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Abstract 

The role of sea surface temperature (SST) in determining the predictability of monthly 

mean precipitation over the global land is assessed by analyzing the Atmospheric Model 

Intercomparison Project (AMIP)-like simulations forced by observed SST, which provides a 

benchmark for the impact of SST on the precipitation. The correlations of monthly mean 

precipitation anomalies between the ensemble mean of the AMIP simulations and observations are 

dominated by positive values with maxima around 0.3~0.4 in the tropical North Africa along 15oN 

and northeastern Brazil. The SST forcing for the precipitation variability is mainly associated with 

the El Niño-Southern Oscillation (ENSO) and in the tropical Indian Ocean. Statistically, positive 

and negative SST anomalies associated with an ENSO cycle have a comparable influence on 

precipitation variability over the land.  

In addition to the spatial variations, the precipitation responses to SST also vary with 

season and decade. Pattern correlations are larger in boreal winter than in boreal summer in the 

Northern Hemisphere, and relatively larger in April-June and September-November in the 

Southern Hemisphere. The global average of correlation is lower during 1957-1980 and 2000-

2018, and higher in between. The interdecadal fluctuation of the pattern correlations is coherent 

with the interdecadal variation of the amplitude of ENSO. 

 

Keywords: Predictability; Global Land Precipitation; Temporal and Spatial Variations of the 

SST Influence; ENSO 
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I. Introduction 

Sea surface temperatures (SSTs) in the global oceans, particularly in the tropical Pacific 

Ocean associated with the El Niño-Southern Oscillation (ENSO), are a major source of global 

climate variability and predictability on seasonal and interannual time scales (Sarachik and Cane 

2010; National Research Council 2010). For example, Ropelewski and Halpert (1987) identified 

the regions with spatially coherent ENSO-related precipitation variability. They noted that in 

addition to the local influence of ENSO on the tropical Pacific Ocean basin, some remote regions 

also had ENSO-related precipitation response. These regions are over Australia, North America, 

South America, the Indian subcontinent, Africa and Central America. They further indicated that 

ENSO-related precipitation anomalies occur as early as April through May of the following year. 

Such impacts of SST on climate variability are largely the basis for short-term climate 

prediction. For instance, at the Climate Prediction Center (CPC) of the National Centers for 

Environmental Prediction (NCEP), ENSO is the key predictor for operational seasonal 

precipitation prediction over U. S. (O’Lenic et al. 2008; Peng et al. 2012; 2013). On average, 

seasonal precipitation forecasts over the global land are more accurate during El Niño and La Niña 

events than during neutral years; and stronger ENSO events lead to higher skill of seasonal climate 

(Goddard and Dilley, 2005). 

In addition to the regional dependence of the impacts of ENSO SST (e.g., Davey et al. 

2014), the SST influence varies with season and can be easily overshadowed by other processes, 

such as internal variability (Deser et al. 2018), and low-frequency variation and global warming 

trend (Yeh et al. 2018). As a result, the uncertainty of the impact of SST anomaly on climate 

variability on seasonal and interannual time scales is evident (Deser et al. 2018). Given that 

precipitation is one of the most important variables of societal relevance, such as droughts and 
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floods, it is necessary to further assess the impact of SST on the variability and predictability of 

precipitation on seasonal and interannual time scales, as well as examine the seasonal and 

interdecadal variations of the impact. Further, it is important to identify the regions where 

precipitation is affected by SST and key/sensitive ocean regions that influence the precipitation 

variation. Such assessments provide a benchmark for the impact of SST on predictability and 

variability of precipitation. 

In this work, Atmospheric Model Intercomparison Project (AMIP)-like experiments, 

which are forced by observed SST, are analyzed to quantify the SST influence on variability and 

predictability of precipitation over the land. In addition to observational analysis and model 

prediction, the analysis of AMIP experiments complements estimate of the impact of SST on 

climate variability and predictability (Peng et al. 2000; National Research Council 2010). In this 

analysis, sources of the predictability of precipitation are attributed, and the most effective ocean 

regions in influencing the precipitation are identified. Also, the seasonal cycle and interdecadal 

variations of the SST influence, and the possible connection with ENSO are discussed. The 

interdecadal variations of the SST influence may provide some clues for the interdecadal variations 

in the skill of precipitation predictability. The rest of the paper is organized as follows: The data 

used in this work are introduced in section 2; the spatial variations and temporal fluctuations are 

shown in sections 3 and 4, respectively. Summary and discussion are given in section 5. 

 

2. Data 

To examine the influence of global SST on the predictability and variability of precipitation 

over the land, AMIP-like experiments are analyzed. The model used is the atmospheric component 

(Global Forecast System) of version 2 of the Climate Forecast System developed at the National 
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Centers for Environmental Prediction (NCEP; Saha et al. 2014). The model has a horizontal 

resolution of T126 (~105 km) and 64 vertical levels. The model is forced by the observed time-

varying global monthly SSTs and sea ice. The SST and sea ice dataset are from the Hadley Centre 

Sea Ice and SST (HadISST) datasets for 1957-2008 (Rayner et al. 2006) and the Optimum 

Interpolation SST version 2 (OISSTv2) afterward (Reynolds et al. 2002). The integrations are from 

January 1957 to December 2018 and have 18 ensemble members with slightly different 

atmospheric initial conditions (Hu et al. 2017a).  

In addition, the monthly SSTs from the Extended Reconstructed SST Version 5 (ERSSTv5; 

Huang et al. 2017) with a 2ox2o horizontal resolution are analyzed. ERSSTv5 SST has been used 

at NCEP/CPC in real-time monitoring ENSO evolution and defining ENSO event 

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). Using 

ERSSTv5 SST anomalies with respect to climatology of January 1981-December 2010, following 

indices are defined:  

Niño3.4 index: SSTA (5oS-5oN, 170oW-120oW) (Barnston et al. (1997);  

ENSO-Modoki index: SSTA (10oS-10oN, 165oE-140oW) - [SSTA (15oS-5oN, 110oW-

170oW) + SSTA (10oS-20oN, 125oE-145oE)]/2.0 (Ashok et al. 2007);  

Cold tongue index: SSTA (5oS-5oN, 150oW-90oW)-0.4*SSTA (5oS-5oN, 160oE-150oW) 

(Ren and Jin 2011);  

Warm pool index: SSTA (5oS-5oN, 160oE-150oW)-0.4*SSTA (5oS-5oN, 150oW-90oW) 

(Ren and Jin 2011);  

Atlantic Niño (ATL3) index: SSTA (3oS-3oN, 0o-20oW) (Zebiak 1993);  

Indian Ocean Dipole (IOD) index: SSTA (10oS-10oN, 50oE-70oE)-SSTA (10oS-0o, 90oE-

110oE) (Saji et al. 1999).  
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Indian Ocean Basin mode (IOB) index: SSTA(20°S–20°N, 40°–110°E) (Yang et al. 2009).  121 
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These indices are used to examine the connections of global land precipitation variability 

with the SST variability in individual tropical ocean basins. To be a benchmark of the robustness 

of the SST-precipitation connection, we also calculate the correlations between the global land 

precipitation anomalies and a random time series with uniform distribution and in range of 0~1.0. 

The corresponding observed precipitation is the monthly mean reconstructed precipitation 

analysis (Chen et al. 2002). It was developed by the optimal interpolation of gauge observations 

over the land only and covers the period from January 1948 to December 2018 on a 1° × 1° spatial 

resolution. This precipitation product has been widely used in the climate community both in 

operation and research (e.g., Li et al. 2016; Sun et al. 2018). 

 

3. Spatial variations in SST-precipitation relationship 

In the AMIP simulations, the externally specified forcing is the observed SST, and hence, 

is the source of predictability (and prediction skill) in precipitation variability. To quantify the 

influence of SST on precipitation, the correlation of precipitation anomalies (relative to 1981-2010 

climatology) between the ensemble mean of the AMIP simulations and the observations is 

calculated and shown in Fig. 1a. The correlations are generally positive but are small with a 

maximum of 0.3~0.4 in the tropical North Africa along 15oN and northeastern Brazil (Kayano et 

al. 1988), implying only a moderate influence of SST anomalies on the precipitation variation (Fig. 

1a). Here, we should note that, as expected, the correlations increase with the increase of ensemble 

size in the regions between 40oS and 40oN (Fig. 2). The increasing of correlation is more noticeable 

with the increasing of ensemble size from 1 to 10, and becomes less obvious while ensemble size 

larger than 10. That is generally consistent with previous work, such as, Brankovic and Palmer 
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(1997), Kumar and Hoerling (2000), Kumar et al. (2001), Kumar and Chen (2015). For the mid- 

and high- latitudes, the impact of the ensemble size on the correlation is still visible for some 

latitude zones with positive correlation, but the impact is undistinguishable when the correlations 

are near zero or negative and is consistent with results of Kumar and Hoerling (2000). They argued 

that there is no influence of ensemble size on skill when correlation is close to zero (see their Fig. 

3). 

It is feasible that overall low correlation might partially be caused by the design of AMIP 

simulations that cannot incorporate coupled air-sea interactions (Wu and Kirtman, 2005; Wang et 

al. 2005; Zhu and Shukla 2013). In fact, the amplitudes of correlation are comparable to other 

studies that utilized coupled prediction framework (e.g., see Fig. 3 in Jia et al. 2015), therefore the 

overall influence of coupled air-sea interactions may be small. The largest positive correlations are 

located in tropical Northern Africa, southern Africa, central Asia, western and eastern Australia, 

the southern part of North America, and the northeastern part of South America. These regions 

with higher correlation have been noted in previous works, such as Ropelewski and Halpert (1987), 

Yulaeva and Wallace (1994), and the National Research Council (2010). For the mid-high latitudes 

of the Northern Hemisphere (NH), both small positive and negative correlations are present, 

suggesting a smaller role of SST in influencing precipitation variability in these regions compared 

with that in the lower latitudes.  

To assess the influence of model biases in the model simulations, an estimate of skill based 

on the assumption of a perfect model (SPM) is also computed. SPM is defined here as the averaged 

correlation between each individual member and the ensemble mean of the other 17 ensemble 

members. It has been shown that depending on the signal-to-noise ratio, SPM can also 

underestimate of the inherent potential skill  (and predictability) in some regions due to model 
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biases (Kumar et al. 2014; Scaife and Smith 2018; Baker et al. 2018; Dunstone et al. 2018). All 

SPMs are positive, however, are smaller than 0.5 (Fig. 1b). Overall spatial distribution patterns of 

the skill are similar between Fig. 1a and 1b, but the SPM in Fig. 1b is clearly larger than the 

correlations in Fig. 1a. The differences between Fig. 1a and 1b are noticeable in the subtropical 

southern Africa, Indian peninsular, southeastern Asia, northern and central parts of Australia, 

tropical North America, and the western part of South America. One of the possibilities of having 

large differences in these regions might be associated with large biases in the model, either in the 

amplitude of internal variability and/or the signal associated with SSTs, a topic that will require 

further investigation.  

High (low) SPM is linked to large (small) signal-to-noise ratio (SNR) (Fig. 1c). Here, the 

signal is referred to as the standard deviation of the ensemble mean (based on 18 members), and 

the noise is defined as the standard deviation of the spread of the individual member from the 

ensemble mean (Kumar et al. 2017). In a perfect model scenario, large (small) SNR is linked to 

the expected high (low) predictability (Kumar and Hoerling 2000; Kumar et al. 2017). Except for 

some tropical regions, SNR is mostly smaller than 0.5, indicating a substantial role of the 

atmospheric internal variability and the fact that the internal variability may be more important 

than the signal associated with remote and/or local SST forcing in determining the precipitation 

variability over the land. In fact, the low predictability seems largely a common and inherent 

feature of climate variability over the mid-high latitude land or oceans (Davis 1976; Madden 1976; 

Hu et al. 2011, 2017a; Liang et al. 2019). In mid-latitude variability is dominated by atmospheric 

internal variability and has a smaller influence from external and/or remote boundary forcings, 

such as SST in the tropical oceans (Kumar et al. 2013; Kumar and Chen 2017; Deser et al. 2018). 
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The relatively high correlations in Fig. 1a and 1b and large values in Fig. 1c are mostly 

associated with the influence of SST variability in the central and eastern tropical Pacific Ocean 

and the tropical Indian Ocean (Fig. 3a-d, g). Correlations of precipitation anomaly with the 

Niño3.4 index are relatively high positive in the central Asia, southern United States, eastern 

tropical Africa, and southeastern South America, and relatively high negative in southern Africa, 

eastern Australia, and tropical South America. These regions also correspond to the relatively high 

correlations shown in Fig. 1a, large SPM in Fig. 1b and large SNR in Fig. 1c, suggesting the robust 

impact of SST anomaly on the precipitation variations in these regions. The correlations using 

different ENSO indices (Niño3.4, ENSO-Modoki, cold tongue, and warm pool indices, Fig. 3a-d) 

display a similar spatial pattern, although the overall correlations are slightly higher with the 

Niño3.4 index (Fig. 4). 

For the impact of SST anomalies in the entire tropical Indian Ocean (represented by IOB 

index, Fig. 3g), the large positive correlations present over the U. S. and high latitudes of North 

America, Greenland, mid-latitudes of Asia, southeastern South America, and tropical Africa, while 

the negative ones in Australia, South Africa, and tropical South America. For the IOD index (Fig. 

3f), the overall corrections are smaller than those associated with the IOB index. The positive 

correlations are in the eastern tropical Africa, and negative correlations in the Maritime Continent 

(Fig. 3f). In addition to the tropical Pacific and Indian Oceans, SSTs in the tropical Atlantic Ocean 

also affect some regional precipitation variations. For the ATL3 index, the relatively high 

correlations are in the tropical Africa and Southern America (Fig. 3e). Positive correlations present 

in the sub-polar north Atlantic region, which might be associated with the long-term trend of sea-

ice change and deserves further investigation.  
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All these regions with relatively high positive and negative correlations shown in Fig. 3e-

g may contribute to the relatively large values of correlation in these regions shown in Fig. 1, 

implying remoting influence of the tropical ocean SST anomalies on the precipitation variations 

over the global land. The impact of the SST anomalies in these various key regions (Fig. 3) on the 

precipitation is realized through various teleconnections. For example, the Niño indices associated 

SST anomalies in the central and eastern tropical Pacific affect the precipitation anomalies in the 

North American continent mainly through a Pacific–North American -like teleconnection pattern, 

which alters the intensity and location of the mid-latitude jet stream (e.g., Wallace and Gutzler 

1981; Li et al. 2019). For the impact of ENSO on the eastern Asian climate, it is mainly through a 

Pacific-Japan teleconnection (e.g., Nitta 1987; Nitta and Hu 1996; Wang et al. 2000; Wu et al. 

2003; Kosaka et al. 2012). The warm (cold) events in the eastern Pacific cause the weak (strong) 

East Asian winter monsoons through generating an anomalous lower-tropospheric anticyclone 

(cyclone) located in the western North Pacific. The connections of the precipitation in the 

northeastern Brazil and Indian summer monsoon with El Niño are mainly attributed to large-scale 

changes in a longitudinal displacement in the Walker circulation (e.g., Kayano et al. 1988; Ju and 

Slingo 1995). 

Nevertheless, it should be pointed out that SST anomalies in the different ocean basins are 

also interconnected, especially for the tropical oceans. For instance, SST variability in the tropical 

Indian and Atlantic Oceans are partially a response to ENSO (Cai et al. 2019; Wang 2019). 

Compared with amplitudes of the correlations with the various SST indices (Fig. 3a-g), the 

correlations between the precipitation and a random time series are smaller and less significant 

(Fig. 3h), implying contributions of SST variability in all these ocean basins to the precipitation 

variation over the global land. To measure the mean global impact of each of these indices, Fig. 4 
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show the global averaged values of absolute correlations of Fig. 3. The value is the largest for the 

Niño3.4 index, the second largest for the IOB index, and the lowest for the IOD index. The values 

are comparable for the ENSO-Modoki and ATL3 indices. All the values for the various SST 

indices are larger than that for the random time series, implying that SST anomalies in all the 

tropical oceans do have an impact on precipitation variability over the global land as a whole. 

These features shown in Figs. 3 and 4 are further confirmed in Fig. 5, which shows a measure of 

the integrated influence of SST anomaly (over different ocean regions) on precipitation variability 

over the land. To get this measure, at each grid point in the ocean, the percentage of land grid 

points having significant correlations (at 95% significant level) with SST is shown. For instance, 

if at an ocean grid point the value is 10, it means that for 10% grid points over land precipitation 

has significant (either positive or negative) correlations (at 95% significant level) with SST 

anomaly at the ocean grid point.  

The largest values are located in the central and eastern tropical Pacific and tropical Indian 

Oceans, the moderate values are located in the tropical western Pacific Ocean, small values in the 

tropical Atlantic Ocean (Fig. 5). It is interesting to note that the maximum values in the central 

tropical Pacific Ocean and in the central tropical Indian Ocean are comparable. Also, the values 

are smaller in the extratropics compared to the tropics, probably due to a larger influence of internal 

dynamical processes and larger uncertainties of SST in the extratropical oceans (Huang et al. 

2018). These results suggest that SST anomalies in different oceans have different effectiveness 

in influencing precipitation variability over different land regions. The SST anomalies in the 

tropical Pacific associated with ENSO and in the central tropical Indian Ocean have the largest 

influence on precipitation variability over the global land, and the western Pacific, as well as the 

tropical Atlantic Ocean, which plays a secondary role. In addition to the SST indices used in Figs. 
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3 and 4, which mainly reflects SST variability in the seasonal-interannual time scales, some 

climate modes or indices with long-term time scales such as Pacific Decadal Oscillation (PDO), 

Atlantic Meridional Overturning Circulation (AMOC), and Atlantic Multidecadal Oscillation 

(AMO) may also play a role in the connection between SST and precipitation over the global land. 

 

4. Temporal fluctuations 

In addition to the spatial variations of precipitation response to SST anomaly, there are also 

temporal fluctuations in the response. One prominent variation is the seasonal cycle in the 

precipitation response to SSTs. For the seasonal cycle of the pattern correlation in each hemisphere 

(Fig. 6), which is defined as correlations in each individual month and hemisphere, the pattern 

correlation is larger in boreal winter than in boreal summer in NH. While in the Southern 

Hemisphere (SH), the seasonal dependence is not as distinct as in NH, and the pattern correlations 

are relatively larger in April-June, and September-November. This is consistent with previous 

works, such as Davey et al. (2014). Such seasonal dependence may be associated with the seasonal 

cycle of the tropical SST associated with ENSO and its lagged impact. Climatologically, compared 

to boreal summer, SST variability in the eastern and central tropical Pacific is larger due to the fact 

that ENSO peaks in boreal winter. Larger variability corresponds to a higher prediction skill and 

a larger impact on extratropical climate (National Research Council 2010; Hu et al. 2019). For SH, 

the seasonal variation of the impact may be due to the influence of SST anomaly in the Indian 

Ocean, which is partially linked to the lagged impact of ENSO (Shinoda et al. 2004). 

In addition to the seasonal variation, the evolution of global pattern correlation also 

experiences interdecadal variations (Fig. 7). The pattern correlation is lower during 1957-1980 and 

2000-2018, and higher in between, which has some similarity with the standard deviation of the 
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Niño3.4 index (dashed line in Fig. 7). On average, the higher (lower) correlations correspond to 

larger (smaller) variability of ENSO (Fig. 8). The decline of the pattern correlations since 

1999/2000 is consistent with the decrease of the forecast skill of ENSO noted in previous works 

(Wang et al. 2010; Barnston et al. 2012). Previous works show that the decline is associated with 

the interdecadal change of ENSO properties, including suppression of variability and increase of 

frequencies (McPhaden 2012; Hu et al. 2013, 2016, 2017b, 2017c; Hu and Fedorov 2018). 

Nevertheless, interdecadal variations in the North Pacific and the Atlantic Ocean (such as PDO, 

AMOC, and AMO) may also play a role in the interdecadal variation of the correlations shown in 

Figs. 7 and 8. That deserves further investigation. 

As a predominant factor affecting climate variability and predictability (National Research 

Council 2010), ENSO is linked to the variability of pattern correlation. Statistically, stronger 

ENSO year has a larger pattern correlation (Fig. 9). To check the symmetric impact of the cold 

and warm phases of ENSO on precipitation over the global land, the correlations between the 

pattern correlations of the AMIP simulation and the Niño3.4 index shown in Fig. 9 are computed 

separately for positive and negative Niño3.4 index. Specifically, for positive Niño3.4 index, the 

correlation with the pattern correlation is 0.27, while it is -0.29 for negative Niño3.4 index. The 

comparable correlation amplitudes for positive and negative Niño3.4 index may be an indication 

that global SST anomalies associated with an ENSO cycle have an overall comparable influence 

on precipitation variability over the global land as a whole. On the other hand, the profound spread 

shown in Fig. 9 implies large uncertainty of the connection between SST anomalies in ENSO years 

and precipitation variation over the global land as well as the impact of other factors than SST.  

 

5. Summary and discussion 
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In this work, we quantitatively examined the role of SST on the variability and 

predictability of precipitation over the land by analyzing AMIP simulations forced by observed 

historical SST in 1958-2018. It was noted that the correlations of the monthly mean precipitation 

anomalies between the ensemble mean of the AMIP simulations and the observations were 

dominated by positive values with maximum values around 0.3~0.4. The integrated importance of 

SST in various ocean regions to precipitation variability over the global land is identified. The SST 

forcing for the global land precipitation is mainly located in the tropical Pacific Ocean that 

primarily associated with ENSO (e.g., Quan et al. 2006; Scaife et al. 2018), as well as in the tropical 

Indian Ocean, with some contribution from other ocean basins or modes, such as the western 

Pacific, Indian Ocean dipole and tropical Atlantic variabilities. Moreover, positive and negative 

SST anomalies associated with an ENSO cycle have an overall comparable influence on 

precipitation variability over the global land.  

In addition to the spatial variations in precipitation response to SST, there are also temporal 

fluctuations. For the seasonal cycle of the pattern correlation, the correlation is larger in boreal 

winter than in boreal summer in NH, and relatively larger in April-June and September-November 

in SH. The global average of correlation also varies from decade to decade: it is lower during 1957-

1980 and 2000-2018, and higher in between. Such interdecadal fluctuation of the pattern 

correlation is coherent with the interdecadal variation of ENSO intensity. For example, the decline 

of the pattern correlations since 1999/2000 could be associated with the suppression of variability 

and increase of frequencies of ENSO (McPhaden 2012; Hu et al. 2013, 2016, 2017b, 2017c; Hu 

and Fedorov 2018). 

Considering the fact that SST anomaly is the major source of global climate variability and 

predictability at seasonal-interannual time scales (National Research Council 2010), the overall 
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small correlations may imply inherently low predictability and low prediction skill for monthly 

mean precipitation variability over the global land as whole. As observed sea ice variations are 

used in the AMIP simulations, thus, predictability examined in this work may also partially be 

associated with sea ice variation.  
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Fig. 1: (a) Correlations of monthly mean precipitation anomalies between observations and the 

ensemble means of the AMIP simulations with 18 ensemble members during January 1957-

December 2018; (b) perfect model score, which is referred to as averaged correlation of each 

individual member with the ensemble mean of the other 17 members in the AMIP simulations; (c) 

signal-to-noise ratio (SNR) of the AMIP simulations. The hatched regions in (a, b) represent the 

correlations significant at 95% or higher confidence level using the T-test (correlation values larger 

than 0.1), and in (c) is for values larger than or equal to 0.5.  
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Fig. 2:  Zonal mean correlations of the monthly mean precipitation anomalies between 

observations and the ensemble means of the AMIP simulations varied with latitude and ensemble 

size during January 1957-December 2018.  
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Fig. 3: Simultaneous correlations of observed monthly precipitation anomalies with (a) Niño3.4, 

(b) ENSO-Modoki, (c) warm pool, (d) cold tongue, (e) ATL3, (f) IOD, and (g) IOB indices during 

January 1948-December 2018 as well as (h) a random time series. Hatching represents significant 

correlations at the significance level of 95% using the T-test, corresponding to correlation values 

larger than 0.067. Shading interval is 0.1.   



26 
  

 538 
539 

540 

541 

542 

543 

Fig. 4: Global averaged and area-weighted absolute correlations of observed monthly precipitation 

anomalies with Niño3.4, ENSO-Modoki, warm pool, cold tongue, ATL3, IOD, and IOB indices 

during January 1948-December 2018 as well as a random time series. The horizontal line 

represents the global averaged absolute correlations of observed monthly precipitation anomalies 

with the random time series.  
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Fig. 5: Percentage of accumulated grid numbers for the correlation between observed SST anomaly 

at a grid and global precipitation anomalies which reaches 95% significance level using T-test, 

referred to total grid number of global land precipitation during January 1948-December 2018.   
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Fig. 6: Pattern correlations of monthly mean precipitation anomalies between observations and 

ensemble mean of AMIP simulations in each month for Northern Hemisphere (red bars) and 

Southern Hemisphere (blue bars) during January 1957-December 2018.  
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Fig. 7: Temporal evolution of pattern correlations of monthly mean precipitation anomalies 

between observations and ensemble mean of AMIP simulations in the globe (shading) and its 5-

years running mean (green line) during January 1957-December 2018. Dashed line represents 5-

years running mean of standard deviation of the Niño3.4 index.  
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Fig. 8: Mean pattern correlations of monthly mean precipitation anomalies between observations 

and ensemble mean of AMIP simulations over the global land (red) and standard deviation of the 

Niño3.4 index (blue) averaged in January 1957-December 1980 (bar in left), January 1981-

December 1999 (bar in the middle), and January 2000-December 2018 (bar in right).   
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563 
Fig. 9: Scatter plot of pattern correlations of monthly mean precipitation anomalies between 

observations and ensemble mean of the AMIP simulations in globe land in each month (x-axis) 

and observed monthly mean Niño3.4 index (y-axis) during January 1957-December 2018. The 

dished lines represent the linear regression fitting for positive and negative Niño3.4 index, 

respectively. 
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