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Abstract

The role of sea surface temperature (SST) in determining the predictability of monthly
mean precipitation over the global land is assessed by analyzing the Atmospheric Model
Intercomparison Project (AMIP)-like simulations forced by observed SST, which provides a
benchmark for the impact of SST on the precipitation. The correlations of monthly mean
precipitation anomalies between the ensemble mean of the AMIP simulations and observations are
dominated by positive values with maxima around 0.3~0.4 in the tropical North Africa along 15°N
and northeastern Brazil. The SST forcing for the precipitation variability is mainly associated with
the El Nifio-Southern Oscillation (ENSO) and in the tropical Indian Ocean. Statistically, positive
and negative SST anomalies associated with an ENSO cycle have a comparable influence on
precipitation variability over the land.

In addition to the spatial variations, the precipitation responses to SST also vary with
season and decade. Pattern correlations are larger in boreal winter than in boreal summer in the
Northern Hemisphere, and relatively larger in April-June and September-November in the
Southern Hemisphere. The global average of correlation is lower during 1957-1980 and 2000-
2018, and higher in between. The interdecadal fluctuation of the pattern correlations is coherent

with the interdecadal variation of the amplitude of ENSO.

Keywords: Predictability; Global Land Precipitation; Temporal and Spatial Variations of the

SST Influence; ENSO
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I. Introduction

Sea surface temperatures (SSTs) in the global oceans, particularly in the tropical Pacific
Ocean associated with the El Nifio-Southern Oscillation (ENSO), are a major source of global
climate variability and predictability on seasonal and interannual time scales (Sarachik and Cane
2010; National Research Council 2010). For example, Ropelewski and Halpert (1987) identified
the regions with spatially coherent ENSO-related precipitation variability. They noted that in
addition to the local influence of ENSO on the tropical Pacific Ocean basin, some remote regions
also had ENSO-related precipitation response. These regions are over Australia, North America,
South America, the Indian subcontinent, Africa and Central America. They further indicated that
ENSO-related precipitation anomalies occur as early as April through May of the following year.

Such impacts of SST on climate variability are largely the basis for short-term climate
prediction. For instance, at the Climate Prediction Center (CPC) of the National Centers for
Environmental Prediction (NCEP), ENSO is the key predictor for operational seasonal
precipitation prediction over U. S. (O’Lenic et al. 2008; Peng et al. 2012; 2013). On average,
seasonal precipitation forecasts over the global land are more accurate during E1 Nifio and La Nina
events than during neutral years; and stronger ENSO events lead to higher skill of seasonal climate
(Goddard and Dilley, 2005).

In addition to the regional dependence of the impacts of ENSO SST (e.g., Davey et al.
2014), the SST influence varies with season and can be easily overshadowed by other processes,
such as internal variability (Deser et al. 2018), and low-frequency variation and global warming
trend (Yeh et al. 2018). As a result, the uncertainty of the impact of SST anomaly on climate
variability on seasonal and interannual time scales is evident (Deser et al. 2018). Given that

precipitation is one of the most important variables of societal relevance, such as droughts and
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floods, it is necessary to further assess the impact of SST on the variability and predictability of
precipitation on seasonal and interannual time scales, as well as examine the seasonal and
interdecadal variations of the impact. Further, it is important to identify the regions where
precipitation is affected by SST and key/sensitive ocean regions that influence the precipitation
variation. Such assessments provide a benchmark for the impact of SST on predictability and
variability of precipitation.

In this work, Atmospheric Model Intercomparison Project (AMIP)-like experiments,
which are forced by observed SST, are analyzed to quantify the SST influence on variability and
predictability of precipitation over the land. In addition to observational analysis and model
prediction, the analysis of AMIP experiments complements estimate of the impact of SST on
climate variability and predictability (Peng et al. 2000; National Research Council 2010). In this
analysis, sources of the predictability of precipitation are attributed, and the most effective ocean
regions in influencing the precipitation are identified. Also, the seasonal cycle and interdecadal
variations of the SST influence, and the possible connection with ENSO are discussed. The
interdecadal variations of the SST influence may provide some clues for the interdecadal variations
in the skill of precipitation predictability. The rest of the paper is organized as follows: The data
used in this work are introduced in section 2; the spatial variations and temporal fluctuations are

shown in sections 3 and 4, respectively. Summary and discussion are given in section 5.

2. Data

To examine the influence of global SST on the predictability and variability of precipitation
over the land, AMIP-like experiments are analyzed. The model used is the atmospheric component

(Global Forecast System) of version 2 of the Climate Forecast System developed at the National



98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Centers for Environmental Prediction (NCEP; Saha et al. 2014). The model has a horizontal
resolution of T126 (~105 km) and 64 vertical levels. The model is forced by the observed time-
varying global monthly SSTs and sea ice. The SST and sea ice dataset are from the Hadley Centre
Sea Ice and SST (HadISST) datasets for 1957-2008 (Rayner et al. 2006) and the Optimum
Interpolation SST version 2 (OISSTv2) afterward (Reynolds et al. 2002). The integrations are from
January 1957 to December 2018 and have 18 ensemble members with slightly different
atmospheric initial conditions (Hu et al. 2017a).

In addition, the monthly SSTs from the Extended Reconstructed SST Version 5 (ERSSTvS;
Huang et al. 2017) with a 2°x2° horizontal resolution are analyzed. ERSSTv5 SST has been used
at NCEP/CPC in real-time monitoring ENSO evolution and defining ENSO event
(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php).  Using
ERSSTv5 SST anomalies with respect to climatology of January 1981-December 2010, following
indices are defined:

Nifo3.4 index: SSTA (5°S-5°N, 170°W-120°W) (Barnston et al. (1997);

ENSO-Modoki index: SSTA (10°S-10°N, 165°E-140°W) - [SSTA (15°S-5°N, 110°W-
170°W) + SSTA (10°S-20°N, 125°E-145°E)]/2.0 (Ashok et al. 2007);

Cold tongue index: SSTA (5°S-5°N, 150°W-90°W)-0.4*SSTA (5°S-5°N, 160°E-150°W)
(Ren and Jin 2011);

Warm pool index: SSTA (5°S-5°N, 160°E-150°W)-0.4*SSTA (5°S-5°N, 150°W-90°W)
(Ren and Jin 2011);

Atlantic Nifio (ATL3) index: SSTA (3°S-3°N, 0°-20°W) (Zebiak 1993);

Indian Ocean Dipole (IOD) index: SSTA (10°S-10°N, 50°E-70°E)-SSTA (10°S-0°, 90°E-

110°E) (Saji et al. 1999).
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Indian Ocean Basin mode (IOB) index: SSTA(20°S-20°N, 40°-110°E) (Yang et al. 2009).
These indices are used to examine the connections of global land precipitation variability
with the SST variability in individual tropical ocean basins. To be a benchmark of the robustness
of the SST-precipitation connection, we also calculate the correlations between the global land
precipitation anomalies and a random time series with uniform distribution and in range of 0~1.0.
The corresponding observed precipitation is the monthly mean reconstructed precipitation
analysis (Chen et al. 2002). It was developed by the optimal interpolation of gauge observations
over the land only and covers the period from January 1948 to December 2018 on a 1° % 1° spatial
resolution. This precipitation product has been widely used in the climate community both in

operation and research (e.g., Li et al. 2016; Sun et al. 2018).

3. Spatial variations in SST-precipitation relationship

In the AMIP simulations, the externally specified forcing is the observed SST, and hence,
is the source of predictability (and prediction skill) in precipitation variability. To quantify the
influence of SST on precipitation, the correlation of precipitation anomalies (relative to 1981-2010
climatology) between the ensemble mean of the AMIP simulations and the observations is
calculated and shown in Fig. 1a. The correlations are generally positive but are small with a
maximum of 0.3~0.4 in the tropical North Africa along 15°N and northeastern Brazil (Kayano et
al. 1988), implying only a moderate influence of SST anomalies on the precipitation variation (Fig.
la). Here, we should note that, as expected, the correlations increase with the increase of ensemble
size in the regions between 40°S and 40°N (Fig. 2). The increasing of correlation is more noticeable
with the increasing of ensemble size from 1 to 10, and becomes less obvious while ensemble size

larger than 10. That is generally consistent with previous work, such as, Brankovic and Palmer
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(1997), Kumar and Hoerling (2000), Kumar et al. (2001), Kumar and Chen (2015). For the mid-
and high- latitudes, the impact of the ensemble size on the correlation is still visible for some
latitude zones with positive correlation, but the impact is undistinguishable when the correlations
are near zero or negative and is consistent with results of Kumar and Hoerling (2000). They argued
that there is no influence of ensemble size on skill when correlation is close to zero (see their Fig,
3).

It is feasible that overall low correlation might partially be caused by the design of AMIP
simulations that cannot incorporate coupled air-sea interactions (Wu and Kirtman, 2005; Wang et
al. 2005; Zhu and Shukla 2013). In fact, the amplitudes of correlation are comparable to other
studies that utilized coupled prediction framework (e.g., see Fig. 3 in Jia et al. 2015), therefore the
overall influence of coupled air-sea interactions may be small. The largest positive correlations are
located in tropical Northern Africa, southern Africa, central Asia, western and eastern Australia,
the southern part of North America, and the northeastern part of South America. These regions
with higher correlation have been noted in previous works, such as Ropelewski and Halpert (1987),
Yulaeva and Wallace (1994), and the National Research Council (2010). For the mid-high latitudes
of the Northern Hemisphere (NH), both small positive and negative correlations are present,
suggesting a smaller role of SST in influencing precipitation variability in these regions compared
with that in the lower latitudes.

To assess the influence of model biases in the model simulations, an estimate of skill based
on the assumption of a perfect model (SPM) is also computed. SPM is defined here as the averaged
correlation between each individual member and the ensemble mean of the other 17 ensemble
members. It has been shown that depending on the signal-to-noise ratio, SPM can also

underestimate of the inherent potential skill (and predictability) in some regions due to model
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biases (Kumar et al. 2014; Scaife and Smith 2018; Baker et al. 2018; Dunstone et al. 2018). All
SPMs are positive, however, are smaller than 0.5 (Fig. 1b). Overall spatial distribution patterns of
the skill are similar between Fig. la and 1b, but the SPM in Fig. 1b is clearly larger than the
correlations in Fig. 1a. The differences between Fig. 1a and 1b are noticeable in the subtropical
southern Africa, Indian peninsular, southeastern Asia, northern and central parts of Australia,
tropical North America, and the western part of South America. One of the possibilities of having
large differences in these regions might be associated with large biases in the model, either in the
amplitude of internal variability and/or the signal associated with SSTs, a topic that will require
further investigation.

High (low) SPM is linked to large (small) signal-to-noise ratio (SNR) (Fig. 1c). Here, the
signal is referred to as the standard deviation of the ensemble mean (based on 18 members), and
the noise is defined as the standard deviation of the spread of the individual member from the
ensemble mean (Kumar et al. 2017). In a perfect model scenario, large (small) SNR is linked to
the expected high (low) predictability (Kumar and Hoerling 2000; Kumar et al. 2017). Except for
some tropical regions, SNR is mostly smaller than 0.5, indicating a substantial role of the
atmospheric internal variability and the fact that the internal variability may be more important
than the signal associated with remote and/or local SST forcing in determining the precipitation
variability over the land. In fact, the low predictability seems largely a common and inherent
feature of climate variability over the mid-high latitude land or oceans (Davis 1976; Madden 1976;
Hu et al. 2011, 2017a; Liang et al. 2019). In mid-latitude variability is dominated by atmospheric
internal variability and has a smaller influence from external and/or remote boundary forcings,

such as SST in the tropical oceans (Kumar et al. 2013; Kumar and Chen 2017; Deser et al. 2018).
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The relatively high correlations in Fig. 1a and 1b and large values in Fig. 1c are mostly
associated with the influence of SST variability in the central and eastern tropical Pacific Ocean
and the tropical Indian Ocean (Fig. 3a-d, g). Correlations of precipitation anomaly with the
Nifio3.4 index are relatively high positive in the central Asia, southern United States, eastern
tropical Africa, and southeastern South America, and relatively high negative in southern Africa,
eastern Australia, and tropical South America. These regions also correspond to the relatively high
correlations shown in Fig. 1a, large SPM in Fig. 1b and large SNR in Fig. 1¢, suggesting the robust
impact of SST anomaly on the precipitation variations in these regions. The correlations using
different ENSO indices (Nino3.4, ENSO-Modoki, cold tongue, and warm pool indices, Fig. 3a-d)
display a similar spatial pattern, although the overall correlations are slightly higher with the
Nifio3.4 index (Fig. 4).

For the impact of SST anomalies in the entire tropical Indian Ocean (represented by IOB
index, Fig. 3g), the large positive correlations present over the U. S. and high latitudes of North
America, Greenland, mid-latitudes of Asia, southeastern South America, and tropical Africa, while
the negative ones in Australia, South Africa, and tropical South America. For the IOD index (Fig.
3f), the overall corrections are smaller than those associated with the IOB index. The positive
correlations are in the eastern tropical Africa, and negative correlations in the Maritime Continent
(Fig. 3f). In addition to the tropical Pacific and Indian Oceans, SSTs in the tropical Atlantic Ocean
also affect some regional precipitation variations. For the ATL3 index, the relatively high
correlations are in the tropical Africa and Southern America (Fig. 3e). Positive correlations present
in the sub-polar north Atlantic region, which might be associated with the long-term trend of sea-

ice change and deserves further investigation.
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All these regions with relatively high positive and negative correlations shown in Fig. 3e-
g may contribute to the relatively large values of correlation in these regions shown in Fig. 1,
implying remoting influence of the tropical ocean SST anomalies on the precipitation variations
over the global land. The impact of the SST anomalies in these various key regions (Fig. 3) on the
precipitation is realized through various teleconnections. For example, the Nifio indices associated
SST anomalies in the central and eastern tropical Pacific affect the precipitation anomalies in the
North American continent mainly through a Pacific—North American -like teleconnection pattern,
which alters the intensity and location of the mid-latitude jet stream (e.g., Wallace and Gutzler
1981; Liet al. 2019). For the impact of ENSO on the eastern Asian climate, it is mainly through a
Pacific-Japan teleconnection (e.g., Nitta 1987; Nitta and Hu 1996; Wang et al. 2000; Wu et al.
2003; Kosaka et al. 2012). The warm (cold) events in the eastern Pacific cause the weak (strong)
East Asian winter monsoons through generating an anomalous lower-tropospheric anticyclone
(cyclone) located in the western North Pacific. The connections of the precipitation in the
northeastern Brazil and Indian summer monsoon with El Nifio are mainly attributed to large-scale
changes in a longitudinal displacement in the Walker circulation (e.g., Kayano et al. 1988; Ju and
Slingo 1995).

Nevertheless, it should be pointed out that SST anomalies in the different ocean basins are
also interconnected, especially for the tropical oceans. For instance, SST variability in the tropical
Indian and Atlantic Oceans are partially a response to ENSO (Cai et al. 2019; Wang 2019).
Compared with amplitudes of the correlations with the various SST indices (Fig. 3a-g), the
correlations between the precipitation and a random time series are smaller and less significant
(Fig. 3h), implying contributions of SST variability in all these ocean basins to the precipitation

variation over the global land. To measure the mean global impact of each of these indices, Fig. 4
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show the global averaged values of absolute correlations of Fig. 3. The value is the largest for the
Nifno3.4 index, the second largest for the IOB index, and the lowest for the IOD index. The values
are comparable for the ENSO-Modoki and ATL3 indices. All the values for the various SST
indices are larger than that for the random time series, implying that SST anomalies in all the
tropical oceans do have an impact on precipitation variability over the global land as a whole.
These features shown in Figs. 3 and 4 are further confirmed in Fig. 5, which shows a measure of
the integrated influence of SST anomaly (over different ocean regions) on precipitation variability
over the land. To get this measure, at each grid point in the ocean, the percentage of land grid
points having significant correlations (at 95% significant level) with SST is shown. For instance,
if at an ocean grid point the value is 10, it means that for 10% grid points over land precipitation
has significant (either positive or negative) correlations (at 95% significant level) with SST
anomaly at the ocean grid point.

The largest values are located in the central and eastern tropical Pacific and tropical Indian
Oceans, the moderate values are located in the tropical western Pacific Ocean, small values in the
tropical Atlantic Ocean (Fig. 5). It is interesting to note that the maximum values in the central
tropical Pacific Ocean and in the central tropical Indian Ocean are comparable. Also, the values
are smaller in the extratropics compared to the tropics, probably due to a larger influence of internal
dynamical processes and larger uncertainties of SST in the extratropical oceans (Huang et al.
2018). These results suggest that SST anomalies in different oceans have different effectiveness
in influencing precipitation variability over different land regions. The SST anomalies in the
tropical Pacific associated with ENSO and in the central tropical Indian Ocean have the largest
influence on precipitation variability over the global land, and the western Pacific, as well as the

tropical Atlantic Ocean, which plays a secondary role. In addition to the SST indices used in Figs.
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3 and 4, which mainly reflects SST variability in the seasonal-interannual time scales, some
climate modes or indices with long-term time scales such as Pacific Decadal Oscillation (PDO),
Atlantic Meridional Overturning Circulation (AMOC), and Atlantic Multidecadal Oscillation

(AMO) may also play a role in the connection between SST and precipitation over the global land.

4. Temporal fluctuations

In addition to the spatial variations of precipitation response to SST anomaly, there are also
temporal fluctuations in the response. One prominent variation is the seasonal cycle in the
precipitation response to SSTs. For the seasonal cycle of the pattern correlation in each hemisphere
(Fig. 6), which is defined as correlations in each individual month and hemisphere, the pattern
correlation is larger in boreal winter than in boreal summer in NH. While in the Southern
Hemisphere (SH), the seasonal dependence is not as distinct as in NH, and the pattern correlations
are relatively larger in April-June, and September-November. This is consistent with previous
works, such as Davey et al. (2014). Such seasonal dependence may be associated with the seasonal
cycle of the tropical SST associated with ENSO and its lagged impact. Climatologically, compared
to boreal summer, SST variability in the eastern and central tropical Pacific is larger due to the fact
that ENSO peaks in boreal winter. Larger variability corresponds to a higher prediction skill and
a larger impact on extratropical climate (National Research Council 2010; Hu et al. 2019). For SH,
the seasonal variation of the impact may be due to the influence of SST anomaly in the Indian
Ocean, which is partially linked to the lagged impact of ENSO (Shinoda et al. 2004).

In addition to the seasonal variation, the evolution of global pattern correlation also
experiences interdecadal variations (Fig. 7). The pattern correlation is lower during 1957-1980 and

2000-2018, and higher in between, which has some similarity with the standard deviation of the
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Nifno3.4 index (dashed line in Fig. 7). On average, the higher (lower) correlations correspond to
larger (smaller) variability of ENSO (Fig. 8). The decline of the pattern correlations since
1999/2000 is consistent with the decrease of the forecast skill of ENSO noted in previous works
(Wang et al. 2010; Barnston et al. 2012). Previous works show that the decline is associated with
the interdecadal change of ENSO properties, including suppression of variability and increase of
frequencies (McPhaden 2012; Hu et al. 2013, 2016, 2017b, 2017c; Hu and Fedorov 2018).
Nevertheless, interdecadal variations in the North Pacific and the Atlantic Ocean (such as PDO,
AMOC, and AMO) may also play a role in the interdecadal variation of the correlations shown in
Figs. 7 and 8. That deserves further investigation.

As a predominant factor affecting climate variability and predictability (National Research
Council 2010), ENSO is linked to the variability of pattern correlation. Statistically, stronger
ENSO year has a larger pattern correlation (Fig. 9). To check the symmetric impact of the cold
and warm phases of ENSO on precipitation over the global land, the correlations between the
pattern correlations of the AMIP simulation and the Nifio3.4 index shown in Fig. 9 are computed
separately for positive and negative Nifio3.4 index. Specifically, for positive Nifio3.4 index, the
correlation with the pattern correlation is 0.27, while it is -0.29 for negative Nifio3.4 index. The
comparable correlation amplitudes for positive and negative Nifio3.4 index may be an indication
that global SST anomalies associated with an ENSO cycle have an overall comparable influence
on precipitation variability over the global land as a whole. On the other hand, the profound spread
shown in Fig. 9 implies large uncertainty of the connection between SST anomalies in ENSO years

and precipitation variation over the global land as well as the impact of other factors than SST.

5. Summary and discussion
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In this work, we quantitatively examined the role of SST on the variability and
predictability of precipitation over the land by analyzing AMIP simulations forced by observed
historical SST in 1958-2018. It was noted that the correlations of the monthly mean precipitation
anomalies between the ensemble mean of the AMIP simulations and the observations were
dominated by positive values with maximum values around 0.3~0.4. The integrated importance of
SST in various ocean regions to precipitation variability over the global land is identified. The SST
forcing for the global land precipitation is mainly located in the tropical Pacific Ocean that
primarily associated with ENSO (e.g., Quan et al. 2006; Scaife et al. 2018), as well as in the tropical
Indian Ocean, with some contribution from other ocean basins or modes, such as the western
Pacific, Indian Ocean dipole and tropical Atlantic variabilities. Moreover, positive and negative
SST anomalies associated with an ENSO cycle have an overall comparable influence on
precipitation variability over the global land.

In addition to the spatial variations in precipitation response to SST, there are also temporal
fluctuations. For the seasonal cycle of the pattern correlation, the correlation is larger in boreal
winter than in boreal summer in NH, and relatively larger in April-June and September-November
in SH. The global average of correlation also varies from decade to decade: it is lower during 1957-
1980 and 2000-2018, and higher in between. Such interdecadal fluctuation of the pattern
correlation is coherent with the interdecadal variation of ENSO intensity. For example, the decline
of the pattern correlations since 1999/2000 could be associated with the suppression of variability
and increase of frequencies of ENSO (McPhaden 2012; Hu et al. 2013, 2016, 2017b, 2017¢; Hu
and Fedorov 2018).

Considering the fact that SST anomaly is the major source of global climate variability and

predictability at seasonal-interannual time scales (National Research Council 2010), the overall

14



326

327

328

329

330

331

332

333

334

335

336

small correlations may imply inherently low predictability and low prediction skill for monthly
mean precipitation variability over the global land as whole. As observed sea ice variations are
used in the AMIP simulations, thus, predictability examined in this work may also partially be

associated with sea ice variation.
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AMIP Runs (Precip; 18 Members; Jan1957—Dec2018)
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Fig. 1: (a) Correlations of monthly mean precipitation anomalies between observations and the
ensemble means of the AMIP simulations with 18 ensemble members during January 1957-
December 2018; (b) perfect model score, which is referred to as averaged correlation of each
individual member with the ensemble mean of the other 17 members in the AMIP simulations; (¢)
signal-to-noise ratio (SNR) of the AMIP simulations. The hatched regions in (a, b) represent the
correlations significant at 95% or higher confidence level using the T-test (correlation values larger

than 0.1), and in (c) is for values larger than or equal to 0.5.
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Zonal Mean of Monthly Prec Anomaly Correlation of Observation
With AMIP Varied with Latitude & Ensemble Size (Jan1957—Dec2018)
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Fig. 2: Zonal mean correlations of the monthly mean precipitation anomalies between
observations and the ensemble means of the AMIP simulations varied with latitude and ensemble

size during January 1957-December 2018.
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Simultaneous Corr of Precip Anomaly with (Monthly Jan1948—Dec2018; 95%)
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Fig. 3: Simultaneous correlations of observed monthly precipitation anomalies with (a) Nino3.4,
(b) ENSO-Modoki, (¢) warm pool, (d) cold tongue, (e) ATL3, (f) IOD, and (g) IOB indices during
January 1948-December 2018 as well as (h) a random time series. Hatching represents significant
correlations at the significance level of 95% using the T-test, corresponding to correlation values

larger than 0.067. Shading interval is 0.1.
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Fig. 4: Global averaged and area-weighted absolute correlations of observed monthly precipitation
anomalies with Nifio3.4, ENSO-Modoki, warm pool, cold tongue, ATL3, IOD, and IOB indices
during January 1948-December 2018 as well as a random time series. The horizontal line
represents the global averaged absolute correlations of observed monthly precipitation anomalies

with the random time series.
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% of Grid for SST Corr at a Grid with Global Precp Reaching 95% (1948—2018)
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Fig. 5: Percentage of accumulated grid numbers for the correlation between observed SST anomaly
at a grid and global precipitation anomalies which reaches 95% significance level using T-test,

referred to total grid number of global land precipitation during January 1948-December 2018.
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Global Monthly Prec Anomaly Pattern Correlation of Observation With AMIP 18 Member Mean
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549  Fig. 6: Pattern correlations of monthly mean precipitation anomalies between observations and
550  ensemble mean of AMIP simulations in each month for Northern Hemisphere (red bars) and

551  Southern Hemisphere (blue bars) during January 1957-December 2018.
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Fig. 7: Temporal evolution of pattern correlations of monthly mean precipitation anomalies
between observations and ensemble mean of AMIP simulations in the globe (shading) and its 5-
years running mean (green line) during January 1957-December 2018. Dashed line represents 5-

years running mean of standard deviation of the Nifio3.4 index.
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Fig. 8: Mean pattern correlations of monthly mean precipitation anomalies between observations
and ensemble mean of AMIP simulations over the global land (red) and standard deviation of the
Nino3.4 index (blue) averaged in January 1957-December 1980 (bar in left), January 1981-
December 1999 (bar in the middle), and January 2000-December 2018 (bar in right).
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Observed Nino3.4 & Global Monthly Prec Anomaly Pattern Corr of Obs
With AMIP 18 Member Mean (Jan1957-Dec2018)
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564  Fig. 9: Scatter plot of pattern correlations of monthly mean precipitation anomalies between
565  observations and ensemble mean of the AMIP simulations in globe land in each month (x-axis)
566  and observed monthly mean Nino3.4 index (y-axis) during January 1957-December 2018. The

567 dished lines represent the linear regression fitting for positive and negative Nifio3.4 index,

568  respectively.
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