, including hypoxia) (Nilsson and Östlund‐Nilsson, 

2008, Rogers et al., 2016, Verberk et al., 2022).  The relatively large size range examined here 

(4.6 – 103.3 g, 34.8 – 91.5 mm shell length) showed that P50 did not change with body size (Fig. 

S6) indicating that smaller abalone within this size range are just as tolerant to hypoxia exposure 

as larger individuals.  Currently, the White Abalone Recovery Consortium uses 25 mm shell 

length as the minimum size threshold for outplanting H. sorenseni into the wild.  Thus, while 

additional respirometry studies are warranted on smaller individuals beyond the range studied 

here, our results indicate that this minimum size threshold for outplanting is likely appropriate in 

terms of hypoxia tolerance.  In fact, recent work has shown that in some abalone species smaller-

sized animals may actually be more tolerant to hypoxia than older individuals (Vosloo et al., 

2013, Aalto et al., 2020).  For example, in the South African abalone (H. midae), smaller 

juvenile abalone (mean shell length 41 mm) had higher anti-oxidant enzyme levels (associated 

with minimizing DNA and protein damage caused by hypoxia and other stressors) than larger 

adults (mean shell length 65 mm) (Vosloo et al., 2013).  This is thought to be associated with the 

variable oxygen levels encountered by small abalone within the diatom films upon which they 

feed (Vosloo et al., 2013).  Likewise, in order to avoid predation, juvenile abalone typically 

spend more time within rocky and other substrate crevices that are more likely to experience 
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localized hypoxia associated with the respiration of other biota and more limited water 

circulation.  While there does not appear to be a size effect on sensitivity to hypoxia, modeling 

for H. sorenseni outplanting, as well as population monitoring for H. rufescens, has revealed 

better stocking success occurs using larger individuals due to their higher survival rates (i.e., 

lower vulnerability to predation) and more immediate reproductive potential (Rogers-Bennett 

and Leaf, 2006, Leaf et al., 2007, Li and Rogers-Bennett, 2017, Hofmeister et al., 2018).  

Additionally, while some metabolic measurements have been determined for larval H. sorenseni 

(Moran and Manahan, 2003), there is little information about H. sorenseni larval hypoxia 

tolerance.  Such information would be useful to help predict the effects of larval viability and 

dispersal under varying environmental conditions as outplanted individuals need to successfully 

reproduce in the wild. 

5. Conclusions and Implications for Management 

This study establishes valuable physiological metrics on the bioenergetics and hypoxia 

tolerance of H. sorenseni and H. rufescens. Importantly, we found that H. sorenseni have low 

resting metabolic rates likely reflective of their relatively deep habitat. This lower metabolism 

likely contributes to slower growth rates and has potential implications for population recovery 

times, both in terms of captive growout and the maturation and successful spawning of 

outplanted individuals.  We also showed that H. sorenseni and H. rufescens show immediate 

reductions in their metabolism when exposed to lowering environmental oxygen levels.  While 

this appears to be an active response to cope with hypoxic conditions, it could potentially have 

quantifiable effects on various aerobic processes including growth and reproductive output.  

Thus, outplant sites with higher dissolved oxygen levels would likely benefit H. sorenseni 
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metabolic-dependent processes.  Current H. sorenseni outplanting sites in southern California 

show mean dissolved oxygen levels ranging from 65-80% saturation (NOAA, unpublished data), 

which indicates H. sorenseni resting metabolism is likely reduced by 9-15% under typical 

conditions, although short bouts of lower dissolved oxygen levels down to 25-30% saturation 

may periodically reduce abalone metabolism by up to 50% (Fig. S9). 

Our work also revealed that H. sorenseni hypoxia tolerance did not differ significantly 

with body size.  However, certain H. sorenseni individuals did appear to have a lower aerobic 

scope and to be less hypoxia tolerant than others, which provides important insight into natural 

variation in intraspecific abalone environmental tolerance.  We also found that increased 

temperature resulted in decreased hypoxia tolerance for H. sorenseni, revealing the potential 

compounding effects of low oxygen with other environmental factors.  We thus encourage future 

work to explore the variability in hypoxia tolerance and its interactions with compounding 

factors such as temperature and pH.  Finally, our study only examined the acute metabolic 

response of H. sorenseni to hypoxia.  Long-term exposure and growout experiments on H. 

sorenseni would help us understand more chronic effects of low dissolved oxygen (which 

juveniles may encounter within rocky crevices when outplanted) on H. sorenseni metabolism, 

growth, and hypoxia tolerance, and contribute to optimizing best rearing and outplanting 

practices. 
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539 Table 1: Metabolic and hypoxia sensitivity parameters (means ±  standard deviation) estimated  

for 29 white (H. sorenseni) and 29 red (H. rufescens) abalone  at 15°C.  540 

541 

 Species  Mass 
 (g) 

Length 
 (mm) 

RMR 
  (mgO2 h-1) 

 α (mgO2 

h-1 %O2  -1) 
 MMR 

  (mgO2 h-1)  FAS  P90  P75  P50  P25  Pcrit

 White abalone 4.6 –  34.8 –   0.928*  0.0213*  2.131*  2.38  76.3  51.4  26.7  12.9  14.4 
 (H. sorenseni)  103.3 91.5    ± 0.186  ± 0.0060  ± 0.599  ± 0.80  ± 7.1  ± 12.0  ± 11.6  ± 6.6  ± 6.3 

 Red abalone  7.7 – 39.1 –   1.483*  0.0352*  3.517*  2.37  74.6  48.2  23.3  11.3  15.2 
 (H. rufescens)  103.3  94.0  ± 0.218  ± 0.0075  ± 0.753  ± 0.37  ± 2.2  ± 3.5  ± 3.3  ± 2.3  ± 3.8 

*Indicates significant difference between species.  Abbreviations: Resting  metabolic rate (RMR),  

542 α  (oxygen supply capacity), MMR (maximum  metabolic rate), FAS (factorial aerobic scope).  For  

direct comparison  between species,  RMR, α, and MMR  were  scaled for  each individual  to a  

common mass of 40g using the  scaling equations  determined in Fig. 2.  
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559 Table 2: Effect of temperature (11 vs. 15°C)  on metabolic and hypoxia sensitivity parameters  

(means ± standard deviation) estimated for 10 white (H. sorenseni) and 12 red (H. rufescens) 

abalone.  

560 

561 

562 

Species   Temp 
(°C)  

 Mass 
 (g) 

Length 
 (mm) 

RMR 
 (mgO2 h-

 1) 

α (mgO2 h-1   
%O2  -1) 

 MMR 
  (mgO2 h-1)  FAS  P90  P75  P50  P25  Pcrit

 White abalone  11  38.0 
 ± 7.1 

 66.0 
 ± 3.7 

 0.649* 
 ± 0.116 

 0.0189 
 ± 0.0042 

 1.895 
 ± 0.419 

 2.93* 
 ± 0.43 

 73.9 
 ± 5.1 

 47.1 
 ± 8.2 

 21.9 
 ± 6.5 

 9.0* 
 ± 1.3 

 10.87* 
 ± 2.22 

 (H. sorenseni)  15  31.9 
 ± 5.3 

 62.1 
 ± 3.5 

 0.934* 
 ± 0.184 

 0.0206 
 ± 0.0048 

 2.055 
 ± 0.476 

 2.25* 
 ± 0.57 

 76.8 
 ± 5.2 

 51.8 
 ± 9.0 

 27.0 
 ± 9.1 

 13.5* 
 ± 5.2 

 17.77* 
 ± 7.76 

 Red abalone  11  28.4 
 ± 3.8 

 60.8 
 ± 2.8 

 1.147* 
 ± 0.151 

 0.0299* 
 ± 0.0049 

 2.991* 
 ± 0.490 

 2.62 
 ± 0.42 

 73.4 
 ± 2.0 

 46.2 
 ± 3.1 

 21.5 
 ± 2.9 

 10.0 
 ± 2.0 

 12.89 
 ± 3.31 

 (H. rufescens)  15  27.4 
 ± 3.5 

 59.9 
 ± 2.1 

 1.565* 
 ± 0.176 

 0.0397* 
 ± 0.0070 

 3.972* 
 ± 0.701 

 2.54 
 ± 0.40 

 73.3 
 ± 2.5 

 46.0 
 ± 3.9 

 21.3 
 ± 3.6 

 9.9 
 ± 2.5 

 13.49 
 ± 4.01 

*Indicates significant difference between temperature within  a species.  Abbreviations: Resting 

metabolic rate (RMR), α  (oxygen supply capacity), MMR (maximum metabolic rate), FAS  

(factorial aerobic scope).  For direct comparison,  RMR, α, and MMR were scaled for  each 

individual to a common mass of 40g using the scaling equations determined in Fig. 2.  
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566 Table 3  

Resting metabolic rates (RMR) of white (H. sorenseni)  and red (H. rufescens)  abalone  in 

comparison to other abalone species  at 15 °C and scaled to a common body mass of 40.0 g.  

567 

568 

RMR 
Species 

(mg O2 h-1) 
Study 

Small abalone (H. diversicolor) 0.860 Jan and Chang (1983) 

Paua (H. iris) 0.865 Taylor and Ragg (2005) 

White abalone (H. sorenseni) 0.928 Present study 

South African abalone (H. midae) 0.976 Barkai and Griffiths (1987) 

Ass's-ear abalone (H. asinina) 1.464 Baldwin et al. (2007) 

Red abalone (H. rufescens) 1.482 Present study 

Green abalone (H. fulgens) 1.747 Farı́as et al. (2003) 

Pinto abalone (H. kamtshatkana) 1.755 Carefoot et al. (1993) 

Green ormer (H. tuberculata) 2.022 Gaty and Wilson (1986) 

South African abalone (H. midae) 2.048 Vosloo et al. (2013) 

Pacific abalone (H. discus hannai) 2.173 Uki and Kikuchi (1975) 

Pinto abalone (H. kamtshatkana) 2.509* Paul and Paul (1998) 

Greenlip abalone (H. laevigata) 3.870* Harris et al. (1999) 

569 For direct comparison with data from this study, resting metabolic rate for  each species was  

scaled to a common  mass of 40.0 g using known species-specific scaling exponents (H. discus  

hannai, b  = 0.8025;  H. diverscolor, b  = 0.6125;  H. fulgens, b  = 0.704; H. kamtshatkana, b =  

0.62;  H.  midae,  b  = 0.78, 0.83;  H. rufescens, b =  0.7915;  H. sorenseni, b =  0.9568;  H.  

tuberculata, b  = 0.869)  (Uki and Kikuchi, 1975, Jan and Chang, 1983, Gaty and Wilson, 1986, 
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Barkai and Griffiths, 1987, Carefoot et al., 1993, Farıaś et al., 2003, Vosloo et al., 2013) or a 

mass-scaling exponent of 0.80 if not previously determined.  RMRs were also adjusted to a 

common temperature of 15.0°C using species-specific metabolic temperature relationships (Uki 

and Kikuchi, 1975, Gaty and Wilson, 1986, Barkai and Griffiths, 1987, Paul and Paul, 1998) or 

using a Q10 of 2.0 if not previously determined.  Note: Respirometry techniques differed between 

studies, and some of the variation between species and conspecifics may reflect the different 

methods. Trials in the present study were conducted with a one-hour acclimation period and 

utilized plastic isolation disks to transfer the abalone into the respirometer to minimize any 

metabolic signature associated with handling stress, while also minimizing the time for 

introduced bacteria to establish and create a strong background respiration rate that could mask 

the abalone oxygen consumption rate.  *The much higher metabolic rates for H. kamtshatkana 

(Paul and Paul, 1998) and H. laevigata (Harris et al., 1999) in comparison to the other species 

may reflect the long acclimation times (3-4 days) for abalone in the respirometer, which may 

have introduced a heavy bacterial load that could increase the measured oxygen consumption 

rate. 
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589 Figure Captions:  
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Fig. 1.   Relationships between oxygen consumption rate (mgO  1  g-1
2 h- ) and environmental  

dissolved oxygen level (% air saturation) at 15°C for white abalone (H. sorenseni).  (A) A  

logarithmic-shaped oxygen consumption profile from an 81.1 g and 82.7 mm white abalone.  (B)  

A linear-shaped oxygen consumption profile for a 14.6 g and 48.9 mm white abalone. These  
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curves were used to determine the P90, P75, P50, and P25 (gray dotted lines) representing the 

environmental dissolved oxygen level at which the oxygen consumption of each individual was 

90%, 75%, 50%, 25% of resting metabolic rate (RMR, as estimated by P100).  (C, D) Oxygen 

supply capacity for the 81.1 g white abalone in (A) and 14.6 g white abalone in (B) respectively, 

showing the change in oxygen consumption per available unit of environmental dissolved 

oxygen.  (E, F) Combined oxygen consumption profiles with respective oxygen supply capacity 

for the 81.1 g white abalone from (A,C) and 14.6 g white abalone from (B,D) used to estimate 

the maximum metabolic rate (MMR), aerobic scope (AS), and Pcrit. 
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Fig. 2. The relationship of resting metabolic rate (mg O2 h-1) versus total body mass (g) for white 

(H. sorenseni, n = 29) and red abalone (H. rufescens, n = 29) at 15°C.  Lines depict the best-fit 

allometric scaling equation for each species. 
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Fig. 3. Mean oxygen consumption rates (MO2) in relation to environmental dissolved oxygen (% 

air saturation) for white (H. sorenseni, n = 29) and red abalone (H. rufescens, n = 29) at 15°C.  

All H. sorenseni and H. rufescens individuals were scaled to a common total body mass of 40 g 

(using a scaling exponent of 0.9568 for H. sorenseni and 0.7915 for H. rufescens, see Fig. 2) for 

direct comparison between species. 
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827 Supplementary Materials  Figures:  
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Fig. S1.   Schematic of the abalone  respirometry system composed of an acrylic cylindrical  
holding chamber and a recirculating loop for monitoring dissolved oxygen concentration and 
temperature.  Three-way stopcocks within the loop were used to manually open and close the  
system to the surrounding buffer tank seawater kept at a constant targeted temperature of 11.0 or  
15.0°C.  Prior to a respirometry trial the abalone  was placed on a PVC disk cutout that was used 
to transfer the  animal from an isolated holding chamber into the respirometer in order to 
minimize handling stress and air exposure.  
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840 

841 Fig. S2.   Supplementary respirometry trials for three red abalone (H. rufescens) at  15°C showing:  (A) 
Little change  in mean oxygen consumption rate (mg O2  h-1  g-1)  over  five days in the  respirometer.  (B)  
Mean oxygen consumption rate (± SE) in response to declining dissolved oxygen (% air saturation)  
following five  days in the respirometer.  (C) Combined plot of  (A)  and (B) showing mean abalone oxygen 
consumption in response to declining dissolved oxygen in comparison to that measured over five days  in 
the  respirometer (box plot).  The oxygen supply capacity (α, dashed line) calculated as a  function of  
declining oxygen was used  to estimate maximum metabolic rate (MMR), which  closely matches maximum  
oxygen consumption measured over  five days  in the respirometer.  Resting metabolic rate  (RMR) was  
estimated from the logarithmic relationship of oxygen consumption at  100% a.s.,  which closely matches  
the q0.25  of the oxygen consumption rates measured over five  days. For  all plots, individual abalone oxygen 
consumption data were scaled to a common body mass of 40 g using b = 0.7915.  
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44 

853 

854 Fig. S3.   Relationships of oxygen consumption rate (mg O  h-1  g-1
2 ) and environmental dissolved 

oxygen (% air saturation) (solid black line) at 15°C for six white (H. sorenseni) and red abalone  
(H. rufescens) individuals showing the  estimated  oxygen supply capacity (α, dashed line)  in 
relation to occasional  high outlier points likely associated with abalone activity  within the  
respirometer.  
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45 

859 

860 Fig. S4.  The relationship of resting metabolic rate  (mg O -
2  h 1) versus live tissue mass (total mass  

– s hell mass, g) for  white (H. sorenseni, n = 29) and red abalone (H. rufescens, n = 29) at 15°C.  
Lines depict the best-fit allometric scaling equation for each species.  
 

861 
862 
863 

864 

865 

866 

867 

868 

869 

870 



 
 

 
 

  

 
 
 
 

  

  

  

  

  

  

  

  

46 

871 

872 Fig. S5. Boxplots showing the hypoxia tolerance  measures of  P90, P75, P50, P25, and Pcrit  
(dissolved oxygen level in percent  air saturation) for white (H. sorenseni, n = 29) and red 
abalone (H. rufescens, n = 29) at 15°C.  
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884 

885 Fig. S6.   Relationship between the P50  oxygen level  (percent  air  saturation) and shell length 
(mm) for white (H. sorenseni, n = 29)  and  red abalone (H. rufescens, n = 29) at 15°C.  886 



 
 

 

 
 

 

 Fig. S7.  Boxplots showing paired hypoxia tolerance measurements of  P90, P75, P50, P25, and Pcrit  
(dissolved oxygen level in percent  air  saturation) at both 11°C and 15°C for a subset of (A) white  
abalone (H. sorenseni, n=10) and (B)  red abalone (H. rufescens, n=12). See Table 2 for details.  
*Indicates significant differences between temperatures.  
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893 
894 
895 
896 

Fig. S 8.   Relationship between  the  P50  oxygen level (percent air saturation)  and shell  length 
(mm) for white abalone (H. sorenseni, n = 29)  at 15°C  separated by cohort  year (2014, 2016, 
2019).  
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904 

905 Fig. S9.   Mean oxygen consumption rate (MO2) in relation to environmental dissolved oxygen (%  
air  saturation) for white (H. sorenseni, n = 29)  and red abalone (H. rufescens, n = 29) at 15°C  
from Fig. 3, standardized as a percent of total resting metabolic rate.  Lines  show best-fit 
logarithmic functions, and error bars show standard error of the mean.  All  H. sorenseni  and H.  
rufescens  data were scaled to a common total body mass of 40 g.  
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