

1 **Juvenile and small adult cowcod (*Sebastodes levis*) show high post-release survival**
2 **following angling-induced barotrauma**

4 Nicholas C. Wegner^{1,2*}, Lyall Bellquist^{1,2,3}, Roberto Silva², John R. Hyde¹

5 ¹ Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries
6 Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037

7 ² Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093

8 ³ California Oceans Program, The Nature Conservancy, San Diego, CA 92101

9
10 *corresponding author: nick.wegner@noaa.gov

11
12 **Abstract:**

13 The cowcod, *Sebastodes levis*, is a large slow-growing rockfish species found along the West Coast
14 of the United States and Baja California, Mexico that has been historically heavily exploited off
15 of southern California. As the cowcod population recovers from past overfishing, previously
16 closed fishing areas and depths are reopening, leading to increased fisher interactions with the
17 species, particularly juveniles and small adults, which are typically found at shallower depths
18 closer to shore. In this study, we quantify post-release survival rates of juvenile and small adult
19 cowcod (< 50 cm) following angling-induced barotrauma in comparison to previous work
20 focused on larger adult cowcod. All fish were captured using recreational hook-and-line gear
21 and descended back to depth using commercially available fish descending devices. Kaplan-
22 Meier survivorship modeling showed an overall survival rate of 92.9% (95% CI: 80.3 – 100%) for
23 the 14 cowcod examined (22.9 – 49.5 cm fork length). This survival rate was nearly twice that
24 determined previously for larger cowcod. The higher survival rate of smaller individuals may
25 reflect their thinner tissues, allowing for expanding gas from the swim bladder to escape the
26 body and preventing some of the severe internal organ damage typically associated with
27 barotrauma in larger cowcod. Combination of our results with previous research thus suggests
28 that small cowcod caught by recreational anglers can be released with high survival rates, while
29 larger cowcod are less likely to survive capture and barotrauma.

30
31 **Key Words:** Catch and release, post-release mortality, recreational fishing, rockfish, size-
32 dependent mortality, survival

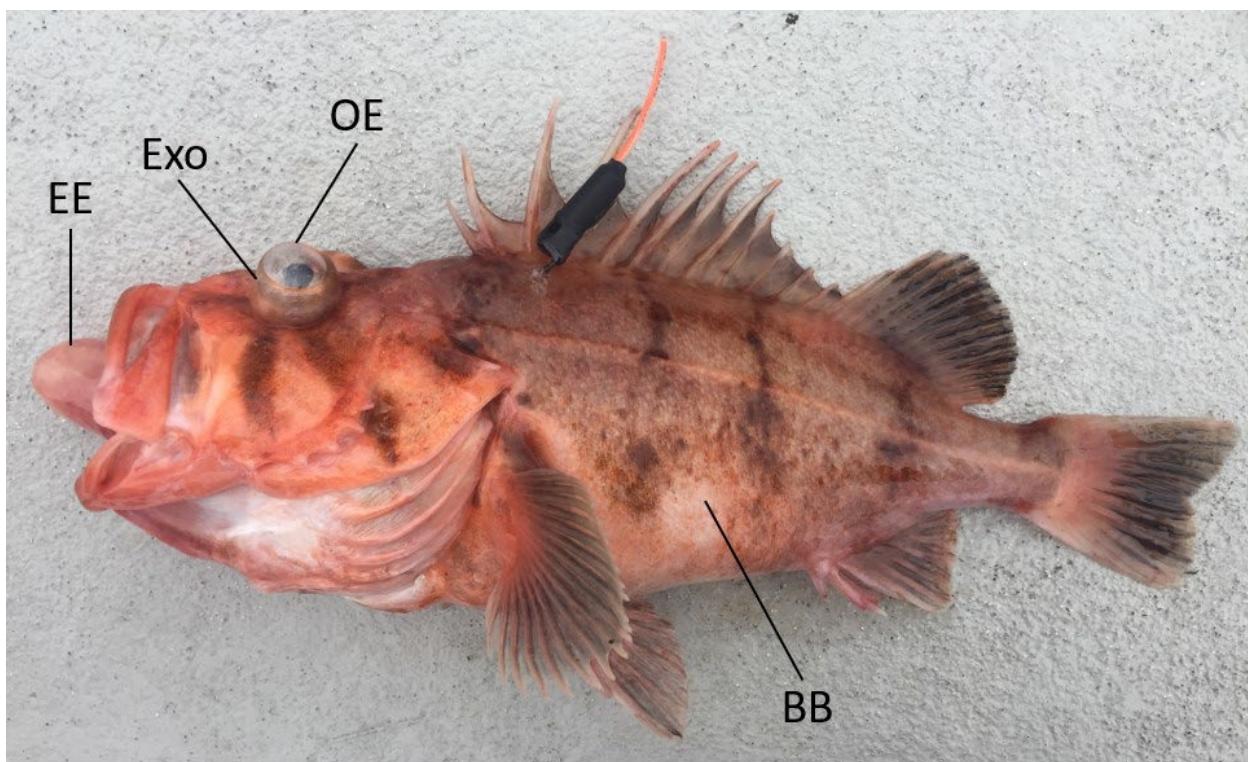
34 **1. Introduction**

35 Fishes with a physoclistous, or closed, gas (swim) bladder often experience barotrauma when
36 captured from depth. As such fishes are brought to the surface, the gas in their swim bladder
37 expands, often rupturing the organ and releasing gas into the visceral cavity and surrounding
38 tissues (Parker et al., 2006; Pribyl et al., 2011; Brownscombe et al., 2017). Common external
39 signs of severe barotrauma include a stiff and bloated body and extension of the pharyngo-
40 cleithral membrane under the gill operculum from the expansion of gas within the visceral
41 cavity, an everted esophagus with stomach protrusion from the mouth, exophthalmia (bulging
42 of the eyes), and ocular and subcutaneous emphysema (free gas bubbles within the eye under
43 the cornea or under the skin) (Fig. 1) (Rummer and Bennett, 2005; Hannah et al., 2008b; Jarvis
44 and Lowe, 2008; Pribyl et al., 2009; Pribyl et al., 2011). Internally, the expanded gas can exert
45 extreme pressure on visceral organs, which can be crushed and displaced leading to various
46 degrees of tissue damage and internal hemorrhaging (Rummer and Bennett, 2005; Jarvis and
47 Lowe, 2008; Rogers et al., 2008; Pribyl et al., 2009; Pribyl et al., 2011; Pribyl et al., 2012).

48 In addition to such injury, gas expansion in the viscera often results in excessive buoyancy for
49 fishes released after capture, hindering their ability to resubmerge and return to depth
50 (Gitschlag and Renaud, 1994; Hannah et al., 2008a; Hochhalter, 2012). Fishes left floating at
51 the surface can quickly succumb to their barotrauma injuries, temperature shock of the warmer
52 surface water, and predation from birds and marine mammals (Jarvis and Lowe, 2008;
53 Campbell et al., 2010; Kerwath et al., 2013; Ferter et al., 2015). To address these challenges,
54 the recreational fishing community has developed a number of commercially available
55 descending devices that use weights to assist fishes in overcoming buoyancy and returning to
56 depth (Theberge and Parker, 2005; Runde and Buckel, 2018; Bellquist et al., 2019). Once at
57 depth, internal gas from the swim bladder is recompressed, largely alleviating barotrauma
58 symptoms (Parker et al., 2006; Pribyl et al., 2012; Drumhiller et al., 2014; Rankin et al., 2017).
59 Consequently, these devices have proven largely effective in releasing fishes and reducing
60 immediate surface mortality (Ebets and Somers, 2017; Bellquist et al., 2019; Wegner et al.,
61 2021; Madden et al., 2024).

62 Increasing evidence has shown the potential for descended and recompressed fishes to
63 completely recover from barotrauma, although survival rates and recovery times appear largely
64 species specific (Nichol and Chilton, 2006; Curtis et al., 2015; Rankin et al., 2017; Runde and
65 Buckel, 2018; Wegner et al., 2021). For example, recent work examining survival of two
66 important rockfish species from southern California following capture and barotrauma showed
67 significantly different post-release survival rates: cowcod (*Sebastodes levis*), a large benthic-
68 oriented rockfish, showed survival rates of approximately 50%, while bocaccio (*S. paucispinis*), a
69 more pelagic-oriented species inhabiting similar depths, showed higher survival at
70 approximately 90% (Wegner et al., 2021). These different survival rates are likely related to the
71 ecology and physiology of the species (e.g., gas bladder morphology, ability for vertical
72 movements and buoyancy adjustments, and sensitivities to environmental stressors that are

73 exacerbated following barotrauma stress and injury) (Jarvis and Lowe, 2008; Wegner et al.,
74 2021). To further complicate matters, at least some species appear to show within species
75 differences in survival associated with size or age class (Hochhalter and Reed, 2011; Wegner et
76 al., 2021). In cowcod, fish size was the most important predictor of survival, with larger cowcod
77 showing much lower survival rates than smaller individuals (Wegner et al., 2021). In contrast,
78 the opposite pattern has been observed in yelloweye rockfish (*S. ruberrimus*), with smaller
79 individuals showing lower survival rates post capture and barotrauma (Hochhalter and Reed,
80 2011). Such inter and intraspecific differences suggest caution against broad generalizations in
81 fish recovery from barotrauma, even within species, which consequently complicates
82 management decisions. For historically-overfished species which heavily influence such
83 management decisions, it is important to consider how life stage affects post-release survival.


84 This study expands upon recent work by Wegner et al. (2021) that found a strong correlation
85 between fish size and mortality in adult cowcod, by examining survival rates in juvenile and
86 small adult individuals that are more likely to be encountered in recreational and commercial
87 fisheries. Following a rapid population decline in the 1970s - 1980s, cowcod were deemed
88 overfished in 2000, prompting fisheries managers to adopt a number of progressive measures
89 to reverse the decline (Butler et al., 2003; Dick and He, 2019). This included a 2001 species
90 moratorium and the establishment of large offshore Cowcod Conservation Areas (no bottom
91 fishing) as well as bottom-fishing depth restrictions (no hook and line bottom fishing deeper
92 than specified depths) to avoid cowcod bycatch while anglers target other rockfish species.
93 These restrictions, in conjunction with a number of successful recruitment years, allowed
94 cowcod to rebound, with the stock being declared rebuilt in 2019 (Dick and He, 2019).
95 Associated with the cowcod resurgence, depth restrictions and area closures put in place
96 primarily to protect the species have been systematically reduced and removed. This has
97 resulted in increased fisheries interactions with cowcod. However, due to their historically
98 overfished status, slow growth rates, and late maturation (Love et al., 1990; Butler et al., 2003),
99 cowcod are still protected and cannot be retained in US waters, and must therefore be
100 released. As juvenile cowcod are usually found at shallower depths and closer to shore than
101 adults, they are more likely to be captured in recreational and commercial fisheries targeting
102 other rockfish species. This study thus examines the survival rate of juvenile and early adult
103 stage cowcod to further our understanding of the impact of capture and barotrauma on this
104 important species.

105

106 **2. Methods**

107 Juvenile and small adult cowcod (<50 cm fork length (FL)) were targeted offshore of San Diego
108 County, CA using standard recreational fishing techniques for rockfish (rod and reel, typically
109 with spectra braided fishing line containing a monofilament leader with two baited J hooks and
110 a weight). Cowcod were captured during the spring and early summer (March-June) 2016 and
111 2017 at depths of 67-118 m (mean 102 ± 14.6 SD m). Captured cowcod ($n = 14$, mean $33.5 \pm$

112 8.2 SD cm FL, range: 22.9 – 49.5 cm FL) were externally tagged with either a Thelma Biotel
113 AADTT-HP-9 (Trondheim, Norway) or VEMCO 13AP (Innovasea, Boston, USA) acoustic
114 transmitter selected to match the size of the fish (with one exception, the largest fish were
115 outfitted with the larger VEMCO 13AP) (Fig. 1). Cowcod were then released following common
116 recreational fishing fleet release practices using a standard Seaqualizer descending device set to
117 the deepest release setting of 150 ft (=45.7 m, which, depending on the individual, was 39-68%
118 of its capture depth) in order to help them overcome buoyancy caused by barotrauma. All
119 individuals were successfully released and did not return to the surface. All fish capture,
120 tagging, and release procedures were conducted in accordance with the NOAA Southwest
121 Fisheries Science Center and University of California, San Diego Institutional Animal Care and
122 Use Committee protocols SW1901 and S00080.

123
Figure 1: Image of a 35.6 cm FL juvenile cowcod (*Sebastodes levis*) showing typical external signs of
barotrauma associated with capture from depth (stiff and bloated body (BB), everted esophagus
(EE) with distended stomach, exophthalmia (Exo), and ocular emphysema (OE)) and the dorsal
attachment of an acoustic transmitter (Thelma Biotel AADTT-HP-9) used to monitor fish survival
post release.

124
125 Acoustic transmitters were programmed to transmit alternating pressure and acceleration data
126 (and temperature data in the case of the Thelma AADTT-HP-9) every 4 min (randomized
127 between 170 to 310 s to minimize repeated acoustic collisions among nearby tags). Acoustic
128 transmissions were monitored and recorded using VEMCO receivers (VR2, VR2W) suspended
129 approximately 6 m above the seafloor at sites of fish capture and release (Fig. 2).

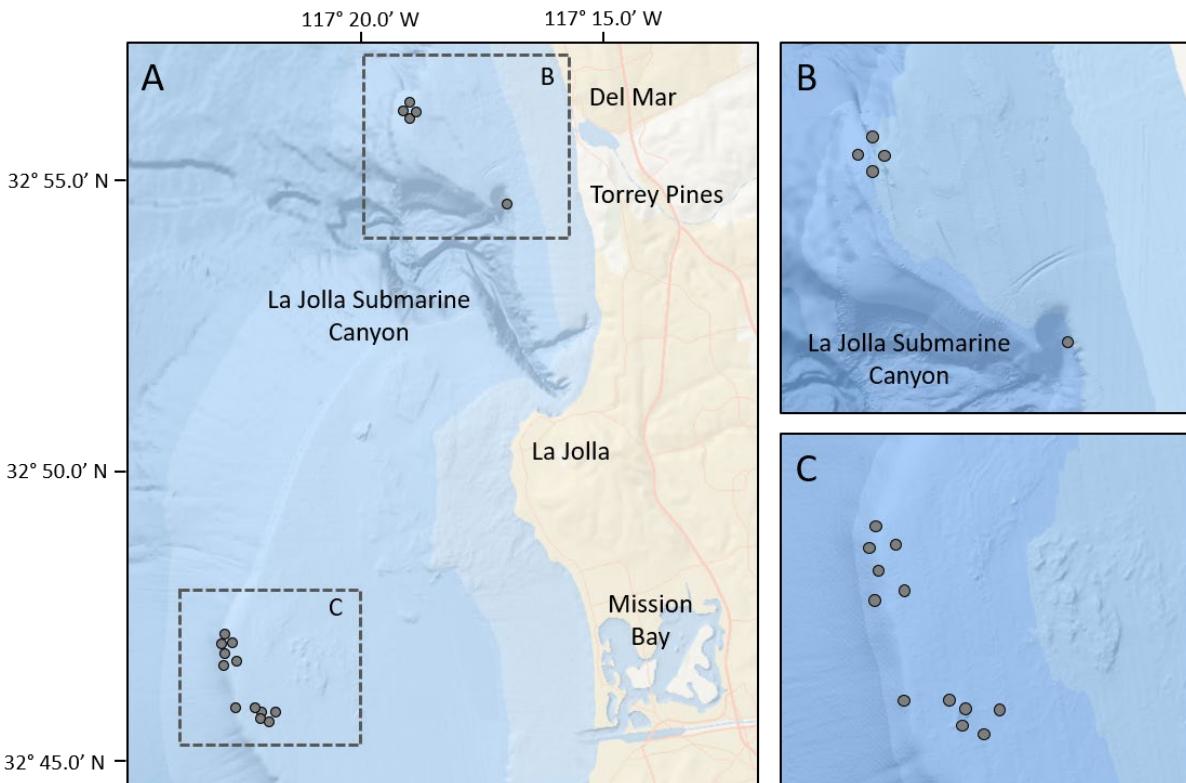
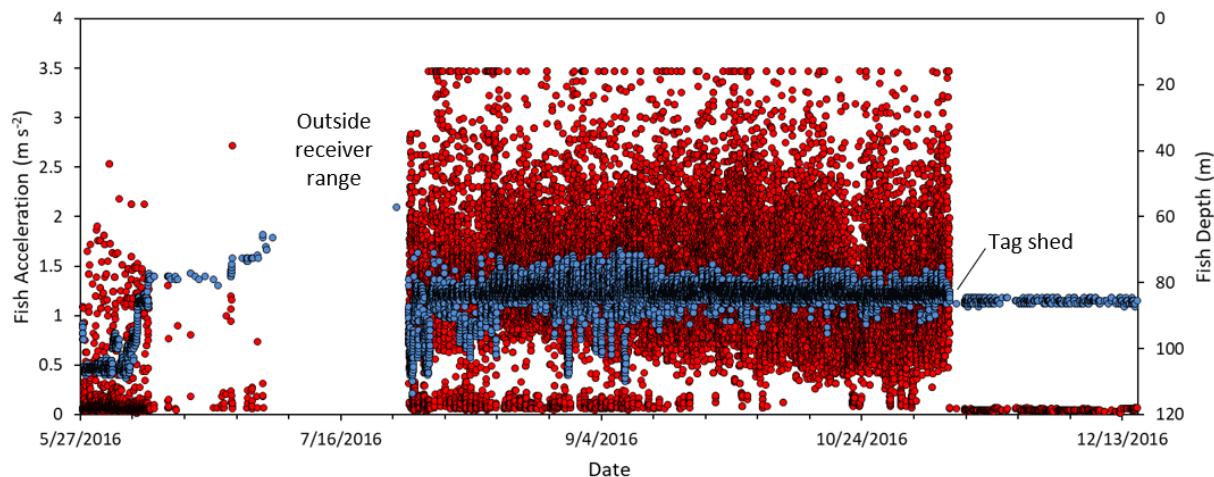


Figure 2: Coastline and local bathymetry of northern San Diego County, USA (A) showing the location of acoustic receivers (gray dots) near cowcod capture locations off Del Mar and Torrey Pines near the La Jolla submarine canyon (B) and offshore of Mission Bay (C) near the continental shelf dropoff.

130


131

132 Pressure (fish depth) and acceleration data downloaded from the receivers were analyzed
 133 according to Wegner et al. (2021), in which continuous changes in depth and acceleration
 134 indicated a fish was alive (Fig. 3). If the fish's depth profile permanently stopped changing
 135 more than ± 2 m (maximum change in pressure associated with the tidal cycle) and the fish's
 136 acceleration immediately stopped, the tag was considered to have been shed from the fish (Fig.
 137 3). If some acceleration continued for hours to days post cessation of depth changes, the fish
 138 was considered to have died, with the diminishing acceleration representing scavenging and
 139 slight movements of the carcass on the sea floor (Wegner et al., 2021). Cowcod survival rate
 140 was determined using a Kaplan-Meier model (Kaplan and Meier, 1958; Wegner et al., 2021)
 141 using the `surv()` and `survfit()` functions from the 'survival' package (<https://cran.r-project.org/web/packages/survival/survival.pdf>) in RStudio (v. 2024.04.1) which takes into
 142 account the loss of observations (fish emigration outside detection range of the receivers) over
 143 time. In order to examine the effects of fish size and capture depth on cowcod survival, data
 144 from this study were combined with those from Wegner et al. (2021) examining larger fish at
 145 generally deeper depths and a Cox proportional hazards model (Cox, 1972; Clark et al., 2023)
 146 was applied using the `coxph()` function.

148

149 **3. Results**

150 Juvenile and small adult cowcod acoustic telemetry data showed regular fluctuations in
 151 acceleration and depth allowing for determination of survival status (Fig. 3). Of the 14 cowcod
 152 assessed, only one fish was observed to have died (38.1 cm FL, captured from 118 m, death was
 153 immediate upon release, Table S1). This resulted in an ultimate survival rate of $92.9 \pm 6.9\% (\pm$
 154 SE) with 95% CIs of 80.3 to 100% based on the Kaplan-Meier model. Fish remained within
 155 detection range of the acoustic receivers from 2.0 to 306.0 days (79.1 ± 95.1 days, \pm SD, Table
 156 S1). During this time, four fish were observed to have shed their acoustic transmitters (35.0 –
 157 166.5 days, mean \pm SD = 80.2 ± 58.7 days, Table S1). When combining survival data in the
 158 current study with that of Wegner et al. (2021) for larger cowcod, the Cox proportional hazards
 159 model showed that fish length had a significant effect on survival ($P = 0.0025$), while fish
 160 capture depth did not ($P = 0.9236$).

161

Figure 3: Depth (blue) and acceleration (red) of a 45.5 cm FL cowcod outfitted with a VEMCO 13AP acoustic transmitter released near Del Mar, CA. This fish was consistently detected by acoustic receivers from its release on 5-27-2016 (mm-dd-yyyy) until 6-9, detected sporadically from 6-10 to 7-2, at which point the fish was outside the detection range of the receivers. The fish then returned within range on 7-29 and remained within detection range of the receiver network until the tag was shed from the fish on 11-9-2016, 166 days after capture and release (see Methods for determining the difference between a shed tag and fish mortality).

162

163

164 **4. Discussion**

165 This study builds upon recent work by Wegner et al. (2021) that found a strong correlation
 166 between cowcod size and mortality, with larger fish experiencing lower post-release survival
 167 rates following angler-induced capture and barotrauma. Specifically, the 92.9% (95% CI: 80.3 –
 168 100%) post-release survival rate determined in this study for juvenile and small adult cowcod
 169 (n=14, 22.9 – 49.5 cm FL) is significantly greater than the 50.0% (95% CI: 35.7 - 70.5%) survival
 170 rate estimated for larger cowcod (n=46, 41.4 – 74.0 cm FL) from Wegner et al. (2021). The

171 increased susceptibility of larger cowcod to fishing mortality can perhaps best be seen by
172 combining data from the current study with that of Wegner et al. (2021) to determine survival
173 rates according to fish size bins (Table 1). This shows that cowcod <45 cm FL have high survival
174 rates (92.3%), while adult (>45 cm FL) survival decreases fairly steadily with size, with larger
175 adults being more vulnerable to catch-and-release mortality. In particular, all cowcod from
176 Wegner et al. (2021) greater than 70 cm FL (70.5 – 74.0 cm) died upon release (n=6).

177

178 Table 1: Post-release survival rates of cowcod (*S. levis*) according to fish size (fork length), as estimated
179 through a Kaplan-Meier model using acoustic telemetry data from this study and Wegner et al. (2021).

Fork length (cm)	Survival (%)	95% CI (%)	n	Depth of capture (m)
<45	92.3	78.9 - 100.0	13	99.8 ± 15.1
45-60	69.4	50.1 - 96.3	18	121.9 ± 23.0
60-65	50.0	25.6 - 97.5	16	117.6 ± 18.2
65-75	26.9	10.5 - 69.3	13	134.0 ± 23.9

180 Depths of capture are reported as means ± SD.

181

182 The higher post-release survival rate of smaller cowcod determined in this study contrasts with
183 predictions that smaller fish should be more susceptible to barotrauma, and capture in general.
184 Such predictions range from hypothesized susceptibility of smaller fish to gas emboli blocking
185 blood flow in smaller diameter critically-important blood vessels (Beyer et al., 1976), to
186 increased sensitivity to thermal shock associated with warm surface waters in smaller-bodied
187 individuals with limited thermal inertia (Davis, 2002). Despite such predictions, most
188 barotrauma studies encompassing a size range of individuals have not shown size-specific
189 mortality rates (Gitschlag and Renaud, 1994; Collins et al., 1999; St John and Syers, 2005; Jarvis
190 and Lowe, 2008; Hannah et al., 2012) or generally weak relationships showing increased
191 mortality and longer recovery times in larger fish (Nichol and Chilton, 2006; Curtis et al., 2015).
192 Hochhalter and Reed (2011) found decreased post-release survival in juvenile yelloweye
193 rockfish in comparison to adults, although this increased mortality was not directly observed,
194 but rather based on fewer mark-recapture returns of smaller individuals. Subsequent work has
195 suggested that yelloweye rockfish recovering from barotrauma are particularly vulnerable to
196 predation, which would disproportionately affect smaller fish (Rankin et al., 2017). For cowcod
197 in southern California, where predators such as lingcod, *Ophiodon elongatus*, are much less
198 abundant (Hart, 1973), we did not observe such predation events.

199 The cause for elevated mortality rates in larger cowcod remains uncertain. While juvenile
200 cowcod often occur at shallower depths than adults (Love et al., 1990), Wegner et al. (2021)
201 found that depth of capture was not a significant predictor of survival in 46 cowcod (41.4–74.0
202 cm FL) captured from depths of 82.3–178.3 m, and inclusion of data from the current study to

203 extend the dataset to 60 cowcod (22.9-74.0 cm FL) from depths of 67.0-178.3 m continues to
204 support that finding. Wegner et al. (2021) rather hypothesized that the observed size-mortality
205 relationship may reflect the likely thicker tissues (e.g., thicker membranes, body cavity walls) of
206 larger individuals that may limit the escapement of expanding high-pressure gas from the body
207 during capture. Angled rockfishes are often observed arriving at the surface surrounded by free
208 gas bubbles that are presumed to represent escaped gas from the swim bladder and body into
209 the surrounding water. If thicker body tissues of larger individuals reduce the ability for gas to
210 escape, this would result in increased pressure of the expanding gas on internal organs and
211 tissues, which could lead to more severe injury. Indeed, a limited number of necropsies we
212 have performed on large cowcod following barotrauma-induced mortality show massive
213 internal hemorrhaging within the visceral cavity (Wegner, personal observation). Examples of
214 the potential benefits of gas escapement can be seen from yellowtail rockfish (*S. flavidus*) and
215 quillback rockfish (*S. maliger*), in which the pharyngeal cleithral membrane has been shown to
216 rupture and release gas, thus alleviating internal pressure and improving post-capture
217 submergence success and presumably survival rates in comparison to other species (Hannah et
218 al., 2008a; Pribyl et al., 2009; Hochhalter, 2012). The ability for gas to escape the body before
219 damage to internal organs occurs may thus help explain both differences in species-specific and
220 ontogenetic mortality rates of rockfishes caught at deeper depths. However, additional studies
221 are needed to confirm potential differences in tissue thicknesses and gas-release pressures
222 among species and fish size classes. For example, examining size-dependent mortality in other
223 large-bodied rockfish species such as the bronzespotted rockfish (*S. gilli*), which is known to be
224 extremely buoyant upon capture (indicating the internal retention of expanded gas and
225 potential for increased pressure-related internal injury) could provide further insight.

226 In addition to potentially thicker tissues that may inhibit gas escapement, mature cowcod may
227 also have less relative space for gas expansion due to the larger volumes occupied by mature
228 testes and ovaries. This is likely especially true for females nearing parturition, in which ovaries
229 with developing eggs or embryos enlarge, displacing other organs and leading to expansion of
230 the visceral cavity. Gravid females may also have a slightly larger volume of gas in the swim
231 bladder to help offset the added weight of enlarged ovaries and developing embryos which
232 could potentially affect post-release mortality, as a greater internal gas volume increases the
233 potential for gas expansion and related barotrauma. Future work should also therefore
234 consider the potential for sex-dependent mortality estimates.

235 *4.1. Implications for management*

236 With the recent recovery of cowcod populations and associated relaxation of fishing depth and
237 area closures in southern California, more cowcod are likely to be captured as bycatch while
238 targeting other rockfish species. However, cowcod retention remains prohibited within the
239 United States, and these fish must consequently be released. As smaller cowcod are typically
240 found at relatively shallower depths and closer to shore than adults (Love et al., 1990), they are
241 likely to be disproportionately encountered by recreational anglers. Our results indicate that

242 these smaller cowcod can be successfully released with high survival rates using a descending
243 device. However, while typically found deeper and offshore, larger adult cowcod interactions
244 are also likely to increase as depth and area restrictions are lifted. Wegner et al., (2021)
245 showed that larger cowcod, especially those over ~65-70 cm, have much lower survival rates,
246 indicating that size-dependent survivorship metrics should be considered in the catch and
247 release of this species.

248

249 **Acknowledgements**

250 This work was funded by NOAA's National Cooperative Fisheries Program. Special thanks to
251 Captain Paul Fisher and crew of the *M/V Outer Limits* and RJ Hudson and crew of the *M/V New*
252 *Seaforth* for help with fish capture, tagging, and release, as well as numerous volunteer
253 recreational anglers involved in the study. We also thank Erica Jarvis Mason and Melissa Monk
254 for reviewing drafts of this manuscript.

255

256

257 **References**

258 Bellquist, L., Beyer, S., Arrington, M., Maeding, J., Siddall, A., Fischer, P., Hyde, J., Wegner, N.C., 2019.
259 Effectiveness of descending devices to mitigate the effects of barotrauma among rockfishes
260 (*Sebastodes* spp.) in California recreational fisheries. *Fish. Res.* 215, 44-52.

261 Beyer, D.L., D'Aoust, B.G., Smith, L.S., 1976. Decompression-induced bubble formation in salmonids:
262 comparison to gas bubble disease. *Undersea Biomed. Res.* 3, 321-338.

263 Brownscombe, J.W., Danylchuk, A.J., Chapman, J.M., Gutowsky, L.F., Cooke, S.J., 2017. Best practices for
264 catch-and-release recreational fisheries—angling tools and tactics. *Fish. Res.* 186, 693-705.

265 Butler, J.L., Jacobson, L.D., Barnes, J.T., Moser, H.G., 2003. Biology and population dynamics of cowcod
266 (*Sebastodes levis*) in the southern California Bight. *Fish. Bull.* 101, 260-280.

267 Campbell, M.D., Patino, R., Tolan, J., Strauss, R., Diamond, S.L., 2010. Sublethal effects of catch-and-
268 release fishing: measuring capture stress, fish impairment, and predation risk using a condition
269 index. *ICES J. Mar. Sci.* 67, 513-521.

270 Clark, T.G., Bradburn, M.J., Love, S.B., Altman, D.G., 2003. Survival analysis part I: Basic concepts and
271 first analyses. *Br. J. Cancer.* 89, 232-238.

272 Collins, M.R., McGovern, J.C., Sedberry, G.R., Meister, H.S., Pardieck, R., 1999. Swim bladder deflation in
273 black sea bass and vermilion snapper: Potential for increasing postrelease survival. *N. Am. J.*
274 *Fish. Manag.* 19, 828-832.

275 Cox, D.R., 1972. Regression models and life-tables. *J. R. Stat.* 34, 187-202.

276 Curtis, J.M., Johnson, M.W., Diamond, S.L., Stunz, G.W., 2015. Quantifying delayed mortality from
277 barotrauma impairment in discarded red snapper using acoustic telemetry. *Mar. Coast. Fish.* 7,
278 434-449.

279 Davis, M.W., 2002. Key principles for understanding fish bycatch discard mortality. *Can. J. Fish. Aquat.*
280 *Sci.* 59, 1834-1843.

281 Dick, E.J., He, X. 2019. Status of Cowcod (*Sebastodes levis*) in 2019, Pacific Fishery Management Council,
282 Portland, OR.

283 Drumhiller, K.L., Johnson, M.W., Diamond, S.L., Reese Robillard, M.M., Stunz, G.W., 2014. Venting or
284 rapid recompression increase survival and improve recovery of red snapper with barotrauma.
285 Mar. Coast. Fish. 6, 190-199.

286 Eberts, R.L., Somers, C.M., 2017. Venting and descending provide equivocal benefits for catch-and-
287 release survival: study design influences effectiveness more than barotrauma relief method. N.
288 Am. J. Fish. Manag. 37, 612-623.

289 Ferter, K., Weltersbach, M.S., Humborstad, O.-B., Fjelldal, P.G., Sambraus, F., Strehlow, H.V., Vølstad,
290 J.H., 2015. Dive to survive: effects of capture depth on barotrauma and post-release survival of
291 Atlantic cod (*Gadus morhua*) in recreational fisheries. ICES J. Mar. Sci. 72, 2467-2481.

292 Gitschlag, G.R., Renaud, M.L., 1994. Field experiments on survival rates of caged and released red
293 snapper. N. Am. J. Fish. Manag. 14, 131-136.

294 Hannah, R.W., Parker, S.J., Matteson, K.M., 2008a. Escaping the surface: The effect of capture depth on
295 submergence success of surface-released Pacific rockfish. N. Am. J. Fish. Manag. 28, 694-700.
296 doi: 10.1577/m06-291.1

297 Hannah, R.W., Rankin, P.S., Blume, M.T., 2012. Use of a novel cage system to measure
298 postrecompression survival of Northeast Pacific rockfish. Mar. Coast. Fish. 4, 46-56.

299 Hannah, R.W., Rankin, P.S., Penny, A.N., Parker, S.J., 2008b. Physical model of the development of
300 external signs of barotrauma in Pacific rockfish. Aquat. Biol. 3, 291-296. doi: 10.3354/ab00088

301 Hart, J.L., 1973. Pacific Fishes of Canada. Fish. Res. Board. Can. Bull. 180, 740pp.

302 Hochhalter, S.J., 2012. Modeling submergence success of discarded yelloweye rockfish (*Sebastes*
303 *ruberrimus*) and quillback rockfish (*Sebastes maliger*): Towards improved estimation of total
304 fishery removals. Fish. Res. 127, 142-147.

305 Hochhalter, S.J., Reed, D.J., 2011. The effectiveness of deepwater release at improving the survival of
306 discarded yelloweye rockfish. N. Am. J. Fish. Manag. 31, 852-860.

307 Jarvis, E.T., Lowe, C.G., 2008. The effects of barotrauma on the catch-and-release survival of southern
308 California nearshore and shelf rockfish (Scorpaenidae, *Sebastes* spp.). Can. J. Fish. Aquat. Sci. 65,
309 1286-1296. doi: 10.1139/f08-071

310 Kaplan, E.L., Meier, P., 1958. Nonparametric estimation from incomplete observations. J. Am. Stat.
311 Assoc. 53, 457-481.

312 Kerwath, S.E., Wilke, C.G., Götz, A., 2013. The effects of barotrauma on five species of South African line-
313 caught fish. Afr. J. Mar. Sci. 35, 243-252.

314 Love, M.S., Morris, P., McCrae, M., Collins, R. 1990. Life history aspects of 19 rockfish species
315 (Scorpaenidae: *Sebastes*) from the Southern California Bight, NOAA Technical Report NMFS 87,
316 38 pp.

317 Madden, J.C., LaRochelle, L., Burton, D., Danylchuk, S.C., Danylchuk, A.J., Cooke, S.J., 2024. Biologgers
318 reveal unanticipated issues with descending angled walleye with barotrauma symptoms. Can. J.
319 Fish. Aquat. Sci. 81, 212-222.

320 Nichol, D.G., Chilton, E.A., 2006. Recuperation and behaviour of Pacific cod after barotrauma. ICES J.
321 Mar. Sci. 63, 83-94. doi: 10.1016/j.icesjms.2005.05.021

322 Parker, S.J., McElderry, H.I., Rankin, P.S., Hannah, R.W., 2006. Buoyancy regulation and barotrauma in
323 two species of nearshore rockfish. Trans. Am. Fish. Soc. 135, 1213-1223.

324 Pribyl, A.L., Kent, M.L., Parker, S.J., Schreck, C.B., 2011. The response to forced decompression in six
325 species of Pacific rockfish. Trans. Am. Fish. Soc. 140, 374-383. doi:
326 10.1080/00028487.2011.567858

327 Pribyl, A.L., Schreck, C.B., Kent, M.L., Kelley, K.M., Parker, S.J., 2012. Recovery potential of black rockfish,
328 *Sebastes melanops* Girard, recompressed following barotrauma. J. Fish Dis. 35, 275-286.

329 Pribyl, A.L., Schreck, C.B., Kent, M.L., Parker, S.J., 2009. The differential response to decompression in
330 three species of nearshore Pacific rockfish. *N. Am. J. Fish. Manag.* 29, 1479-1486. doi:
331 10.1577/m08-234.1

332 Rankin, P.S., Hannah, R.W., Blume, M.T., Miller-Morgan, T.J., Heidel, J.R., 2017. Delayed effects of
333 capture-induced barotrauma on physical condition and behavioral competency of recompressed
334 yelloweye rockfish, *Sebastes ruberrimus*. *Fish. Res.* 186, 258-268.

335 Rogers, B.L., Lowe, C.G., Fernández-Juricic, E., Frank, L.R., 2008. Utilizing magnetic resonance imaging
336 (MRI) to assess the effects of angling-induced barotrauma on rockfish (*Sebastes*). *Can. J. Fish.*
337 *Aquat. Sci.* 65, 1245-1249.

338 Rummer, J.L., Bennett, W.A., 2005. Physiological effects of swim bladder overexpansion and
339 catastrophic decompression on red snapper. *Trans. Am. Fish. Soc.* 134, 1457-1470. doi:
340 10.1577/t04-235.1

341 Runde, B.J., Buckel, J.A., 2018. Descender devices are promising tools for increasing survival in
342 deepwater groupers. *Mar. Coast. Fish.* 10, 100-117.

343 St John, J., Syers, C.J., 2005. Mortality of the demersal West Australian dhufish, *Glaucosoma hebraicum*
344 (Richardson 1845) following catch and release: The influence of capture depth, venting and hook
345 type. *Fish. Res.* 76, 106-116.

346 Theberge, S., Parker, S.J., 2005. Release methods for rockfish. Sea Grant Oregon, Oregon State
347 University.

348 Wegner, N.C., Portner, E.J., Nguyen, D.T., Bellquist, L., Nosal, A.P., Pribyl, A.L., Stierhoff, K.L., Fischer, P.,
349 Franke, K., Vetter, R.D., Hastings, P.A., Semmens, B.X., Hyde, J.R., 2021. Post-release survival and
350 prolonged sublethal effects of capture and barotrauma on deep-dwelling rockfishes (genus
351 *Sebastes*): implications for fish management and conservation. *ICES J. Mar. Sci.* 78, 3230-3244.
352 doi: 10.1093/icesjms/fsab188

353

354

355 Table S1: Catch and tagging data for 14 juvenile and small adult cowcod (*S. levis*) used to examine post-release survival rates.

Fish ID	Tag Date	FL (cm)	Capture Depth (m)	Surface interval (min:s)	Barotrauma Score	Post-Release Event	Days to Event	Tagging Vessel	Location
1	4/19/2016	28.5	110.3	2:05	5	Emigration	15.5	Outer Limits	MB Reef
2	5/27/2016	41.9	99.4	2:28	5	Emigration	306.0	Outer Limits	Del Mar
3	5/27/2016	45.5	99.4	2:29	5	Shed tag	166.5	Outer Limits	Del Mar
4	6/17/2016	25.4	100.6	-	0	Emigration	166.9	Outer Limits	Del Mar
5	6/21/2016	25.2	110.3	1:27	3 ^a	Emigration	5.4	Outer Limits	MB Reef
6	6/23/2016	34.0	116.1	1:43	5	Emigration	24.8	Outer Limits	MB Reef
7	6/30/2016	27.4	95.9	2:10	5	Emigration	180.9	Outer Limits	MB Reef
8	3/17/2017	49.5	118	-	4 ^b	Shed Tag	56.5	New Seaforth	Del Mar
9	3/17/2017	38.1	118	-	5	Mortality	0.0	New Seaforth	Del Mar
10	3/17/2017	35.6	118	-	5	Shed tag	35.0	New Seaforth	Del Mar
11	3/18/2017	35.6	100	-	-	Emigration	3.1	New Seaforth	Del Mar
12	5/3/2017	25.4	88	-	-	Emigration	2.0	New Seaforth	MB Reef
13	5/3/2017	22.9	88	-	-	Shed Tag	62.9	New Seaforth	MB Reef
14	5/18/2017	34.3	67	-	-	Emigration	2.0	New Seaforth	Torrey Pines

356 Barotrauma score (0-5) represents the total number of five common external barotrauma indicators observed (A. Stiff body, B. Expanded
 357 pharyngo-cleithral membrane, C. Esophageal eversion, D. Exophthalmia, E. Ocular emphysema). Due to the extensive fishing effort required to
 358 encounter cowcod < 50 cm, individuals captured after 2016 were tagged collaboratively by the crew of the New Seaforth and the surface interval
 359 and barotrauma indicators were not always recorded.

360 ^a stiff body, expanded PC membrane, and exophthalmia

361 ^b all barotrauma symptoms except ocular emphysema

362