

1

How Much of Monthly Mean 2 Precipitation Variability over Global 3 Land is Associated with SST Anomalies?

4

5

6

7 Zeng-Zhen Hu^{1,*}, Arun Kumar¹, Bhaskar Jha^{1,2}, and Boyin Huang³

8

9

10

11

12

13 1. Climate Prediction Center, NCEP/NWS/NOAA, College Park, MD
14 20740, USA

15 2. Innovim, Greenbelt, Maryland, USA

16 3. National Centers for Environmental Information (NCEI), NOAA,
17 Asheville, North Carolina, USA.

20

21

22

23

24 *Corresponding author address:

25 Zeng-Zhen Hu

26 Climate Prediction Center

27 NCEP/NWS/NOAA

28 5830 University Research Court

29 College Park, Maryland 20740, USA

30 Zeng-Zhen.Hu@NOAA.GOV

31 **Abstract**

32 The role of sea surface temperature (SST) in determining the predictability of monthly
33 mean precipitation over the global land is assessed by analyzing the Atmospheric Model
34 Intercomparison Project (AMIP)-like simulations forced by observed SST, which provides a
35 benchmark for the impact of SST on the precipitation. The correlations of monthly mean
36 precipitation anomalies between the ensemble mean of the AMIP simulations and observations are
37 dominated by positive values with maxima around 0.3~0.4 in the tropical North Africa along 15°N
38 and northeastern Brazil. The SST forcing for the precipitation variability is mainly associated with
39 the El Niño-Southern Oscillation (ENSO) and in the tropical Indian Ocean. Statistically, positive
40 and negative SST anomalies associated with an ENSO cycle have a comparable influence on
41 precipitation variability over the land.

42 In addition to the spatial variations, the precipitation responses to SST also vary with
43 season and decade. Pattern correlations are larger in boreal winter than in boreal summer in the
44 Northern Hemisphere, and relatively larger in April-June and September-November in the
45 Southern Hemisphere. The global average of correlation is lower during 1957-1980 and 2000-
46 2018, and higher in between. The interdecadal fluctuation of the pattern correlations is coherent
47 with the interdecadal variation of the amplitude of ENSO.

48

49 **Keywords:** Predictability; Global Land Precipitation; Temporal and Spatial Variations of the
50 SST Influence; ENSO

51

52 **I. Introduction**

53 Sea surface temperatures (SSTs) in the global oceans, particularly in the tropical Pacific
54 Ocean associated with the El Niño-Southern Oscillation (ENSO), are a major source of global
55 climate variability and predictability on seasonal and interannual time scales (Sarachik and Cane
56 2010; National Research Council 2010). For example, Ropelewski and Halpert (1987) identified
57 the regions with spatially coherent ENSO-related precipitation variability. They noted that in
58 addition to the local influence of ENSO on the tropical Pacific Ocean basin, some remote regions
59 also had ENSO-related precipitation response. These regions are over Australia, North America,
60 South America, the Indian subcontinent, Africa and Central America. They further indicated that
61 ENSO-related precipitation anomalies occur as early as April through May of the following year.

62 Such impacts of SST on climate variability are largely the basis for short-term climate
63 prediction. For instance, at the Climate Prediction Center (CPC) of the National Centers for
64 Environmental Prediction (NCEP), ENSO is the key predictor for operational seasonal
65 precipitation prediction over U. S. (O'Lenic et al. 2008; Peng et al. 2012; 2013). On average,
66 seasonal precipitation forecasts over the global land are more accurate during El Niño and La Niña
67 events than during neutral years; and stronger ENSO events lead to higher skill of seasonal climate
68 (Goddard and Dilley, 2005).

69 In addition to the regional dependence of the impacts of ENSO SST (e.g., Davey et al.
70 2014), the SST influence varies with season and can be easily overshadowed by other processes,
71 such as internal variability (Deser et al. 2018), and low-frequency variation and global warming
72 trend (Yeh et al. 2018). As a result, the uncertainty of the impact of SST anomaly on climate
73 variability on seasonal and interannual time scales is evident (Deser et al. 2018). Given that
74 precipitation is one of the most important variables of societal relevance, such as droughts and

75 floods, it is necessary to further assess the impact of SST on the variability and predictability of
76 precipitation on seasonal and interannual time scales, as well as examine the seasonal and
77 interdecadal variations of the impact. Further, it is important to identify the regions where
78 precipitation is affected by SST and key/sensitive ocean regions that influence the precipitation
79 variation. Such assessments provide a benchmark for the impact of SST on predictability and
80 variability of precipitation.

81 In this work, Atmospheric Model Intercomparison Project (AMIP)-like experiments,
82 which are forced by observed SST, are analyzed to quantify the SST influence on variability and
83 predictability of precipitation over the land. In addition to observational analysis and model
84 prediction, the analysis of AMIP experiments complements estimate of the impact of SST on
85 climate variability and predictability (Peng et al. 2000; National Research Council 2010). In this
86 analysis, sources of the predictability of precipitation are attributed, and the most effective ocean
87 regions in influencing the precipitation are identified. Also, the seasonal cycle and interdecadal
88 variations of the SST influence, and the possible connection with ENSO are discussed. The
89 interdecadal variations of the SST influence may provide some clues for the interdecadal variations
90 in the skill of precipitation predictability. The rest of the paper is organized as follows: The data
91 used in this work are introduced in section 2; the spatial variations and temporal fluctuations are
92 shown in sections 3 and 4, respectively. Summary and discussion are given in section 5.

93

94 **2. Data**

95 To examine the influence of global SST on the predictability and variability of precipitation
96 over the land, AMIP-like experiments are analyzed. The model used is the atmospheric component
97 (Global Forecast System) of version 2 of the Climate Forecast System developed at the National

98 Centers for Environmental Prediction (NCEP; Saha et al. 2014). The model has a horizontal
99 resolution of T126 (~105 km) and 64 vertical levels. The model is forced by the observed time-
100 varying global monthly SSTs and sea ice. The SST and sea ice dataset are from the Hadley Centre
101 Sea Ice and SST (HadISST) datasets for 1957-2008 (Rayner et al. 2006) and the Optimum
102 Interpolation SST version 2 (OISSTv2) afterward (Reynolds et al. 2002). The integrations are from
103 January 1957 to December 2018 and have 18 ensemble members with slightly different
104 atmospheric initial conditions (Hu et al. 2017a).

105 In addition, the monthly SSTs from the Extended Reconstructed SST Version 5 (ERSSTv5;
106 Huang et al. 2017) with a $2^{\circ}\times 2^{\circ}$ horizontal resolution are analyzed. ERSSTv5 SST has been used
107 at NCEP/CPC in real-time monitoring ENSO evolution and defining ENSO event
108 (https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). Using
109 ERSSTv5 SST anomalies with respect to climatology of January 1981-December 2010, following
110 indices are defined:

111 Niño3.4 index: SSTA (5°S - 5°N , 170°W - 120°W) (Barnston et al. (1997);

112 ENSO-Modoki index: SSTA (10°S - 10°N , 165°E - 140°W) - [SSTA (15°S - 5°N , 110°W -
113 170°W) + SSTA (10°S - 20°N , 125°E - 145°E)]/2.0 (Ashok et al. 2007);

114 Cold tongue index: SSTA (5°S - 5°N , 150°W - 90°W)- $0.4 \times$ SSTA (5°S - 5°N , 160°E - 150°W)
115 (Ren and Jin 2011);

116 Warm pool index: SSTA (5°S - 5°N , 160°E - 150°W)- $0.4 \times$ SSTA (5°S - 5°N , 150°W - 90°W)
117 (Ren and Jin 2011);

118 Atlantic Niño (ATL3) index: SSTA (3°S - 3°N , 0° - 20°W) (Zebiak 1993);

119 Indian Ocean Dipole (IOD) index: SSTA (10°S - 10°N , 50°E - 70°E)-SSTA (10°S - 0° , 90°E -
120 110°E) (Saji et al. 1999).

121 Indian Ocean Basin mode (IOB) index: SSTA(20°S – 20°N , 40° – 110°E) (Yang et al. 2009).

122 These indices are used to examine the connections of global land precipitation variability
123 with the SST variability in individual tropical ocean basins. To be a benchmark of the robustness
124 of the SST-precipitation connection, we also calculate the correlations between the global land
125 precipitation anomalies and a random time series with uniform distribution and in range of 0~1.0.

126 The corresponding observed precipitation is the monthly mean reconstructed precipitation
127 analysis (Chen et al. 2002). It was developed by the optimal interpolation of gauge observations
128 over the land only and covers the period from January 1948 to December 2018 on a $1^{\circ} \times 1^{\circ}$ spatial
129 resolution. This precipitation product has been widely used in the climate community both in
130 operation and research (e.g., Li et al. 2016; Sun et al. 2018).

131

132 **3. Spatial variations in SST-precipitation relationship**

133 In the AMIP simulations, the externally specified forcing is the observed SST, and hence,
134 is the source of predictability (and prediction skill) in precipitation variability. To quantify the
135 influence of SST on precipitation, the correlation of precipitation anomalies (relative to 1981-2010
136 climatology) between the ensemble mean of the AMIP simulations and the observations is
137 calculated and shown in Fig. 1a. The correlations are generally positive but are small with a
138 maximum of 0.3~0.4 in the tropical North Africa along 15°N and northeastern Brazil (Kayano et
139 al. 1988), implying only a moderate influence of SST anomalies on the precipitation variation (Fig.
140 1a). Here, we should note that, as expected, the correlations increase with the increase of ensemble
141 size in the regions between 40°S and 40°N (Fig. 2). The increasing of correlation is more noticeable
142 with the increasing of ensemble size from 1 to 10, and becomes less obvious while ensemble size
143 larger than 10. That is generally consistent with previous work, such as, Brankovic and Palmer

144 (1997), Kumar and Hoerling (2000), Kumar et al. (2001), Kumar and Chen (2015). For the mid-
145 and high- latitudes, the impact of the ensemble size on the correlation is still visible for some
146 latitude zones with positive correlation, but the impact is undistinguishable when the correlations
147 are near zero or negative and is consistent with results of Kumar and Hoerling (2000). They argued
148 that there is no influence of ensemble size on skill when correlation is close to zero (see their Fig.
149 3).

150 It is feasible that overall low correlation might partially be caused by the design of AMIP
151 simulations that cannot incorporate coupled air-sea interactions (Wu and Kirtman, 2005; Wang et
152 al. 2005; Zhu and Shukla 2013). In fact, the amplitudes of correlation are comparable to other
153 studies that utilized coupled prediction framework (e.g., see Fig. 3 in Jia et al. 2015), therefore the
154 overall influence of coupled air-sea interactions may be small. The largest positive correlations are
155 located in tropical Northern Africa, southern Africa, central Asia, western and eastern Australia,
156 the southern part of North America, and the northeastern part of South America. These regions
157 with higher correlation have been noted in previous works, such as Ropelewski and Halpert (1987),
158 Yulaeva and Wallace (1994), and the National Research Council (2010). For the mid-high latitudes
159 of the Northern Hemisphere (NH), both small positive and negative correlations are present,
160 suggesting a smaller role of SST in influencing precipitation variability in these regions compared
161 with that in the lower latitudes.

162 To assess the influence of model biases in the model simulations, an estimate of skill based
163 on the assumption of a perfect model (SPM) is also computed. SPM is defined here as the averaged
164 correlation between each individual member and the ensemble mean of the other 17 ensemble
165 members. It has been shown that depending on the signal-to-noise ratio, SPM can also
166 underestimate of the inherent potential skill (and predictability) in some regions due to model

167 biases (Kumar et al. 2014; Scaife and Smith 2018; Baker et al. 2018; Dunstone et al. 2018). All
168 SPMs are positive, however, are smaller than 0.5 (Fig. 1b). Overall spatial distribution patterns of
169 the skill are similar between Fig. 1a and 1b, but the SPM in Fig. 1b is clearly larger than the
170 correlations in Fig. 1a. The differences between Fig. 1a and 1b are noticeable in the subtropical
171 southern Africa, Indian peninsular, southeastern Asia, northern and central parts of Australia,
172 tropical North America, and the western part of South America. One of the possibilities of having
173 large differences in these regions might be associated with large biases in the model, either in the
174 amplitude of internal variability and/or the signal associated with SSTs, a topic that will require
175 further investigation.

176 High (low) SPM is linked to large (small) signal-to-noise ratio (SNR) (Fig. 1c). Here, the
177 signal is referred to as the standard deviation of the ensemble mean (based on 18 members), and
178 the noise is defined as the standard deviation of the spread of the individual member from the
179 ensemble mean (Kumar et al. 2017). In a perfect model scenario, large (small) SNR is linked to
180 the expected high (low) predictability (Kumar and Hoerling 2000; Kumar et al. 2017). Except for
181 some tropical regions, SNR is mostly smaller than 0.5, indicating a substantial role of the
182 atmospheric internal variability and the fact that the internal variability may be more important
183 than the signal associated with remote and/or local SST forcing in determining the precipitation
184 variability over the land. In fact, the low predictability seems largely a common and inherent
185 feature of climate variability over the mid-high latitude land or oceans (Davis 1976; Madden 1976;
186 Hu et al. 2011, 2017a; Liang et al. 2019). In mid-latitude variability is dominated by atmospheric
187 internal variability and has a smaller influence from external and/or remote boundary forcings,
188 such as SST in the tropical oceans (Kumar et al. 2013; Kumar and Chen 2017; Deser et al. 2018).

189 The relatively high correlations in Fig. 1a and 1b and large values in Fig. 1c are mostly
190 associated with the influence of SST variability in the central and eastern tropical Pacific Ocean
191 and the tropical Indian Ocean (Fig. 3a-d, g). Correlations of precipitation anomaly with the
192 Niño3.4 index are relatively high positive in the central Asia, southern United States, eastern
193 tropical Africa, and southeastern South America, and relatively high negative in southern Africa,
194 eastern Australia, and tropical South America. These regions also correspond to the relatively high
195 correlations shown in Fig. 1a, large SPM in Fig. 1b and large SNR in Fig. 1c, suggesting the robust
196 impact of SST anomaly on the precipitation variations in these regions. The correlations using
197 different ENSO indices (Niño3.4, ENSO-Modoki, cold tongue, and warm pool indices, Fig. 3a-d)
198 display a similar spatial pattern, although the overall correlations are slightly higher with the
199 Niño3.4 index (Fig. 4).

200 For the impact of SST anomalies in the entire tropical Indian Ocean (represented by IOB
201 index, Fig. 3g), the large positive correlations present over the U. S. and high latitudes of North
202 America, Greenland, mid-latitudes of Asia, southeastern South America, and tropical Africa, while
203 the negative ones in Australia, South Africa, and tropical South America. For the IOD index (Fig.
204 3f), the overall corrections are smaller than those associated with the IOB index. The positive
205 correlations are in the eastern tropical Africa, and negative correlations in the Maritime Continent
206 (Fig. 3f). In addition to the tropical Pacific and Indian Oceans, SSTs in the tropical Atlantic Ocean
207 also affect some regional precipitation variations. For the ATL3 index, the relatively high
208 correlations are in the tropical Africa and Southern America (Fig. 3e). Positive correlations present
209 in the sub-polar north Atlantic region, which might be associated with the long-term trend of sea-
210 ice change and deserves further investigation.

211 All these regions with relatively high positive and negative correlations shown in Fig. 3e-
212 g may contribute to the relatively large values of correlation in these regions shown in Fig. 1,
213 implying remote influence of the tropical ocean SST anomalies on the precipitation variations
214 over the global land. The impact of the SST anomalies in these various key regions (Fig. 3) on the
215 precipitation is realized through various teleconnections. For example, the Niño indices associated
216 SST anomalies in the central and eastern tropical Pacific affect the precipitation anomalies in the
217 North American continent mainly through a Pacific–North American -like teleconnection pattern,
218 which alters the intensity and location of the mid-latitude jet stream (e.g., Wallace and Gutzler
219 1981; Li et al. 2019). For the impact of ENSO on the eastern Asian climate, it is mainly through a
220 Pacific-Japan teleconnection (e.g., Nitta 1987; Nitta and Hu 1996; Wang et al. 2000; Wu et al.
221 2003; Kosaka et al. 2012). The warm (cold) events in the eastern Pacific cause the weak (strong)
222 East Asian winter monsoons through generating an anomalous lower-tropospheric anticyclone
223 (cyclone) located in the western North Pacific. The connections of the precipitation in the
224 northeastern Brazil and Indian summer monsoon with El Niño are mainly attributed to large-scale
225 changes in a longitudinal displacement in the Walker circulation (e.g., Kayano et al. 1988; Ju and
226 Slingo 1995).

227 Nevertheless, it should be pointed out that SST anomalies in the different ocean basins are
228 also interconnected, especially for the tropical oceans. For instance, SST variability in the tropical
229 Indian and Atlantic Oceans are partially a response to ENSO (Cai et al. 2019; Wang 2019).
230 Compared with amplitudes of the correlations with the various SST indices (Fig. 3a-g), the
231 correlations between the precipitation and a random time series are smaller and less significant
232 (Fig. 3h), implying contributions of SST variability in all these ocean basins to the precipitation
233 variation over the global land. To measure the mean global impact of each of these indices, Fig. 4

234 show the global averaged values of absolute correlations of Fig. 3. The value is the largest for the
235 Niño3.4 index, the second largest for the IOB index, and the lowest for the IOD index. The values
236 are comparable for the ENSO-Modoki and ATL3 indices. All the values for the various SST
237 indices are larger than that for the random time series, implying that SST anomalies in all the
238 tropical oceans do have an impact on precipitation variability over the global land as a whole.
239 These features shown in Figs. 3 and 4 are further confirmed in Fig. 5, which shows a measure of
240 the integrated influence of SST anomaly (over different ocean regions) on precipitation variability
241 over the land. To get this measure, at each grid point in the ocean, the percentage of land grid
242 points having significant correlations (at 95% significant level) with SST is shown. For instance,
243 if at an ocean grid point the value is 10, it means that for 10% grid points over land precipitation
244 has significant (either positive or negative) correlations (at 95% significant level) with SST
245 anomaly at the ocean grid point.

246 The largest values are located in the central and eastern tropical Pacific and tropical Indian
247 Oceans, the moderate values are located in the tropical western Pacific Ocean, small values in the
248 tropical Atlantic Ocean (Fig. 5). It is interesting to note that the maximum values in the central
249 tropical Pacific Ocean and in the central tropical Indian Ocean are comparable. Also, the values
250 are smaller in the extratropics compared to the tropics, probably due to a larger influence of internal
251 dynamical processes and larger uncertainties of SST in the extratropical oceans (Huang et al.
252 2018). These results suggest that SST anomalies in different oceans have different effectiveness
253 in influencing precipitation variability over different land regions. The SST anomalies in the
254 tropical Pacific associated with ENSO and in the central tropical Indian Ocean have the largest
255 influence on precipitation variability over the global land, and the western Pacific, as well as the
256 tropical Atlantic Ocean, which plays a secondary role. In addition to the SST indices used in Figs.

257 3 and 4, which mainly reflects SST variability in the seasonal-interannual time scales, some
258 climate modes or indices with long-term time scales such as Pacific Decadal Oscillation (PDO),
259 Atlantic Meridional Overturning Circulation (AMOC), and Atlantic Multidecadal Oscillation
260 (AMO) may also play a role in the connection between SST and precipitation over the global land.

261

262 **4. Temporal fluctuations**

263 In addition to the spatial variations of precipitation response to SST anomaly, there are also
264 temporal fluctuations in the response. One prominent variation is the seasonal cycle in the
265 precipitation response to SSTs. For the seasonal cycle of the pattern correlation in each hemisphere
266 (Fig. 6), which is defined as correlations in each individual month and hemisphere, the pattern
267 correlation is larger in boreal winter than in boreal summer in NH. While in the Southern
268 Hemisphere (SH), the seasonal dependence is not as distinct as in NH, and the pattern correlations
269 are relatively larger in April-June, and September-November. This is consistent with previous
270 works, such as Davey et al. (2014). Such seasonal dependence may be associated with the seasonal
271 cycle of the tropical SST associated with ENSO and its lagged impact. Climatologically, compared
272 to boreal summer, SST variability in the eastern and central tropical Pacific is larger due to the fact
273 that ENSO peaks in boreal winter. Larger variability corresponds to a higher prediction skill and
274 a larger impact on extratropical climate (National Research Council 2010; Hu et al. 2019). For SH,
275 the seasonal variation of the impact may be due to the influence of SST anomaly in the Indian
276 Ocean, which is partially linked to the lagged impact of ENSO (Shinoda et al. 2004).

277 In addition to the seasonal variation, the evolution of global pattern correlation also
278 experiences interdecadal variations (Fig. 7). The pattern correlation is lower during 1957-1980 and
279 2000-2018, and higher in between, which has some similarity with the standard deviation of the

280 Niño3.4 index (dashed line in Fig. 7). On average, the higher (lower) correlations correspond to
281 larger (smaller) variability of ENSO (Fig. 8). The decline of the pattern correlations since
282 1999/2000 is consistent with the decrease of the forecast skill of ENSO noted in previous works
283 (Wang et al. 2010; Barnston et al. 2012). Previous works show that the decline is associated with
284 the interdecadal change of ENSO properties, including suppression of variability and increase of
285 frequencies (McPhaden 2012; Hu et al. 2013, 2016, 2017b, 2017c; Hu and Fedorov 2018).
286 Nevertheless, interdecadal variations in the North Pacific and the Atlantic Ocean (such as PDO,
287 AMOC, and AMO) may also play a role in the interdecadal variation of the correlations shown in
288 Figs. 7 and 8. That deserves further investigation.

289 As a predominant factor affecting climate variability and predictability (National Research
290 Council 2010), ENSO is linked to the variability of pattern correlation. Statistically, stronger
291 ENSO year has a larger pattern correlation (Fig. 9). To check the symmetric impact of the cold
292 and warm phases of ENSO on precipitation over the global land, the correlations between the
293 pattern correlations of the AMIP simulation and the Niño3.4 index shown in Fig. 9 are computed
294 separately for positive and negative Niño3.4 index. Specifically, for positive Niño3.4 index, the
295 correlation with the pattern correlation is 0.27, while it is -0.29 for negative Niño3.4 index. The
296 comparable correlation amplitudes for positive and negative Niño3.4 index may be an indication
297 that global SST anomalies associated with an ENSO cycle have an overall comparable influence
298 on precipitation variability over the global land as a whole. On the other hand, the profound spread
299 shown in Fig. 9 implies large uncertainty of the connection between SST anomalies in ENSO years
300 and precipitation variation over the global land as well as the impact of other factors than SST.

301

302 **5. Summary and discussion**

303 In this work, we quantitatively examined the role of SST on the variability and
304 predictability of precipitation over the land by analyzing AMIP simulations forced by observed
305 historical SST in 1958-2018. It was noted that the correlations of the monthly mean precipitation
306 anomalies between the ensemble mean of the AMIP simulations and the observations were
307 dominated by positive values with maximum values around 0.3~0.4. The integrated importance of
308 SST in various ocean regions to precipitation variability over the global land is identified. The SST
309 forcing for the global land precipitation is mainly located in the tropical Pacific Ocean that
310 primarily associated with ENSO (e.g., Quan et al. 2006; Scaife et al. 2018), as well as in the tropical
311 Indian Ocean, with some contribution from other ocean basins or modes, such as the western
312 Pacific, Indian Ocean dipole and tropical Atlantic variabilities. Moreover, positive and negative
313 SST anomalies associated with an ENSO cycle have an overall comparable influence on
314 precipitation variability over the global land.

315 In addition to the spatial variations in precipitation response to SST, there are also temporal
316 fluctuations. For the seasonal cycle of the pattern correlation, the correlation is larger in boreal
317 winter than in boreal summer in NH, and relatively larger in April-June and September-November
318 in SH. The global average of correlation also varies from decade to decade: it is lower during 1957-
319 1980 and 2000-2018, and higher in between. Such interdecadal fluctuation of the pattern
320 correlation is coherent with the interdecadal variation of ENSO intensity. For example, the decline
321 of the pattern correlations since 1999/2000 could be associated with the suppression of variability
322 and increase of frequencies of ENSO (McPhaden 2012; Hu et al. 2013, 2016, 2017b, 2017c; Hu
323 and Fedorov 2018).

324 Considering the fact that SST anomaly is the major source of global climate variability and
325 predictability at seasonal-interannual time scales (National Research Council 2010), the overall

326 small correlations may imply inherently low predictability and low prediction skill for monthly
327 mean precipitation variability over the global land as whole. As observed sea ice variations are
328 used in the AMIP simulations, thus, predictability examined in this work may also partially be
329 associated with sea ice variation.

330

331 **Acknowledgments:**

332 We appreciate the comments and suggestions of two reviewers as well as our colleagues Drs.
333 Peitao Peng and Caihong Wen. The scientific results and conclusions, as well as any view or
334 opinions expressed herein, are those of the authors and do not necessarily reflect the views of
335 NWS, NOAA, or the Department of Commerce.

336

337 **References**

338 Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its
339 possible teleconnection. *J. Geophys. Res.*, **112**, C11007. DOI: 10.1029/2006JC003798.

340 Baker, L. H., L. C. Shaffrey, R. T. Sutton, A. Weisheimer, and A. A. Scaife 2018: An
341 intercomparison of skill and overconfidence/underconfidence of the wintertime North
342 Atlantic Oscillation in multimodel seasonal forecasts. *Geophys. Res. Lett.*, **45**, 7808–7817.
343 DOI: 10.1029/2018GL078838.

344 Barnston, A. G., M. Chelliah and S.B. Goldenberg, 1997: Documentation of a highly ENSO-
345 related SST region in the equatorial Pacific. *Atmosphere-Ocean*, **35**, 367-383. DOI:
346 10.1080/07055900.1997.9649597.

347 Barnston, A. G., M. K. Tippett, M. L. L'Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time
348 seasonal ENSO model predictions during 2002-2011 — Is our capability increasing? *Bull.*
349 *Amer. Meteor. Soc.*, **93 (5)**, 631-651. DOI: 10.1175/BAMS-D-11-00111.1.

350 Brankovic, C., and T. N. Palmer, 1997: Atmospheric seasonal predictability and estimates of
351 ensemble size. *Mon. Wea. Rev.*, **125**, 859–874. DOI: 10.1175/1520-
352 0493(1997)125<0859:ASPAEO>2.0.CO;2.

353 Cai, W, et al., 2019: Pantropical climate interactions. *Science*, **363** (6430). DOI:
354 10.1126/science.aav4236.

355 Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr
356 monthly analysis based on gauge observations. *J. Hydrometeorol.*, **3**, 249–266. DOI:
357 10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

358 Davey, M. K., A. Brookshaw, and S. Ineson, 2014: The probability of the impact of ENSO on
359 precipitation and near-surface temperature. *Climate Risk Management*, **1**, 5-24. DOI:
360 10.1016/j.crm.2013.12.002

361 Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over
362 the North Pacific Ocean. *J. Phys. Oceanogr.*, **6**, 249–266. DOI: 10.1175/1520-
363 0485(1976)006<0249:POSSTA>2.0.CO;2.

364 Deser, C., I. R. Simpson, A. S. Phillips, and K. A. McKinnon, 2018: How well do we know
365 ENSO's climate impacts over North America, and how do we evaluate models
366 accordingly?. *J. Climate*, **31**, 4991–5014, <https://doi.org/10.1175/JCLI-D-17-0783.1>.

367 Dunstone, N., A. A. Scaife, C. MacLachlan, et al., 2018: Predictability of European winter
368 2016/2017. *Atmos Sci Lett.*, **19** (e868). DOI: 10.1002/asl.868.

369 Goddard, L. and M. Dilley, 2005: El Niño: Catastrophe or opportunity. *J. Climate*, **18**, 651–665.
370 DOI: 10.1175/JCLI-3277.1.

371 Hu, S. and A. V. Fedorov, 2018: Cross-equatorial winds control El Niño diversity and change.
372 *Nature Climate Change*, **8**, 798-802. DOI: 10.1038/s41558-018-0248-0.

373 Hu, Z.-Z., A. Kumar, B. Huang, Y. Xue, W. Wang, and B. Jha, 2011: Persistent atmospheric and
374 oceanic anomalies in the North Atlantic from Summer 2009 to Summer 2010. *J. Climate*,
375 **24** (22), 5812-5830. DOI: 10.1175/2011JCLI4213.1.

376 Hu, Z.-Z., A. Kumar, H.-L. Ren, H. Wang, M. L'Heureux, and F.-F. Jin, 2013: Weakened
377 interannual variability in the tropical Pacific Ocean after 2000. *J. Climate*, **26** (8), 2601-
378 2613. DOI: 10.1175/JCLI-D-12-00265.1.

379 Hu, Z.-Z., A. Kumar, and B. Huang, 2016: Spatial distribution and the interdecadal change of
380 leading modes of heat budget of the mixed-layer in the tropical Pacific and the association
381 with ENSO. *Climate Dyn.*, **46** (5-6), 1753-1768. DOI: 10.1007/s00382-015-2672-4.

382 Hu, Z.-Z., A. Kumar, B. Jha, J. Zhu, and B. Huang, 2017a: Persistence and predictions of the
383 remarkable warm anomaly in the northeastern Pacific Ocean during 2014-2016. *J. Climate*,
384 **30** (2), 689–702. DOI: 10.1175/JCLI-D-16-0348.1.

385 Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, and H.-L. Ren, 2017b: Interdecadal variations of ENSO
386 around 1999/2000. *J. Meteor. Res.*, **31** (1), 73-81. DOI: 10.1007/s13351-017-6074-x.

387 Hu, Z.-Z., A. Kumar, J. Zhu, B. Huang, Y.-h. Tseng, and X. Wang, 2017c: On the shortening of
388 the lead time of ocean warm water volume to ENSO SST since 2000. *Sci. Rep.*, **7**, 4294.
389 DOI: 10.1038/s41598-017-04566-z.

390 Hu, Z.-Z., A. Kumar, J. Zhu, P. Peng, and B. Huang, 2019: On the challenge for ENSO cycle
391 prediction: An example from NCEP Climate Forecast System version 2. *J. Climate*, **32** (1),
392 183-194. DOI: 10.1175/JCLI-D-18-0285.1.

393 Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 5
394 (ERSSTv5), Upgrades, validations, and intercomparisons. *J. Climate*, **30** (20), 8179–8205.
395 DOI: 10.1175/JCLI-D-16-0836.1.

396 Huang, B., W. Angel, T. Boyer, L. Cheng, G. Chepurin, E. Freeman, C. Liu, and H. Zhang, 2018:
397 Evaluating SST Analyses with Independent Ocean Profile Observations. *J. Climate*, **31**,
398 5015–5030. DOI: 10.1175/JCLI-D-17-0824.1.

399 Jia, L., et al., 2015: Improved Seasonal Prediction of Temperature and Precipitation over Land in
400 a High-Resolution GFDL Climate Model. *J. Climate*, **28**, 2044–2062. DOI: 10.1175/JCLI-
401 D-14-00112.1.

402 Ju, J., and J. M. Slingo, 1995: The Asian summer monsoon and ENSO. *Q. J. R. Meteor. Soc.*, **121**,
403 1133–1168.

404 Kayano, M. T., V. B. Rao, and A. D. Moura, 1988: Tropical circulations and the associated rainfall
405 anomalies during two contrasting years. *J. Climatol.*, **8**, 477–488.

406 Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal
407 predictability for summer climate over East Asia and the Northwestern Pacific. *J. Climate*,
408 **25**, 7574-7589. DOI: 10.1175/JCLI-D-12-00009.1.

409 Kumar, A., and M. P. Hoerling, 2000: Analysis of a conceptual model of seasonal climate
410 variability and implications for seasonal prediction. *Bull. Am. Meteor. Soc.*, **81**, 255–264.
411 DOI: 10.1175/1520-0477(2000)081<0255:AOACMO>2.3.CO;2.

412 Kumar, A., A. G. Barnston, and M. P. Hoerling, 2001: Seasonal predictions, probabilistic
413 verifications, and ensemble size. *J. Climate*, **14**, 1671–1676. DOI: 10.1175/1520-
414 0442(2001)014<1671:SPPVAE>2.0.CO;2.

415 Kumar A., H. Wang, W. Wang, Y. Xue, and Z.-Z. Hu, 2013: Does knowing the oceanic PDO
416 phase help predict the atmospheric anomalies in subsequent months? *J. Climate*, **26** (4),
417 1268-1285. DOI: 10.1175/JCLI-D-12-00057.1.

418 Kumar, A., P. Peng, and M. Chen, 2014: Is there a relationship between potential and actual kill?
419 *Mon. Wea. Rev.*, **142**, 2220-2227. DOI: 10.1175/MWR-D-13-00287.1.

420 Kumar, A. and M. Chen, 2015: Inherent predictability, requirements on the ensemble size, and
421 complementarity. *Mon. Wea. Rev.*, **143**, 3192–3203. DOI: 10.1175/MWR-D-15-0022.1.

422 Kumar, A. and M. Chen, 2017: What is the variability in US west coast winter precipitation during
423 strong El Niño events? *Climate Dyn.*, **49** (7–8), 2789–2802. DOI: 10.1007/s00382-016-
424 3485-9.

425 Kumar, A., Z.-Z. Hu, B. Jha, and P. Peng, 2017: Estimating ENSO predictability: based on multi-
426 model hindcasts. *Climate Dyn.*, **48** (1-2), 39-51. DOI: 10.1007/s00382-016-3060-4.

427 Li, X., Z.-Z. Hu, X. Jiang, Y. Li, Z. Gao, S. Yang, J. Zhu, and B. Jha, 2016: Trend and seasonality
428 of land precipitation in observations and CMIP5 model simulations. *Int. J. Climatol.*, **36**
429 (11), 3781-3793. DOI: 10.1002/joc.4592.

430 Li, X., Z.-Z. Hu, P. Liang, and J. Zhu, 2019: Contrastive influence of ENSO and PNA on
431 variability and predictability of North American winter precipitation. *J. Climate*, **32** (19),
432 6271-6284. DOI: 10.1175/JCLI-D-19-0033.1.

433 Liang, P., Z.-Z. Hu, Y. Liu, X. Yuan, X. Li, and X. Jiang, 2019: Challenges in predicting and
434 simulating summer rainfall in the eastern China. *Climate Dyn.*, **52** (3-4), 2217-2233. DOI:
435 10.1007/s00382-018-4256-6.

436 Madden, R.A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. *Mon.*
437 *Wea. Rev.*, **104**, 942–952. DOI: 10.1175/1520-0493(1976)104<0942:EOTNVO>2.0.CO;2.

438 McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm
439 water volume anomalies. *Geophys. Res. Lett.*, **39**, L09706. DOI: 10.1029/2012GL051826.

440 National Research Council, 2010: *Assessment of Intraseasonal to Interannual Climate Prediction*
441 and *Predictability*, 192 PP., ISBN-10: 0-309-15183-X, the National Academies Press,
442 Washington, D. C., USA.

443 Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the
444 Northern Hemisphere summer circulation. *J. Meteorol. Soc. Jpn.*, **65**, 373–390.

445 Nitta, T. and Z.-Z. Hu, 1996: Summer climate variability in China and its association with 500 hPa
446 height and tropical convection. *J. Meteor. Soc. Japan*, **74**(4), 425-445. DOI:
447 10.2151/jmsj1965.74.4_425.

448 O’Lenic, E. A., D. A. Unger, M. S. Halpert, and K. S. Pelman, 2008: Developments in operational
449 long-range climate prediction at CPC. *Wea. Forecasting*, **23**, 496–515. DOI:
450 10.1175/2007WAF2007042.1.

451 Peng, P., A. Kumar, A. G. Barnston, and L. Goddard, 2000: Simulation skills of the SST-forced
452 global climate variability of the NCEP-MRF9 and Scripps/MPI ECHAM3 models. *J.*
453 *Climate*, **13**, 3657–3679. DOI: 10.1175/1520-0442(2000)013<3657:SSOTSF>2.0.CO;2.

454 Peng, P., A. Kumar, M. S. Halpert, and A. G. Barnston, 2012: An analysis of CPC’s operational
455 0.5-month lead seasonal outlooks. *Wea. Forecasting*, **27**, 898–917. DOI: 10.1175/WAF-
456 D-11-00143.1.

457 Peng, P., A. G. Barnston, and A. Kumar, 2013: A comparison of skill between two versions of the
458 NCEP Climate Forecast System (CFS) and CPC's operational short-lead seasonal
459 outlooks. *Wea. Forecasting*, **28**, 445–462. DOI:10.1175/WAF-D-12-00057.1.

460 Quan, X., M. Hoerling, J. Whitaker, G. Bates, and T. Xu, 2006: Diagnosing sources of U.S.
461 seasonal forecast skill. *J. Climate*, **19**, 3279–3293. DOI: 10.1175/JCLI3789.1

462 Rayner, N., P. Brohan, D. Parker, C. Folland, J. Kennedy, M. Vanicek, T. Ansell, and S. Tett,
463 2006: Improved analyses of changes and uncertainties in sea surface temperature measured
464 in situ since the mid-nineteenth century: The HadSST2 data set. *J. Climate*, **19**(3), 446–
465 469. DOI: 10.1175/JCLI3637.1.

466 Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. *Geophys. Res. Lett.*, **38**,
467 L04704. DOI: 10.1029/2010GL046031.

468 Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes and W. Wang, 2002: An improved in
469 situ and satellite SST analysis for climate. *J. Climate*, **15**, 1609-1625. DOI: 10.1175/1520-
470 0442(2002)015<1609:AIISAS>2.0.CO;2.

471 Ropelewski, C. F. and M. Halpert, 1987: Global and regional scale precipitation patterns
472 associated with the El Niño-Southern Oscillation. *Mon. Wea. Rev.*, **115**, 1606-1626. DOI:
473 10.1175/1520-0493(1987)115<1606:GARSP>2.0.CO;2.

474 Saha, S., et al., 2014: The NCEP Climate Forecast System version 2. *J. Climate*, **27**, 2185–2208.
475 DOI: 10.1175/JCLI-D-12-00823.1.

476 Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata. 1999: A dipole mode in the
477 tropical Indian Ocean. *Nature*, **401**, 360–363. DOI: 10.1038/43854.

478 Sarachik, E. S. and M. A. Cane, 2010: *The El Niño-Southern Oscillation Phenomenon*. Cambridge
479 University Press, London, 384 pp.

480 Scaife, A. A. and D. Smith, 2018: A signal-to-noise paradox in climate science. *npj Climate and*
481 *Atmospheric Science*, **1**, 28. DOI: 10.1038/s41612-018-0038-4.

482 Scaife, A. A., et al. 2018: Tropical rainfall predictions from multiple seasonal forecast systems.
483 *Int J Climatol.*, **39**, 974–988. DOI: 10.1002/joc.5855.

484 Shinoda, T., M.A. Alexander, and H.H. Hendon, 2004: Remote Response of the Indian Ocean to
485 Interannual SST Variations in the Tropical Pacific. *J. Climate*, **17**, 362–372. DOI:
486 10.1175/1520-0442(2004)017<0362:RROTIO>2.0.CO;2.

487 Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu, 2018: A review of global
488 precipitation datasets: data sources, estimation, and intercomparisons. *Geophys. Rev.*, **56**
489 (1), 79-107. DOI: 10.1002/2017RG000574.

490 Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during
491 the Northern Hemisphere winter. *Mon. Wea. Rev.*, **109**, 784-812.

492 Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect
493 East Asian climate? *J. Climate*, **13**, 1517–1536. DOI: 10.1175/1520-
494 0442(2000)013<1517:PEATHD>2.0.CO;2.

495 Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental
496 challenges in simulation and prediction of summer monsoon rainfall. *Geophys. Res. Lett.*,
497 **32** (15), L15711. DOI: 10.1029/2005GL022734.

498 Wang, C., 2019: Three-ocean interactions and climate variability: a review and perspective. *Clim.*
499 *Dyn.* DOI: 10.1007/s00382-019-04930-x.

500 Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East
501 Asia. *J. Climate*, **16** (22), 3742-3758. DOI: 10.1175/1520-
502 0442(2003)016<3742:EOERAI>2.0.CO;2.

503 Wu, R. and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical
504 atmospheric variability. *Climate Dyn.*, **25** (2-3), 155-170. DOI: 10.1007/s00382-005-0003-
505 x.

506 Wang, W., M. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts.
507 *Wea. Forecasting*, **25**, 950-969. DOI: 10.1175/2010WAF2222345.1.

508 Yang, J., Q. Liu, Z. Liu, L. Wu, and F. Huang, 2009: Basin mode of Indian Ocean sea surface
509 temperature and Northern Hemisphere circumglobal teleconnection. *Geophys. Res. Lett.*,
510 **36**, L19705, doi:10.1029/2009GL039559.

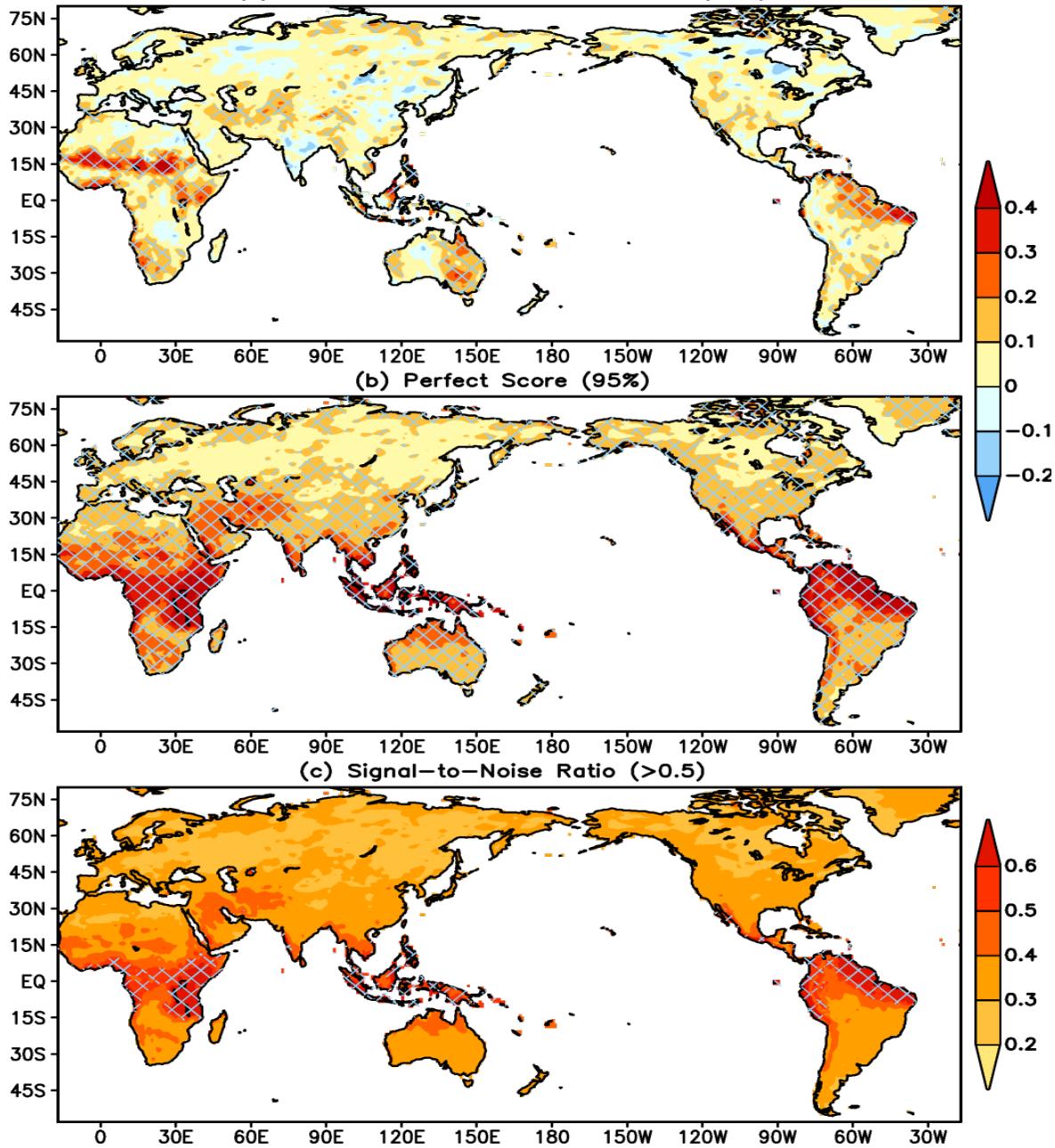
511 Yeh, S.-W. et al., 2018: ENSO atmospheric teleconnections and their response to greenhouse gas
512 forcing. *Rev. Geophys.*, **56** (1), 185-206. DOI: 10.1002/2017RG000568.

513 Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and
514 precipitation fields derived from the Microwave Sounding Unit. *J. Climate*, **7**, 1719–1736.
515 DOI: 10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2.

516 Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. *J. Climate*, **6**, 1567–1586.
517 DOI: 10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2.

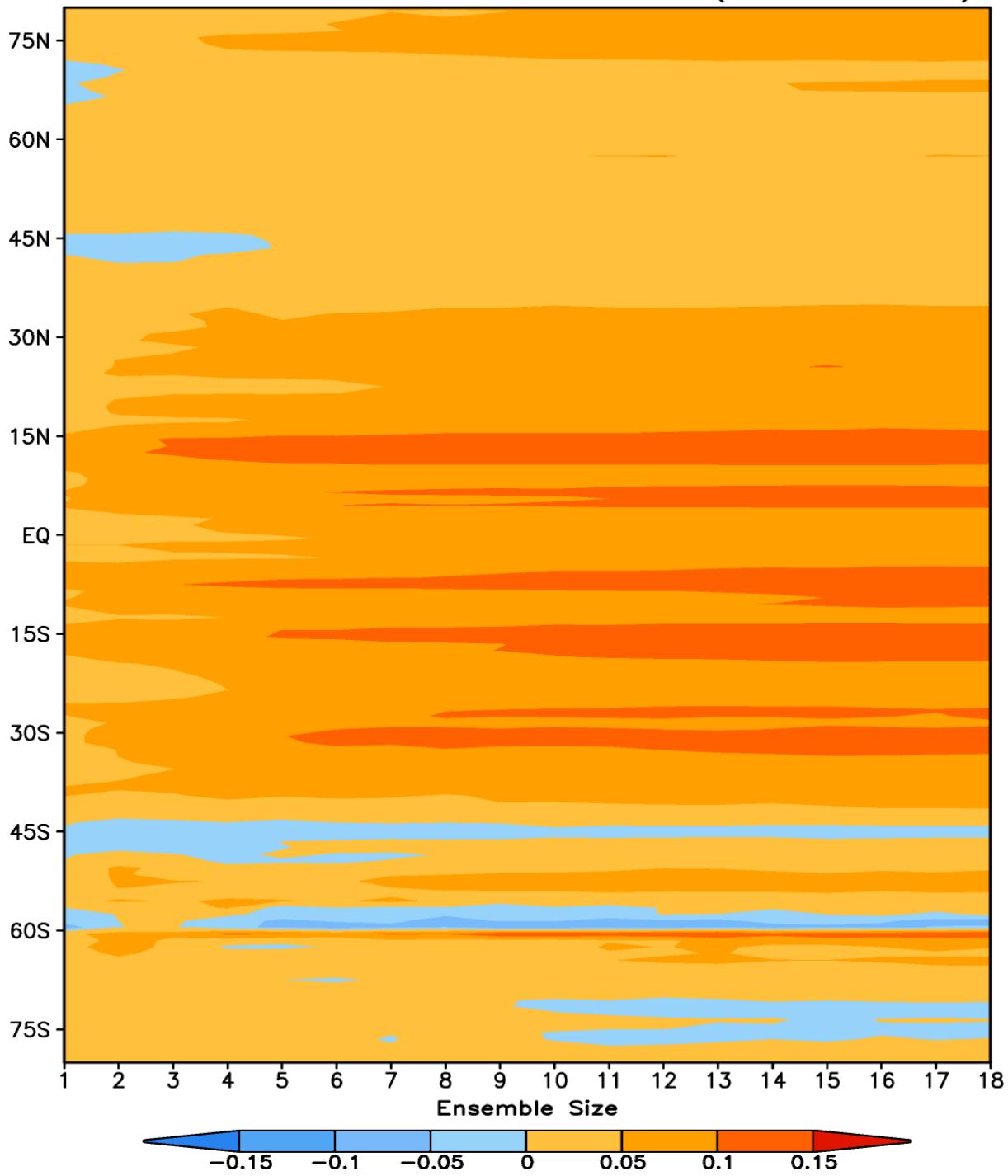
518 Zhu, J. and J. Shukla, 2013: The role of air-sea coupling in seasonal prediction of Asia-Pacific
519 summer monsoon rainfall. *J. Climate*, **26**, 5689–5697. DOI: 10.1175/JCLI-D-13-00190.1.

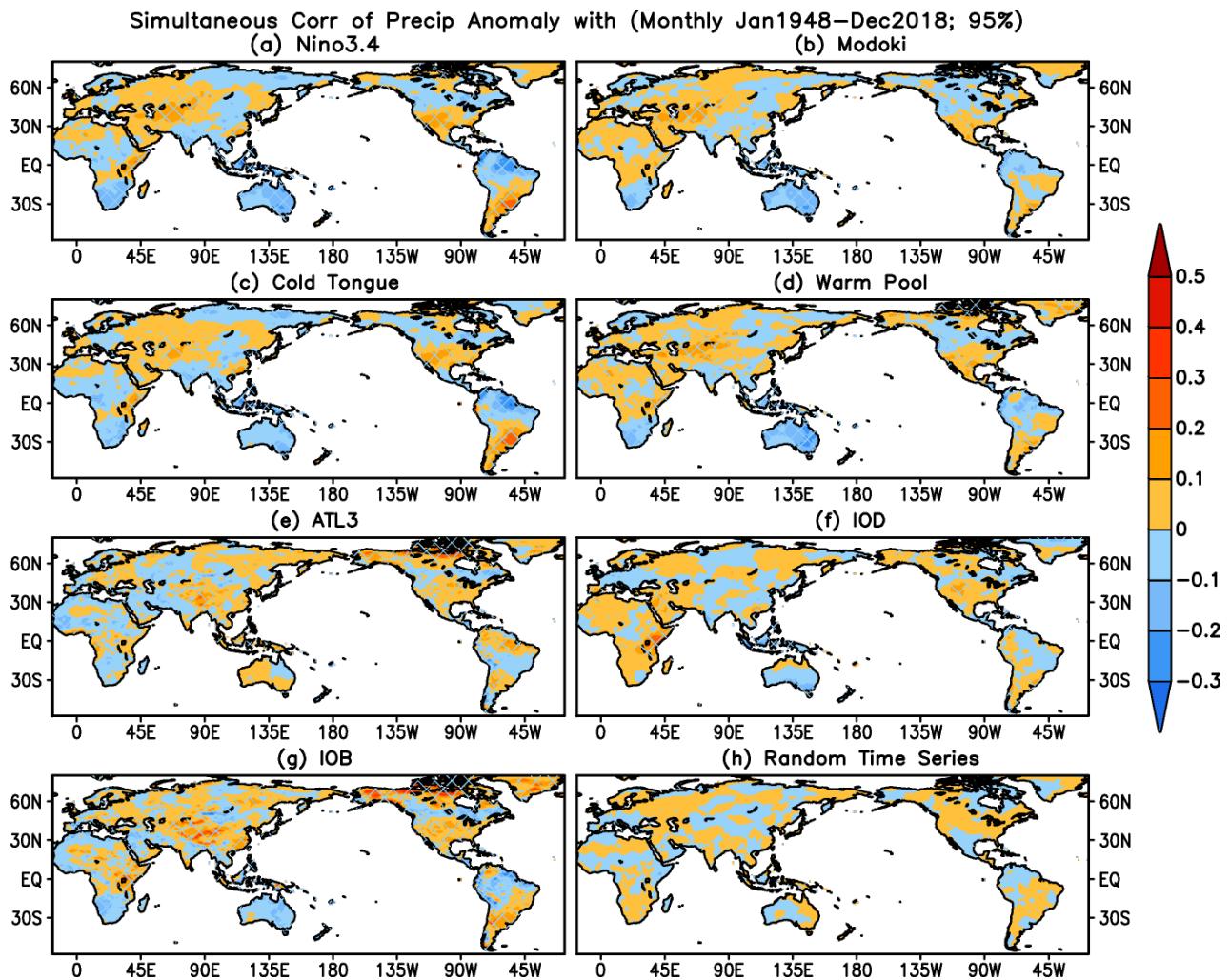
AMIP Runs (Precip; 18 Members; Jan1957–Dec2018)
 (a) Corr of Ensemble Mean with Obs (95%)



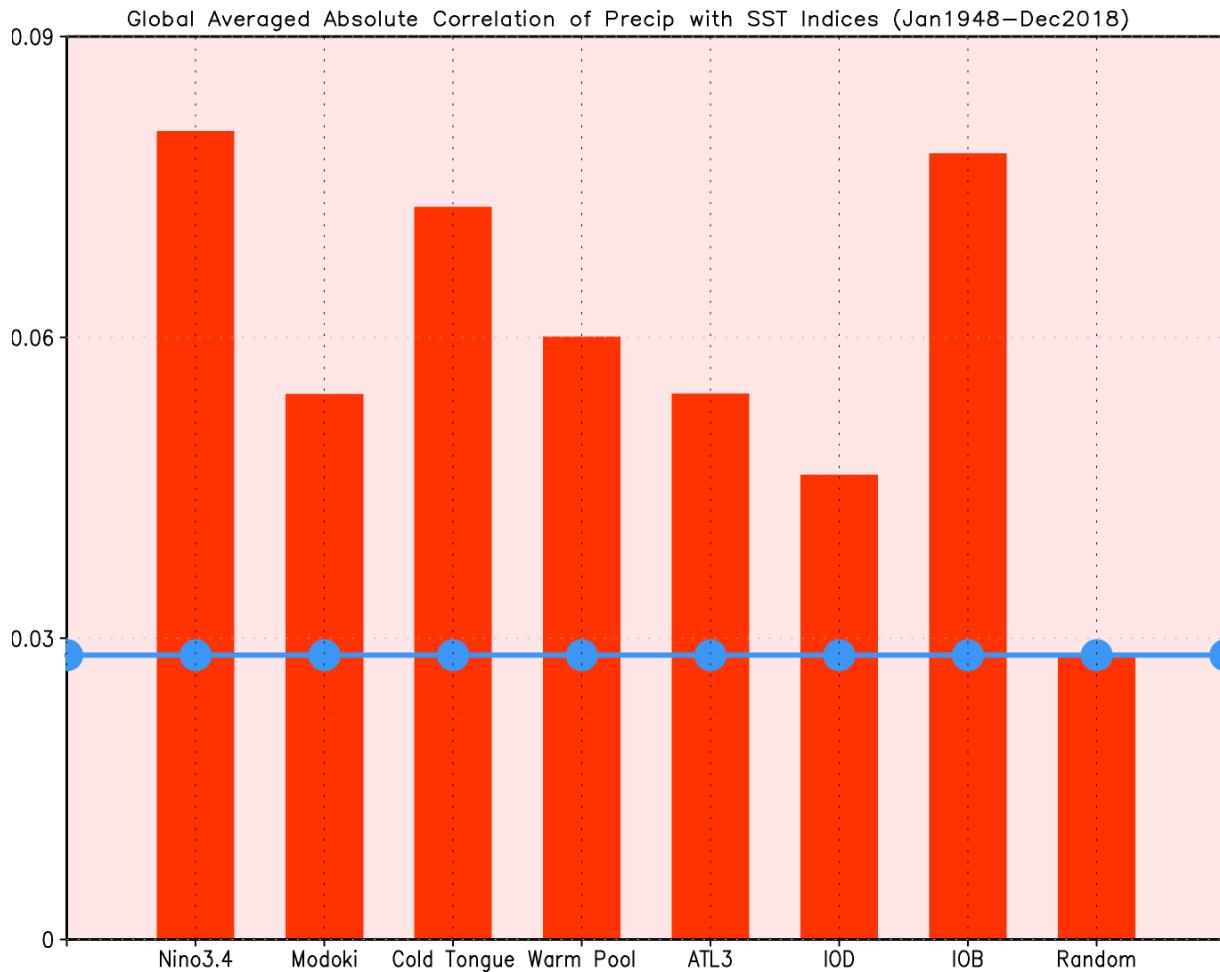
520
 521 Fig. 1: (a) Correlations of monthly mean precipitation anomalies between observations and the
 522 ensemble means of the AMIP simulations with 18 ensemble members during January 1957-
 523 December 2018; (b) perfect model score, which is referred to as averaged correlation of each
 524 individual member with the ensemble mean of the other 17 members in the AMIP simulations; (c)
 525 signal-to-noise ratio (SNR) of the AMIP simulations. The hatched regions in (a, b) represent the
 526 correlations significant at 95% or higher confidence level using the T-test (correlation values larger
 527 than 0.1), and in (c) is for values larger than or equal to 0.5.

Zonal Mean of Monthly Prec Anomaly Correlation of Observation
With AMIP Varied with Latitude & Ensemble Size (Jan1957–Dec2018)



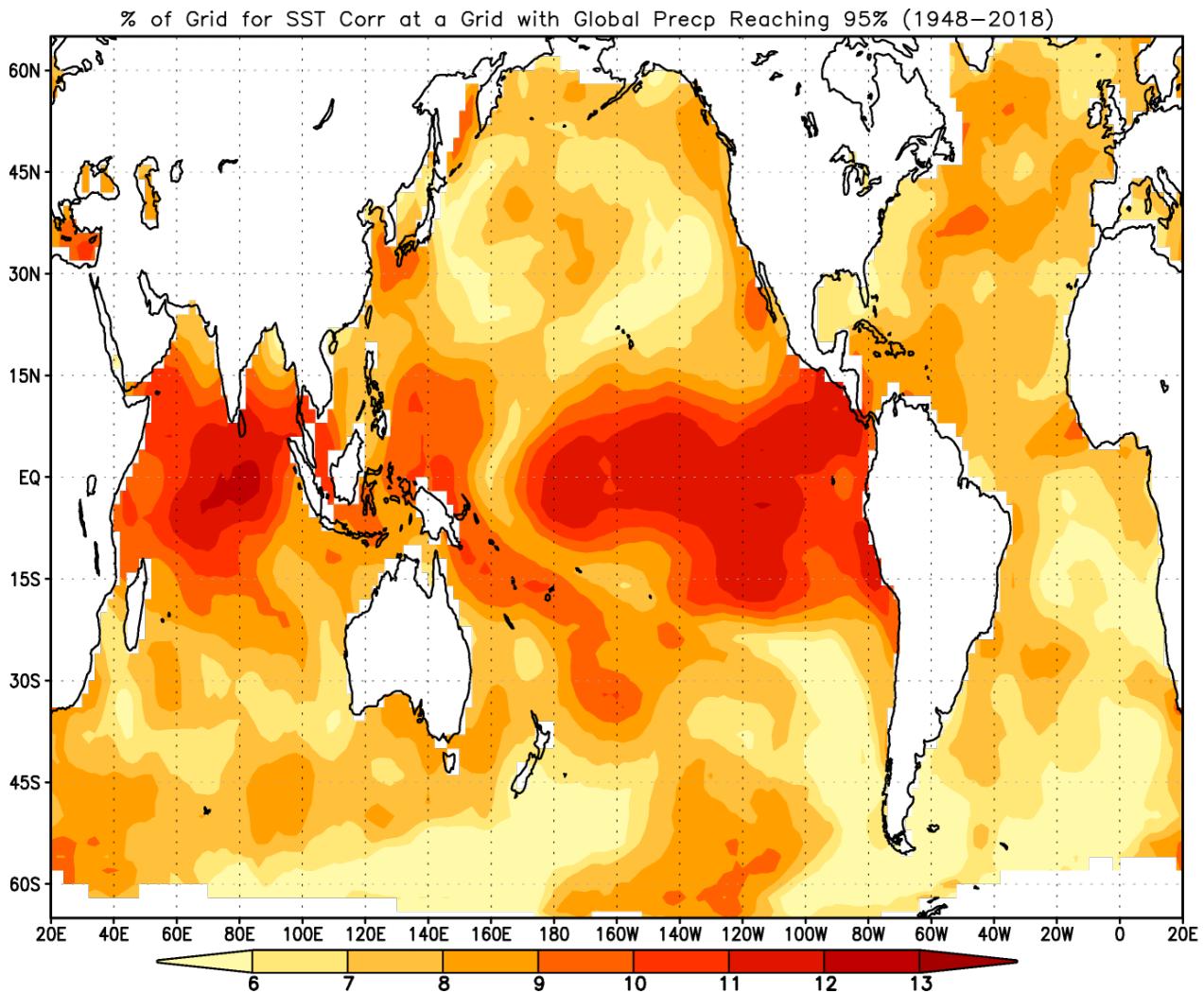


532 0 45E 90E 135E 180 135W 90W 45W 0 45E 90E 135E 180 135W 90W 45W
 533 Fig. 3: Simultaneous correlations of observed monthly precipitation anomalies with (a) Niño3.4,
 534 (b) ENSO-Modoki, (c) warm pool, (d) cold tongue, (e) ATL3, (f) IOD, and (g) IOB indices during
 535 January 1948-December 2018 as well as (h) a random time series. Hatching represents significant
 536 correlations at the significance level of 95% using the T-test, corresponding to correlation values
 537 larger than 0.067. Shading interval is 0.1.

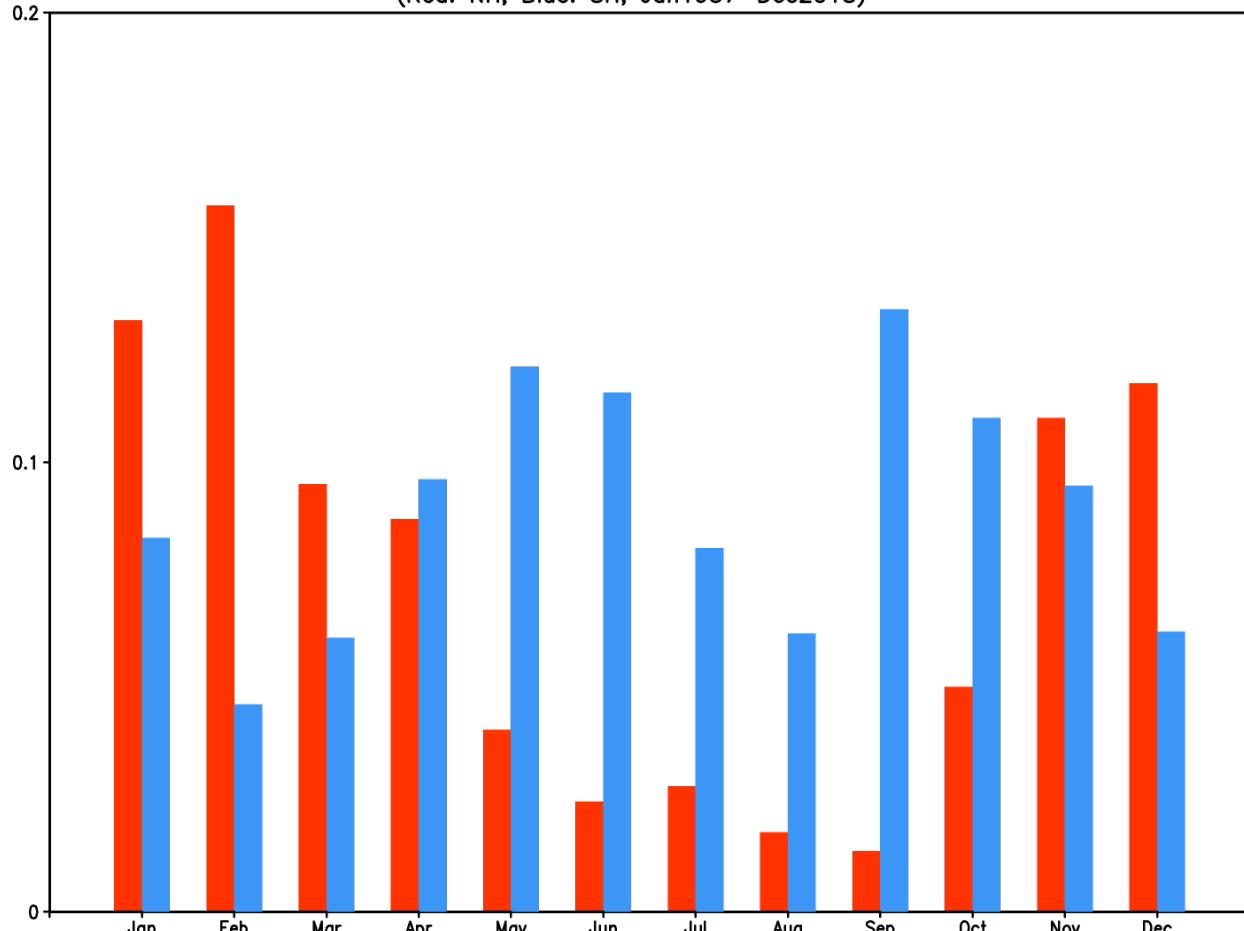


538

539 Fig. 4: Global averaged and area-weighted absolute correlations of observed monthly precipitation
 540 anomalies with Niño3.4, ENSO-Modoki, warm pool, cold tongue, ATL3, IOD, and IOB indices
 541 during January 1948-December 2018 as well as a random time series. The horizontal line
 542 represents the global averaged absolute correlations of observed monthly precipitation anomalies
 543 with the random time series.

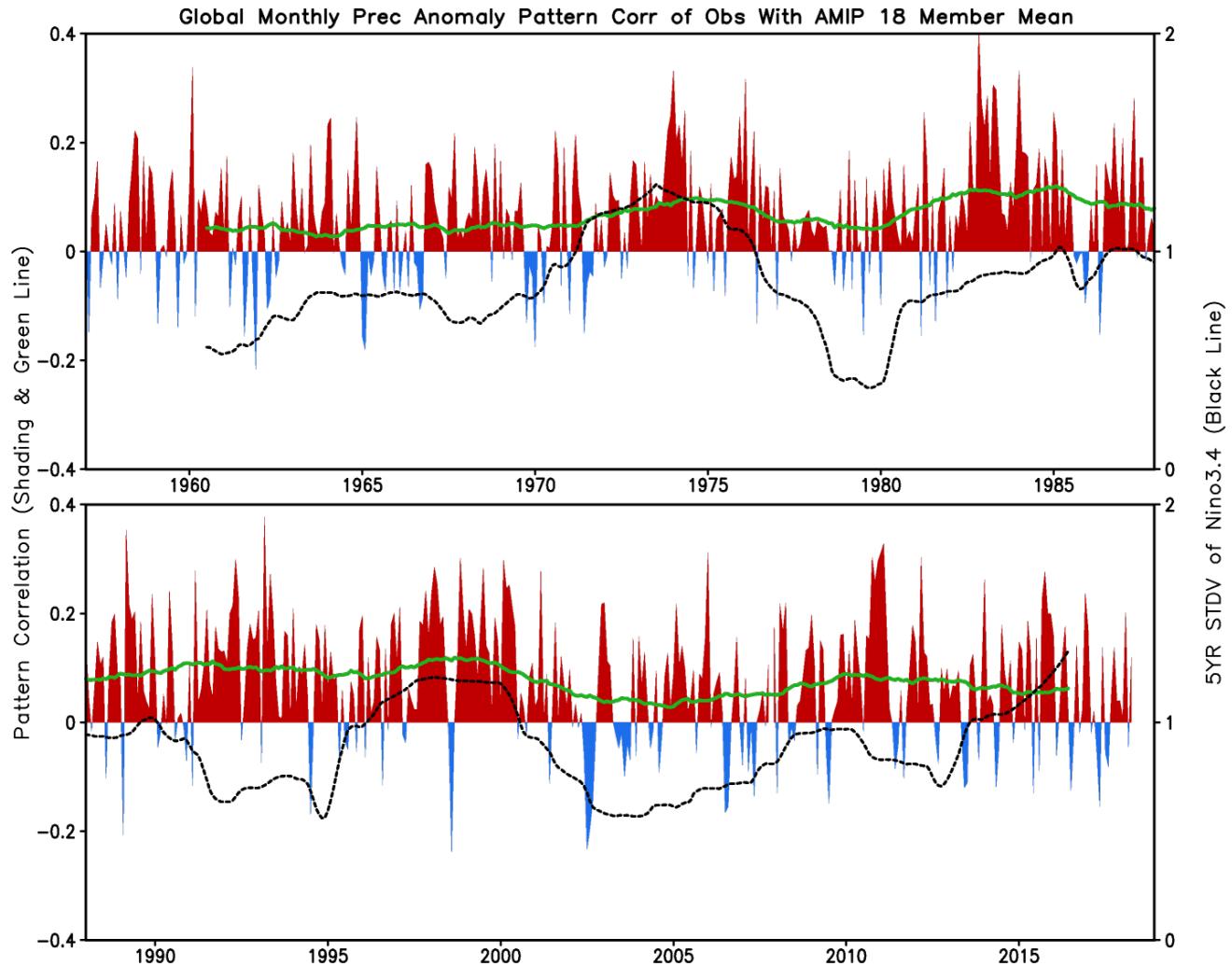


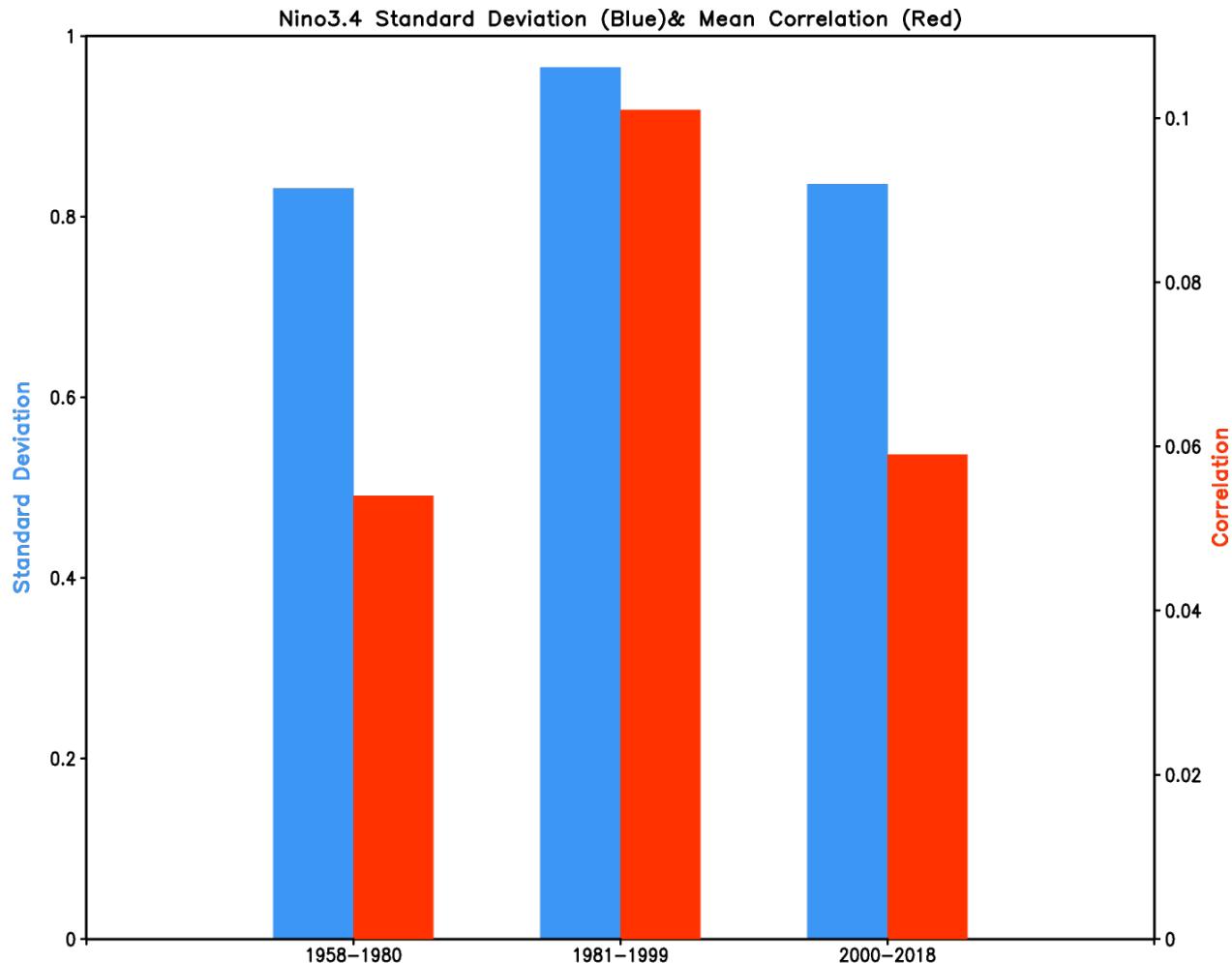
Global Monthly Prec Anom Pattern Correlation of Observation With AMIP 18 Member Mean
(Red: NH; Blue: SH; Jan1957–Dec2018)



548

549 Fig. 6: Pattern correlations of monthly mean precipitation anomalies between observations and
550 ensemble mean of AMIP simulations in each month for Northern Hemisphere (red bars) and
551 Southern Hemisphere (blue bars) during January 1957–December 2018.

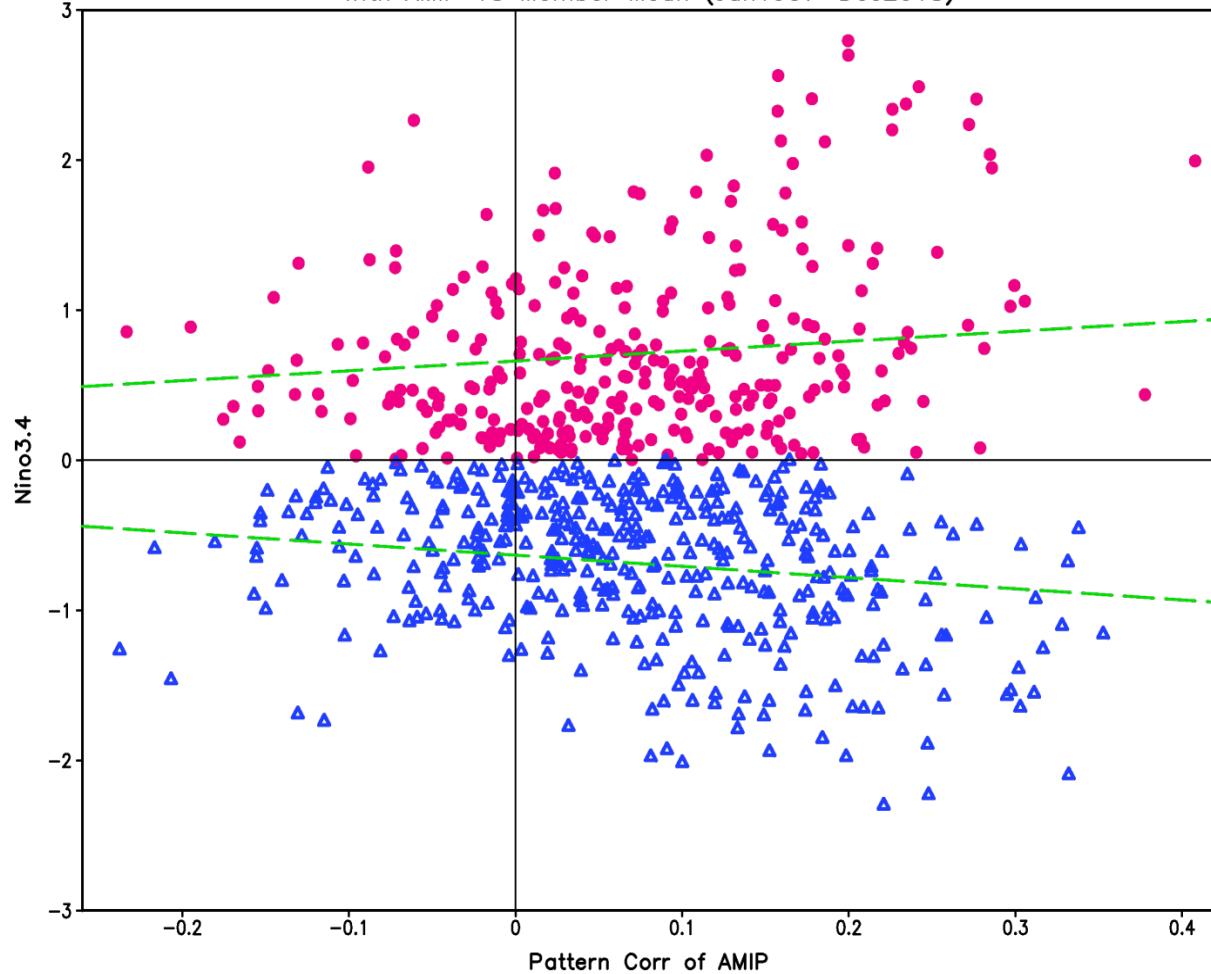




557

558 Fig. 8: Mean pattern correlations of monthly mean precipitation anomalies between observations
 559 and ensemble mean of AMIP simulations over the global land (red) and standard deviation of the
 560 Niño3.4 index (blue) averaged in January 1957-December 1980 (bar in left), January 1981-
 561 December 1999 (bar in the middle), and January 2000-December 2018 (bar in right).

562

Observed Niño3.4 & Global Monthly Prec Anom Pattern Corr of Obs
With AMIP 18 Member Mean (Jan1957–Dec2018)

563

564 Fig. 9: Scatter plot of pattern correlations of monthly mean precipitation anomalies between
 565 observations and ensemble mean of the AMIP simulations in globe land in each month (x-axis)
 566 and observed monthly mean Niño3.4 index (y-axis) during January 1957–December 2018. The
 567 dashed lines represent the linear regression fitting for positive and negative Niño3.4 index,
 568 respectively.