



# Results of the 2024 Eastern Bering Sea Continental Shelf Bottom Trawl Survey of Groundfish and Invertebrate Fauna

E. H. Markowitz, S. K. Rohan, S. Wassermann,  
N. E. Charriere, C. B. Anderson, and D. E. Stevenson

The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature.

The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center.

This document should be cited as follows:

Markowitz, E. H., Rohan, S. K., Wassermann, S., Charriere, N. E., Anderson, C. B., and Stevenson, D. E. 2025. Results of the 2024 eastern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate fauna. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-499, 203 p.

This document is available online at:

Document available: <https://repository.library.noaa.gov>

Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.



**NOAA**  
**FISHERIES**

# **Results of the 2024 Eastern Bering Sea Continental Shelf Bottom Trawl Survey of Groundfish and Invertebrate Fauna**

E. H. Markowitz, S. K. Rohan, S. Wassermann,  
N. E. Charriere, C. B. Anderson, and D. E. Stevenson

Alaska Fisheries Science Center  
National Marine Fisheries Service  
National Oceanic and Atmospheric Administration  
7600 Sand Point Way NE  
Seattle, WA 98115

**U.S. DEPARTMENT OF COMMERCE**

National Oceanic and Atmospheric Administration  
National Marine Fisheries Service  
Alaska Fisheries Science Center

NOAA Technical Memorandum NMFS-TM-AFSC-499

June 2025



## Abstract

In 2024, the Groundfish and Shellfish Assessment Programs in the Resource Assessment and Conservation Engineering Division of the National Marine Fisheries Service's Alaska Fisheries Science Center conducted the 42nd eastern Bering Sea groundfish and shellfish bottom trawl survey. The survey covers the eastern Bering Sea continental shelf (bottom depths between 20 and 200 m) from the Alaska coastline to the U.S.-Russia Maritime Boundary between the Alaska Peninsula and roughly 62°N. Survey sampling was conducted aboard two chartered, commercial stern trawlers, the 43.9 m FV *Alaska Knight* and 49.4 m FV *Northwest Explorer*, across 350 stations in the eastern Bering Sea. The 2024 mean bottom and surface temperatures in the eastern Bering Sea, 2.5°C and 5.8°C, were near the time-series averages of 2.5°C and 6.7°C, respectively. The estimated total biomass was 15 million metric tons (t) in 2024, an increase from 11.8 million t in 2023, and greater than the five-year average of 13.7 million t. A total of 92 fish taxa and 215 invertebrate taxa were identified. This report compares the distribution and relative abundance of 37 fish species and two invertebrate taxa with side-by-side maps from the 2024 eastern Bering Sea shelf bottom trawl survey and past surveys. Changes in the abundance of some species between the 2023 and 2024 surveys may represent distributional shifts, as species capable of long-distance movement may be more abundant in northern latitudes during recent warm years. These same species may have shifted south again as the seasonal sea ice cover during the winters of 2020-2023 became more extensive. This annual variation underscores the need to continue regular survey monitoring of Bering Sea fish and invertebrate populations, as well as their responses to a changing climate.



## Contents

|                                                                                                   |     |
|---------------------------------------------------------------------------------------------------|-----|
| Abstract .....                                                                                    | iii |
| Contents .....                                                                                    | v   |
| Introduction.....                                                                                 | 1   |
| History of Bering Sea Shelf Bottom Trawl Surveys .....                                            | 2   |
| Methods.....                                                                                      | 6   |
| Survey Area and Sampling Design.....                                                              | 6   |
| Survey Vessels and Sampling Gear.....                                                             | 6   |
| Sampling Logistics and Stratification Scheme.....                                                 | 8   |
| Catch Sampling Procedures.....                                                                    | 9   |
| Catch Data Analysis .....                                                                         | 11  |
| Scientific Collections and Research Projects .....                                                | 11  |
| Survey Modernization.....                                                                         | 13  |
| Evaluating effects of reduced tow duration on catchability and selectivity .....                  | 13  |
| Combining fisheries-independent surveys of the eastern Bering Sea shelf and slope.....            | 13  |
| Results and Discussion .....                                                                      | 15  |
| Ocean Temperatures and the Cold Pool .....                                                        | 15  |
| Survey Data and Specimen Collections .....                                                        | 22  |
| Species Composition.....                                                                          | 23  |
| Biomass, Abundance, and Catch per Unit Effort .....                                               | 23  |
| Summary of Results for Selected Fish and Invertebrate Fauna of the Eastern Bering Sea Shelf ..... | 28  |
| Alaska Plaice ( <i>Pleuronectes quadrituberculatus</i> ).....                                     | 29  |
| Alaska Skate ( <i>Arctoraja parmifera</i> ) .....                                                 | 33  |
| Arctic Cod ( <i>Boreogadus saida</i> ) .....                                                      | 37  |
| Arrowtooth Flounder ( <i>Atheresthes stomias</i> ).....                                           | 40  |
| Bering Flounder ( <i>Hippoglossoides robustus</i> ) .....                                         | 45  |
| Bering Skate ( <i>Bathyraja interrupta</i> ).....                                                 | 50  |
| Bigmouth Sculpin ( <i>Hemitripterus bolini</i> ) .....                                            | 54  |

|                                                                               |     |
|-------------------------------------------------------------------------------|-----|
| Butterfly Sculpin ( <i>Hemilepidotus papilio</i> ).....                       | 57  |
| Eulachon ( <i>Thaleichthys pacificus</i> ).....                               | 60  |
| Flathead Sole ( <i>Hippoglossoides elassodon</i> ).....                       | 63  |
| Great Sculpin ( <i>Myoxocephalus polyacanthocephalus</i> ) .....              | 68  |
| Greenland Turbot ( <i>Reinhardtius hippoglossoides</i> ).....                 | 71  |
| Kamchatka Flounder ( <i>Atheresthes evermanni</i> ).....                      | 75  |
| Longhead Dab ( <i>Myzopsetta proboscidea</i> ) .....                          | 80  |
| Marbled Eelpout ( <i>Lycodes ravidens</i> ) .....                             | 83  |
| Neptune Whelks ( <i>Neptunea heros</i> and <i>Neptunea ventricosa</i> ) ..... | 85  |
| Northern Rock Sole ( <i>Lepidopsetta polyxystra</i> ).....                    | 87  |
| Pacific Capelin ( <i>Mallotus villosus</i> ).....                             | 92  |
| Pacific Cod ( <i>Gadus macrocephalus</i> ).....                               | 95  |
| Pacific Halibut ( <i>Hippoglossus stenolepis</i> ) .....                      | 100 |
| Pacific Herring ( <i>Clupea pallasii</i> ) .....                              | 105 |
| Pacific Ocean Perch ( <i>Sebastes alutus</i> ).....                           | 108 |
| Plain Sculpin ( <i>Myoxocephalus jaok</i> ) .....                             | 111 |
| Purple-Orange Sea Star ( <i>Asterias amurensis</i> ).....                     | 114 |
| Rex Sole ( <i>Glyptocephalus zachirus</i> ).....                              | 117 |
| Saffron Cod ( <i>Eleginops gracilis</i> ).....                                | 120 |
| Sakhalin Sole ( <i>Limanda sakhalinensis</i> ) .....                          | 123 |
| Shortfin Eelpout ( <i>Lycodes brevipes</i> ) .....                            | 126 |
| Shorthorn Sculpin ( <i>Myoxocephalus scorpius</i> ).....                      | 128 |
| Snailfishes (Liparidae) .....                                                 | 131 |
| Starry Flounder ( <i>Platichthys stellatus</i> ) .....                        | 132 |
| Sturgeon Poacher ( <i>Podothecus accipenserinus</i> ) .....                   | 135 |
| Walleye Pollock ( <i>Gadus chalcogrammus</i> ).....                           | 137 |
| Wattled Eelpout ( <i>Lycodes palearis</i> ) .....                             | 142 |
| Yellow Irish Lord ( <i>Hemilepidotus jordani</i> ).....                       | 144 |

|                                                                                                                                    |     |
|------------------------------------------------------------------------------------------------------------------------------------|-----|
| Yellowfin Sole ( <i>Limanda aspera</i> ) .....                                                                                     | 147 |
| Data Sources .....                                                                                                                 | 152 |
| Acknowledgments .....                                                                                                              | 155 |
| Citations .....                                                                                                                    | 157 |
| Appendix A: List of taxa encountered in the eastern Bering Sea shelf .....                                                         | 165 |
| Appendix B: List of population estimates by sex and size group for principal fish species<br>in the eastern Bering Sea shelf ..... | 175 |
| Appendix C: Data Changes .....                                                                                                     | 201 |
| Updates to individual historical records in data tables .....                                                                      | 201 |
| Species time-series cutoffs .....                                                                                                  | 202 |
| Species identification aggregations .....                                                                                          | 202 |
| Species taxonomy .....                                                                                                             | 203 |



## Introduction

In 2024, the Resource Assessment and Conservation Engineering (RACE) Division of the National Marine Fisheries Service's (NMFS') Alaska Fisheries Science Center (AFSC) conducted the 42nd eastern Bering Sea groundfish and shellfish bottom trawl survey from June to August 2024. The survey collects information about fish and invertebrate populations and environmental conditions to support fisheries stock assessment and management. The eastern Bering Sea shelf survey has occurred annually (except in 2020 due to the COVID-19 pandemic) since 1982 and is the longest-running, standardized time series of fish and invertebrate data in the region (Conner and Lauth 2017).

The data collected during the survey are vital for managing fisheries resources and ecosystem monitoring. Fishery-independent abundance estimates, in addition to other biological and oceanographic information collected, are used by the AFSC, the North Pacific Fishery Management Council (NPFMC), and the Alaska Department of Fish and Game (ADF&G). These organizations use the survey data products to manage groundfish and crab stocks and conduct ecosystem forecast modeling, which are requirements of the Bering Sea and Aleutian Island (BSAI) Fishery Management Plan (FMP) established under the Magnuson-Stevens Fishery Conservation and Management Act<sup>1</sup>.

The most recent modeling results on the status of these commercial groundfish<sup>2</sup> and crab<sup>3</sup> stocks are reported in the annual Stock Assessment and Fishery Evaluation report prepared by the NPFMC. Detailed information on bottom trawl survey results for commercial crab species, including Tanner crab (*Chionoecetes bairdi*), snow crab (*Chionoecetes opilio*), red king crab (*Paralithodes camtschaticus*), blue king crab (*Paralithodes platypus*), and hair crab (*Erimacrus isenbeckii*) are discussed and analyzed separately in the AFSC Shellfish Assessment Program's annual data report (Zacher et al. 2024). Commercial crab stocks are managed by the ADF&G with federal oversight by NMFS.

This Technical Memorandum compares results from the 2024 survey with results from the prior year's survey in the same region (Markowitz et al. 2024). Technical Memoranda reporting past survey data can be found on the NOAA<sup>4</sup> and AFSC websites<sup>5</sup>.

---

<sup>1</sup> <https://www.fisheries.noaa.gov/topic/laws-policies>

<sup>2</sup> <https://www.fisheries.noaa.gov/alaska/population-assessments/north-pacific-groundfish-stock-assessments-and-fishery-evaluation>

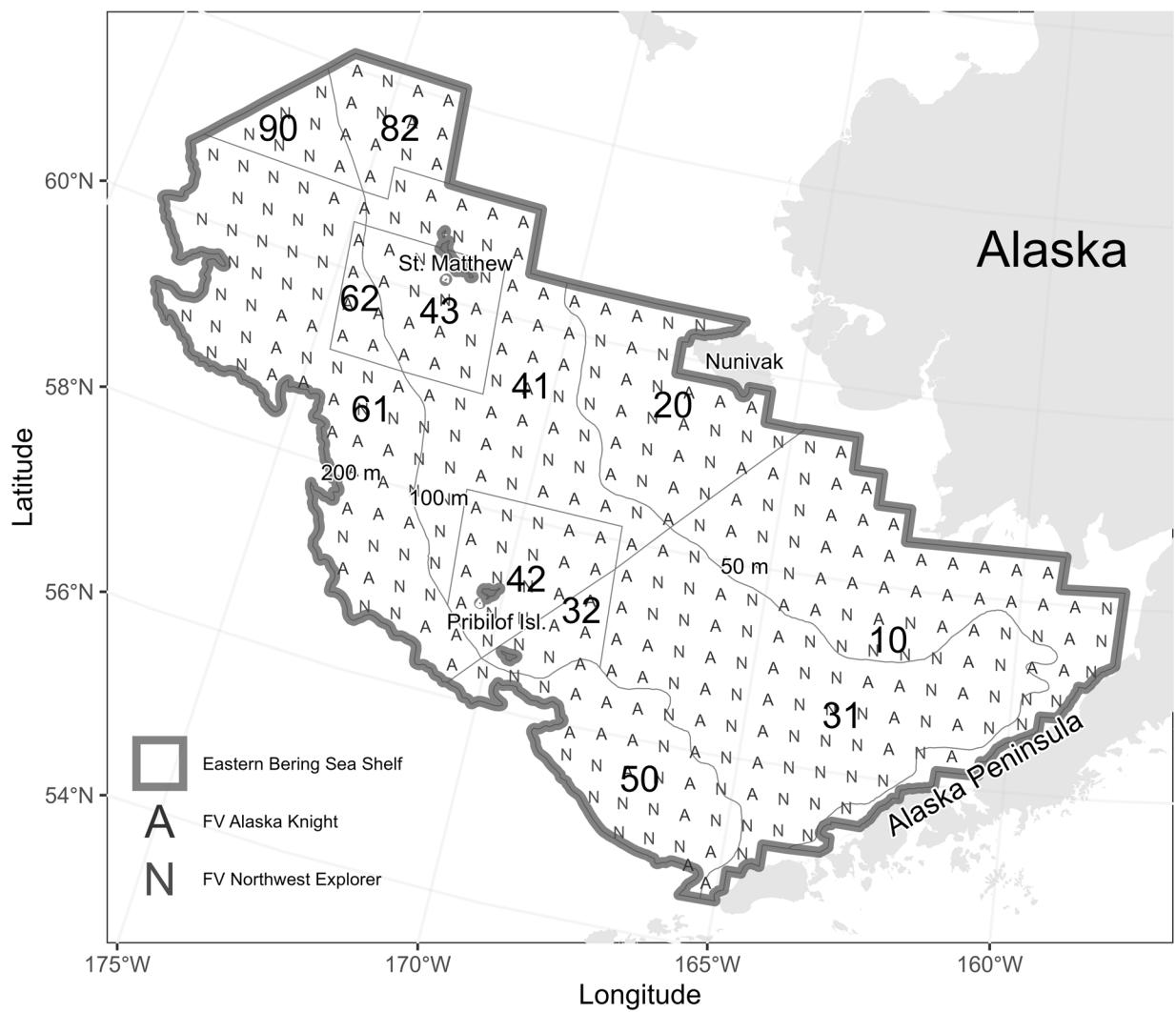
<sup>3</sup> <https://www.npfmc.org/about-the-council/plan-teams/bsai-crab-planning-team/> and <https://www.npfmc.org/library/safe-reports/>

<sup>4</sup> <https://repository.library.noaa.gov/>

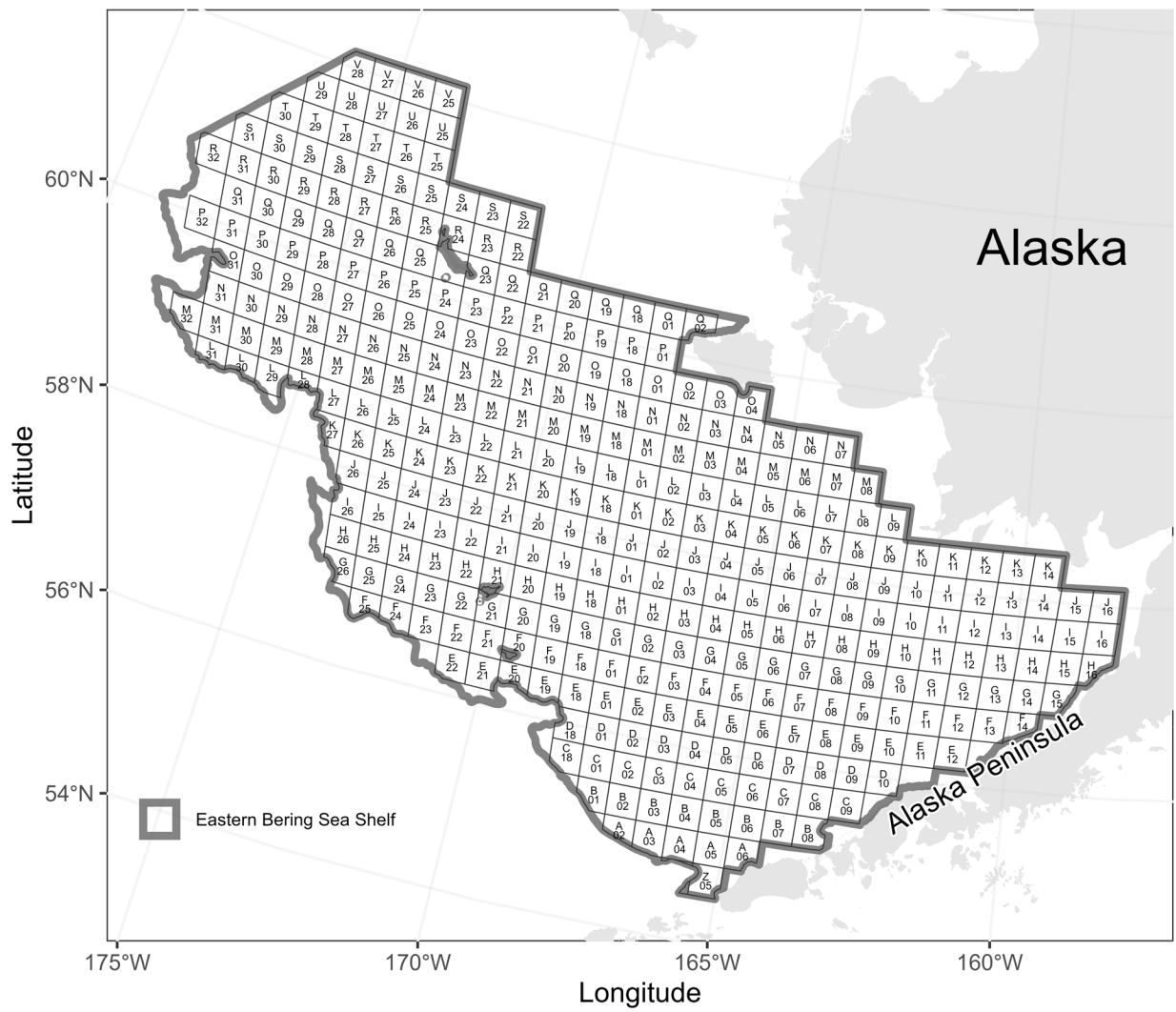
<sup>5</sup> <https://www.fisheries.noaa.gov/resource/publication-database/alaska-fisheries-science-center-technical-memorandums> and <https://www.fisheries.noaa.gov/alaska/science-data/groundfish-assessment-program-bottom-trawl-surveys>

## History of Bering Sea Shelf Bottom Trawl Surveys

Federal government agencies have conducted bottom trawl surveys of the eastern Bering Sea continental shelf since the 1940s. These early surveys were often exploratory efforts to locate commercial fisheries resources (Zimmermann et al. 2009) and led to the development of a red king crab fishery. Bottom trawl surveys by the United States continued into the 1970s, with private industry involvement, to study the biology, distribution, abundance, and best fishing practices for red king crab (Zimmermann et al. 2009). The first large-scale survey of the Bering Sea shelf was conducted in 1975 under contract from the U.S. Bureau of Land Management. The purpose was to collect baseline data for assessing the potential impact of growth in the offshore oil industry on Bering Sea groundfish and crab fishery resources (Pereyra et al. 1976). During the 1975 baseline survey, sampling was conducted across the shelf between the 20 m and 200 m isobaths from the Alaska Peninsula north to approximately 62°N.


In subsequent years, the areal coverage of the annual survey was reduced. However, in 1979, a comprehensive survey of the Bering Sea shelf was undertaken in cooperation with the Japan Fisheries Agency (Bakkala and Wakabayashi 1985). That survey encompassed the entire region sampled in the 1975 baseline study and included the upper continental slope waters between St. Matthew and St. Lawrence islands.

Following the 1979 survey, annual bottom trawl surveys have resampled the areas and stations established during the 1975 survey, with slight modifications in sampling design in some years. Beginning in 1979 and continuing triennially until 1991, the survey was extended to include the continental slope and the area between St. Matthew and St. Lawrence islands. After a hiatus from 1992 to 1999, due to lack of funding, the Bering Sea slope survey resumed in 2002 as an independent, standardized bottom trawl survey series that was conducted on a quasi-biennial basis, dependent on funding, until 2016 (Hoff 2016, Hoff and Britt 2011, Stauffer 2004).


The current eastern Bering Sea shelf survey design has been used since 1982. This design standardized survey gear (Stauffer 2004), collection methods, and temporal stationarity, in addition to implementing a systematic survey grid design that includes 330 regularly spaced (37.04 × 37.04 kilometer; 20 × 20 nautical mile, nmi) stations (Figs. 1 and 2; Bakkala et al. (1985)). A total of 26 additional “corner stations” were established near both the Pribilof Islands in 1981 and St. Matthew Island in 1983. These stations were placed at the corners of four standard station grids to better sample dwindling blue king crab populations in the area.

Two major changes to the total station count have occurred since the survey design was established in 1982. First, beginning in 1987, 20 regularly spaced stations that comprise Strata 82 and 90 (Fig. 1) were added to monitor more northerly distributions of snow crab and walleye pollock, bringing the total eastern Bering Sea station count to 376. Annual sampling of the northwestern strata has continued since 1987 because the region encompasses major portions of the commercially exploited Bering Sea groundfish and crab populations that require management actions under the Bering Sea-Aleutian Islands Fisheries Management Plan (BSAI FMP). Second, in the interest of maximizing the efficient use of survey resources, the 26 corner stations established near the Pribilof Islands and St. Matthew Island were discontinued after 2023 following an analysis by DeFilippo et al. (2023). The analysis indicated that the removal of these corner stations in high-density sampling areas would lead to negligible impacts on the precision and accuracy of groundfish and crab biomass estimates. The eastern Bering Sea shelf survey area now consists of 350 total stations and no additional high-density sampling areas.

The northern Bering Sea shelf survey was initiated by the AFSC as part of the Loss of Sea Ice (LOSI) Research Plan to monitor long-term climate trends in the transition zone between the temperate waters of the eastern Bering Sea and the Arctic waters of the Chukchi Sea, where climate change can have a significant effect on physical and biological ecosystem processes (Hollowed et al. 2007; Hunt et al. 2011; Stabeno, Kachel, et al. 2012; Stevenson and Lauth 2012, 2019). Although LOSI funding for the northern Bering Sea extension was discontinued after the 2010 northern Bering Sea shelf survey, the survey resumed biennially in 2017 to monitor the effects of changing ocean conditions on fish and crab distributions (Sigler et al. 2015). The northern Bering Sea shelf survey consists of 144 bottom trawl stations extending the eastern Bering Sea shelf survey grid northward to the Bering Strait and the U.S.-Russia Maritime Boundary, and includes all of Norton Sound and the Chirikov Basin (Fig. 2). The standard northern Bering Sea shelf survey was conducted in 2010, 2017, 2019, 2021, 2022, and 2023 (Lauth 2011; Lauth et al. 2019; Markowitz et al. 2022; Markowitz et al. 2022a, 2022b; Markowitz et al. 2023, 2024). In 2018, a rapid-response survey was conducted in the northern Bering Sea using a different sampling design than the standard northern Bering Sea shelf survey. Therefore, the survey results from the 2018 northern Bering Sea rapid-response survey are not directly comparable to the results from other standard northern Bering Sea shelf surveys. In 2020, no Bering Sea shelf surveys were conducted due to the COVID-19 pandemic.



**Figure 1.**-- Stratification scheme used for data analysis of the 2024 eastern Bering Sea shelf survey. The map also depicts the stations sampled by the FV *Alaska Knight* (A) and FV *Northwest Explorer* (N).

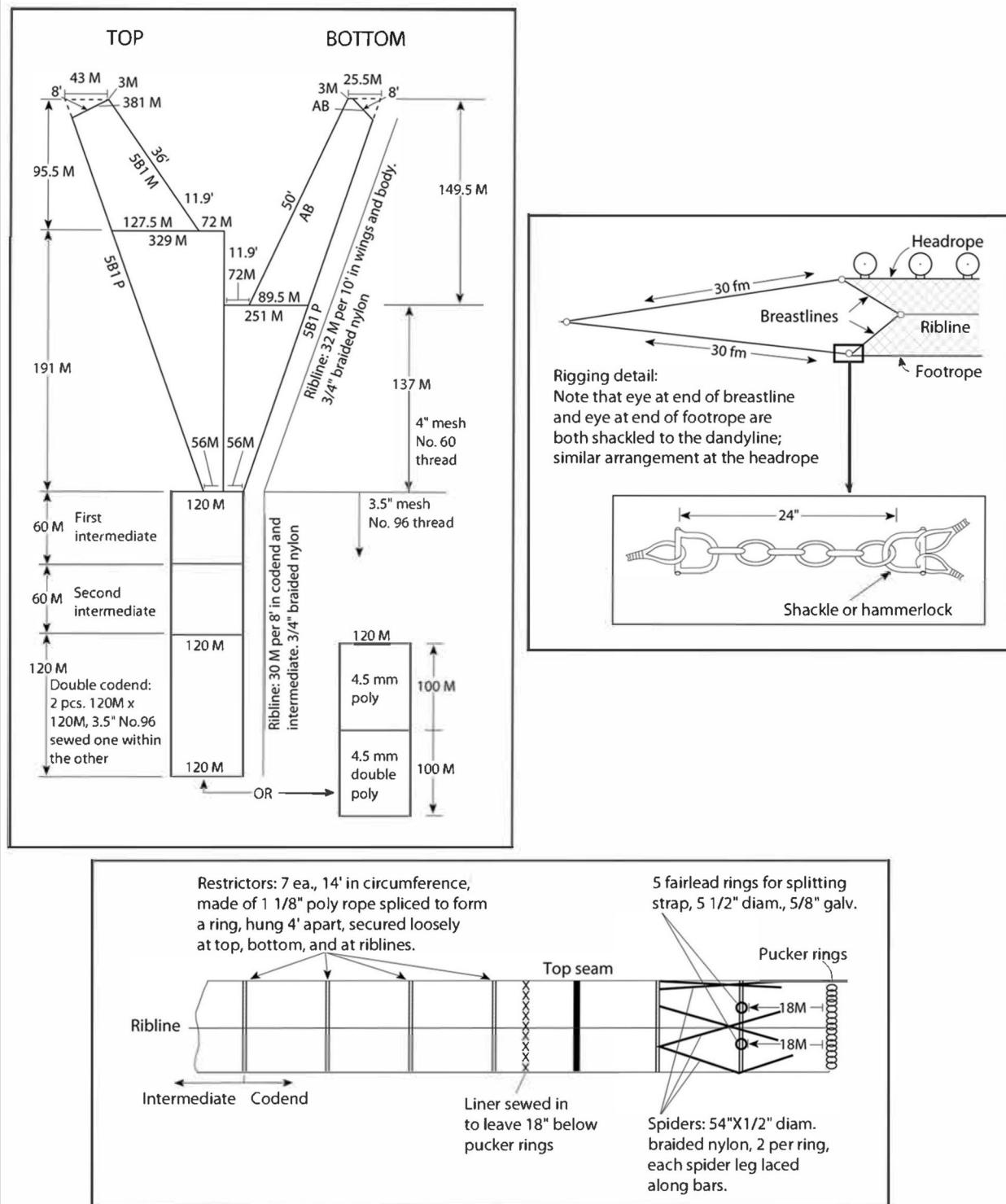


**Figure 2.** -- Sampling grid and station identifiers for the 2024 eastern Bering Sea shelf survey.

## Methods

### Survey Area and Sampling Design

The standardized eastern Bering Sea shelf survey consists of a systematic design with 350 fixed sampling stations arranged on a regularly spaced  $37.04 \times 37.04$  km grid ( $20 \times 20$  nmi; Fig. 2). In 2024, following analysis by DeFilippo et al. (2023), the 26 previously sampled ‘corner stations’ were removed from the survey grid (see [History of Bering Sea Shelf Bottom Trawl Surveys](#) section). The northern Bering Sea shelf survey was not conducted in 2024.


### Survey Vessels and Sampling Gear

The 2024 eastern Bering Sea shelf survey was conducted aboard the chartered, commercial stern-trawlers FV *Alaska Knight* and FV *Northwest Explorer* (Fig. 3). Both vessels are house-forward trawlers with stern ramps. The overall length of the FV *Alaska Knight* is 43.9 m (144 ft) and the FV *Northwest Explorer* is 49.4 m (162 ft). All fishing operations were conducted in compliance with national and regional protocols detailed in Stauffer (2004). Trawl sampling was conducted using 83-112 eastern otter trawls, each with a 25.3 m (83 ft) headrope and 34.1 m (112 ft) footrope (Fig. 4). The net was attached to tail chains with 54.9 m (180 ft or 30 fm) paired dandylines. Each lower dandyline had a 0.61 m (2 ft) chain extension connected to the lower wing edge to improve bottom tending. Steel “V” doors measuring  $1.8 \times 2.7$  m ( $6 \times 9$  ft) and weighing 816 kg (1,800 pounds) each were used for spreading the net opening while the trawl was fishing on the seafloor.



**Figure 3.** -- Fishing vessels FV *Alaska Knight* (left) and FV *Northwest Explorer* (right) contracted to conduct the 2024 eastern Bering Sea shelf survey.

83/112 EASTERN



**Figure 4.** -- Schematic diagram of the 83-112 eastern otter trawl gear used during the 2024 eastern Bering Sea shelf survey.

The Marport Deep Sea Technologies Inc. net mensuration system was used to record net spread and net height. Net spread was measured as the horizontal distance between two sensors attached at wing tips immediately forward of the junction of the upper breastline and the dandyline. Net height was measured from the headrope to the seafloor. Mean net spread values for estimating area swept per tow were calculated according to methods described by Lauth and Kotwicki (2014). A customized Onset HOBO Pendant G Data Logger (accelerometer) in custom housing was attached to the center of the footrope and used as a bottom contact sensor in order to determine tow duration based on footrope contact with the seafloor.

Temperature and depth profiles were recorded using a Sea-Bird SBE-39 temperature-depth recorder (Sea-Bird Electronics Inc., Bellevue, WA) attached to the headrope of the trawl. Observations were made at 3-second intervals at each station. Average bottom depth was calculated by adding the average net height to the average depth of the headrope while the net was in contact with the seafloor.

The net mensuration system failed to record data for 11 tows on the FV *Alaska Knight* and 30 tows on the FV *Northwest Explorer*. To estimate missing net width values, the *mgcv* R package (Wood 2004) was used to relate mean net width with the inverse scope (m) and mean net height (m) from valid tows following the relationship investigated by Rose and Walters (1990), where  $w$  is the net width (m),  $h$  is the net height (m),  $s$  is the scope, and  $\epsilon$  represents the modeled error

$$w \sim s^{-1} + h + \frac{h}{s} + \epsilon$$

$$\epsilon \sim N(0, \sigma^2).$$

## Sampling Logistics and Stratification Scheme

Scientists boarded the chartered vessels in Dutch Harbor, Alaska, and transited to eastern Bristol Bay to begin sampling. From Bristol Bay, the survey proceeded westward, completing north-south columns of grid cells to the shelf edge (Fig. 1). The east-to-west survey progression is based on an understanding of historical trends in fish movement and is intended to ensure the survey moves in the opposite direction of the seasonal on-shelf (eastward) migration patterns typical of yellowfin sole and other species. This strategy reduces the likelihood of encountering a portion of these populations multiple times (Nichol et al. 2019, Smith and Bakkala 1982). Both vessels started sampling on June 2, 2024. Sampling ended on August 5, 2024 for the FV *Northwest Explorer* and on July 30, 2024 for the FV *Alaska Knight*.

The survey footprint covered bathymetric depths ranging from 20 m to 200 m. For design-based index catch analysis, this footprint was separated into 12 strata by the 50 m and 100 m isobaths and a biogeographic boundary line running from the southwest to the northeast (Fig. 1; Halliday and Sassano (1988)). The stratum boundaries correspond with different oceanographic domains and biological communities (Coachman 1986). This stratification scheme reflects some differences observed in Bering Sea groundfish distributions across the oceanographic domains and was designed to reduce the variances of population and biomass estimates (Bakkala 1993). Overall sampling density across the eastern Bering Sea shelf was one station per 1,409 km<sup>2</sup>, and within-stratum sampling density ranged from one station per 1,077 km<sup>2</sup> (stratum 62) to one per 1,769 km<sup>2</sup> (stratum 32; Table 1). For some analyses (e.g., abundance-at-length), strata were combined by depth-region, resulting in eight subareas: 10, 20, 30 (31+32), 40 (41+42+43), 50, 60 (61+62), 82, and 90 (Fig. 1; Table 1).

**Table 1.** -- Stratum areas and sampling densities used during the 2024 eastern Bering Sea shelf survey. Stratum area calculations were updated in 2022.

| Stratum                         | Representative area (km <sup>2</sup> ) | Stations in stratum | Stations successfully sampled | Sampling density (km <sup>2</sup> /stations successfully sampled) |
|---------------------------------|----------------------------------------|---------------------|-------------------------------|-------------------------------------------------------------------|
| <b>Eastern Bering Sea Shelf</b> |                                        |                     |                               |                                                                   |
| Inner Shelf (0-50 m)            | 10                                     | 78,706              | 58                            | 1,357                                                             |
|                                 | 20                                     | 41,193              | 31                            | 1,329                                                             |
| Middle Shelf (51-100 m)         | 31                                     | 94,978              | 69                            | 1,376                                                             |
|                                 | 32                                     | 8,847               | 5                             | 1,769                                                             |
|                                 | 41                                     | 62,310              | 44                            | 1,416                                                             |
|                                 | 42                                     | 24,122              | 18                            | 1,340                                                             |
|                                 | 43                                     | 21,064              | 13                            | 1,620                                                             |
|                                 | 82                                     | 17,954              | 12                            | 1,496                                                             |
| Outer Shelf (101-200 m)         | 50                                     | 38,039              | 26                            | 1,463                                                             |
|                                 | 61                                     | 87,777              | 60                            | 1,463                                                             |
|                                 | 62                                     | 6,462               | 6                             | 1,077                                                             |
|                                 | 90                                     | 11,539              | 8                             | 1,442                                                             |
| <b>Total</b>                    | <b>492,990</b>                         | <b>350</b>          | <b>350</b>                    | <b>1,409</b>                                                      |

## Catch Sampling Procedures

Standard catch sampling procedures used in these Bering Sea shelf surveys are described in detail by Wakabayashi et al. (1985) and Stauffer (2004). In summary, samples were collected by trawling near the center of each grid square for a target fishing time of 30 minutes at a speed of 1.54 m/sec (3 knots). If the center of the grid cell was not considered trawlable due to obstructions visible on the depth sounder or a known history of obstructions, the nearest trawlable site within the same grid square was used. Hauls that resulted in significant gear damage contained debris (e.g., derelict crab pots) or had visible changes in net mensuration data during the haul were redeployed to obtain a successful sample.

Catches estimated to be less than approximately 1,000 kg were fully sorted and enumerated, while larger catches were weighed in aggregate or volumetrically measured and subsampled before sorting. The goal of subsampling is to obtain a representative sample, which requires some variation in catch processing methods among hauls. After sorting subsampled catches, individual species present in low numbers were weighed and counted in aggregate, while species present in high numbers were weighed in aggregate, and further subsampled to obtain counts. These secondary subsample counts were extrapolated to the subsample weight for the species. All subsample weights and numbers were then expanded proportionally to the total catch. Fish and invertebrate species were sorted and identified to the lowest reliable taxonomic level.

All commercial crab species were typically sorted from the entire catch and weighed. Other select species, including Pacific halibut (*Hippoglossus stenolepis*), Greenland turbot (*Reinhardtius hippoglossoides*), rockfish (*Sebastes* spp.), Atka mackerel (*Pleurogrammus monopterygius*), prawnfish (*Zaprora silenus*), Bering wolffish (*Anarhichas orientalis*), Pacific cod (*Gadus macrocephalus*), large skates, some sculpins, sharks, and any other large, rare species that were not represented in the subsample, were often completely sorted from the catch and weighed.

For all hauls, subsampling for length measurements was based on the fish species size range, targeting 100 specimens collected per species. For each fish in a length subsample, sex was determined and then the length (generally fork or total, depending on the species) was measured to the nearest 1.0 cm. For Pacific halibut on the FV *Northwest Explorer*, the first 10 fish were retained for biological sampling and all others were measured to fork length upon capture, then immediately released in an effort to reduce mortality. Pacific halibut weights were estimated using an International Pacific Halibut Commission (IPHC) length-weight regression ([Webster and Stewart 2023](#)).

Sagittal otoliths were collected from nine fish species (Table 2). Otolith samples were collected following a random-by-haul sampling method. Otoliths were preserved in a glycerol-thymol solution for age determination by the Age and Growth Program of the AFSC's Resource Ecology and Fisheries Management (REFM) Division<sup>6</sup>. Weight and length were collected for each fish from which otoliths were taken. For walleye pollock, age structure sampling effort was further divided into low-density and high-density regions based on historical population densities and an isobath of approximately 70 m.

Stomachs were collected from nine fish species and preserved in 10% formalin for later analysis by laboratory diet analysis the Food Habits Lab of the AFSC's REFM Division<sup>7</sup> (Table 3). Arrowtooth flounder and Kamchatka flounder (*Atheresthes* spp.) stomachs were collected together because they occupy a similar trophic niche in the Bering Sea ([Yang and Livingston 1986](#)).

**Table 2.** -- Otolith collection types and target counts during the 2024 eastern Bering Sea shelf survey.

| Common name           | Target collection number per haul                                                                                                                                                          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>random-by-haul</b> |                                                                                                                                                                                            |
| Arrowtooth flounder   | 3 individuals. Collect none when <10.                                                                                                                                                      |
| Flathead sole         | 3 individuals. Collect none when <10.                                                                                                                                                      |
| Greenland turbot      | 8 adults and 1 juvenile. Collect all when <8. Collect juveniles only when the juvenile code is used for lengthing.                                                                         |
| Kamchatka flounder    | 8 individuals. Collect none when <10.                                                                                                                                                      |
| Northern rock sole    | 4 individuals. Collect none when <10.                                                                                                                                                      |
| Pacific halibut       | 10 individuals on the FV <i>Northwest Explorer</i> . Collect all when <10.                                                                                                                 |
| Pacific cod           | 4 adults and 1 juvenile. Collect all when <4. Collect juveniles only when the juvenile code is used for lengthing.                                                                         |
| Walleye pollock       | 3 adults and 1 juvenile in low-density area, and 5 adults and 1 juvenile in high-density area. Collect none when <20. Collect juveniles only when the juvenile code is used for lengthing. |
| Yellowfin sole        | 3 individuals. Collect none when <10.                                                                                                                                                      |

<sup>6</sup> <https://www.fisheries.noaa.gov/alaska/science-data/age-and-growth-research-alaska>

<sup>7</sup> <https://www.fisheries.noaa.gov/alaska/science-data/resource-ecology-and-ecosystem-modeling>

**Table 3.** -- Stomach collection target size category bins (cm) used to collect each fish species during the 2024 eastern Bering Sea shelf survey.

| Common name                                | Target collection size categories per haul                        |
|--------------------------------------------|-------------------------------------------------------------------|
| Alaska skate                               | all sizes                                                         |
| Arrowtooth flounder                        | 1-29; 30-49; 50+ cm                                               |
| Arrowtooth flounder and Kamchatka flounder | 1-29; 30-49; 50+ cm                                               |
| Northern rock sole                         | all sizes                                                         |
| Pacific halibut                            | 1-49; 50-69; 70+ cm only collected on the <i>FV Alaska Knight</i> |
| Pacific cod                                | 1-29; 30-59; 60+ cm                                               |
| Sablefish                                  | 1-54; 55+ cm                                                      |
| Walleye pollock                            | 1-24; 25-39; 40-54; 55+ cm                                        |
| Yellowfin sole                             | all sizes                                                         |

## Catch Data Analysis

The standard sampling procedures are described in detail by Wakabayashi et al. (1985) and Stauffer (2004). Some species were grouped by family for catch data analysis because of their limited commercial value or an inability to identify to lower taxonomic level while in the field.

Mean catch per unit effort (CPUE) for each species was calculated in kilograms per square kilometer (kg/km<sup>2</sup>) and number of fish per square kilometer (no/km<sup>2</sup>) for each stratum (Alverson and Pereyra 1969, Lauth and Kotwicki 2014). Area swept (km<sup>2</sup>) was computed as the linear distance towed, multiplied by the mean net width (m; Alverson and Pereyra (1969); Lauth and Kotwicki (2014)). Mean CPUE was calculated for individual strata and summed proportionally for the overall survey area. Design-based biomass (t) and population (count) estimates were calculated for each stratum by multiplying the stratum mean CPUE by the stratum area. Stratum estimates were then summed for total survey area estimates.

For size composition estimates, the proportion of fish at each centimeter length interval (from subsamples at each station), weighted by CPUE (no/km<sup>2</sup>), was expanded to the stratum population. Stratum abundance-at-length estimates were summed for the total estimated size composition for the survey area.

Age estimates were obtained from otolith samples by the AFSC's Age and Growth Program for all fish except for Pacific halibut, which were processed by the IPHC. The most current information about age, growth, and population analyses are presented in the 2024 NPFMC Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea/Aleutian Islands Region<sup>8</sup>.

## Scientific Collections and Research Projects

Thirty-two scientific and research projects were conducted on the 2024 eastern Bering Sea shelf survey. Projects were selected through an annual request for proposals in January 2024 (Table 4). Data for these projects were collected at sea and disseminated to the requesting principal investigator(s). For details about a project or collection, please contact the principal investigator(s) identified in Table 4.

<sup>8</sup> <https://www.fisheries.noaa.gov/alaska/population-assessments/north-pacific-groundfish-stock-assessments-and-fishery-evaluation>

**Table 4.** -- Non-core scientific collections and research projects undertaken during the 2024 eastern Bering Sea shelf survey, sorted by principal investigator and agency.

| Project title                                                                                                              | Principal investigator | Agency <sup>1</sup> |
|----------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|
| Population genetics and opportunistic age structure sampling of Pacific sleeper shark and salmon shark                     | Cindy Tribuzio         | AFSC-ABL            |
| Characterization of isotopic niche space of two co-occurring species, Pacific cod and walleye pollock                      | Matthew Rogers         | AFSC-ABL            |
| Pollock collection for FMA observer program                                                                                | Adriana Myers          | AFSC-FMA            |
| Yellowfin sole collection for FMA observer program                                                                         | Adriana Myers          | AFSC-FMA            |
| Crab training specimen collection                                                                                          | Gregory Stephens       | AFSC-FMA            |
| Blood and mucus collection for stress physiology research                                                                  | Bianca Prohaska        | AFSC-RACE           |
| Fat-meter fish condition index in walleye pollock and Pacific cod                                                          | Bianca Prohaska        | AFSC-RACE           |
| Juvenile yellowfin sole essential fish habitat                                                                             | Cynthia Yeung          | AFSC-RACE           |
| Juvenile snow crab live collections                                                                                        | Erin Fedewa            | AFSC-RACE           |
| Snow crab condition                                                                                                        | Erin Fedewa            | AFSC-RACE           |
| Bristol bay red king crab tagging                                                                                          | Leah Zacher            | AFSC-RACE           |
| Collection of prowfish in the Bering Sea and Aleutian Islands                                                              | Melanie Paquin         | AFSC-RACE           |
| Shrimp condition and lipid biomarkers as a metric of ecosystem variability and groundfish prey resources in the Bering Sea | Michelle Stowell       | AFSC-RACE           |
| Feasibility of collecting eDNA concurrently with the bottom trawl survey                                                   | Ned Laman              | AFSC-RACE           |
| Specimen collection for outreach events                                                                                    | Nicole Charriere       | AFSC-RACE           |
| Experimental calibration of reducing tow time from 30 to 15 minutes in Bering Sea shelf surveys.                           | Rebecca Haehn          | AFSC-RACE           |
| Observer collection                                                                                                        | Sarah Friedman         | AFSC-RACE           |
| Eastern Bering Sea slope test tows                                                                                         | Sean Rohan             | AFSC-RACE           |
| Observing fishing gear interactions using trawl cameras                                                                    | Sean Rohan             | AFSC-RACE           |
| Pacific cod satellite tagging                                                                                              | Susanne McDermott      | AFSC-RACE           |
| Visual maturity collection                                                                                                 | Susanne McDermott      | AFSC-RACE           |
| Live crab collection for ocean acidification                                                                               | W. Christopher Long    | AFSC-RACE           |
| National weather service (NWS) voluntary observing ship (VOS) meteorological data collection                               | Emily Markowitz        | AFSC-RACE & NWS-VOS |
| Arctic cod and saffron cod age and growth collection                                                                       | Esther Goldstein       | AFSC-REFM           |
| Evaluation of seasonal and ontogenetic movement in Pacific cod and walleye pollock                                         | Sara Schaal            | AFSC-REFM           |
| Spatial variation in body condition of juvenile Pacific cod in the eastern Bering Sea                                      | Steven Barbeaux        | AFSC-REFM           |
| IPHC sampling on the AFSC bottom trawl surveys                                                                             | Kayla Ualesi           | IPHC                |
| Collecting Pacific lamprey in Alaska waters during AFSC surveys                                                            | Laurie Weitkamp        | NWFSC               |
| NWFSC and UW vouchered specimen collection                                                                                 | Krista Nichols         | NWFSC & UW          |
| Crab for bycatch reduction project (pilot study)                                                                           | Noelle Yochum          | Trident Seafoods    |
| Assessing genetic diversity and population structure of sand lance in the North Pacific Basin                              | Drikus Kuyper          | UAF                 |
| Harmful algal bloom (HAB) toxins in Alaskan food webs                                                                      | Gay Sheffield          | UAF                 |

<sup>1</sup>AFSC-FMA - Alaska Fisheries Science Center's Fisheries Monitoring & Assessment Division; IPHC - International Pacific Halibut Commission; NWFSC - Northwest Fisheries Science Center; AFSC-RACE - Alaska Fisheries Science Center's Resource Assessment & Conservation Engineering Division; AFSC-REFM - Alaska Fisheries Science Center's Resource Ecology & Fisheries Management Division; UAF - University of Alaska Fairbanks; UW - University of Washington; AFSC-ABL - Alaska Fisheries Science Center's Auke Bay Laboratories; NWS-VOS - National Weather Service Voluntary Observing Ship Program

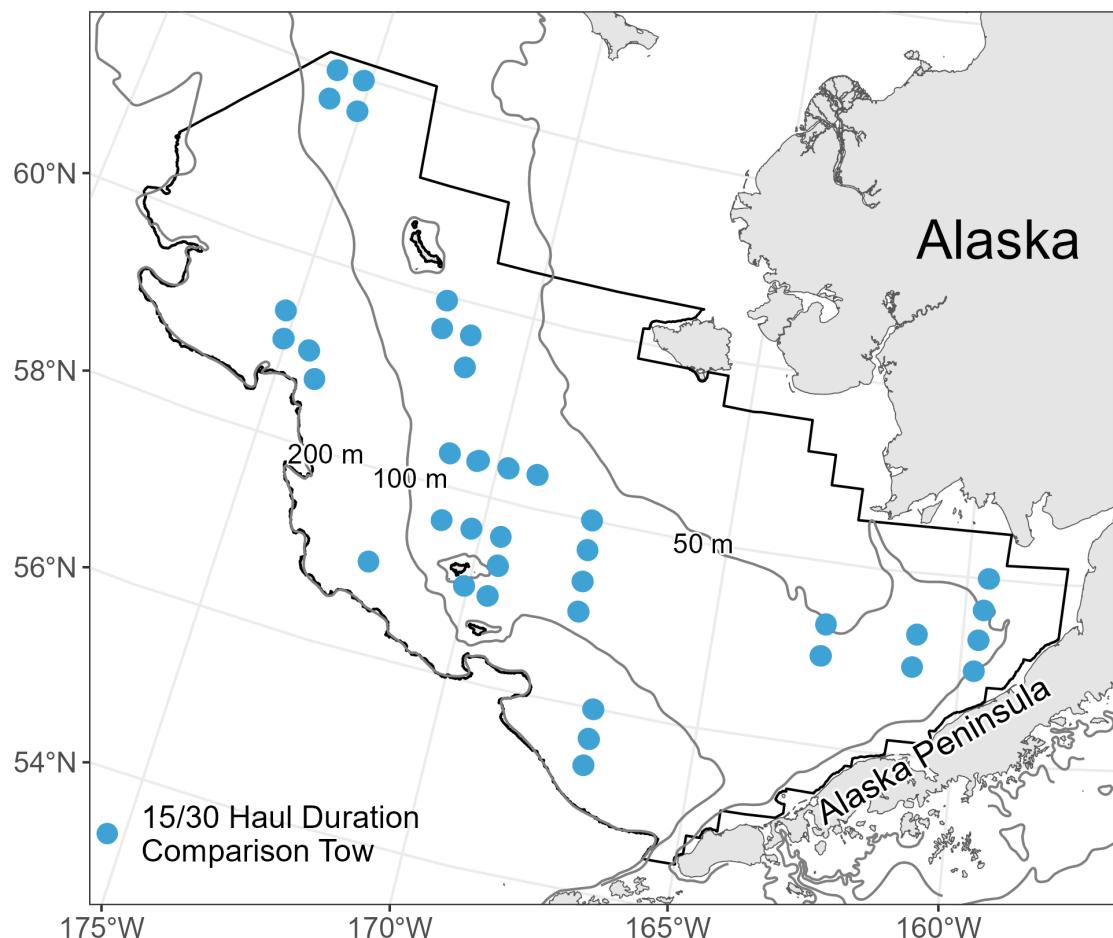
## Survey Modernization

Research is ongoing to support the transition of the eastern Bering Sea shelf survey to a more modern and comprehensive survey design. In conjunction with the survey, two trawling experiments were conducted in support of these modernization efforts. For the first experiment, vessels conducted side-by-side 30- and 15-minute tows with the standard survey gear (83-112 eastern otter trawl) to evaluate the effects of tow duration on catchability and selectivity. In the second experiment, vessels conducted side-by-side tows to compare the catchability and selectivity of trawl gear and protocols historically used on the eastern Bering Sea shelf and the eastern Bering Sea slope survey. The experiment also aimed to determine whether the shelf gear can be used to sample the upper continental slope from 200 to 400 m bottom depth. The objectives of these experiments and an overview of 2024 field sampling results are described below.

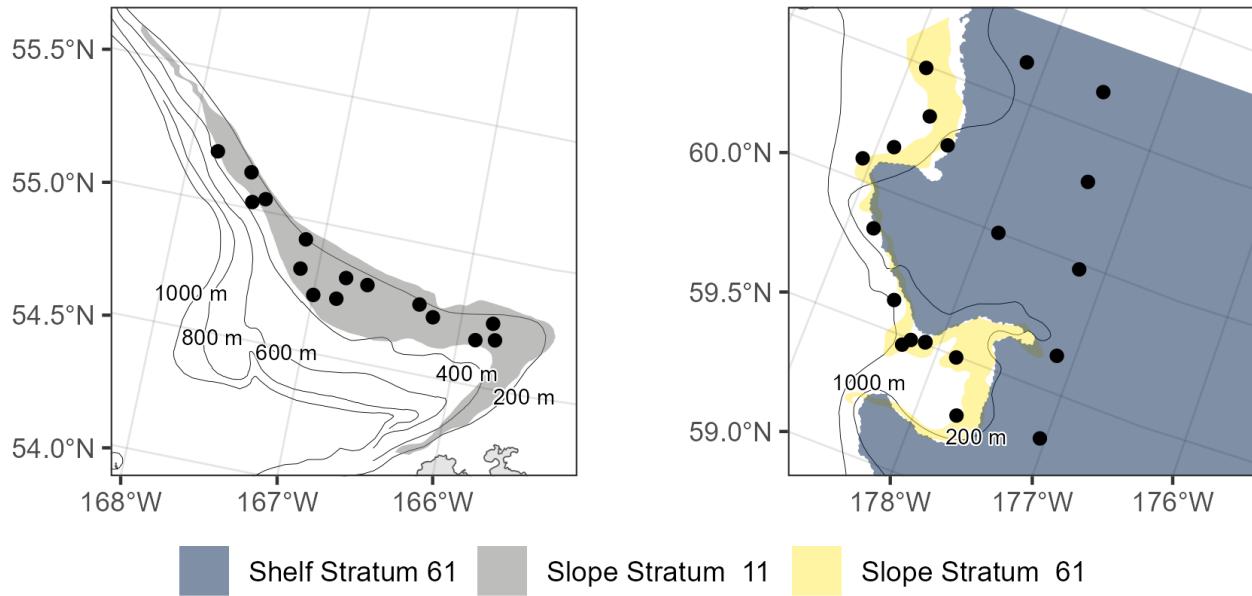
### Evaluating effects of reduced tow duration on catchability and selectivity

The AFSC Groundfish Assessment Program and Shellfish Assessment Program are planning to reduce the survey's standard tow duration from 30 minutes to 15 minutes, as recommended by a 2012 Center for Independent Experts (CIE) review of the survey (Hall 2012). Reducing tow duration will improve both at-sea operations and the data products generated from the survey. Benefits include reducing the proportion of large, subsampled catches, mitigating potential subsampling errors and biases, reducing ergonomic injuries to survey scientists and vessel crew caused by processing large catches, and increasing time that can be allocated to additional research projects that support stock assessment and management needs (e.g., life history studies, environmental monitoring).

In 2024, tow duration comparison samples were targeted in areas with high densities of red king crab, snow crab, and Tanner crab to expand crab sample sizes from tow-duration experiments conducted in 1995 (Goddard 1997) and 1998 (Somerton et al. 2002, Somerton and Otto 1999), and samples conducted during recent surveys in 2021, 2022, and 2023. Vessels conducted pairs of side-by-side tows in which one vessel towed with the net on the bottom for 30 minutes and the other for 15 minutes. During the tows, vessels were positioned as close together as safely possible (typically within 0.5 nmi), deployed their gear at the same time, and towed in the same direction. Tows were conducted and catches were processed according to standard survey protocols (Stauffer 2004).


The 2024 survey successfully completed 38 pairs of 15- and 30-minute tows (76 total hauls across both vessels) that will be used to evaluate the effects of tow duration on catchability and selectivity (Fig. 5). Data from the 2024 study will be combined with data from past tow duration experiments to evaluate whether there are differences in catch rates between 15- and 30-minute tows. Intercalibration factors (e.g., Miller (2013), Kotwicki et al. (2017), and Webster et al. (2020)) will be estimated for species that have differences in catchability or selectivity.

### Combining fisheries-independent surveys of the eastern Bering Sea shelf and slope


The eastern Bering Sea continental slope survey historically collected data used for stock assessment and management of stocks that inhabit the continental slope (e.g., arrowtooth flounder, Kamchatka flounder, and Greenland turbot). Intended as a biennial survey beginning in 2002, the survey has not been conducted since 2016 because of logistical challenges and a lack of available funding. The cancellation of the survey has led to gaps in monitoring of slope-dwelling species.

To fill the coverage gap on the slope, the future design of the eastern Bering Sea shelf survey may include sampling on the upper continental slope. Therefore, it is necessary to determine whether the shelf survey gear can be successfully deployed on the upper continental slope and develop an operating model that can be used to simulate and evaluate potential survey designs. The objectives of this project (NPRB Project #2213) are to evaluate whether the shelf survey gear can be used to sample the upper continental slope (200–400 m bottom depth), to obtain information about catchability and selectivity relationships between eastern Bering Sea shelf and slope gear, and to support the operating model needed to support the exploration of survey designs.

In 2024, the eastern Bering Sea shelf survey completed 35 pairs (70 total hauls across both vessels) of successful side-by-side comparison tows between the shelf (83-112 and 1,800 lb. 6' x 9' V doors) and the slope bottom trawl gear (Poly Nor'Eastern with mudsweep gear footrope and 2,200 lb. 6' x 9' V doors (Fig. 6). During the comparison tows, the FV *Alaska Knight* towed the Poly Nor'Eastern following eastern Bering Sea slope survey protocols (i.e., 2.5 knot target speed, trawl winches using autotrawl) and the FV *Northwest Explorer* towed the 83-112 following shelf survey protocol (3 knot target speed, trawl winches locked). Data from the 35 successful pairs of tows conducted in 2024 will supplement data from 5 pairs of successful tows conducted on the eastern Bering Sea slope in 2023 to yield a total sample size of 40 paired tows. Nearly all of the hauls (97.1%) attempted on the slope using the shelf gear were successful.



**Figure 5.** -- Locations of haul duration comparison tows in 2024. Each symbol denotes a pair of successful side-by-side 15-minute and 30-minute tows (n = 38).

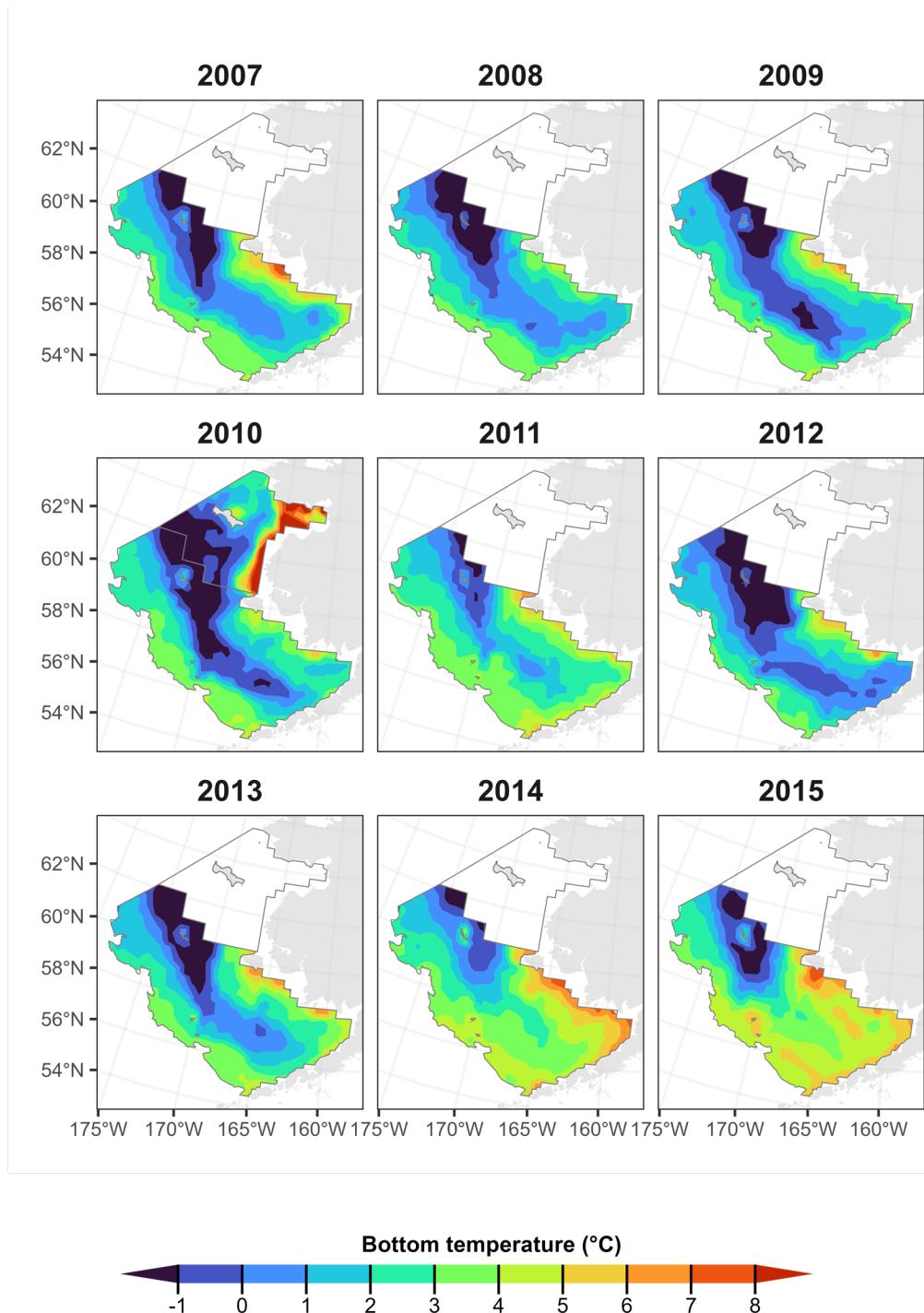


**Figure 6.** -- Locations of comparison tows between eastern Bering Sea shelf and eastern Bering Sea slope survey gears in 2024. Symbols denote a pair of successful side-by-side tows between the shelf survey gear (83-112 Eastern otter trawl deployed by the FV *Northwest Explorer*) and slope survey gear (Poly'noreastern with mudsweep footrope deployed by the FV *Alaska Knight*;  $n = 35$ ). Shading denotes survey strata targeted for sampling (eastern Bering Sea slope stratum 11, eastern Bering Sea slope stratum 61, eastern Bering Sea shelf stratum 61).

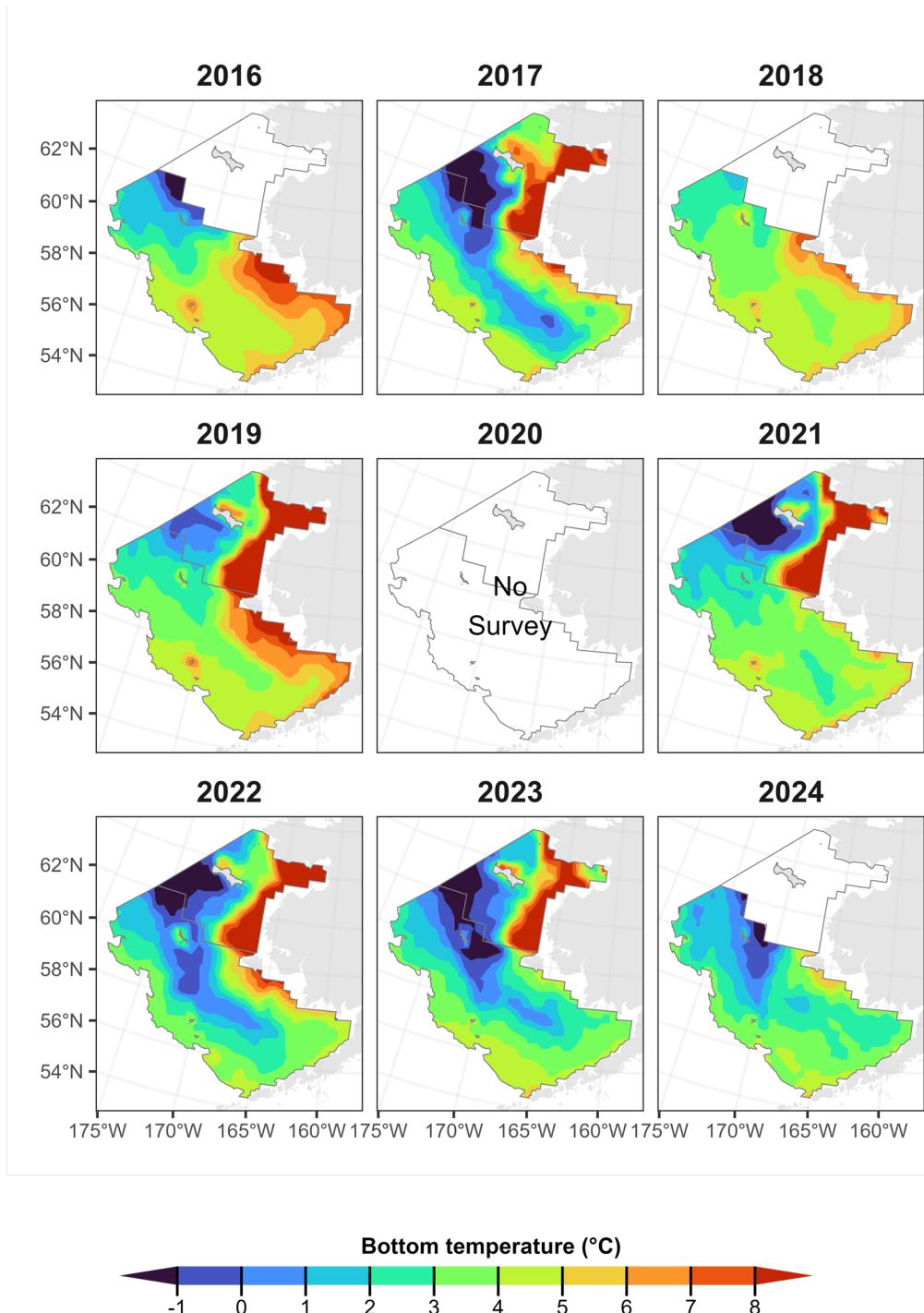
## Results and Discussion

### Ocean Temperatures and the Cold Pool

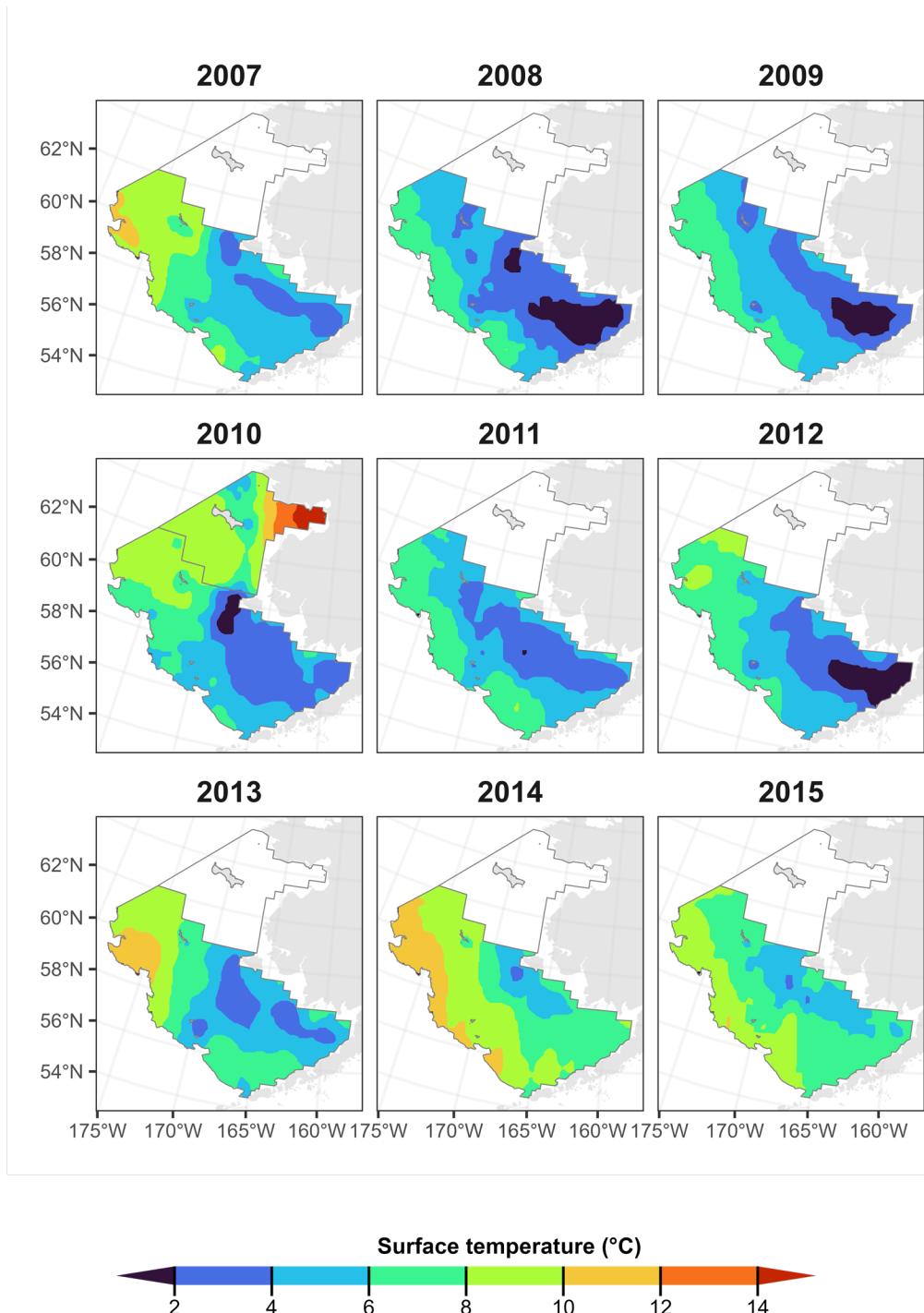
Bottom (Figs. 7 and 8) and surface (Figs. 9 and 10) water temperatures varied spatially and among years due to variation in atmospheric and oceanic conditions that influence temperature patterns in the eastern Bering Sea (Stabeno et al. 2012). The warmest bottom temperatures were typically observed in the inner domain ( $< 50$  m; Fig. 1) along the Alaska mainland where the water column is fully mixed during summer, which allows solar heat transfer throughout the water column (Coachman 1986). The coldest bottom temperatures typically occurred in the middle domain (50–100 m) where strong two-layer stratification during the summer inhibits heat transfer to the bottom layer, which allows a seasonal ‘cold pool’ to persist from spring through the end of fall. Surface temperatures generally increased from the interior of Bristol Bay to the northwestern outer shelf and into Norton Sound. These surface temperature patterns reflect seasonal warming that occurs as the survey progresses from Bristol Bay, to the outer shelf, and into Norton Sound over the duration of the survey (Cokelet 2016, Rohan et al. 2022).


The mean bottom temperature on the eastern Bering Sea shelf was  $2.5^{\circ}\text{C}$  in 2024, which was equal to the time series average from 1982 to 2024 and  $0.2^{\circ}\text{C}$  warmer than 2023 (Fig. 11). The near-average bottom temperatures observed from 2022 to 2024 are a continuing departure from recent warm years (2016–2021) that included four of the five warmest years in the 42-year time series. Over the history of the eastern Bering Sea shelf survey (1982–2024), annual mean summer bottom temperatures have ranged from  $0.7^{\circ}\text{C}$

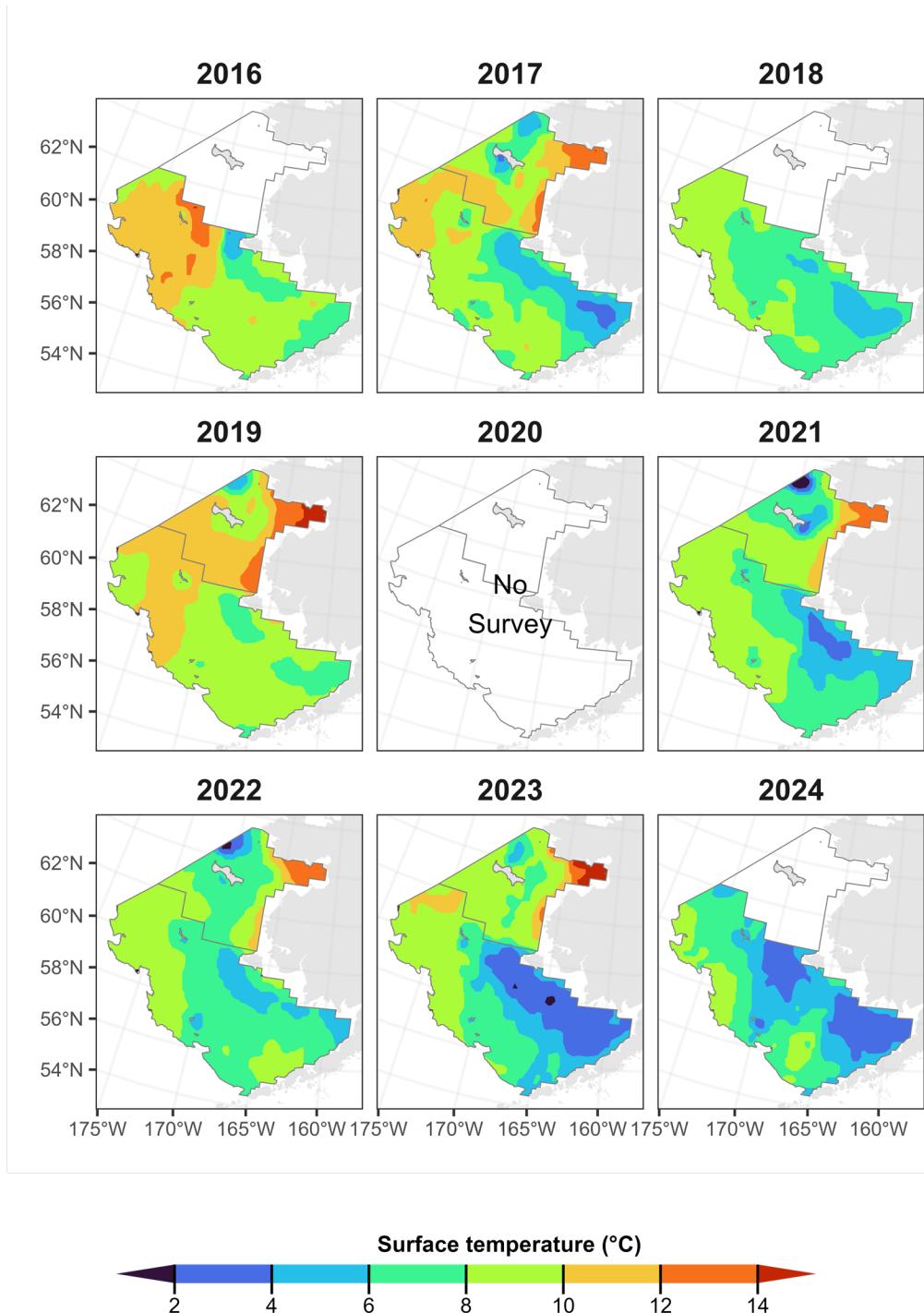
to 4.4°C and surface temperatures have ranged from 3.9°C to 9.5°C. The 2024 mean eastern Bering Sea shelf surface temperature (5.8°C) was colder than the times-series average surface temperature (6.7°C) and the mean surface temperature in 2023 (6.3°C).


The cold pool area is defined as the extent ( $\text{km}^2$ ) of the eastern Bering Sea shelf survey area with bottom temperatures less than or equal to 2°C (Rohan et al. 2022). The size and location of the cold pool is primarily influenced by the extent of seasonal sea ice cover during the preceding winter and spring and the timing of sea ice retreat during spring (Stabeno and Bell 2019). The cold pool is primarily found in the middle domain (50–100 m), which is fully mixed during the winter and has two-layer stratification during the summer. Years of extensive sea ice that persists into spring have a larger cold pool that can extend into Bristol Bay and as far south as the Alaska Peninsula. Years with smaller sea ice extent result in smaller cold pools that are limited to the northern edge of the eastern Bering Sea shelf survey area. The cold pool area is strongly correlated ( $r^2 = 0.94$ ) with mean bottom temperature on the shelf.

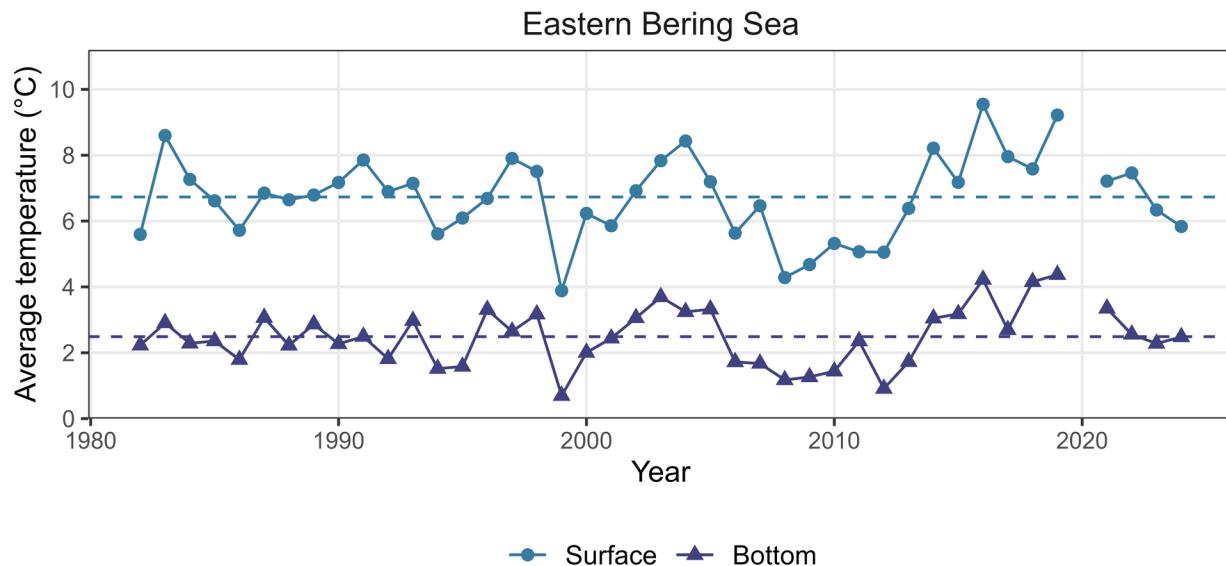
The cold pool covered 31.7% (156,800  $\text{km}^2$ ) of the eastern Bering Sea shelf survey area in 2024 and was entirely located north of 57.5°N (Figs. 8 and 12). The cold pool was 12.7% (22,750  $\text{km}^2$ ) smaller than in 2023. The size of the cold pool was similar to other near-average temperature years (i.e., 2011, 2017, 2022, 2023) and smaller than the time series mean (36.6%; 180,406  $\text{km}^2$ ). The extent of isotherms for bottom temperatures  $\leq 0^\circ\text{C}$  (28,450  $\text{km}^2$ ) and  $\leq -1^\circ\text{C}$  (6,650  $\text{km}^2$ ) were 54.4% and 75.0% smaller than in 2023, respectively, which is more typical of the extent observed in warm years such as 2005, 2014, and 2016. Unlike previous near-average years, the 2024 cold pool did not have a continuous tongue extending east of 169°W in the middle domain along the inner front. During the 42-year time series, the cold pool area has ranged from a minimum of 6,150  $\text{km}^2$  in 2018 to a maximum of 385,975  $\text{km}^2$  in 1999, respectively, comprising 1.2% to 78.2% of the total eastern Bering Sea shelf survey area.


Interannual variation in bottom temperature and cold pool area influences the distribution (Kotwicki and Lauth 2013, Stevenson et al. 2022, Stevenson and Lauth 2019, Thorson et al. 2020), migration (Nichol et al. 2019), recruitment (Cooper et al. 2020), and biological productivity (Grüss et al. 2021) of fishes and crabs in the Bering Sea. The size of the cold pool also affects the availability of demersal species to bottom-trawl surveys by mediating migration between the eastern Bering Sea shelf, northern Bering Sea, western Bering Sea, and the deeper waters of the continental slope (O'Leary et al. 2022, Zador et al. 2011). Subarctic fish species tend to avoid areas with bottom temperatures below 0°C or 1°C, depending on the species (Baker 2021, Eisner et al. 2020), and cold temperatures may provide a habitat refuge for cold-adapted species (Fedewa et al. 2020).

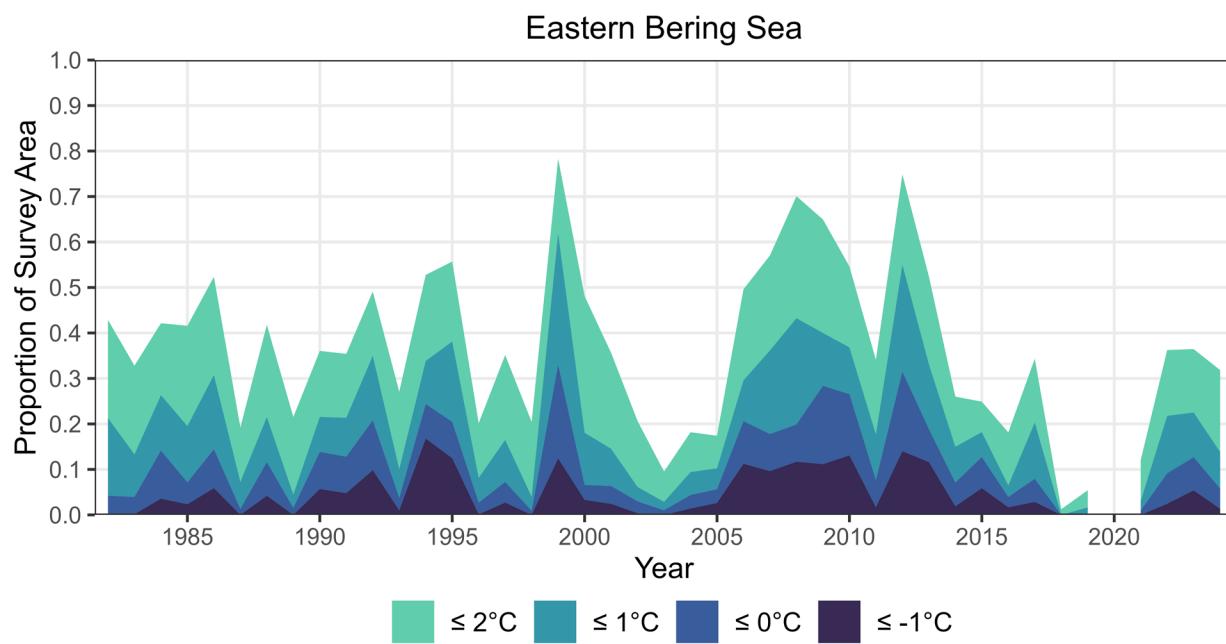



**Figure 7.** -- Bottom temperatures (°C) during the 2007-2015 eastern Bering Sea shelf survey.




**Figure 8.** -- Bottom temperatures ( $^{\circ}\text{C}$ ) during the 2016-2024 eastern Bering Sea shelf survey.




**Figure 9.** -- Surface temperatures (°C) during the 2007-2015 eastern Bering Sea shelf survey.



**Figure 10.** -- Surface temperatures (°C) during the 2016-2024 eastern Bering Sea shelf survey.



**Figure 11.** -- Average summer surface and bottom (points and solid lines), and time series average surface and bottom (dashed lines) temperatures ( $^{\circ}\text{C}$ ) on the eastern Bering Sea shelf, based on data collected during the eastern Bering Sea shelf survey from 1982 to 2024.



**Figure 12.** -- Annual extent of the summer cold pool on the eastern Bering Sea, based on observations from the eastern Bering Sea shelf survey. The extent of the cold pool is shown as a percentage of the total survey area. Shading denotes near-bottom temperatures  $\leq 2^{\circ}\text{C}$ ,  $\leq 1^{\circ}\text{C}$ ,  $\leq 0^{\circ}\text{C}$ , and  $\leq -1^{\circ}\text{C}$ .

## Survey Data and Specimen Collections

Survey teams collected 125,263 length measurements, 6,070 otolith age structure samples, 4,917 stomach samples, 114 fat-meter condition samples, and six fish for satellite tagging during the 2024 eastern Bering Sea trawl survey (Table 5). Other special collections are listed in Table 4.

**Table 5.** -- Biological data collected during the 2024 eastern Bering Sea shelf survey.

| Eastern Bering Sea                         | Length measurements | Otolith age structure samples | Stomach samples | Fat-meter condition samples | Satellite tags deployed |
|--------------------------------------------|---------------------|-------------------------------|-----------------|-----------------------------|-------------------------|
| Alaska plaice                              | 8,014               | -                             | -               | -                           | -                       |
| Alaska skate                               | 3,171               | -                             | 426             | -                           | -                       |
| Aleutian skate                             | 50                  | -                             | -               | -                           | -                       |
| Arctic cod                                 | 13                  | -                             | -               | -                           | -                       |
| Arrowtooth flounder                        | 7,846               | 429                           | -               | -                           | -                       |
| Arrowtooth flounder and Kamchatka flounder | -                   | -                             | 619             | -                           | -                       |
| Bering flounder                            | 1,402               | -                             | -               | -                           | -                       |
| Bering skate                               | 190                 | -                             | -               | -                           | -                       |
| Big skate                                  | 33                  | -                             | -               | -                           | -                       |
| Bigmouth sculpin                           | 130                 | -                             | -               | -                           | -                       |
| Blackspotted rockfish                      | 6                   | -                             | -               | -                           | -                       |
| Butter sole                                | 278                 | -                             | -               | -                           | -                       |
| Butterfly sculpin                          | 4                   | -                             | -               | -                           | -                       |
| Chum salmon                                | 1                   | -                             | -               | -                           | -                       |
| Dover sole                                 | 9                   | -                             | -               | -                           | -                       |
| Dusky rockfish                             | 5                   | -                             | -               | -                           | -                       |
| Flathead sole                              | 14,322              | 594                           | -               | -                           | -                       |
| Great sculpin                              | 594                 | -                             | -               | -                           | -                       |
| Greenland turbot                           | 53                  | 52                            | -               | -                           | -                       |
| Hybrid starry flounder X                   | 4                   | -                             | -               | -                           | -                       |
| Alaska plaice                              |                     |                               |                 |                             |                         |
| Kamchatka flounder                         | 1,133               | 255                           | -               | -                           | -                       |
| Longhead dab                               | 1,024               | -                             | -               | -                           | -                       |
| Longnose skate                             | 1                   | -                             | -               | -                           | -                       |
| Northern rock sole                         | 17,619              | 755                           | 648             | -                           | -                       |
| Northern rockfish                          | 10                  | -                             | -               | -                           | -                       |
| Pacific cod                                | 11,106              | 1,320                         | 913             | 55                          | 6                       |
| Pacific halibut                            | 2,086               | 656                           | 285             | -                           | -                       |
| Pacific ocean perch                        | 330                 | -                             | -               | -                           | -                       |
| Plain sculpin                              | 1,094               | -                             | -               | -                           | -                       |
| Prowfish                                   | 3                   | -                             | -               | -                           | -                       |
| Rex sole                                   | 1,295               | -                             | -               | -                           | -                       |
| Rougheye rockfish                          | 22                  | -                             | -               | -                           | -                       |
| Sablefish                                  | 58                  | -                             | 12              | -                           | -                       |
| Saffron cod                                | 4                   | -                             | -               | -                           | -                       |
| Sakhalin sole                              | 15                  | -                             | -               | -                           | -                       |
| Sand sole                                  | 7                   | -                             | -               | -                           | -                       |

| Eastern Bering Sea | Length measurements | Otolith age structure samples | Stomach samples | Fat-meter condition samples | Satellite tags deployed |
|--------------------|---------------------|-------------------------------|-----------------|-----------------------------|-------------------------|
| Shorthorn sculpin  | 31                  | -                             | -               | -                           | -                       |
| Southern rock sole | 329                 | -                             | -               | -                           | -                       |
| Spiny dogfish      | 1                   | -                             | -               | -                           | -                       |
| Starry flounder    | 628                 | -                             | -               | -                           | -                       |
| Walleye pollock    | 36,137              | 1,530                         | 1,416           | 59                          | -                       |
| Whitebrow skate    | 1                   | -                             | -               | -                           | -                       |
| Yellow Irish lord  | 531                 | -                             | -               | -                           | -                       |
| Yellowfin sole     | 15,673              | 479                           | 598             | -                           | -                       |
| <b>Total</b>       | <b>125,263</b>      | <b>6,070</b>                  | <b>4,917</b>    | <b>114</b>                  | <b>6</b>                |

## Species Composition

A total of 92 fish taxa representing 25 families and 61 genera were identified during the 2024 eastern Bering Sea shelf survey (Appendix Table A 105). Of these 92 taxa, 85 were identified to species level, while the remaining taxa were identified to the lowest taxonomic level (most often genus) by field scientists. Similarly, 215 different invertebrate taxa representing 11 phyla were identified on the 2024 survey; 121 taxa were identified to species level (Appendix Table A 106). The lack of species-level identifications among invertebrates was due to a variety of factors that are outlined in Stevenson and Hoff (2009) and Stevenson et al. (2016).

## Biomass, Abundance, and Catch per Unit Effort

The total biomass of demersal organisms in the eastern Bering Sea shelf was estimated at 15 million t and the proportion of fishes (79%; Table 6) was higher than invertebrates (21%; Table 7). The total estimated biomass increased from 11.8 million t in 2023 to 15 million t in 2024. Large increases in biomass were observed for snow crab (276.8%), Tanner crab (148.6%), worms (78.8%), walleye pollock (73.6%), and snailfishes (73.2%; Table 8). Large decreases in biomass were observed for starry flounder (-29.7%), Pacific halibut (-26.5%), jellyfish (-20.3%), purple-orange sea star (-9.6%), and plain sculpin (-5.2%; Table 8). While exhaustive efforts are made to standardize catch processing and data collection, variation in catchability may cause some differences in these results between years (Kotwicki and Ono 2019). The ten most-abundant fish taxa in the eastern Bering Sea shelf accounted for 16% of total mean fish and invertebrate CPUE and 21.1% of total mean fish CPUE.



**Table 6.** --Total taxon biomass estimates (t),  $\pm$  95% confidence limits (CL), and biomass estimates by stratum for fish taxa collected during the 2024 eastern Bering Sea shelf survey. The 'proportion' column represents the estimated taxon biomass divided by the total fish estimated biomass (11,857,370 t).

| Taxon                       | Estimated fish biomass across survey         |                      |                  | Estimated fish biomass by stratum |                  |                |                |                |                |                |                  |               |                |               |       |
|-----------------------------|----------------------------------------------|----------------------|------------------|-----------------------------------|------------------|----------------|----------------|----------------|----------------|----------------|------------------|---------------|----------------|---------------|-------|
|                             | Biomass $\pm$ 95% CL                         | Proportion           |                  | 10                                | 20               | 31             | 32             | 41             | 42             | 43             | 50               | 61            | 62             | 82            | 90    |
| Agonidae (poachers)         | 23,343 $\pm$ 6,928                           | 0.0020               | 4,422            | 3,090                             | 3,614            | 3,433          | 1,178          | 6,923          | 27             | 184            | 468              | 4             | 1              | 0             |       |
| Cottidae (sculpins)         | 145,072 $\pm$ 42,413                         | 0.0122               | 22,295           | 10,612                            | 10,116           | 16,721         | 10,483         | 18,458         | 6,294          | 2,145          | 40,895           | 4,043         | 1,588          | 1,421         |       |
| Cyclopteridae (lumpsuckers) | 139 $\pm$ 210                                | <0.0001              | 0                | 0                                 | 0                | 0              | 0              | 0              | 0              | 0              | 0                | 139           | 0              | 0             |       |
| Pacific cod                 | 635,840 $\pm$ 72,842                         | 0.0536               | 85,138           | 28,717                            | 146,355          | 26,753         | 81,680         | 63,801         | 36,300         | 23,806         | 108,649          | 10,606        | 13,813         | 10,223        |       |
| Gadidae (cods)              | 5,476,067 $\pm$ 1,043,195                    | 0.4618               | 276,197          | 182,626                           | 533,296          | 203,782        | 539,674        | 329,018        | 149,002        | 323,743        | 2,835,497        | 34,552        | 35,409         | 33,272        |       |
| other                       | 29 $\pm$ 22                                  | <0.0001              | 1                | 8                                 | 0                | 0              | 4              | 0              | 0              | 0              | 6                | 0             | 9              | 1             |       |
| total                       | 6,111,936 $\pm$ 1,062,634                    | 0.5155               | 361,335          | 211,351                           | 679,650          | 230,535        | 621,358        | 392,819        | 185,303        | 347,549        | 2,944,152        | 45,157        | 49,231         | 43,496        |       |
| Hexagrammidae (greenlings)  | 672 $\pm$ 874                                | <0.0001              | 178              | 2                                 | 478              | 0              | 0              | 0              | 13             | 0              | 0                | 0             | 0              | 0             |       |
| Liparidae (snailfishes)     | 3,873 $\pm$ 2,700                            | 0.0003               | 0                | 6                                 | 0                | 0              | 486            | 85             | 1,736          | 58             | 735              | 81            | 392            | 293           |       |
| Osmeridae (smelts)          | 626 $\pm$ 222                                | <0.0001              | 308              | 8                                 | 58               | 0              | 4              | 0              | 0              | 245            | 0                | 0             | 3              | 0             |       |
| Alaska plaice               | 349,579 $\pm$ 75,627                         | 0.0295               | 96,646           | 78,765                            | 83,638           | 2,711          | 66,851         | 6,471          | 1,760          | 0              | 1,779            | 0             | 10,958         | 0             |       |
| Bering flounder             | 10,370 $\pm$ 5,168                           | 0.0009               | 0                | 59                                | 0                | 0              | 2,471          | 1              | 296            | 0              | 89               | 45            | 6,495          | 913           |       |
| Kamchatka flounder          | 28,362 $\pm$ 5,693                           | 0.0024               | 33               | 0                                 | 3,777            | 369            | 993            | 552            | 1,663          | 5,188          | 13,542           | 1,386         | 269            | 590           |       |
| Pacific halibut             | 125,145 $\pm$ 17,702                         | 0.0106               | 36,164           | 22,993                            | 31,002           | 2,823          | 5,005          | 7,748          | 1,224          | 7,675          | 8,505            | 217           | 1,720          | 68            |       |
| Pleuronectidae (flatfishes) | 582,469 $\pm$ 110,727                        | 0.0491               | 5,842            | 58                                | 219,060          | 22,317         | 8,105          | 24,582         | 625            | 128,673        | 170,234          | 2,888         | 37             | 49            |       |
| arrowtooth flounder         | 723,996 $\pm$ 187,340                        | 0.0611               | 22,759           | 859                               | 156,272          | 9,937          | 19,610         | 63,751         | 5,163          | 49,847         | 388,267          | 3,101         | 2,711          | 1,717         |       |
| northern rock sole          | 1,439,739 $\pm$ 243,088                      | 0.1214               | 731,101          | 120,119                           | 320,089          | 35,204         | 33,532         | 189,804        | 7,234          | 78             | 1,955            | 57            | 552            | 15            |       |
| yellowfin sole              | 1,503,618 $\pm$ 255,179                      | 0.1268               | 773,817          | 163,163                           | 421,218          | 2,901          | 80,805         | 60,405         | 416            | 0              | 10               | 5             | 867            | 11            |       |
| other                       | 146,694 $\pm$ 53,352                         | 0.0124               | 49,189           | 6,743                             | 37,127           | 35             | 7              | 0              | 4              | 20,052         | 33,532           | 0             | 5              | 0             |       |
| total                       | 4,914,931 $\pm$ 505,685                      | 0.4145               | 1,715,551        | 392,760                           | 1,272,184        | 76,295         | 217,741        | 353,316        | 18,387         | 211,514        | 620,035          | 7,699         | 24,996         | 4,453         |       |
| Rajidae (skates)            | Alaska skate                                 | 407,133 $\pm$ 44,397 | 0.0343           | 78,831                            | 49,843           | 61,199         | 11,272         | 34,449         | 29,361         | 7,471          | 35,998           | 78,404        | 5,737          | 8,202         | 6,367 |
| other                       |                                              | 51,803 $\pm$ 21,351  | 0.0044           | 2,701                             | 0                | 21,963         | 194            | 313            | 1,086          | 10             | 10,731           | 14,807        | 0              | 0             | 0     |
| total                       |                                              | 458,936 $\pm$ 51,222 | 0.0387           | 81,532                            | 49,843           | 83,161         | 11,465         | 34,762         | 30,446         | 7,480          | 46,729           | 93,211        | 5,737          | 8,202         | 6,367 |
| Scorpaenidae (rockfishes)   | Pacific ocean perch                          | 50,664 $\pm$ 64,705  | 0.0043           | 0                                 | 0                | 19             | 0              | 0              | 0              | 0              | 1,624            | 49,019        | 0              | 0             | 2     |
| other                       |                                              | 1,533 $\pm$ 1,744    | 0.0001           | 0                                 | 0                | 36             | 0              | 0              | 0              | 0              | 1,243            | 254           | 0              | 0             | 0     |
| total                       |                                              | 52,197 $\pm$ 64,715  | 0.0044           | 0                                 | 0                | 55             | 0              | 0              | 0              | 0              | 2,867            | 49,273        | 0              | 0             | 2     |
| Stichaeidae (pricklebacks)  | 15 $\pm$ 13                                  | <0.0001              | 0                | 0                                 | 10               | 0              | 0              | 0              | 0              | 0              | 1                | 4             | 0              | 0             | 0     |
| Zoarcidae (eelpouts)        | 72,078 $\pm$ 19,012                          | 0.0061               | 31               | 21                                | 9,267            | 7              | 6,725          | 916            | 4,952          | 212            | 35,613           | 4,418         | 3,726          | 6,190         |       |
| Other fish                  | 223,583 $\pm$ 55,111                         | 0.0189               | 31,549           | 15,357                            | 25,674           | 16,999         | 22,597         | 18,458         | 19,626         | 5,640          | 45,303           | 4,055         | 15,675         | 2,650         |       |
| <b>Total fish</b>           | <b>11,857,370 <math>\pm</math> 1,244,239</b> | <b>1.0000</b>        | <b>2,194,905</b> | <b>672,439</b>                    | <b>2,074,152</b> | <b>338,735</b> | <b>904,488</b> | <b>802,964</b> | <b>237,523</b> | <b>614,999</b> | <b>3,786,812</b> | <b>67,151</b> | <b>100,843</b> | <b>62,361</b> |       |

**Table 7.** -- Total taxon biomass estimates (t),  $\pm$  95% confidence limits (CL), and biomass estimates by stratum for invertebrate taxa collected during the 2024 eastern Bering Sea shelf survey. The 'proportion' column represents the estimated taxon biomass divided by the total invertebrate estimated biomass (3,167,655 t).

| Taxon                      | Estimated invertebrate biomass across survey |                         |                | Estimated invertebrate biomass by stratum |                |               |                |                |                |               |                |               |               |               |        |
|----------------------------|----------------------------------------------|-------------------------|----------------|-------------------------------------------|----------------|---------------|----------------|----------------|----------------|---------------|----------------|---------------|---------------|---------------|--------|
|                            | Biomass $\pm$ 95% CL                         | Proportion              |                | 10                                        | 20             | 31            | 32             | 41             | 42             | 43            | 50             | 61            | 62            | 82            | 90     |
| Asciidiacea                | 127,721 $\pm$ 55,777                         | 0.0403                  | 6,065          | 3,098                                     | 47,442         | 1,438         | 41,234         | 26,892         | 1,509          | 42            | 1              | 0             | 0             | 0             |        |
| Coelenterata               | 217,150 $\pm$ 48,450                         | 0.0686                  | 6,834          | 948                                       | 44,465         | 5,106         | 25,028         | 46,593         | 14,784         | 20,615        | 39,508         | 1,822         | 8,265         | 3,182         |        |
| Crustacea                  | shrimps                                      | 5,372 $\pm$ 2,529       | 0.0017         | 28                                        | 106            | 30            | 0              | 146            | 2              | 159           | 145            | 4,021         | 586           | 46            | 105    |
|                            | other                                        | 1,058,229 $\pm$ 116,582 | 0.3341         | 41,864                                    | 18,653         | 241,087       | 17,770         | 262,065        | 196,937        | 89,711        | 29,994         | 125,670       | 9,859         | 15,801        | 8,818  |
|                            | total                                        | 1,063,601 $\pm$ 116,571 | 0.3358         | 41,891                                    | 18,759         | 241,117       | 17,770         | 262,211        | 196,939        | 89,870        | 30,138         | 129,690       | 10,445        | 15,847        | 8,924  |
| Echinodermata              | Astroidea (sea stars)                        | 958,088 $\pm$ 157,401   | 0.3025         | 296,694                                   | 133,069        | 208,286       | 8,202          | 89,060         | 58,360         | 8,193         | 840            | 133,052       | 4,858         | 4,808         | 12,667 |
|                            | Echinoidea (sea urchins)                     | 36,485 $\pm$ 28,377     | 0.0115         | 41                                        | 0              | 6,962         | 510            | 134            | 1,434          | 3,355         | 19,945         | 3,975         | 88            | 0             | 41     |
|                            | Holothuroidea (sea cucumbers)                | 23,652 $\pm$ 28,376     | 0.0075         | 809                                       | 0              | 3,540         | 13,864         | 1              | 2,083          | 3,305         | 22             | 27            | 0             | 0             | 0      |
|                            | Ophiuroidea (brittle stars)                  | 296,022 $\pm$ 84,152    | 0.0935         | 12,531                                    | 2,009          | 79,264        | 4,849          | 19,077         | 22,087         | 12,007        | 15,045         | 124,753       | 597           | 3,286         | 518    |
|                            | total                                        | 1,314,247 $\pm$ 179,633 | 0.4149         | 310,075                                   | 135,077        | 298,053       | 27,425         | 108,271        | 83,964         | 26,860        | 35,851         | 261,807       | 5,543         | 8,093         | 13,227 |
| Mollusca                   | Gastropoda (snails)                          | 401,965 $\pm$ 72,565    | 0.1269         | 14,304                                    | 10,016         | 126,634       | 1,655          | 67,443         | 46,714         | 20,292        | 11,063         | 83,579        | 13,360        | 1,920         | 4,987  |
|                            | Pelecypoda (bivalves)                        | 15,771 $\pm$ 16,707     | 0.0050         | 9,257                                     | 201            | 4,417         | 67             | 290            | 234            | 74            | 361            | 843           | 13            | 8             | 5      |
|                            | octopuses                                    | 2,236 $\pm$ 1,279       | 0.0007         | 0                                         | 0              | 88            | 0              | 18             | 0              | 40            | 524            | 1,482         | 83            | 0             | 0      |
|                            | squids                                       | 138 $\pm$ 103           | <0.0001        | 0                                         | 0              | 0             | 0              | 0              | 0              | 0             | 15             | 122           | 0             | 0             | 0      |
|                            | total                                        | 420,109 $\pm$ 77,020    | 0.1326         | 23,561                                    | 10,217         | 131,138       | 1,723          | 67,751         | 46,948         | 20,407        | 11,963         | 86,025        | 13,457        | 1,928         | 4,992  |
| Porifera (sponges)         | 13,101 $\pm$ 12,112                          | 0.0041                  | 161            | 202                                       | 11,531         | 95            | 139            | 12             | 87             | 253           | 585            | 35            | 0             | 0             |        |
| Other invertebrates        | 11,726 $\pm$ 5,720                           | 0.0037                  | 573            | 15                                        | 629            | 1             | 872            | 289            | 651            | 34            | 8,396          | 171           | 79            | 17            |        |
| <b>Total invertebrates</b> | <b>3,167,655 <math>\pm</math> 264,805</b>    | <b>1.0000</b>           | <b>389,160</b> | <b>168,316</b>                            | <b>774,376</b> | <b>53,557</b> | <b>505,506</b> | <b>401,637</b> | <b>154,168</b> | <b>98,896</b> | <b>526,013</b> | <b>31,474</b> | <b>34,212</b> | <b>30,340</b> |        |

**Table 8. --** Total estimated biomass (t) and the percent change between the 2023 and 2024 eastern Bering Sea shelf surveys for predominant fish and invertebrate taxa. Taxa are listed in descending order of percent change from 2023 to 2024. Percent changes denoted with '-' indicate that fewer than 100 individuals were caught on the survey in 2023 or 2024.

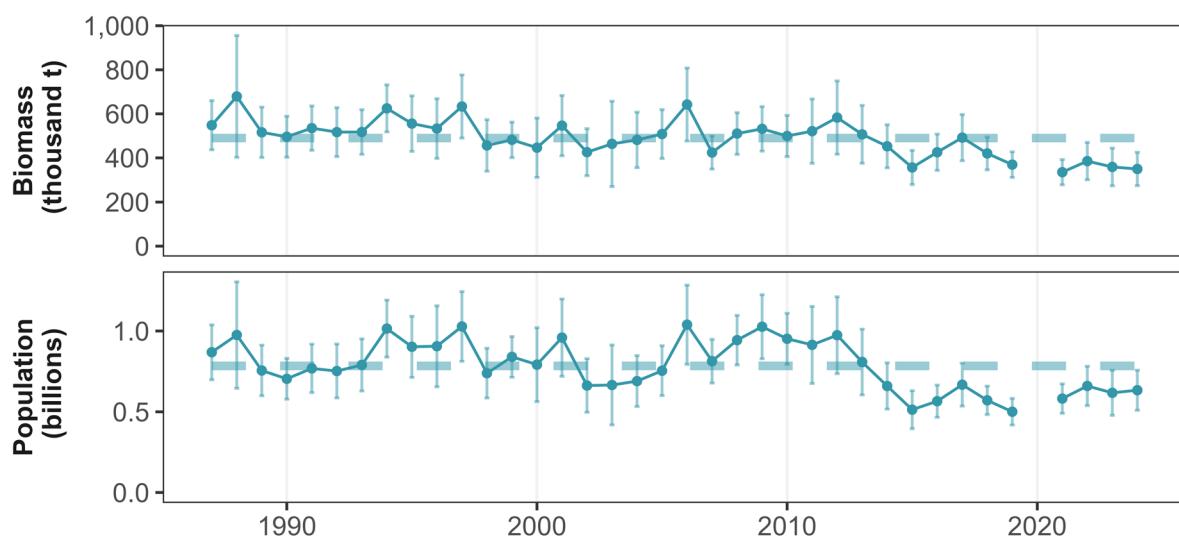
| Common name            | 2021      | 2022      | 2023      | 2024      | Change (2024, 2023) |
|------------------------|-----------|-----------|-----------|-----------|---------------------|
| Snow crab              | 103,687   | 105,290   | 88,269    | 332,635   | 276.8%              |
| Tanner crab            | 42,859    | 38,485    | 50,361    | 125,174   | 148.6%              |
| Worms                  | 8,600     | 8,559     | 6,600     | 11,799    | 78.8%               |
| Walleye pollock        | 3,030,988 | 4,153,971 | 3,154,668 | 5,476,067 | 73.6%               |
| Snailfishes            | 769       | 630       | 2,236     | 3,873     | 73.2%               |
| Bering flounder        | 9,511     | 6,237     | 6,813     | 10,370    | 52.2%               |
| Great sculpin          | 51,319    | 69,097    | 45,918    | 61,076    | 33.0%               |
| Eelpouts               | 37,776    | 45,571    | 55,297    | 72,078    | 30.3%               |
| Hermit crabs           | 381,438   | 460,462   | 372,306   | 480,841   | 29.2%               |
| Arrowtooth flounder    | 457,569   | 521,615   | 462,575   | 582,469   | 25.9%               |
| Flathead sole          | 674,745   | 703,375   | 594,851   | 723,996   | 21.7%               |
| Pacific herring        | 67,886    | 228,447   | 54,795    | 66,282    | 21.0%               |
| Clams                  | 14,989    | 14,062    | 13,069    | 15,761    | 20.6%               |
| Red king crab          | 38,259    | 46,605    | 45,356    | 52,101    | 14.9%               |
| Kamchatka flounder     | 32,856    | 29,699    | 24,875    | 28,362    | 14.0%               |
| Yellowfin sole         | 1,633,968 | 2,039,968 | 1,393,379 | 1,503,618 | 7.9%                |
| Northern rock sole     | 1,041,169 | 1,294,581 | 1,380,684 | 1,439,739 | 4.3%                |
| Sea urchins            | 22,086    | 39,107    | 31,116    | 31,368    | 0.8%                |
| Basket sea stars       | 286,345   | 265,984   | 253,039   | 249,470   | -1.4%               |
| Alaska plaice          | 335,034   | 385,294   | 358,845   | 349,579   | -2.6%               |
| Alaska skate           | 468,113   | 463,017   | 418,483   | 407,133   | -2.7%               |
| Pacific cod            | 616,380   | 647,400   | 663,075   | 635,840   | -4.1%               |
| Plain sculpin          | 37,180    | 39,123    | 26,716    | 25,338    | -5.2%               |
| Purple-orange sea star | 971,398   | 1,018,067 | 815,015   | 736,479   | -9.6%               |
| Jellyfish              | 74,120    | 126,347   | 146,492   | 116,757   | -20.3%              |
| Pacific halibut        | 131,864   | 149,064   | 170,238   | 125,145   | -26.5%              |
| Starry flounder        | 83,295    | 92,652    | 81,383    | 57,240    | -29.7%              |
| Arctic cod             | -         | 51        | 1         | 19        | -                   |
| Saffron cod            | 3         | 21        | 3         | 10        | -                   |
| Shorthorn sculpin      | 2,180     | 560       | 546       | 1,330     | -                   |
| Blue king crab         | 3,849     | 4,419     | 2,753     | 2,347     | -                   |
| Greenland turbot       | 10,690    | 7,869     | 5,857     | 4,959     | -                   |
| Prickleback            | 13        | 26        | 41        | 15        | -                   |

## Summary of Results for Selected Fish and Invertebrate Fauna of the Eastern Bering Sea Shelf

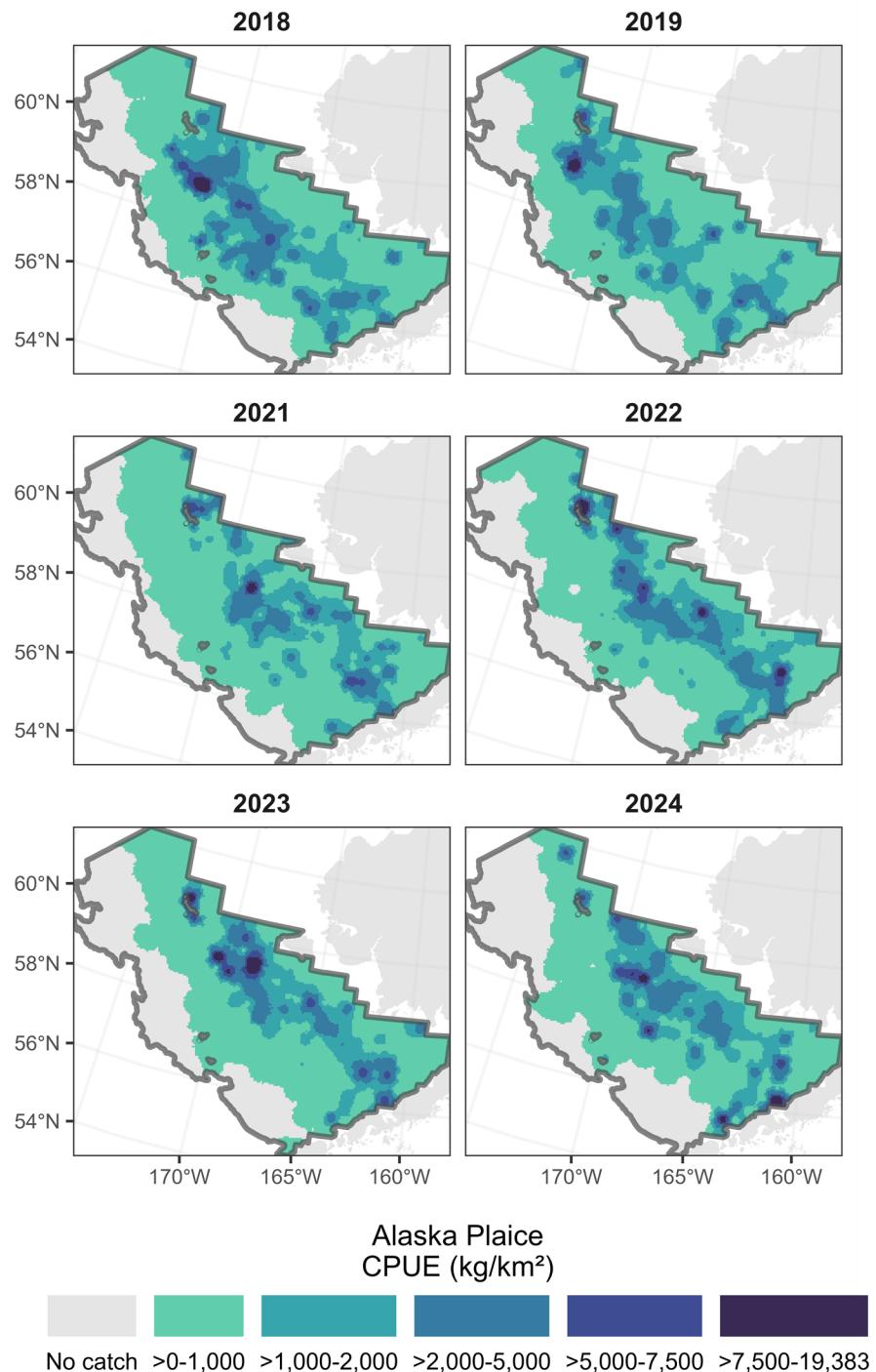
Summary results for 39 abundant taxa caught during the eastern Bering Sea shelf surveys are presented below. Plots of biomass and abundance time series, spatial distribution, abundance-at-length estimates, and stratum-level CPUE (kg/km<sup>2</sup> and no/km<sup>2</sup>) tables are provided for each taxon. The spatial distribution maps are presented as inverse-distance-weighted interpolations of CPUE (kg/km<sup>2</sup>), which uses a weighted average of nearby measured stations to estimate values at unmeasured locations between stations. Similar interactive maps of these highlighted taxa and others are available through the NOAA Distribution Mapping and Analysis Portal<sup>9</sup>. More information on how to find, download, and interact with the data used to produce this report is available in the [Data Sources](#) section. Taxa are presented in alphabetical order by common name.

---

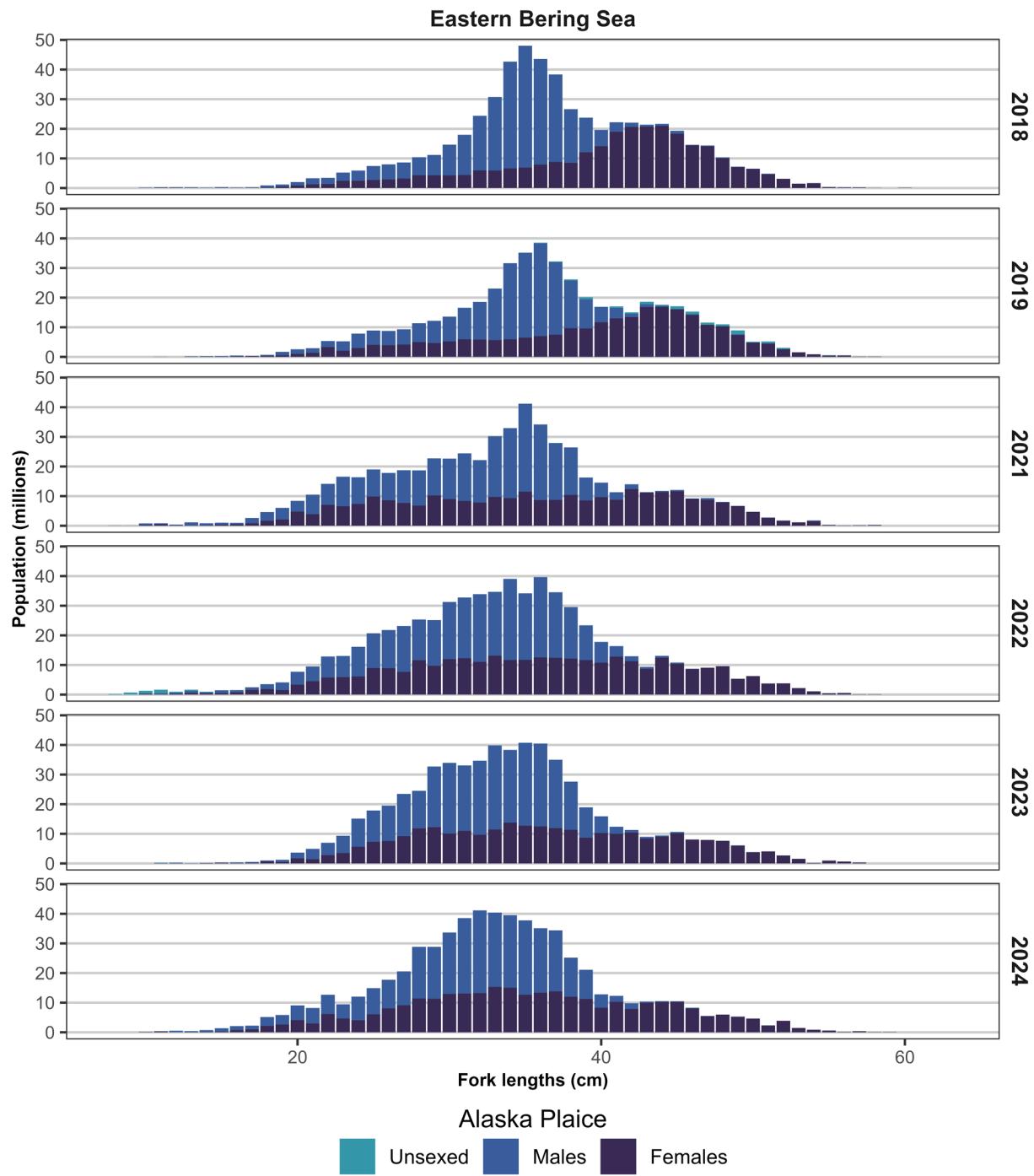
<sup>9</sup> <https://apps-st.fisheries.noaa.gov/dismap/>


## Alaska Plaice (*Pleuronectes quadrituberculatus*)

Between 2023 and 2024, the estimated biomass of Alaska plaice decreased by 3% on the 2024 eastern Bering Sea Shelf survey (Tables 9 and 10; Figs. 13 and 14) and the population was estimated at 634 million individuals (Tables 9 and 11; Fig. 13).


Alaska plaice were primarily present throughout the inner and middle domain of the survey area (Fig. 14). In 2024, the highest concentrations in the eastern Bering Sea were located southwest of Nunivak Island and along the Alaska Peninsula. The spatial distribution of the population in 2024 was similar to distributions in the previous two years. Length modes around 32 cm for males and 33 cm for females were observed in 2024 (Fig. 15). Overall, the size and sex composition of Alaska plaice varies by depth in the eastern Bering Sea. While males are more prevalent in the shallower (0-50 m) inner domain and females more prevalent in the middle (50-100 m) and deeper (100-200 m) outer domains (Zhang et al. 1998), both sexes show average length increases with depth (Bakkala et al. 1985).

**Table 9.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Alaska plaice (*Pleuronectes quadrituberculatus*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                       |
|----------------------------------|-----------------------|
| <b>Stations Present</b>          | 202 of 350 (57.7%)    |
| <b>Bottom Depth (m)</b>          | 21 — 119              |
| <b>Bottom Temperature (°C)</b>   | -1.3 — 5.7            |
| <b>Surface Temperature (°C)</b>  | 2 — 8.7               |
| <b>Population</b>                | 634 million           |
| <b>Biomass (t)</b>               | 349,579               |
| <b>Percent of Total Catch</b>    | 2.3%                  |
| <b>Biomass</b>                   |                       |
| <b>Percent Change in Biomass</b> | 3% decrease from 2023 |



**Figure 13.** -- Time series of Alaska plaice (*Pleuronectes quadrituberculatus*) biomass (thousand t) and population (billions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 14.** -- CPUE (kg/km<sup>2</sup>) distribution of Alaska plaice (*Pleuronectes quadrituberculatus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.



**Figure 15.** -- Total abundance-at-length estimates of Alaska plaice (*Pleuronectes quadrituberculatus*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

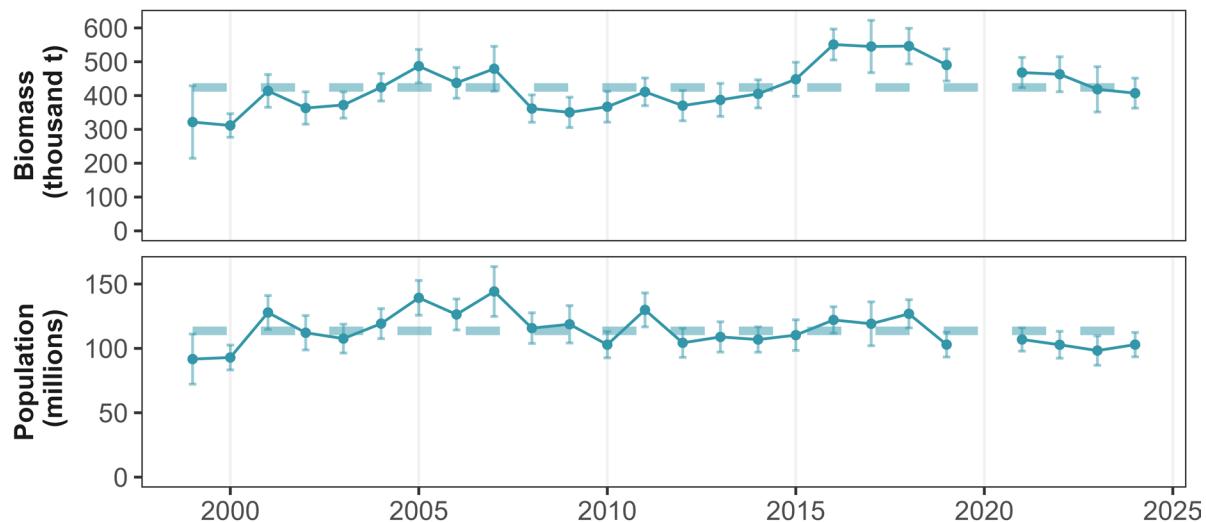
**Table 10.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (thousand t) with SD (t), 95% lower (LCL; thousand t) and upper (UCL; thousand t) confidence limits, and number of hauls in which Alaska plaice (*Pleuronectes quadrituberculatus*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (Kt)  | Biomass SD (t) | 95% LCL (Kt)  | 95% UCL (Kt)  | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|---------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |               |               |                  |
| 10                              | 1,227.94                        | 233.73                        | 96.65         | 18,396         | 59.85         | 133.44        | 57               |
| 20                              | 1,912.09                        | 354.60                        | 78.77         | 14,607         | 49.55         | 107.98        | 31               |
| 31                              | 880.60                          | 219.86                        | 83.64         | 20,882         | 41.87         | 125.40        | 45               |
| 32                              | 306.47                          | 255.79                        | 2.71          | 2,263          | 0.00          | 7.24          | 3                |
| 41                              | 1,072.88                        | 301.19                        | 66.85         | 18,767         | 29.32         | 104.39        | 33               |
| 42                              | 268.27                          | 131.31                        | 6.47          | 3,168          | 0.14          | 12.81         | 10               |
| 43                              | 83.55                           | 39.34                         | 1.76          | 829            | 0.10          | 3.42          | 10               |
| 50                              | -                               | -                             | -             | -              | -             | -             | -                |
| 61                              | 20.27                           | 13.15                         | 1.78          | 1,154          | 0.00          | 4.09          | 5                |
| 62                              | -                               | -                             | -             | -              | -             | -             | -                |
| 82                              | 610.32                          | 474.76                        | 10.96         | 8,524          | 0.00          | 28.00         | 8                |
| 90                              | -                               | -                             | -             | -              | -             | -             | -                |
| <b>Total</b>                    | <b>709.10</b>                   | <b>76.70</b>                  | <b>349.58</b> | <b>37,813</b>  | <b>273.95</b> | <b>425.21</b> | <b>202</b>       |

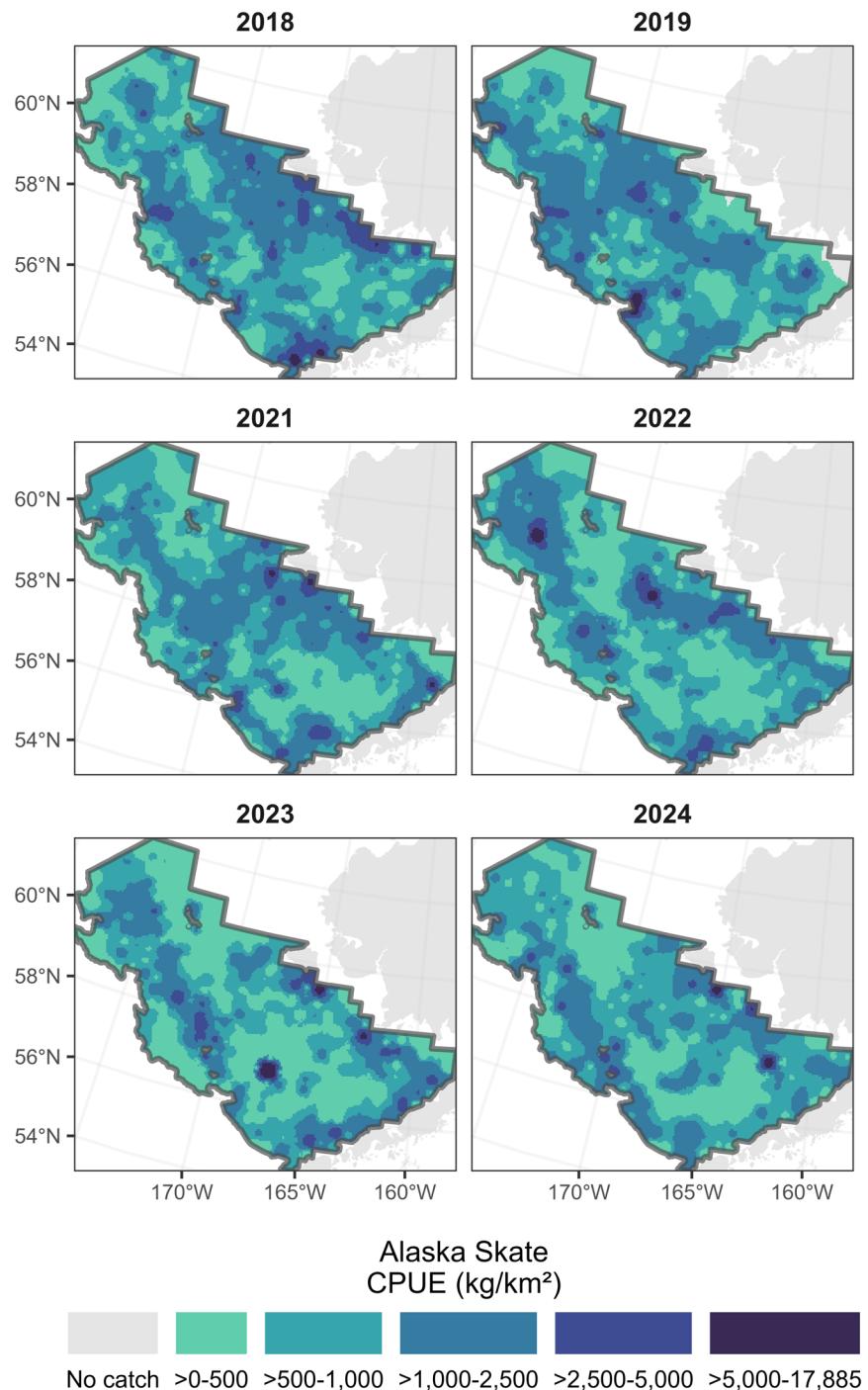
**Table 11.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Alaska plaice (*Pleuronectes quadrituberculatus*) were encountered during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)       | 95% UCL (K)       | Population (K)    | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                   |                   |                   |                   |                 |
| 10                              | 3,539.80                        | 599.88                        | 184,174.84        | 373,030.31        | 278,602.58        | 47,213.87         | 57              |
| 20                              | 3,605.07                        | 520.95                        | 105,585.58        | 191,423.42        | 148,504.50        | 21,459.46         | 31              |
| 31                              | 1,004.67                        | 221.38                        | 53,369.41         | 137,474.69        | 95,422.05         | 21,026.32         | 45              |
| 32                              | 192.12                          | 159.54                        | 0.00              | 4,522.42          | 1,699.61          | 1,411.40          | 3               |
| 41                              | 1,454.86                        | 414.19                        | 39,035.49         | 142,269.17        | 90,652.33         | 25,808.42         | 33              |
| 42                              | 303.50                          | 158.76                        | 0.00              | 14,980.33         | 7,321.12          | 3,829.61          | 10              |
| 43                              | 85.66                           | 41.97                         | 36.24             | 3,572.49          | 1,804.36          | 884.06            | 10              |
| 50                              | -                               | -                             | -                 | -                 | -                 | -                 | -               |
| 61                              | 9.21                            | 5.83                          | 0.00              | 1,832.18          | 808.24            | 511.97            | 5               |
| 62                              | -                               | -                             | -                 | -                 | -                 | -                 | -               |
| 82                              | 513.62                          | 365.97                        | 0.00              | 22,362.56         | 9,221.39          | 6,570.58          | 8               |
| 90                              | -                               | -                             | -                 | -                 | -                 | -                 | -               |
| <b>Total</b>                    | <b>1,286.10</b>                 | <b>126.00</b>                 | <b>509,799.10</b> | <b>758,273.26</b> | <b>634,036.18</b> | <b>62,118.54</b>  | <b>202</b>      |

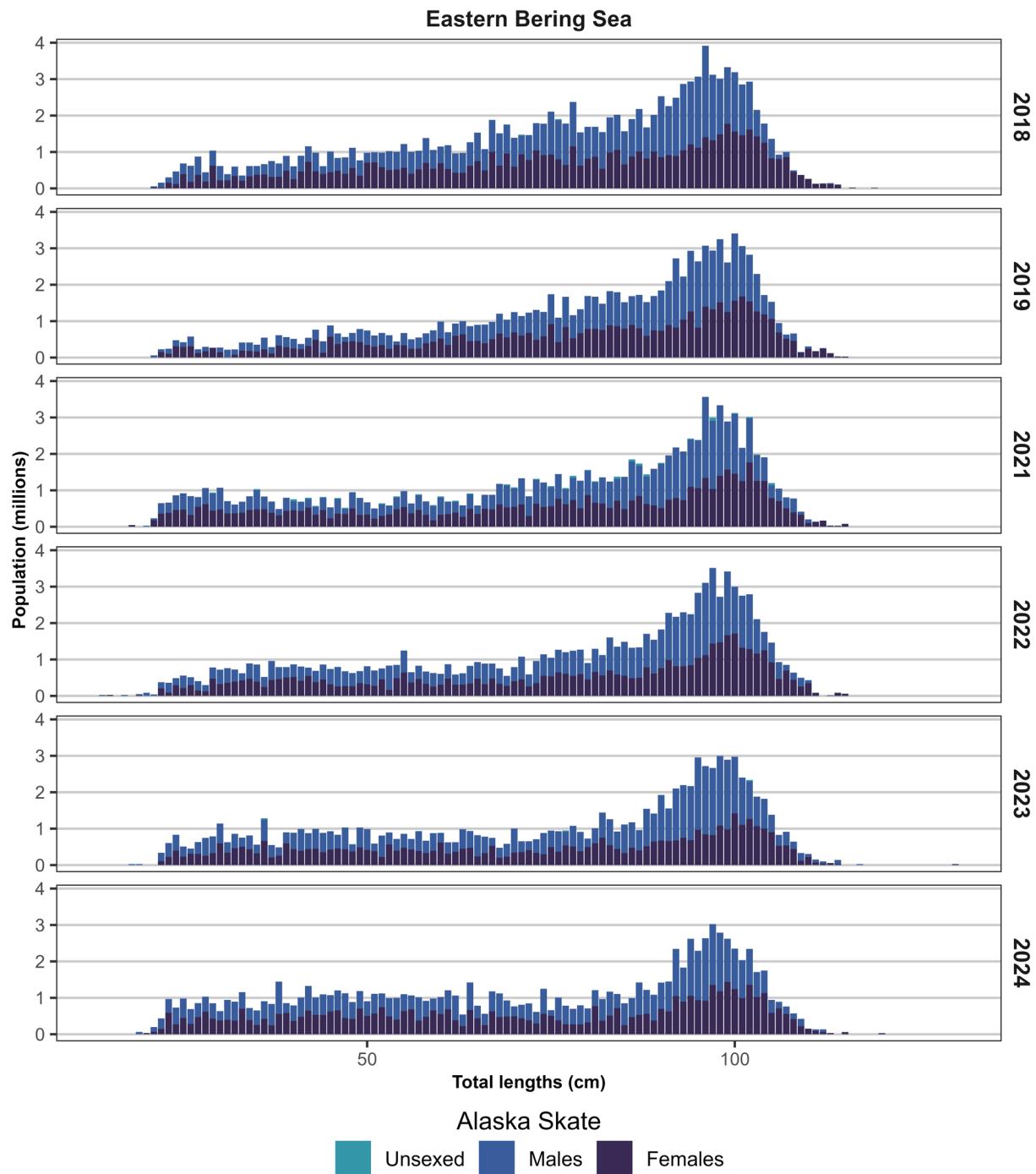
## Alaska Skate (*Arctoraja parmifera*)


Previous scientific name: *Bathyraja parmifera*

Between 2023 and 2024, the estimated biomass of Alaska skate decreased by 3% on the 2024 eastern Bering Sea Shelf survey (Tables 12 and 13; Figs. 16 and 17) and the population was estimated at 102.9 million individuals (Tables 12 and 14; Fig. 16).


Length modes at approximately 97 cm for males and 99 cm for females were observed in 2024 (Fig. 18). The survey program adopted methods to reliably distinguish skates in 1999 (note truncated time series in Fig. 16).

**Table 12.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Alaska skate (*Arctoraja parmifera*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                       |
|----------------------------------|-----------------------|
| <b>Stations Present</b>          | 338 of 350 (96.6%)    |
| <b>Bottom Depth (m)</b>          | 21 — 192              |
| <b>Bottom Temperature (°C)</b>   | -1.6 — 5.7            |
| <b>Surface Temperature (°C)</b>  | 2 — 8.9               |
| <b>Population</b>                | 102.9 million         |
| <b>Biomass (t)</b>               | 407,133               |
| <b>Percent of Total Catch</b>    | 2.7%                  |
| <b>Biomass</b>                   |                       |
| <b>Percent Change in Biomass</b> | 3% decrease from 2023 |



**Figure 16.** -- Time series of Alaska skate (*Arctoraja parmifera*) biomass (thousand t) and population (millions) from the 1999-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 17.** -- CPUE (kg/km<sup>2</sup>) distribution of Alaska skate (*Arctoraja parmifera*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

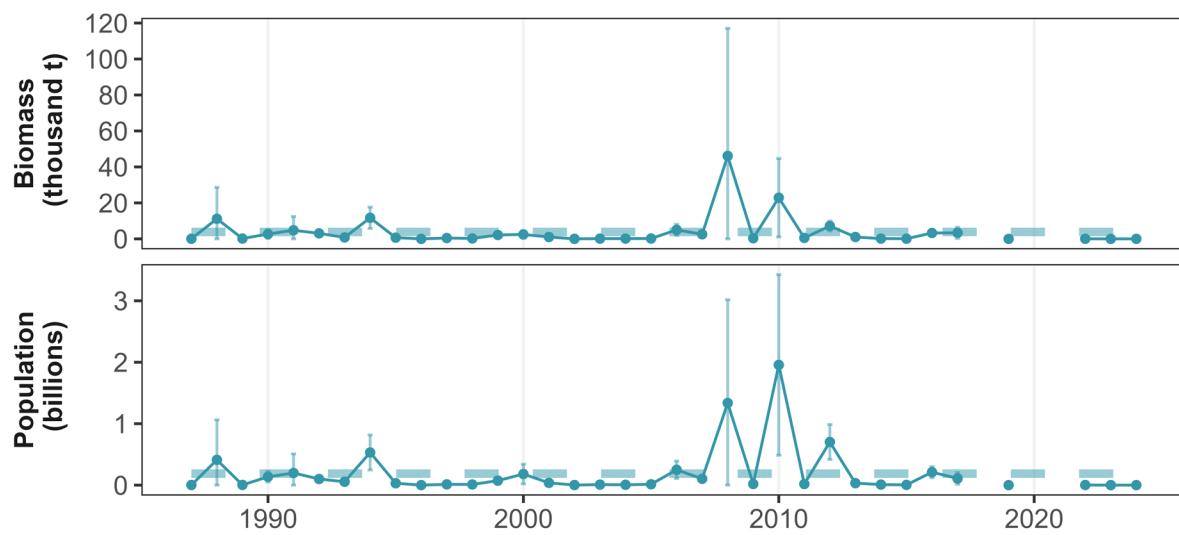


**Figure 18.** -- Total abundance-at-length estimates of Alaska skate (*Arctoraja parmifera*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

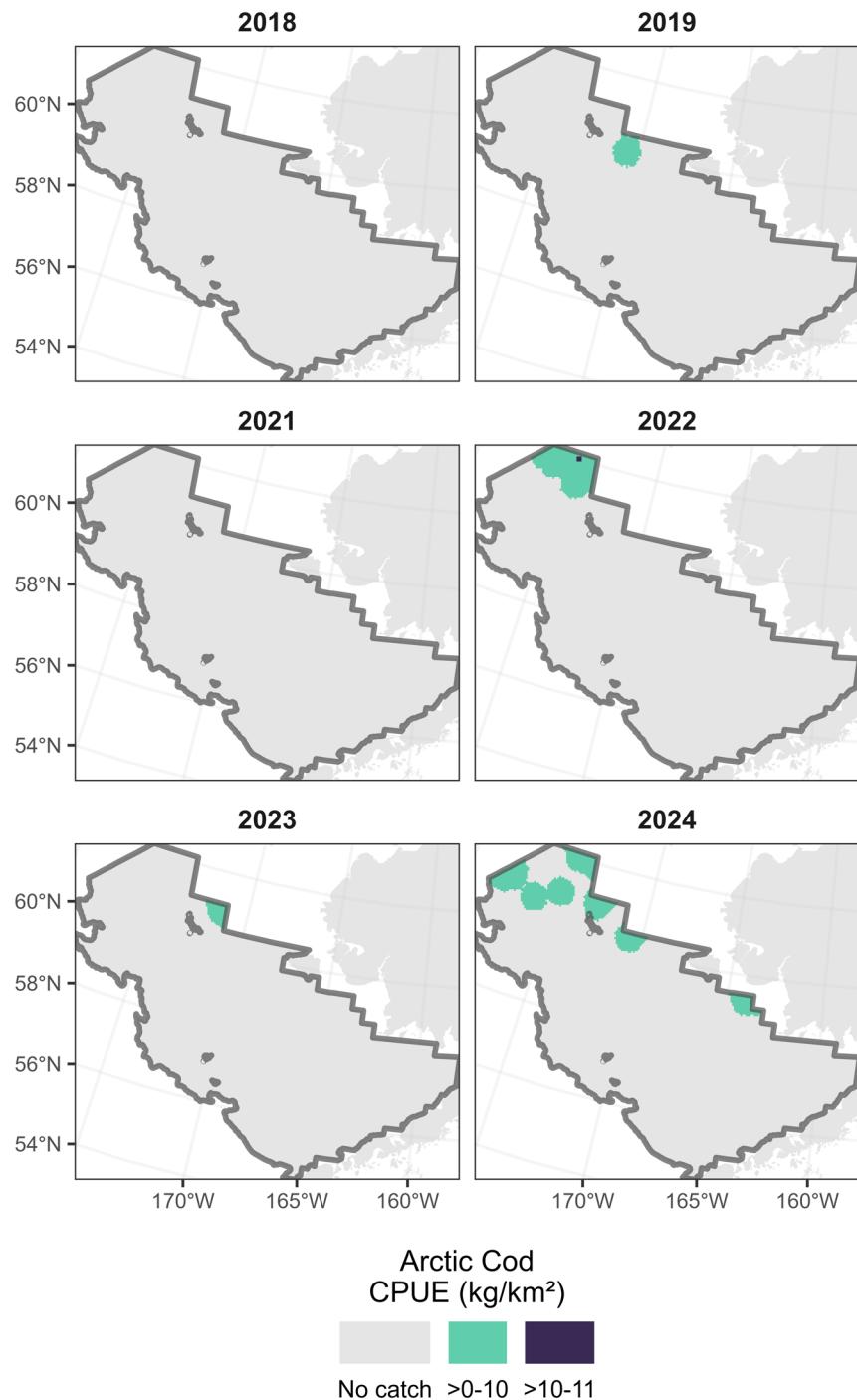
**Table 13.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (thousand t) with SD (t), 95% lower (LCL; thousand t) and upper (UCL; thousand t) confidence limits, and number of hauls in which Alaska skate (*Arctoraja parmifera*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (Kt)  | Biomass SD (t) | 95% LCL (Kt)  | 95% UCL (Kt)  | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|---------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |               |               |                  |
| 10                              | 1,001.59                        | 162.40                        | 78.83         | 12,782         | 53.27         | 104.39        | 55               |
| 20                              | 1,209.98                        | 223.93                        | 49.84         | 9,224          | 31.39         | 68.29         | 31               |
| 31                              | 644.34                          | 70.03                         | 61.20         | 6,651          | 47.90         | 74.50         | 67               |
| 32                              | 1,274.12                        | 741.85                        | 11.27         | 6,563          | 0.00          | 24.40         | 5                |
| 41                              | 552.87                          | 81.53                         | 34.45         | 5,080          | 24.29         | 44.61         | 39               |
| 42                              | 1,217.17                        | 214.07                        | 29.36         | 5,164          | 19.03         | 39.69         | 18               |
| 43                              | 354.68                          | 97.16                         | 7.47          | 2,047          | 3.38          | 11.56         | 12               |
| 50                              | 946.35                          | 129.19                        | 36.00         | 4,914          | 26.17         | 45.83         | 26               |
| 61                              | 893.22                          | 96.43                         | 78.40         | 8,464          | 61.48         | 95.33         | 59               |
| 62                              | 887.80                          | 242.63                        | 5.74          | 1,568          | 2.60          | 8.87          | 6                |
| 82                              | 456.86                          | 66.73                         | 8.20          | 1,198          | 5.81          | 10.60         | 12               |
| 90                              | 551.81                          | 69.87                         | 6.37          | 806            | 4.75          | 7.98          | 8                |
| <b>Total</b>                    | <b>825.84</b>                   | <b>45.03</b>                  | <b>407.13</b> | <b>22,198</b>  | <b>362.74</b> | <b>451.53</b> | <b>338</b>       |

**Table 14.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (millions) with SD (thousands), 95% lower (LCL; millions) and upper (UCL; millions) confidence limits, and number of hauls in which Alaska skate (*Arctoraja parmifera*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (M)  | 95% UCL (M)   | Population (M) | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|--------------|---------------|----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |              |               |                |                   |                 |
| 10                              | 216.35                          | 36.46                         | 11.29        | 22.77         | 17.03          | 2,869.50          | 55              |
| 20                              | 270.96                          | 36.48                         | 8.16         | 14.17         | 11.16          | 1,502.72          | 31              |
| 31                              | 212.15                          | 20.32                         | 16.29        | 24.01         | 20.15          | 1,929.92          | 67              |
| 32                              | 235.80                          | 122.94                        | 0.00         | 4.26          | 2.09           | 1,087.64          | 5               |
| 41                              | 173.42                          | 23.26                         | 7.91         | 13.70         | 10.81          | 1,449.60          | 39              |
| 42                              | 260.98                          | 33.41                         | 4.68         | 7.91          | 6.30           | 805.80            | 18              |
| 43                              | 138.89                          | 31.84                         | 1.58         | 4.27          | 2.93           | 670.65            | 12              |
| 50                              | 136.79                          | 16.40                         | 3.96         | 6.45          | 5.20           | 623.94            | 26              |
| 61                              | 233.43                          | 19.26                         | 17.11        | 23.87         | 20.49          | 1,690.98          | 59              |
| 62                              | 275.38                          | 62.07                         | 0.98         | 2.58          | 1.78           | 401.05            | 6               |
| 82                              | 141.59                          | 19.14                         | 1.85         | 3.23          | 2.54           | 343.72            | 12              |
| 90                              | 213.57                          | 47.53                         | 1.37         | 3.56          | 2.46           | 548.40            | 8               |
| <b>Total</b>                    | <b>208.79</b>                   | <b>9.61</b>                   | <b>93.46</b> | <b>112.40</b> | <b>102.93</b>  | <b>4,735.89</b>   | <b>338</b>      |

## Arctic Cod (*Boreogadus saida*)


Between 2023 and 2024, the estimated biomass of Arctic cod increased to 19 t, extrapolated from 14 individuals caught on the 2024 eastern Bering Sea Shelf survey (Tables 15 and 16; Figs. 19 and 20) and the population was estimated at 436,209 individuals (Tables 15 and 17; Fig. 19).

**Table 15.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Arctic cod (*Boreogadus saida*) in the eastern Bering Sea shelf survey area.

| Eastern Bering Sea Shelf        |                                            |
|---------------------------------|--------------------------------------------|
| <b>Stations Present</b>         | 8 of 350 (2.3%)                            |
| <b>Bottom Depth (m)</b>         | 21 — 135                                   |
| <b>Bottom Temperature (°C)</b>  | -1.6 — 4.9                                 |
| <b>Surface Temperature (°C)</b> | 3.1 — 7.2                                  |
| <b>Population</b>               | 436,209                                    |
| <b>Biomass (t)</b>              | 19                                         |
| <b>Percent of Total Catch</b>   | <0.01%                                     |
| <b>Biomass</b>                  |                                            |
| <b>Survey catch totals</b>      | Increased from 1 to 14 individuals in 2024 |



**Figure 19.** -- Time series of Arctic cod (*Boreogadus saida*) biomass (thousand t) and population (billions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 20.** -- CPUE (kg/km<sup>2</sup>) distribution of Arctic cod (*Boreogadus saida*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

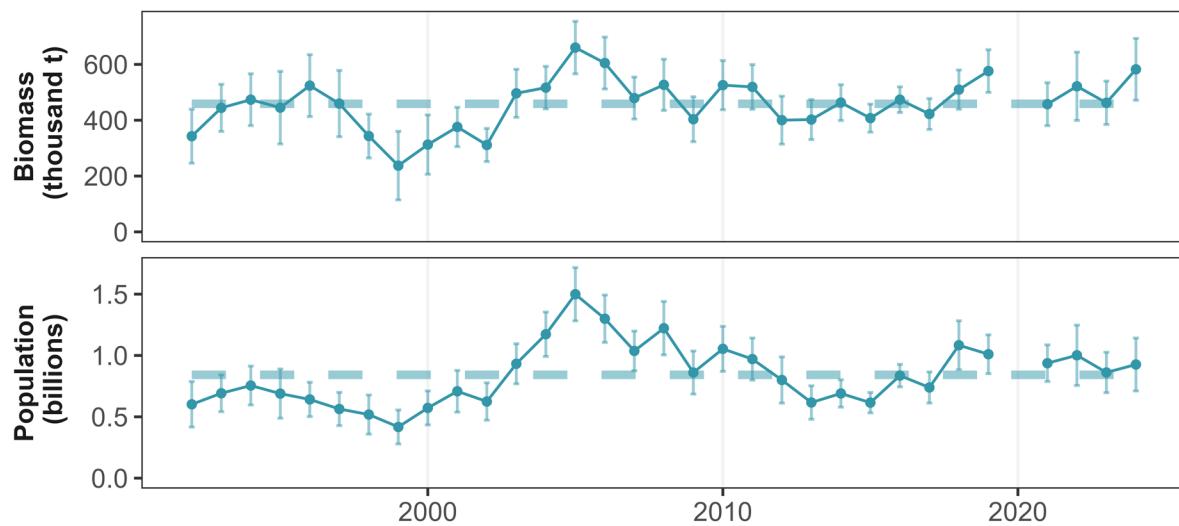
**Table 16.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which Arctic cod (*Boreogadus saida*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t) | Biomass SD (t) | 95% LCL (t) | 95% UCL (t) | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|-------------|----------------|-------------|-------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |                |             |             |                  |
| 10                              | 0.01                            | 0.01                          | 0           | 0              | 0           | 1           | 1                |
| 20                              | -                               | -                             | -           | -              | -           | -           | -                |
| 31                              | -                               | -                             | -           | -              | -           | -           | -                |
| 32                              | -                               | -                             | -           | -              | -           | -           | -                |
| 41                              | 0.04                            | 0.03                          | 3           | 2              | 0           | 7           | 2                |
| 42                              | -                               | -                             | -           | -              | -           | -           | -                |
| 43                              | -                               | -                             | -           | -              | -           | -           | -                |
| 50                              | -                               | -                             | -           | -              | -           | -           | -                |
| 61                              | 0.07                            | 0.07                          | 6           | 6              | 0           | 18          | 1                |
| 62                              | -                               | -                             | -           | -              | -           | -           | -                |
| 82                              | 0.48                            | 0.29                          | 9           | 5              | 0           | 19          | 3                |
| 90                              | 0.08                            | 0.08                          | 1           | 1              | 0           | 3           | 1                |
| <b>Total</b>                    | <b>0.04</b>                     | <b>0.02</b>                   | <b>19</b>   | <b>8</b>       | <b>2</b>    | <b>35</b>   | <b>8</b>         |

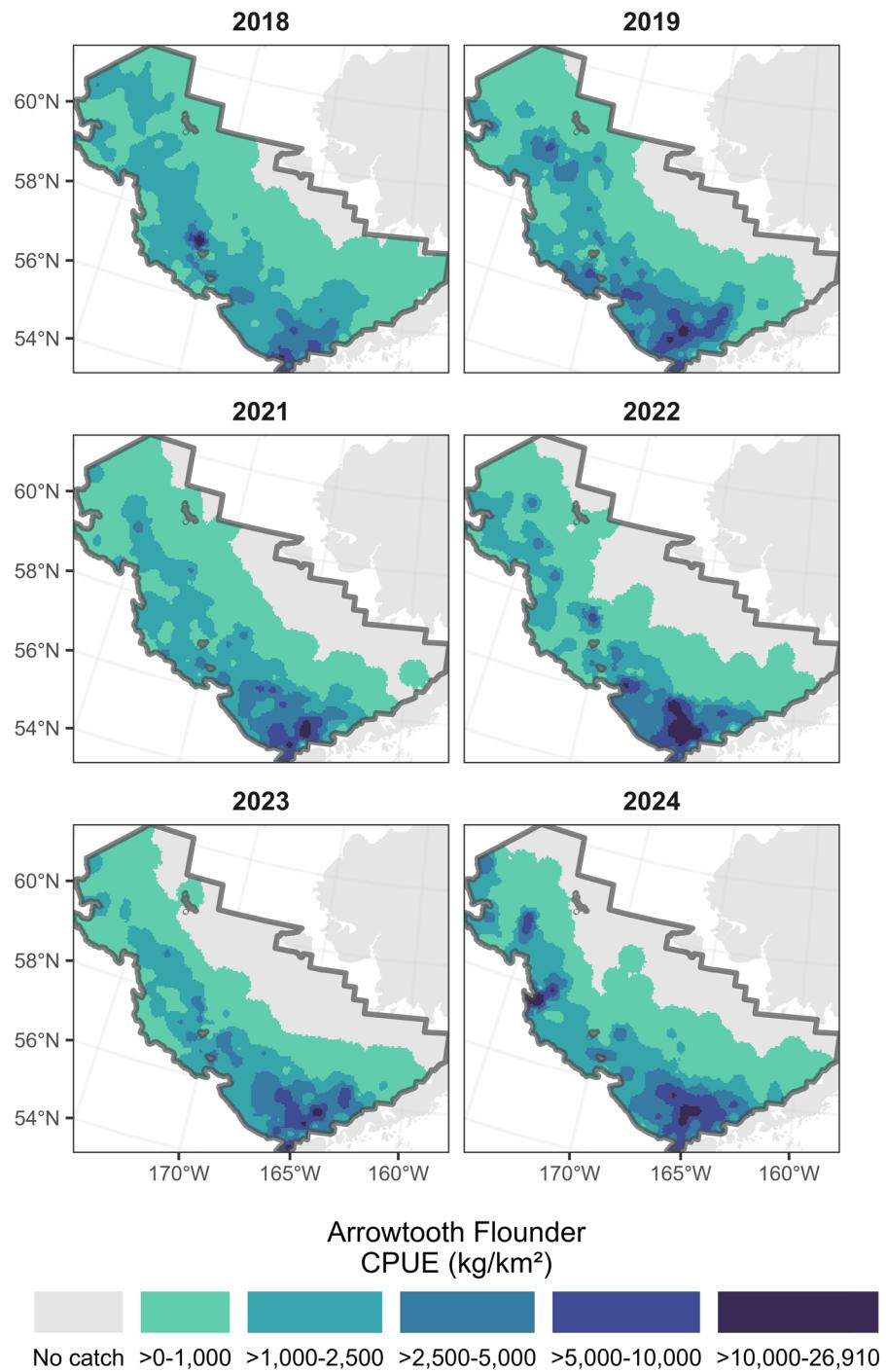
**Table 17.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Arctic cod (*Boreogadus saida*) were encountered during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)  | 95% UCL (K)   | Population (K) | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|--------------|---------------|----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |              |               |                |                   |                 |
| 10                              | 0.45                            | 0.45                          | 0.00         | 106.88        | 35.63          | 35.63             | 1               |
| 20                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 31                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 32                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 41                              | 1.40                            | 1.04                          | 0.00         | 216.87        | 87.13          | 64.87             | 2               |
| 42                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 43                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 50                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 61                              | 0.35                            | 0.35                          | 0.00         | 91.07         | 30.36          | 30.36             | 1               |
| 62                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 82                              | 14.11                           | 8.33                          | 0.00         | 552.61        | 253.38         | 149.61            | 3               |
| 90                              | 2.58                            | 2.58                          | 0.00         | 89.14         | 29.71          | 29.71             | 1               |
| <b>Total</b>                    | <b>0.88</b>                     | <b>0.35</b>                   | <b>91.73</b> | <b>780.69</b> | <b>436.21</b>  | <b>172.24</b>     | <b>8</b>        |

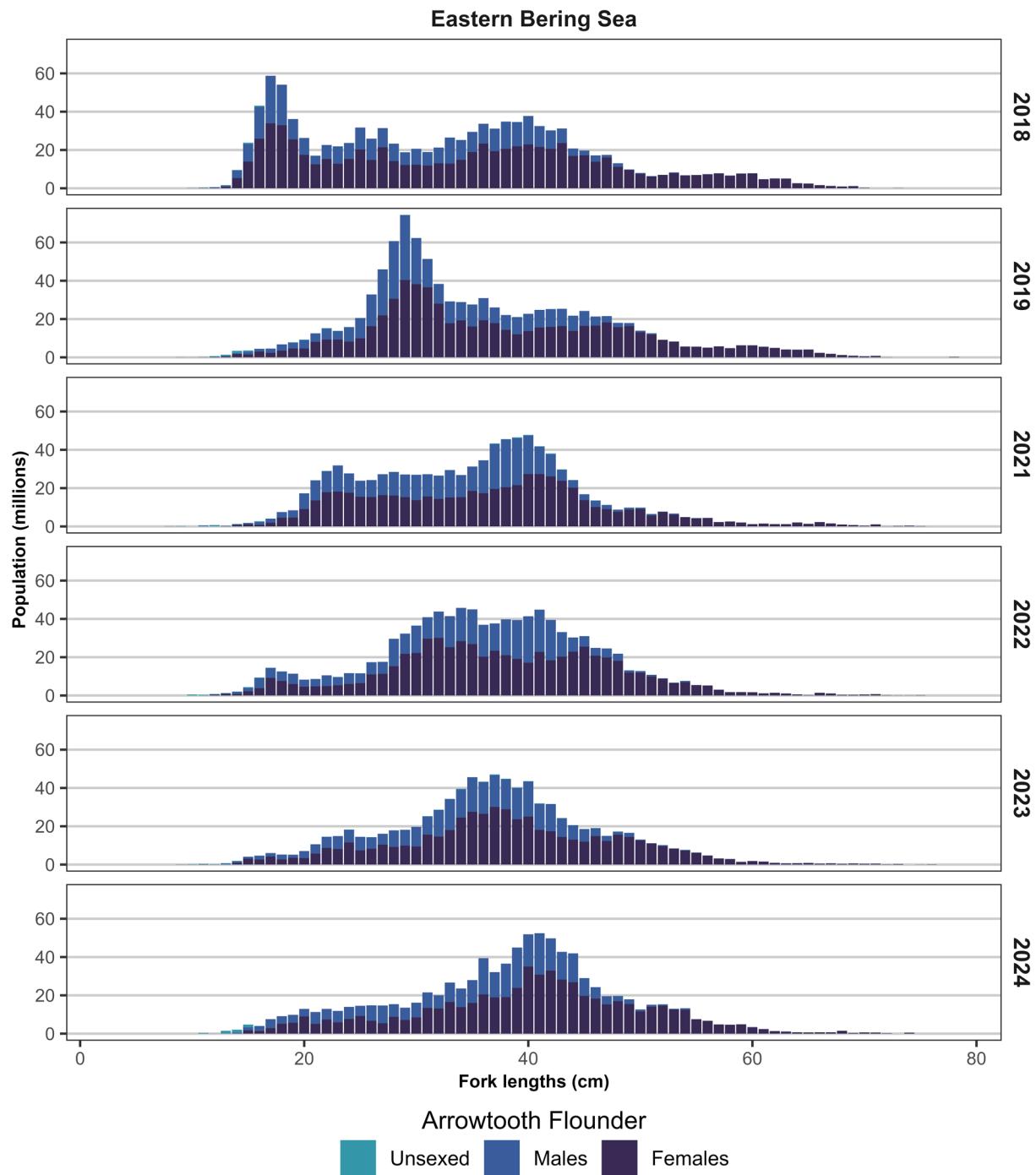
## Arrowtooth Flounder (*Atheresthes stomias*)


Between 2023 and 2024, the estimated biomass of arrowtooth flounder increased by 26% on the 2024 eastern Bering Sea Shelf survey (Tables 18 and 19; Figs. 21 and 22) and the population was estimated at 926.4 million individuals (Tables 18 and 20; Fig. 21).

Arrowtooth flounder generally inhabit deeper waters as adults, but primarily occupy the shelf waters until age four. As individuals mature, they begin to recruit to the upper continental slope waters ([Spies et al. 2018](#)). Thus, the shelf survey estimates are not synoptically inclusive of the entire population. The majority of arrowtooth flounder the total estimated biomass occurs in the middle and outer domains (Fig. 22). As with all previous years, females outnumbered males at a rate of approximately 2:1, with females attaining larger average sizes (Fig. 23). This disparity in sex ratio has been attributed to sex-specific differences in natural mortality rates, but the issue requires further research ([Spies et al. 2018](#), [Zimmermann and Goddard 1996](#)). The length mode for arrowtooth flounder was approximately 40 cm for females and 41 cm for males in the eastern Bering Sea, with a relative increase in the number of individuals detected below 20 cm and above 40 cm, compared to 2023 (Fig. 23).


Arrowtooth flounder and [Kamchatka flounder](#) are congeners and can be difficult to distinguish in the field based on morphology ([Yang 1988](#)). However, since the survey program adopted methods to reliably distinguish between the two species in 1992 (note truncated time series in Fig. 21), arrowtooth flounder and Kamchatka flounder are discussed separately in this report. Arrowtooth flounder and Kamchatka flounder typically occupy similar areas ([Baker and Hollowed 2014](#)). In 2024, arrowtooth flounder were mainly prevalent in the southern end of the eastern Bering Sea shelf survey area and northwestern edge of the outer domain, while Kamchatka flounder were most abundant along the northwestern edge (Fig. 22 and 45). Arrowtooth flounder are much more abundant than Kamchatka flounder in the eastern Bering Sea shelf survey area.

**Table 18.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for arrowtooth flounder (*Atheresthes stomias*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 206 of 350 (58.9%)     |
| <b>Bottom Depth (m)</b>          | 45 — 192               |
| <b>Bottom Temperature (°C)</b>   | 0.8 — 5.4              |
| <b>Surface Temperature (°C)</b>  | 2.5 — 8.9              |
| <b>Population</b>                | 926.4 million          |
| <b>Biomass (t)</b>               | 582,469                |
| <b>Percent of Total Catch</b>    | 3.9%                   |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 26% increase from 2023 |



**Figure 21.** -- Time series of arrowtooth flounder (*Atheresthes stomias*) biomass (thousand t) and population (billions) from the 1992-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 22.** -- CPUE (kg/km<sup>2</sup>) distribution of arrowtooth flounder (*Atheresthes stomias*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.



**Figure 23.** -- Total abundance-at-length estimates of arrowtooth flounder (*Atheresthes stomias*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

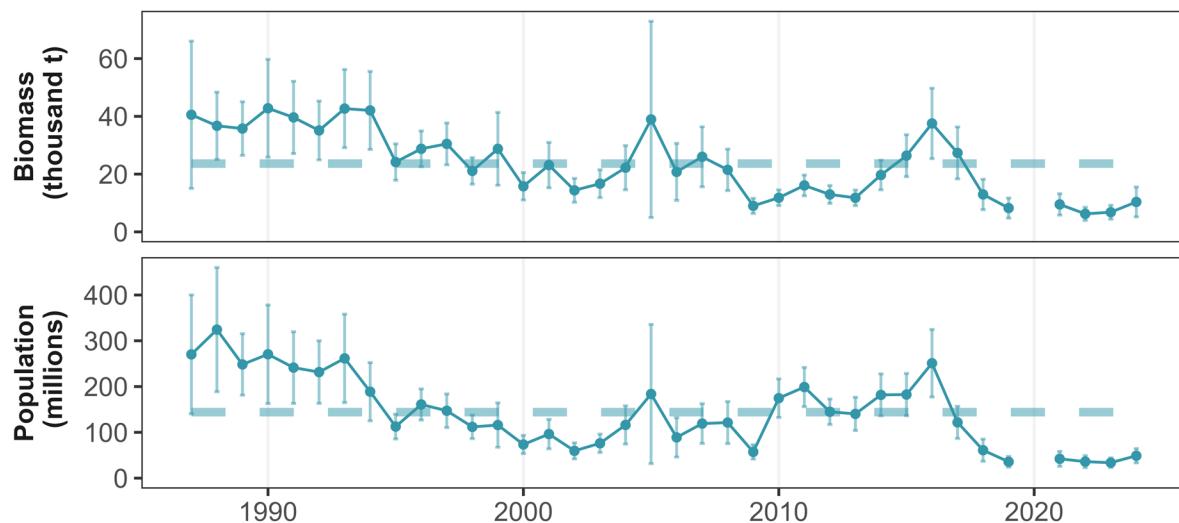
**Table 19.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which arrowtooth flounder (*Atheresthes stomias*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)    | Biomass SD (t) | 95% LCL (t)    | 95% UCL (t)    | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|----------------|----------------|----------------|----------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                |                |                |                |                  |
| 10                              | 74.23                           | 41.22                         | 5,842          | 3,244          | 0              | 12,330         | 11               |
| 20                              | 1.41                            | 1.40                          | 58             | 58             | 0              | 173            | 2                |
| 31                              | 2,306.42                        | 365.60                        | 219,060        | 34,724         | 149,613        | 288,508        | 65               |
| 32                              | 2,522.59                        | 722.10                        | 22,317         | 6,388          | 9,540          | 35,093         | 5                |
| 41                              | 130.07                          | 62.08                         | 8,105          | 3,869          | 368            | 15,842         | 11               |
| 42                              | 1,019.08                        | 305.82                        | 24,582         | 7,377          | 9,829          | 39,336         | 17               |
| 43                              | 29.65                           | 23.54                         | 625            | 496            | 0              | 1,616          | 4                |
| 50                              | 3,382.66                        | 495.19                        | 128,673        | 18,837         | 90,999         | 166,346        | 26               |
| 61                              | 1,939.39                        | 423.24                        | 170,234        | 37,151         | 95,932         | 244,536        | 57               |
| 62                              | 447.01                          | 283.74                        | 2,888          | 1,833          | 0              | 6,555          | 6                |
| 82                              | 2.04                            | 2.04                          | 37             | 37             | 0              | 110            | 1                |
| 90                              | 4.23                            | 4.23                          | 49             | 49             | 0              | 146            | 1                |
| <b>Total</b>                    | <b>1,181.50</b>                 | <b>112.30</b>                 | <b>582,469</b> | <b>55,363</b>  | <b>471,742</b> | <b>693,195</b> | <b>206</b>       |

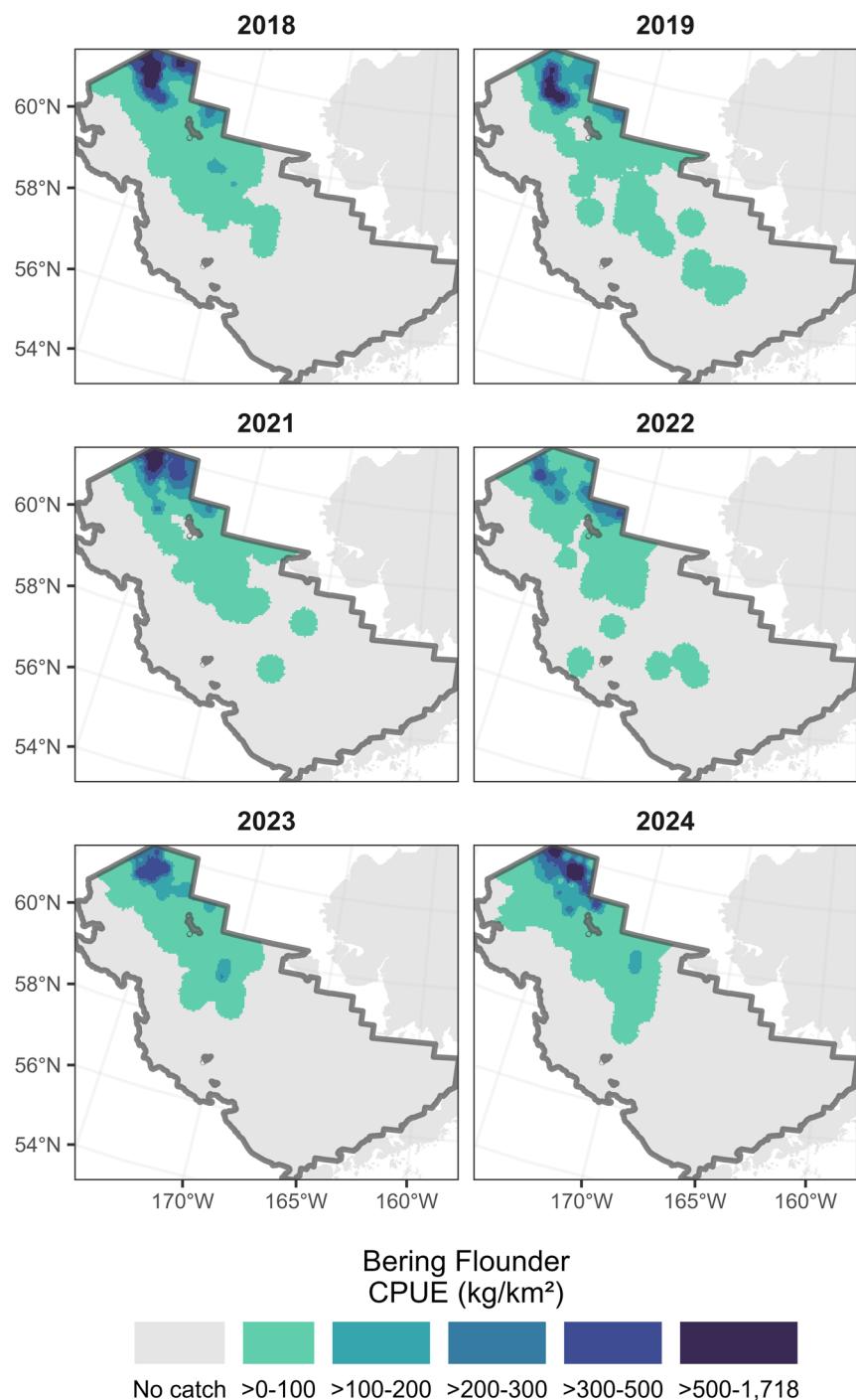
**Table 20.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which arrowtooth flounder (*Atheresthes stomias*) were encountered during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)       | 95% UCL (K)         | Population (K)    | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-------------------|---------------------|-------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                   |                     |                   |                   |                 |
| 10                              | 120.11                          | 77.66                         | 0.00              | 21,677.90           | 9,453.55          | 6,112.18          | 11              |
| 20                              | 2.87                            | 2.24                          | 0.00              | 302.81              | 118.07            | 92.37             | 2               |
| 31                              | 3,674.57                        | 641.95                        | 227,061.36        | 470,948.72          | 349,005.04        | 60,971.84         | 65              |
| 32                              | 4,588.92                        | 1,839.28                      | 8,053.77          | 73,140.12           | 40,596.95         | 16,271.59         | 5               |
| 41                              | 144.96                          | 76.31                         | 0.00              | 18,542.85           | 9,032.62          | 4,755.12          | 11              |
| 42                              | 1,370.40                        | 380.73                        | 14,688.91         | 51,425.07           | 33,056.99         | 9,184.04          | 17              |
| 43                              | 24.48                           | 17.79                         | 0.00              | 1,264.88            | 515.64            | 374.62            | 4               |
| 50                              | 5,857.56                        | 830.03                        | 159,668.31        | 285,962.06          | 222,815.18        | 31,573.44         | 26              |
| 61                              | 2,948.09                        | 919.77                        | 97,304.96         | 420,244.42          | 258,774.69        | 80,734.86         | 57              |
| 62                              | 457.15                          | 306.25                        | 0.00              | 6,911.54            | 2,953.87          | 1,978.84          | 6               |
| 82                              | 1.75                            | 1.75                          | 0.00              | 94.08               | 31.36             | 31.36             | 1               |
| 90                              | 5.31                            | 5.31                          | 0.00              | 183.99              | 61.33             | 61.33             | 1               |
| <b>Total</b>                    | <b>1,879.18</b>                 | <b>218.90</b>                 | <b>710,584.64</b> | <b>1,142,245.91</b> | <b>926,415.27</b> | <b>107,915.32</b> | <b>206</b>      |

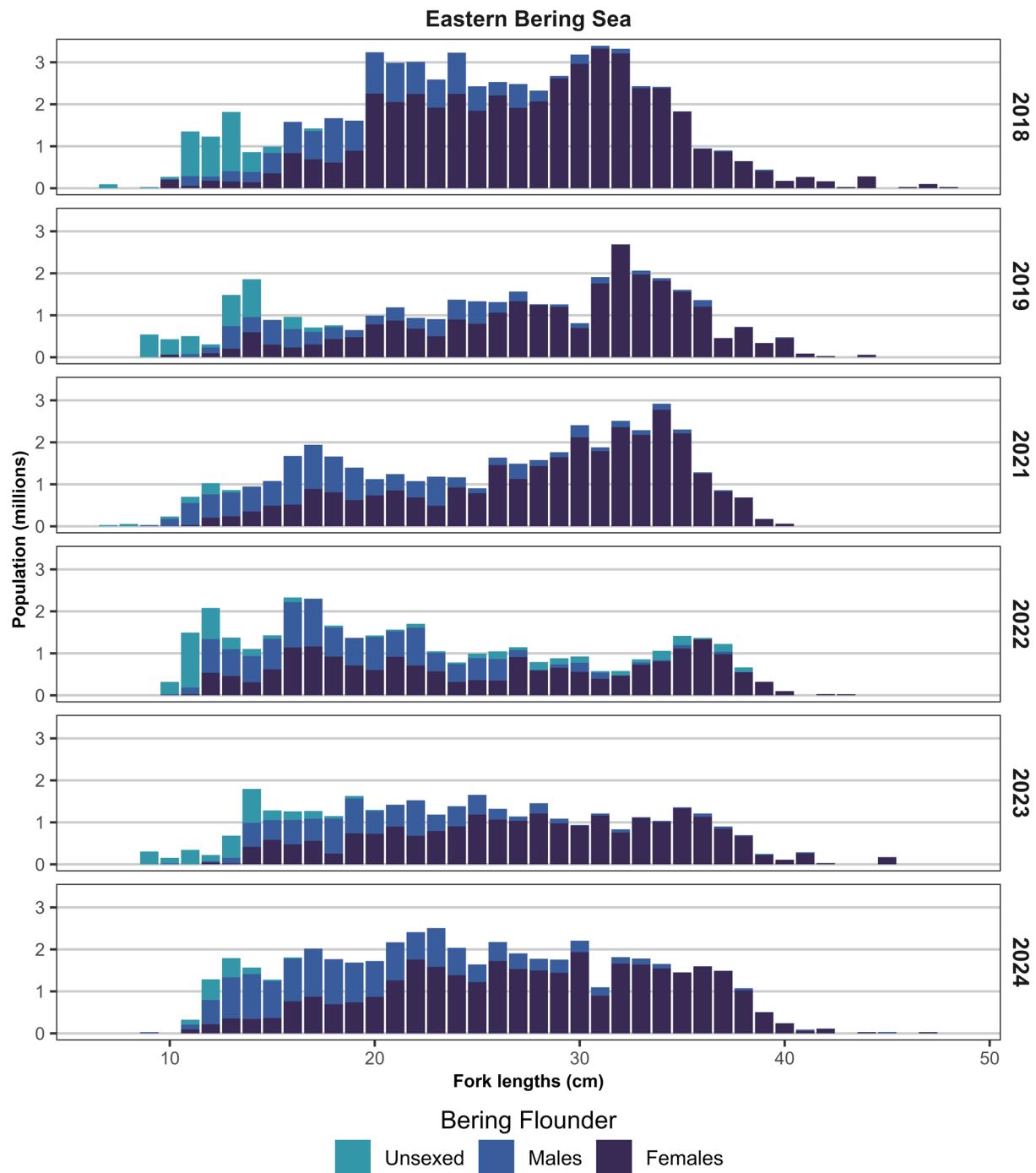
## Bering Flounder (*Hippoglossoides robustus*)


Between 2023 and 2024, the estimated biomass of Bering flounder increased by 52% on the 2024 eastern Bering Sea Shelf survey (Tables 21 and 22; Figs. 24 and 25) and the population was estimated at 48.9 million individuals (Tables 21 and 23; Fig. 24).

In 2024, the distribution of Bering flounder in the eastern Bering Sea was similar to 2023, with all specimens found north of 56°N latitude and west of Nunivak Island in both the middle and inner domains. The highest densities occurred northwest of St. Matthew Island (Fig. 25) in the northernmost portion of the eastern Bering Sea. The 2024 size distribution indicated a higher proportion of juvenile Bering flounder biomass in the eastern Bering Sea compared to 2023. Length modes were 23 cm for males and 30 cm for females. More individuals larger than 30 cm were observed in 2024 than in 2023 (Fig. 26).


Bering flounder and [flathead sole](#) are congeners and can be difficult to distinguish in the field based on morphology. Consequently, the accuracy of their identification in commercial fishery data is unknown and the two species are combined into a single stock assessment by the NPFMC ([Kapur 2023](#)). However, since the survey program has methods to reliably distinguish between the two species, flathead sole and Bering flounder are discussed separately in this report. Despite many similarities, the two species have differing geographic distributions and environmental associations (Figs. 25 and 37). Bering flounder tend to occupy arctic regions and shallow waters, while flathead sole are more subarctic/boreal and found in deeper waters ([Baker and Hollowed 2014](#)).

**Table 21.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Bering flounder (*Hippoglossoides robustus*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 65 of 350 (18.6%)      |
| <b>Bottom Depth (m)</b>          | 43 — 142               |
| <b>Bottom Temperature (°C)</b>   | -1.6 — 2.6             |
| <b>Surface Temperature (°C)</b>  | 2 — 7.7                |
| <b>Population</b>                | 48.9 million           |
| <b>Biomass (t)</b>               | 10,370                 |
| <b>Percent of Total Catch</b>    | 0.1%                   |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 52% increase from 2023 |



**Figure 24.** -- Time series of Bering flounder (*Hippoglossoides robustus*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 25.** -- CPUE (kg/km<sup>2</sup>) distribution of Bering flounder (*Hippoglossoides robustus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.



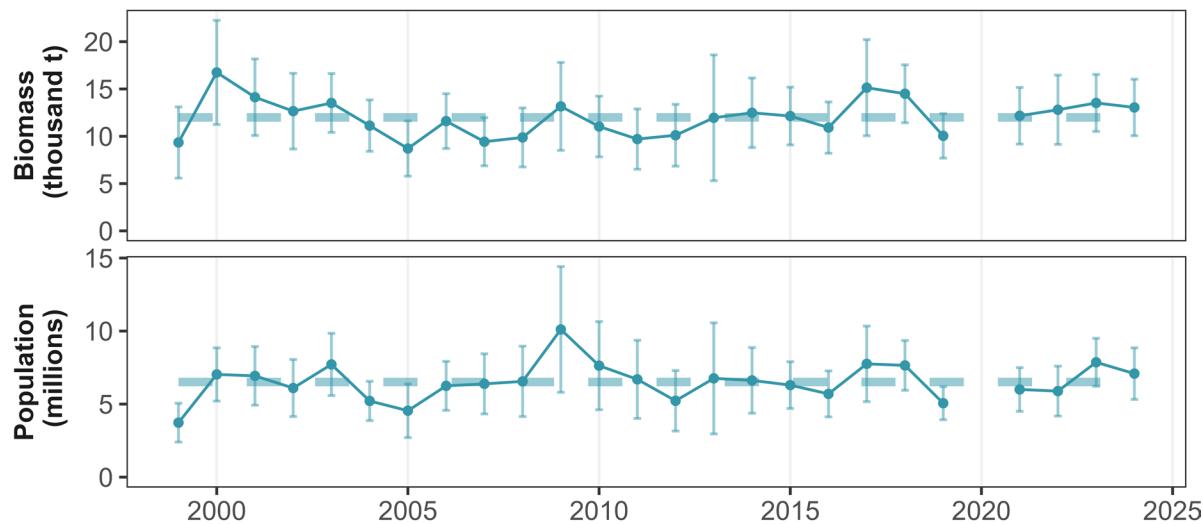
**Figure 26.** -- Total abundance-at-length estimates of Bering flounder (*Hippoglossoides robustus*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

**Table 22.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which Bering flounder (*Hippoglossoides robustus*) were weighed during the 2024 eastern Bering Sea shelf survey.

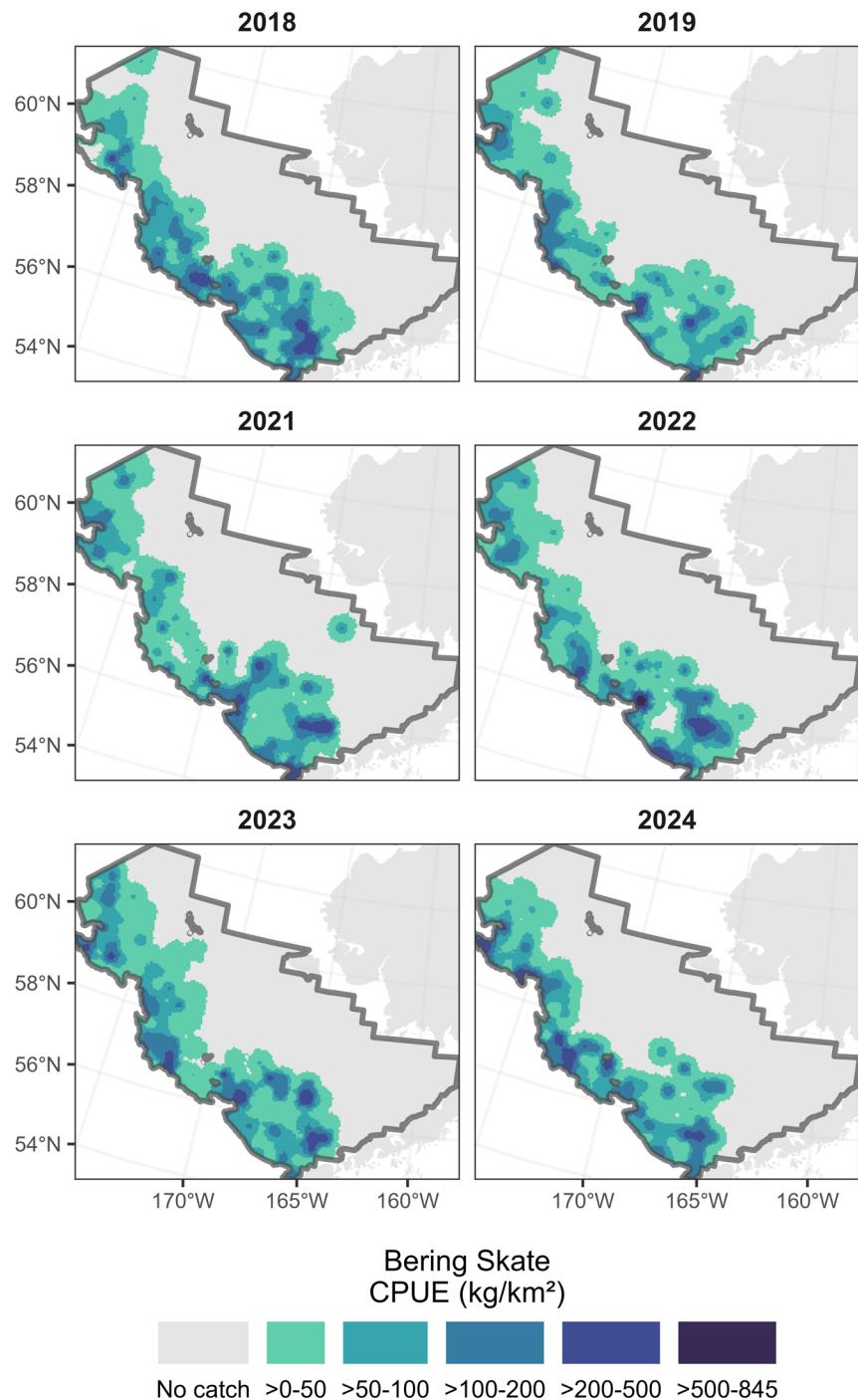
| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)   | Biomass SD (t) | 95% LCL (t)  | 95% UCL (t)   | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|--------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |              |               |                  |
| 10                              | -                               | -                             | -             | -              | -            | -             | -                |
| 20                              | 1.44                            | 0.84                          | 59            | 35             | 0            | 129           | 4                |
| 31                              | -                               | -                             | -             | -              | -            | -             | -                |
| 32                              | -                               | -                             | -             | -              | -            | -             | -                |
| 41                              | 39.65                           | 11.53                         | 2,471         | 718            | 1,034        | 3,907         | 26               |
| 42                              | 0.05                            | 0.05                          | 1             | 1              | 0            | 4             | 1                |
| 43                              | 14.05                           | 5.96                          | 296           | 125            | 45           | 547           | 10               |
| 50                              | -                               | -                             | -             | -              | -            | -             | -                |
| 61                              | 1.01                            | 0.62                          | 89            | 54             | 0            | 198           | 5                |
| 62                              | 6.94                            | 6.94                          | 45            | 45             | 0            | 134           | 1                |
| 82                              | 361.78                          | 135.88                        | 6,495         | 2,439          | 1,616        | 11,374        | 12               |
| 90                              | 79.15                           | 37.61                         | 913           | 434            | 45           | 1,781         | 6                |
| <b>Total</b>                    | <b>21.03</b>                    | <b>5.24</b>                   | <b>10,370</b> | <b>2,584</b>   | <b>5,202</b> | <b>15,538</b> | <b>65</b>        |

**Table 23.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Bering flounder (*Hippoglossoides robustus*) were encountered during the 2024 eastern Bering Sea shelf survey.

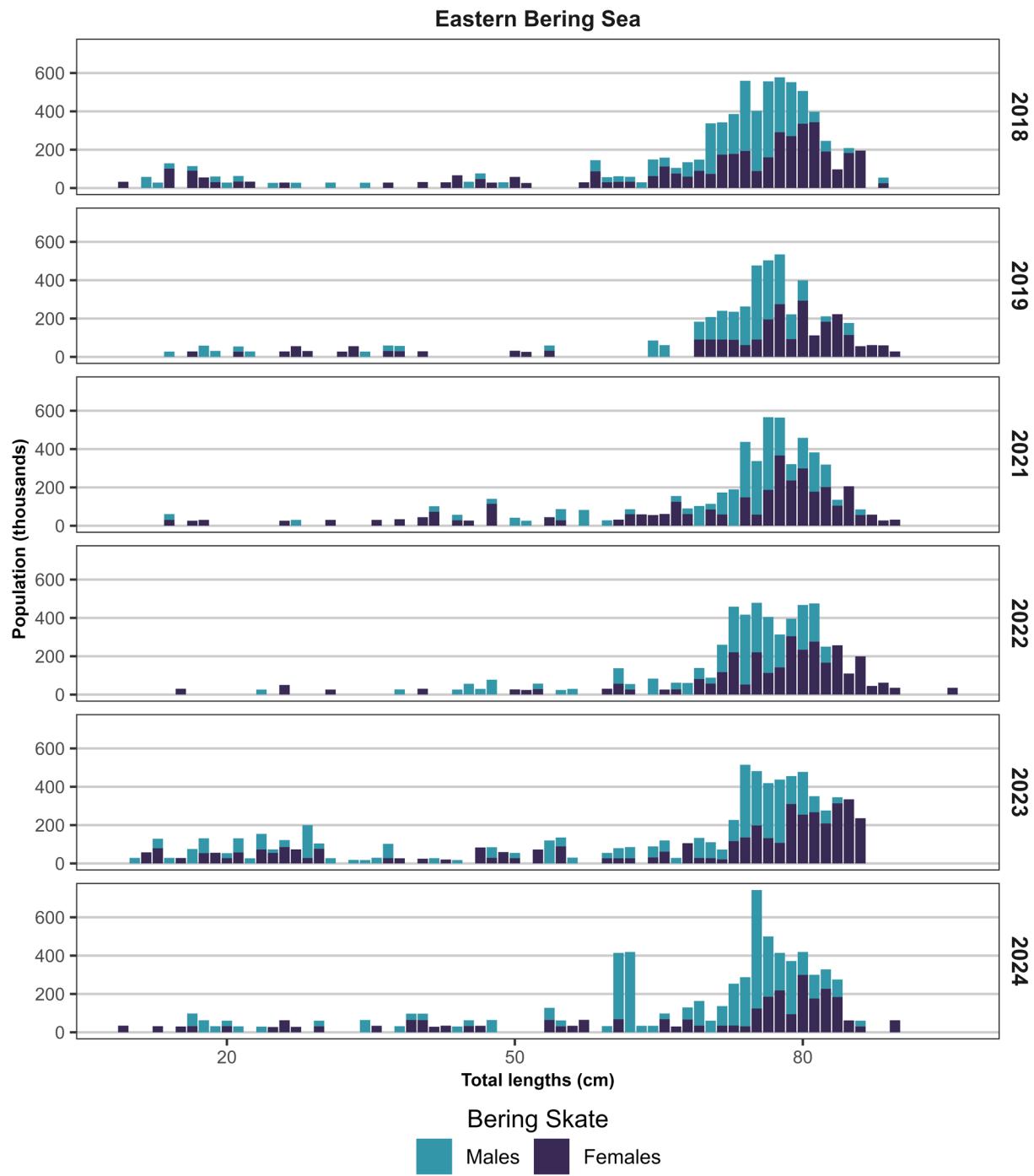
| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)      | 95% UCL (K)      | Population (K)   | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|------------------|------------------|------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                  |                  |                  |                   |                 |
| 10                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 20                              | 13.60                           | 8.95                          | 0.00             | 1,297.71         | 560.07           | 368.82            | 4               |
| 31                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 32                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 41                              | 249.22                          | 56.65                         | 8,469.59         | 22,588.25        | 15,528.92        | 3,529.66          | 26              |
| 42                              | 1.28                            | 1.28                          | 0.00             | 92.74            | 30.91            | 30.91             | 1               |
| 43                              | 95.90                           | 34.45                         | 568.83           | 3,471.25         | 2,020.04         | 725.61            | 10              |
| 50                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 61                              | 5.98                            | 3.58                          | 0.00             | 1,153.72         | 524.60           | 314.56            | 5               |
| 62                              | 38.20                           | 38.20                         | 0.00             | 740.50           | 246.83           | 246.83            | 1               |
| 82                              | 1,344.27                        | 349.65                        | 11,579.47        | 36,689.58        | 24,134.53        | 6,277.53          | 12              |
| 90                              | 508.86                          | 241.54                        | 297.50           | 11,445.98        | 5,871.74         | 2,787.12          | 6               |
| <b>Total</b>                    | <b>99.23</b>                    | <b>15.77</b>                  | <b>33,366.79</b> | <b>64,468.50</b> | <b>48,917.65</b> | <b>7,775.43</b>   | <b>65</b>       |


## Bering Skate (*Bathyraja interrupta*)

Between 2023 and 2024, the estimated biomass of Bering skate decreased by 4% on the 2024 eastern Bering Sea Shelf survey (Tables 24 and 25; Figs. 27 and 28) and the population was estimated at 7.1 million individuals (Tables 24 and 26; Fig. 27).


Length modes of 76 cm for males and 80 cm for females were observed in 2024 (Fig. 29). The survey program adopted methods to reliably distinguish skates in 1999 (note truncated time series in Fig. 27).

**Table 24.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Bering skate (*Bathyraja interrupta*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                       |
|----------------------------------|-----------------------|
| <b>Stations Present</b>          | 74 of 350 (21.1%)     |
| <b>Bottom Depth (m)</b>          | 68 — 192              |
| <b>Bottom Temperature (°C)</b>   | 1 — 5.4               |
| <b>Surface Temperature (°C)</b>  | 4.2 — 8.8             |
| <b>Population</b>                | 7.1 million           |
| <b>Biomass (t)</b>               | 13,048                |
| <b>Percent of Total Catch</b>    | 0.1%                  |
| <b>Biomass</b>                   |                       |
| <b>Percent Change in Biomass</b> | 4% decrease from 2023 |



**Figure 27.** -- Time series of Bering skate (*Bathyraja interrupta*) biomass (thousand t) and population (millions) from the 1999-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 28.** -- CPUE (kg/km<sup>2</sup>) distribution of Bering skate (*Bathyraja interrupta*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

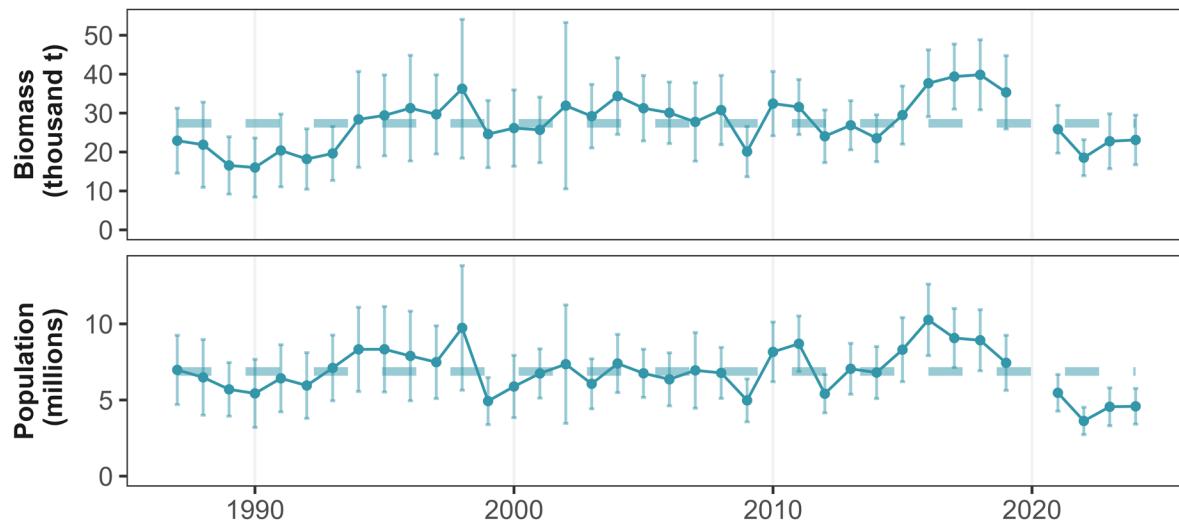


**Figure 29.** -- Total abundance-at-length estimates of Bering skate (*Bathyraja interrupta*) by sex (males and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

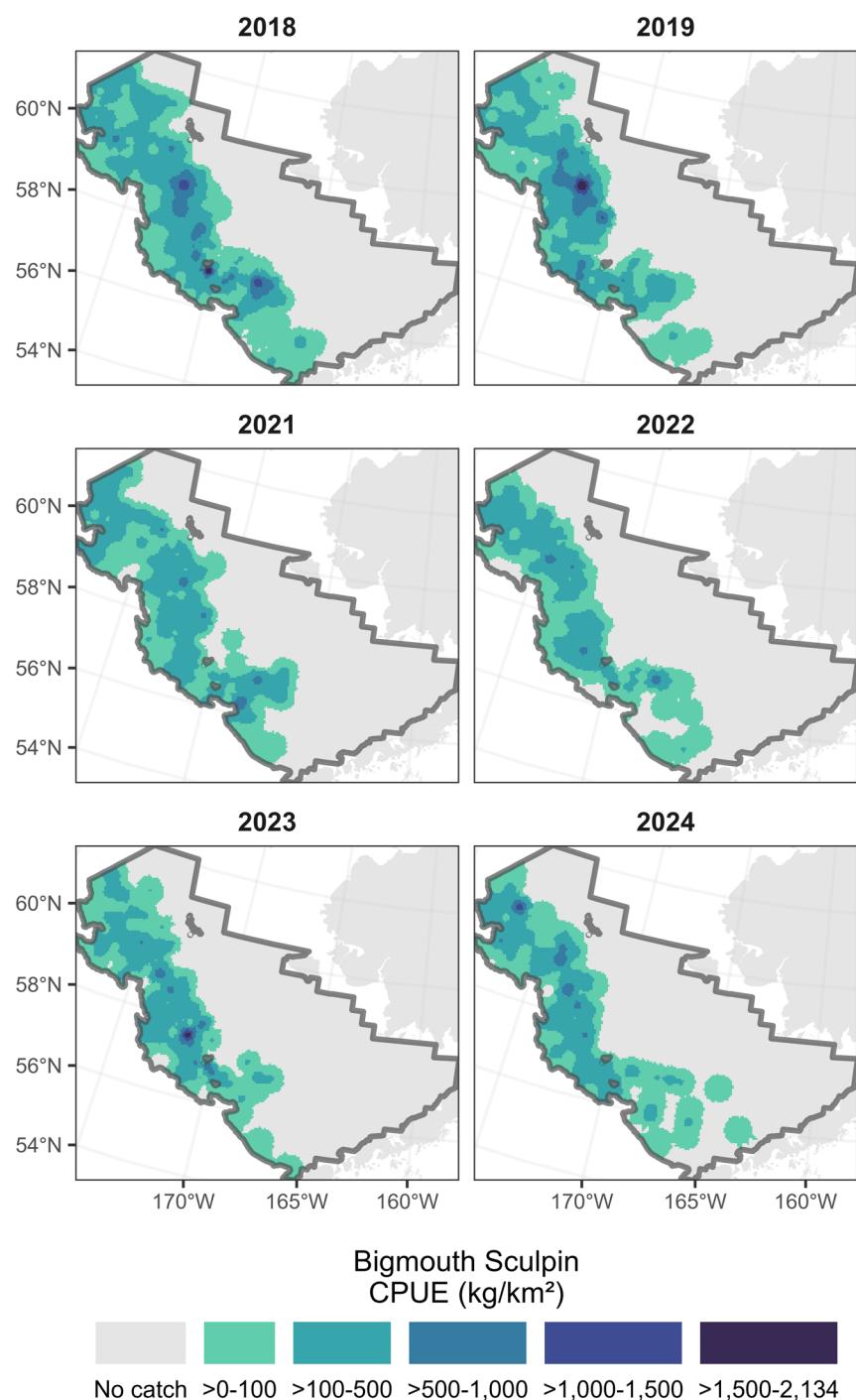
**Table 25.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which Bering skate (*Bathyraja interrupta*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)   | Biomass SD (t) | 95% LCL (t)   | 95% UCL (t)   | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|---------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |               |               |                  |
| 10                              | -                               | -                             | -             | -              | -             | -             | -                |
| 20                              | -                               | -                             | -             | -              | -             | -             | -                |
| 31                              | 24.21                           | 7.01                          | 2,300         | 666            | 968           | 3,631         | 13               |
| 32                              | 21.90                           | 21.90                         | 194           | 194            | 0             | 581           | 1                |
| 41                              | 4.72                            | 4.72                          | 294           | 294            | 0             | 883           | 1                |
| 42                              | 30.91                           | 19.71                         | 746           | 476            | 0             | 1,697         | 3                |
| 43                              | -                               | -                             | -             | -              | -             | -             | -                |
| 50                              | 86.36                           | 15.46                         | 3,285         | 588            | 2,109         | 4,461         | 20               |
| 61                              | 70.98                           | 11.88                         | 6,230         | 1,042          | 4,145         | 8,315         | 36               |
| 62                              | -                               | -                             | -             | -              | -             | -             | -                |
| 82                              | -                               | -                             | -             | -              | -             | -             | -                |
| 90                              | -                               | -                             | -             | -              | -             | -             | -                |
| <b>Total</b>                    | <b>26.47</b>                    | <b>3.03</b>                   | <b>13,048</b> | <b>1,492</b>   | <b>10,064</b> | <b>16,032</b> | <b>74</b>        |

**Table 26.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Bering skate (*Bathyraja interrupta*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)     | 95% UCL (K)     | Population (K)  | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-----------------|-----------------|-----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                 |                 |                 |                   |                 |
| 10                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 20                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 31                              | 11.75                           | 3.38                          | 473.95          | 1,757.96        | 1,115.95        | 321.00            | 13              |
| 32                              | 8.55                            | 8.55                          | 0.00            | 227.01          | 75.67           | 75.67             | 1               |
| 41                              | 1.99                            | 1.99                          | 0.00            | 371.41          | 123.80          | 123.80            | 1               |
| 42                              | 12.58                           | 8.14                          | 0.00            | 696.23          | 303.57          | 196.33            | 3               |
| 43                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 50                              | 53.17                           | 10.99                         | 1,186.01        | 2,858.90        | 2,022.46        | 418.22            | 20              |
| 61                              | 39.25                           | 7.58                          | 2,114.87        | 4,775.78        | 3,445.33        | 665.23            | 36              |
| 62                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 82                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 90                              | -                               | -                             | -               | -               | -               | -                 | -               |
| <b>Total</b>                    | <b>14.38</b>                    | <b>1.79</b>                   | <b>5,320.35</b> | <b>8,853.22</b> | <b>7,086.78</b> | <b>883.22</b>     | <b>74</b>       |

## Bigmouth Sculpin (*Hemitripterus bolini*)


Between 2023 and 2024, the estimated biomass of bigmouth sculpin increased by 2% on the 2024 eastern Bering Sea Shelf survey (Tables 27 and 28; Figs. 30 and 31) and the population was estimated at 4.6 million individuals (Tables 27 and 29; Fig. 30).

**Table 27.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for bigmouth sculpin (*Hemitripterus bolini*) in the eastern Bering Sea shelf survey area.

|                                  | Eastern Bering Sea Shelf |
|----------------------------------|--------------------------|
| <b>Stations Present</b>          | 69 of 350 (19.7%)        |
| <b>Bottom Depth (m)</b>          | 68 — 192                 |
| <b>Bottom Temperature (°C)</b>   | 0.5 — 4.1                |
| <b>Surface Temperature (°C)</b>  | 4.2 — 8.9                |
| <b>Population</b>                | 4.6 million              |
| <b>Biomass (t)</b>               | 23,110                   |
| <b>Percent of Total Catch</b>    | 0.2%                     |
| <b>Biomass</b>                   |                          |
| <b>Percent Change in Biomass</b> | 2% increase from 2023    |



**Figure 30.** -- Time series of bigmouth sculpin (*Hemitripterus bolini*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

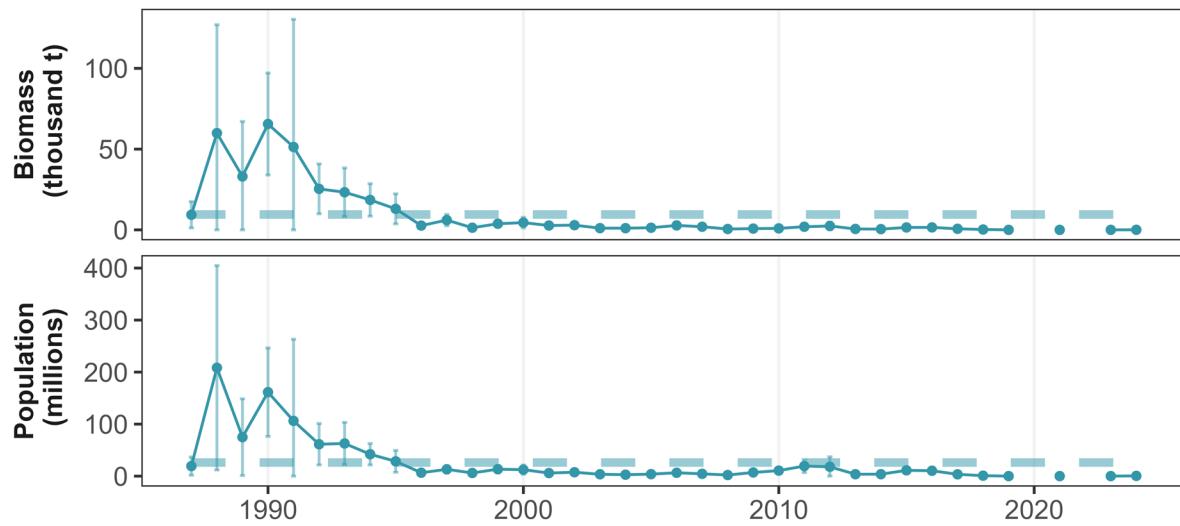


**Figure 31.** -- CPUE (kg/km<sup>2</sup>) distribution of bigmouth sculpin (*Hemitripterus bolini*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

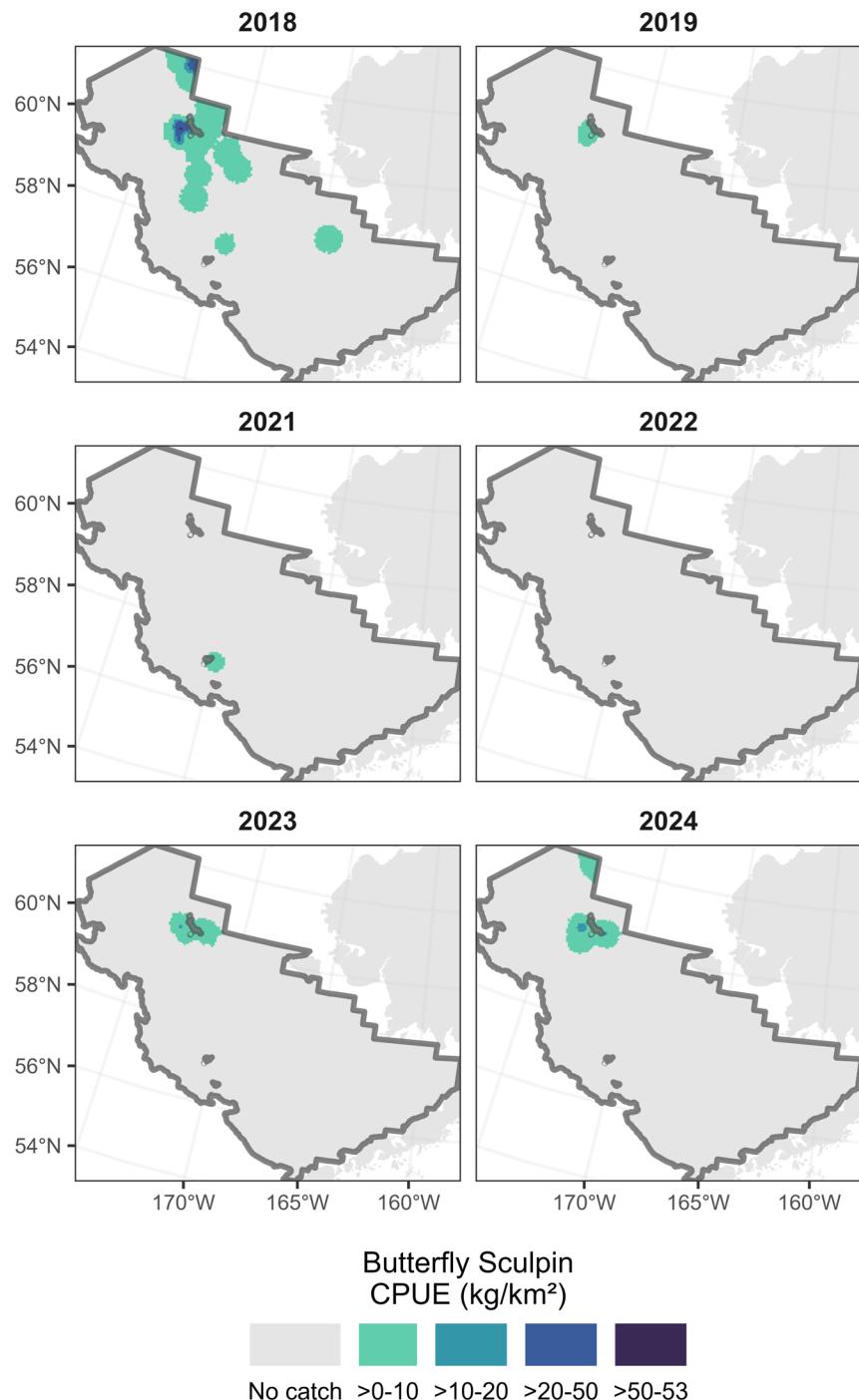
**Table 28.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which bigmouth sculpin (*Hemitripterus bolini*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)   | Biomass SD (t) | 95% LCL (t)   | 95% UCL (t)   | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|---------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |               |               |                  |
| 10                              | -                               | -                             | -             | -              | -             | -             | -                |
| 20                              | -                               | -                             | -             | -              | -             | -             | -                |
| 31                              | 7.72                            | 3.76                          | 733           | 357            | 19            | 1,447         | 7                |
| 32                              | 94.28                           | 43.40                         | 834           | 384            | 66            | 1,602         | 3                |
| 41                              | 38.95                           | 17.71                         | 2,427         | 1,103          | 220           | 4,634         | 6                |
| 42                              | 37.47                           | 21.02                         | 904           | 507            | 0             | 1,918         | 3                |
| 43                              | 33.09                           | 21.25                         | 697           | 448            | 0             | 1,592         | 3                |
| 50                              | 27.87                           | 14.65                         | 1,060         | 557            | 0             | 2,174         | 6                |
| 61                              | 162.77                          | 30.10                         | 14,287        | 2,642          | 9,003         | 19,572        | 36               |
| 62                              | 317.69                          | 147.19                        | 2,053         | 951            | 151           | 3,955         | 4                |
| 82                              | -                               | -                             | -             | -              | -             | -             | -                |
| 90                              | 9.94                            | 9.94                          | 115           | 115            | 0             | 344           | 1                |
| <b>Total</b>                    | <b>46.88</b>                    | <b>6.47</b>                   | <b>23,110</b> | <b>3,187</b>   | <b>16,735</b> | <b>29,485</b> | <b>69</b>        |

**Table 29.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which bigmouth sculpin (*Hemitripterus bolini*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)     | 95% UCL (K)     | Population (K)  | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-----------------|-----------------|-----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                 |                 |                 |                   |                 |
| 10                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 20                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 31                              | 2.95                            | 1.31                          | 31.27           | 529.29          | 280.28          | 124.51            | 7               |
| 32                              | 17.95                           | 8.47                          | 8.89            | 308.63          | 158.76          | 74.94             | 3               |
| 41                              | 6.25                            | 2.69                          | 53.45           | 725.12          | 389.29          | 167.92            | 6               |
| 42                              | 7.35                            | 3.99                          | 0.00            | 369.78          | 177.31          | 96.23             | 3               |
| 43                              | 8.55                            | 4.76                          | 0.00            | 380.61          | 180.11          | 100.25            | 3               |
| 50                              | 6.78                            | 2.72                          | 51.17           | 464.49          | 257.83          | 103.33            | 6               |
| 61                              | 31.46                           | 5.61                          | 1,775.62        | 3,746.81        | 2,761.22        | 492.80            | 36              |
| 62                              | 54.25                           | 22.88                         | 54.82           | 646.25          | 350.53          | 147.86            | 4               |
| 82                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 90                              | 2.58                            | 2.58                          | 0.00            | 89.14           | 29.71           | 29.71             | 1               |
| <b>Total</b>                    | <b>9.30</b>                     | <b>1.19</b>                   | <b>3,410.49</b> | <b>5,759.61</b> | <b>4,585.05</b> | <b>587.28</b>     | <b>69</b>       |

## Butterfly Sculpin (*Hemilepidotus papilio*)


Between 2023 and 2024, the estimated biomass of butterfly sculpin increased to 47 t, extrapolated from 9 individuals caught on the 2024 eastern Bering Sea Shelf survey (Tables 30 and 31; Figs. 32 and 33) and the population was estimated at 451,777 individuals (Tables 30 and 32; Fig. 32).

**Table 30.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for butterfly sculpin (*Hemilepidotus papilio*) in the eastern Bering Sea shelf survey area.

| Eastern Bering Sea Shelf        |                                           |
|---------------------------------|-------------------------------------------|
| <b>Stations Present</b>         | 4 of 350 (1.1%)                           |
| <b>Bottom Depth (m)</b>         | 59 — 75                                   |
| <b>Bottom Temperature (°C)</b>  | -1.6 — 0.6                                |
| <b>Surface Temperature (°C)</b> | 3.8 — 6.1                                 |
| <b>Population</b>               | 451,777                                   |
| <b>Biomass (t)</b>              | 47                                        |
| <b>Percent of Total Catch</b>   | <0.01%                                    |
| <b>Biomass</b>                  |                                           |
| <b>Survey catch totals</b>      | Increased from 3 to 9 individuals in 2024 |



**Figure 32.** -- Time series of butterfly sculpin (*Hemilepidotus papilio*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

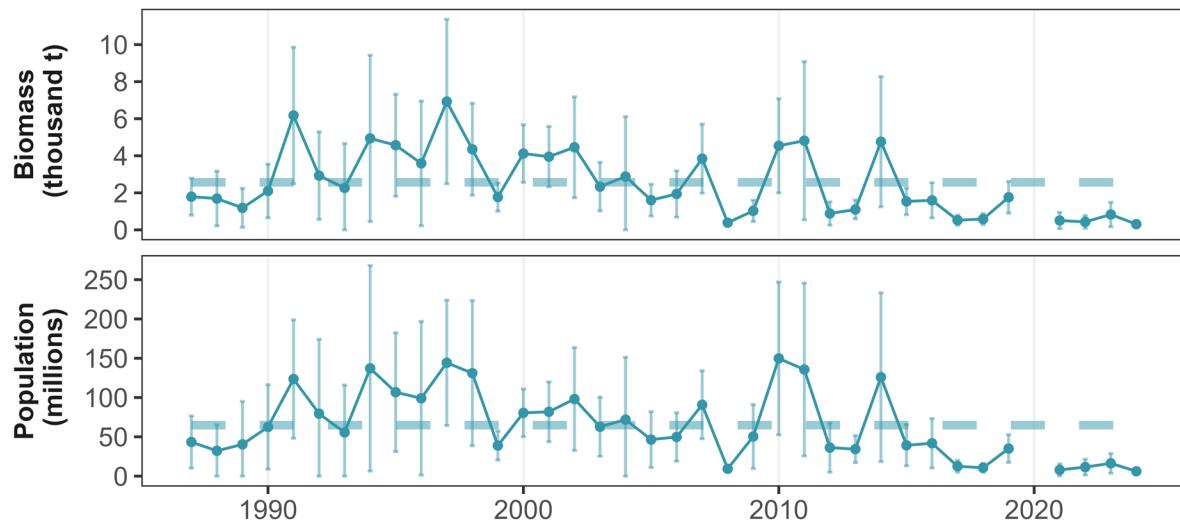


**Figure 33.** -- CPUE (kg/km<sup>2</sup>) distribution of butterfly sculpin (*Hemilepidotus papilio*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

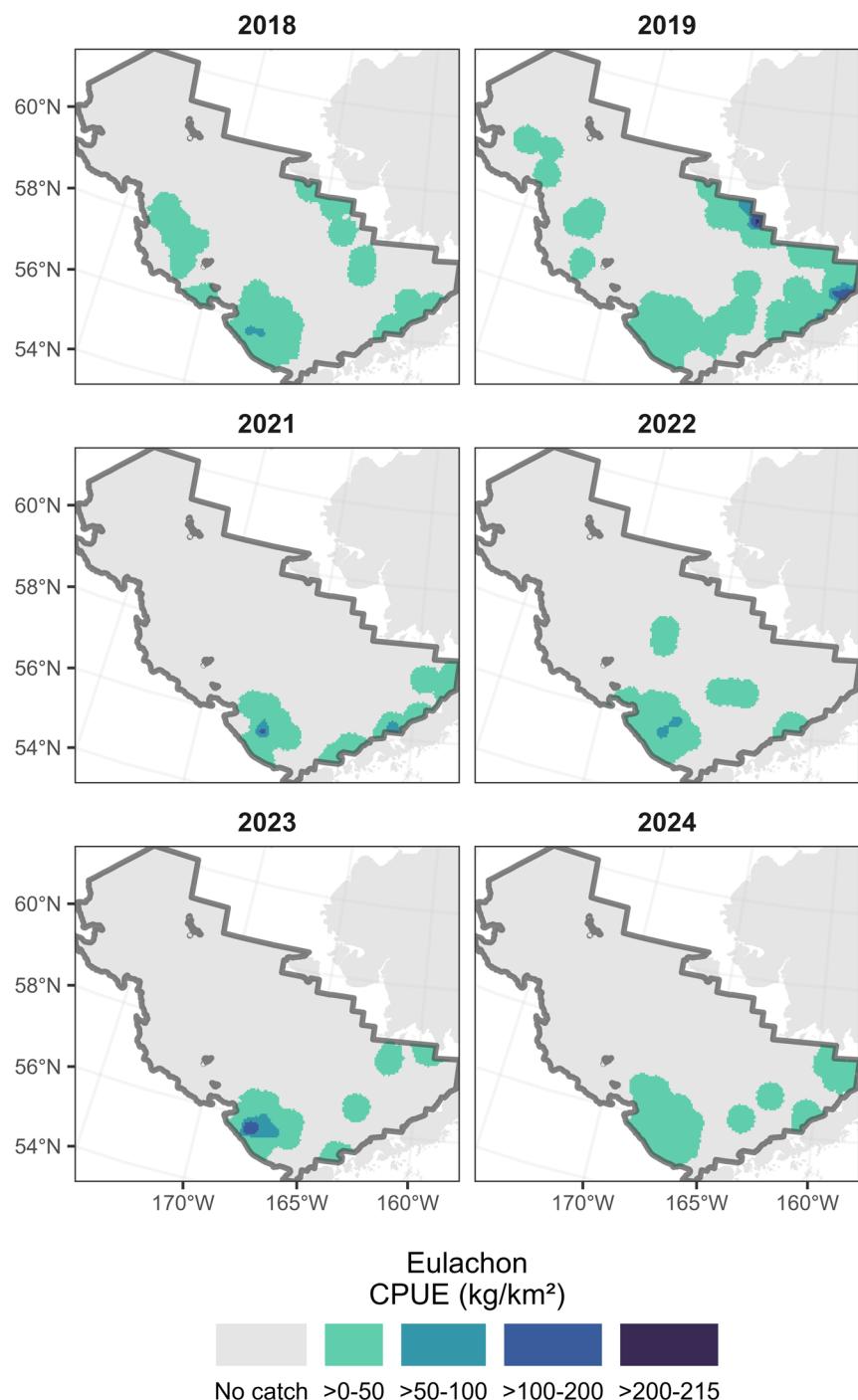
**Table 31.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which butterfly sculpin (*Hemilepidotus papilio*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t) | Biomass SD (t) | 95% LCL (t) | 95% UCL (t) | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|-------------|----------------|-------------|-------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |                |             |             |                  |
| 10                              | -                               | -                             | -           | -              | -           | -           | -                |
| 20                              | -                               | -                             | -           | -              | -           | -           | -                |
| 31                              | -                               | -                             | -           | -              | -           | -           | -                |
| 32                              | -                               | -                             | -           | -              | -           | -           | -                |
| 41                              | -                               | -                             | -           | -              | -           | -           | -                |
| 42                              | -                               | -                             | -           | -              | -           | -           | -                |
| 43                              | 2.19                            | 1.31                          | 46          | 28             | 0           | 101         | 3                |
| 50                              | -                               | -                             | -           | -              | -           | -           | -                |
| 61                              | -                               | -                             | -           | -              | -           | -           | -                |
| 62                              | -                               | -                             | -           | -              | -           | -           | -                |
| 82                              | 0.04                            | 0.04                          | 1           | 1              | 0           | 2           | 1                |
| 90                              | -                               | -                             | -           | -              | -           | -           | -                |
| <b>Total</b>                    | <b>0.10</b>                     | <b>0.06</b>                   | <b>47</b>   | <b>28</b>      | <b>0</b>    | <b>102</b>  | <b>4</b>         |

**Table 32.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which butterfly sculpin (*Hemilepidotus papilio*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K) | 95% UCL (K)   | Population (K) | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-------------|---------------|----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |               |                |                   |                 |
| 10                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 20                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 31                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 32                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 41                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 42                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 43                              | 19.86                           | 11.89                         | 0.00        | 919.31        | 418.41         | 250.45            | 3               |
| 50                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 61                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 62                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 82                              | 1.86                            | 1.86                          | 0.00        | 100.09        | 33.36          | 33.36             | 1               |
| 90                              | -                               | -                             | -           | -             | -              | -                 | -               |
| <b>Total</b>                    | <b>0.92</b>                     | <b>0.51</b>                   | <b>0.00</b> | <b>957.10</b> | <b>451.78</b>  | <b>252.66</b>     | <b>4</b>        |

## Eulachon (*Thaleichthys pacificus*)


Between 2023 and 2024, the estimated biomass of eulachon decreased by 63% on the 2024 eastern Bering Sea Shelf survey (Tables 33 and 34; Figs. 34 and 35) and the population was estimated at 6.2 million individuals (Tables 33 and 35; Fig. 34).

**Table 33.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for eulachon (*Thaleichthys pacificus*) in the eastern Bering Sea shelf survey area.

|                                  | Eastern Bering Sea Shelf |
|----------------------------------|--------------------------|
| <b>Stations Present</b>          | 24 of 350 (6.9%)         |
| <b>Bottom Depth (m)</b>          | 43 — 155                 |
| <b>Bottom Temperature (°C)</b>   | 2 — 4.2                  |
| <b>Surface Temperature (°C)</b>  | 2.1 — 8.8                |
| <b>Population</b>                | 6.2 million              |
| <b>Biomass (t)</b>               | 308                      |
| <b>Percent of Total Catch</b>    | <0.01%                   |
| <b>Biomass</b>                   |                          |
| <b>Percent Change in Biomass</b> | 63% decrease from 2023   |



**Figure 34.** -- Time series of eulachon (*Thaleichthys pacificus*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 35.** -- CPUE (kg/km<sup>2</sup>) distribution of eulachon (*Thaleichthys pacificus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

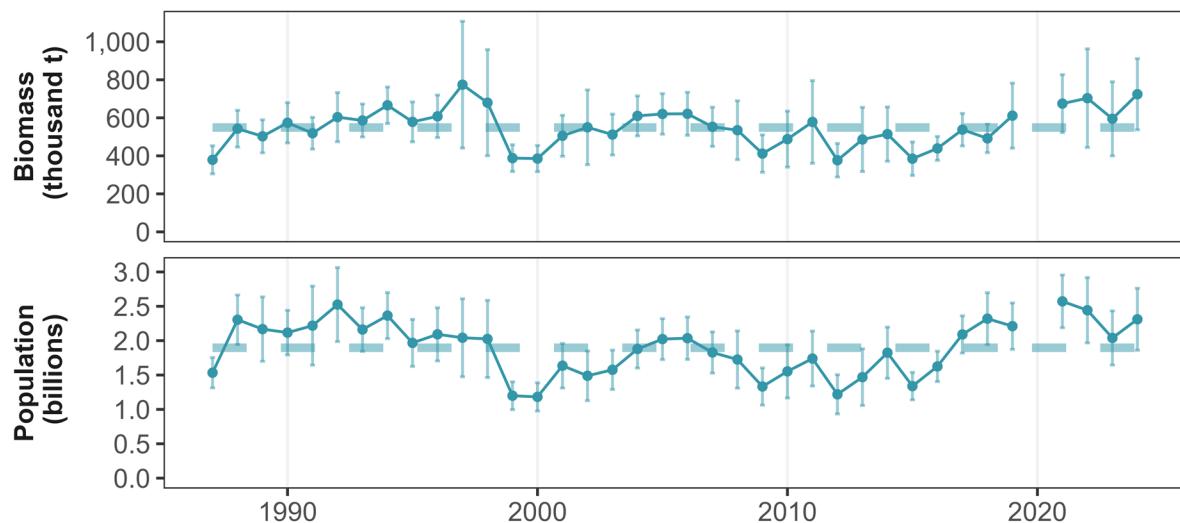
**Table 34.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which eulachon (*Thaleichthys pacificus*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t) | Biomass SD (t) | 95% LCL (t) | 95% UCL (t) | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|-------------|----------------|-------------|-------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |                |             |             |                  |
| 10                              | 0.12                            | 0.09                          | 10          | 7              | 0           | 24          | 2                |
| 20                              | -                               | -                             | -           | -              | -           | -           | -                |
| 31                              | 0.55                            | 0.31                          | 52          | 29             | 0           | 110         | 6                |
| 32                              | -                               | -                             | -           | -              | -           | -           | -                |
| 41                              | -                               | -                             | -           | -              | -           | -           | -                |
| 42                              | -                               | -                             | -           | -              | -           | -           | -                |
| 43                              | -                               | -                             | -           | -              | -           | -           | -                |
| 50                              | 6.45                            | 1.75                          | 245         | 66             | 113         | 378         | 16               |
| 61                              | -                               | -                             | -           | -              | -           | -           | -                |
| 62                              | -                               | -                             | -           | -              | -           | -           | -                |
| 82                              | -                               | -                             | -           | -              | -           | -           | -                |
| 90                              | -                               | -                             | -           | -              | -           | -           | -                |
| <b>Total</b>                    | <b>0.62</b>                     | <b>0.15</b>                   | <b>308</b>  | <b>73</b>      | <b>162</b>  | <b>453</b>  | <b>24</b>        |

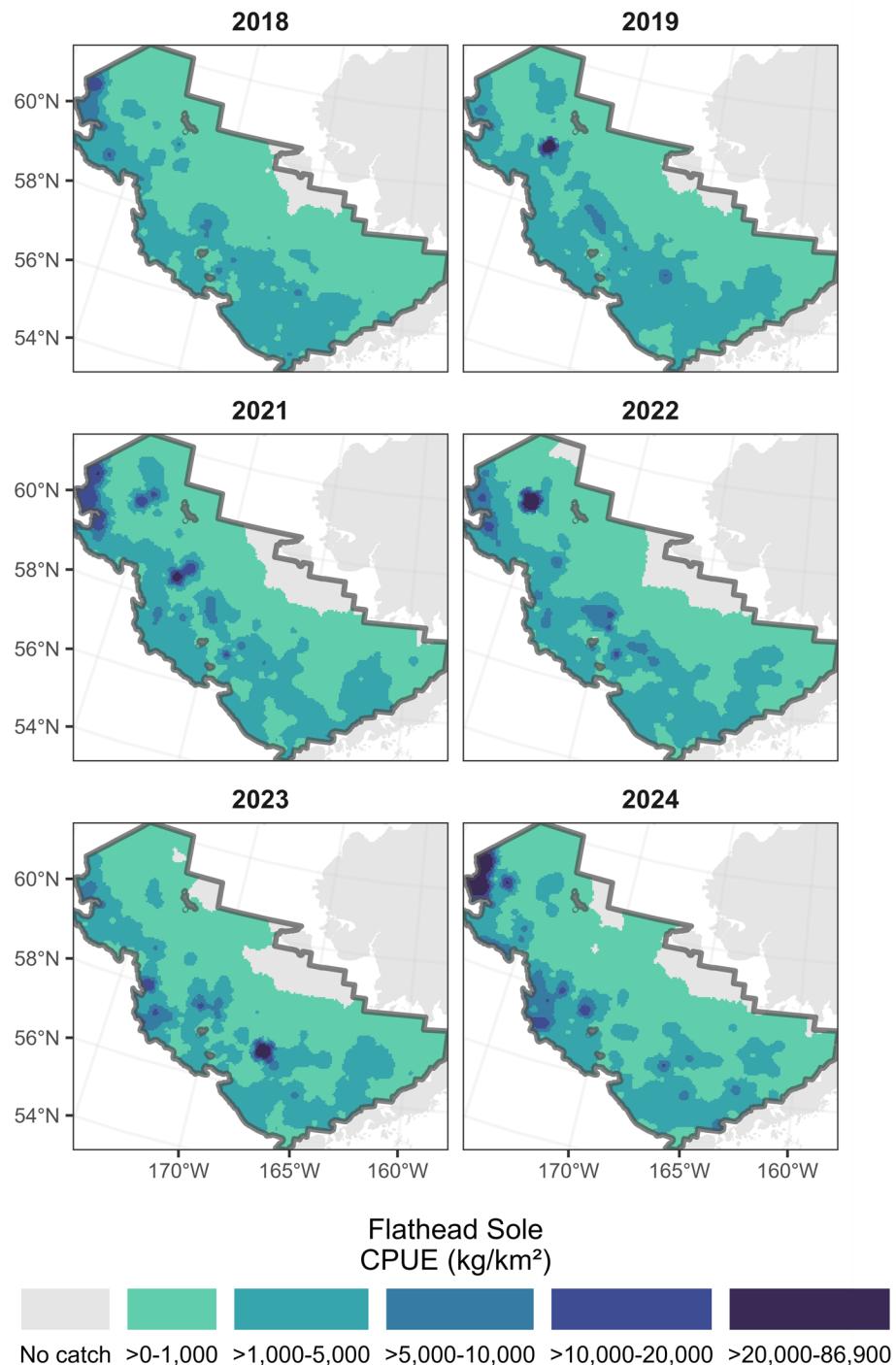
**Table 35.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which eulachon (*Thaleichthys pacificus*) were encountered during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)     | 95% UCL (K)     | Population (K)  | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-----------------|-----------------|-----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                 |                 |                 |                   |                 |
| 10                              | 3.27                            | 2.61                          | 0.00            | 667.78          | 257.63          | 205.08            | 2               |
| 20                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 31                              | 7.62                            | 4.94                          | 0.00            | 1,662.05        | 723.44          | 469.31            | 6               |
| 32                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 41                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 42                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 43                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 50                              | 136.30                          | 37.88                         | 2,302.61        | 8,066.80        | 5,184.71        | 1,441.05          | 16              |
| 61                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 62                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 82                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 90                              | -                               | -                             | -               | -               | -               | -                 | -               |
| <b>Total</b>                    | <b>12.51</b>                    | <b>3.10</b>                   | <b>3,107.06</b> | <b>9,224.48</b> | <b>6,165.77</b> | <b>1,529.36</b>   | <b>24</b>       |

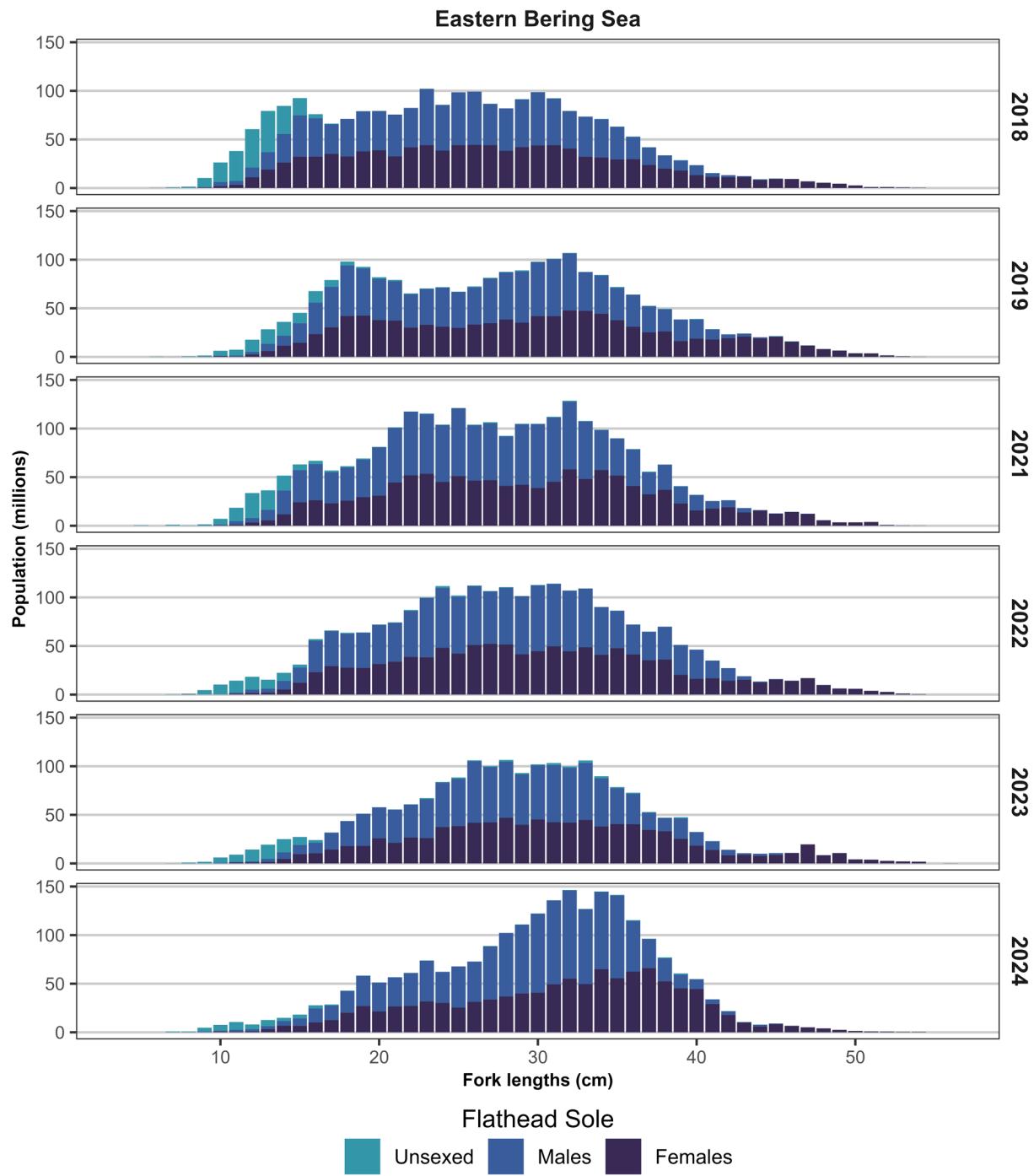
## Flathead Sole (*Hippoglossoides elassodon*)


Between 2023 and 2024, the estimated biomass of flathead sole increased by 22% on the 2024 eastern Bering Sea Shelf survey (Tables 36 and 37; Figs. 36 and 37) and the population was estimated at 2.3 billion individuals (Tables 36 and 38; Fig. 36).

In 2024, flathead sole were found at higher densities in the deeper water of the outer shelf, with the highest concentration located in the northwestern area of the outer domain (Fig. 37). The size distribution of flathead sole was more unimodal than previous years, with most males observed at approximately 32 cm and females observed at 37 cm (Fig. 38).


As previously mentioned, flathead sole and [Bering flounder](#) are congeneric ([Yang 1988](#)), and the program has methods to reliably distinguish between the two species. However, the accuracy of their identification in commercial fishery data is unknown and the two species are combined into a single stock assessment by the NPFMC ([Kapur 2023](#)). While the two species co-occur (Figs. 25 and 37), Bering flounder tend to inhabit shallower arctic regions, while flathead sole are found in deeper and more subarctic/boreal waters ([Baker and Hollowed 2014](#)).

**Table 36.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for flathead sole (*Hippoglossoides elassodon*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 285 of 350 (81.4%)     |
| <b>Bottom Depth (m)</b>          | 31 — 192               |
| <b>Bottom Temperature (°C)</b>   | -0.7 — 5.4             |
| <b>Surface Temperature (°C)</b>  | 2 — 8.9                |
| <b>Population</b>                | 2.3 billion            |
| <b>Biomass (t)</b>               | 723,996                |
| <b>Percent of Total Catch</b>    | 4.8%                   |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 22% increase from 2023 |



**Figure 36.** -- Time series of flathead sole (*Hippoglossoides elassodon*) biomass (thousand t) and population (billions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 37.** -- CPUE (kg/km<sup>2</sup>) distribution of flathead sole (*Hippoglossoides elassodon*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

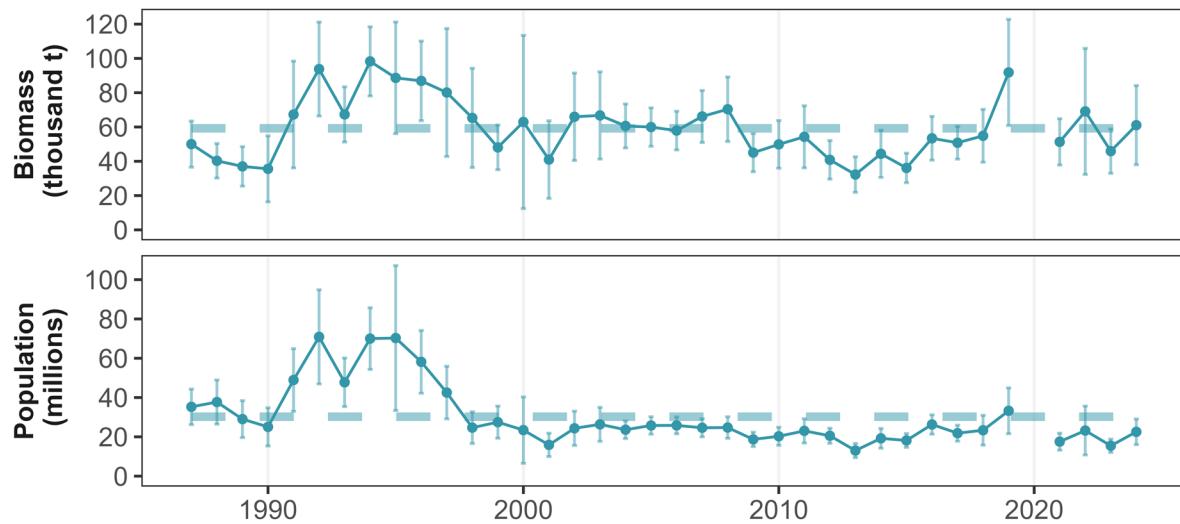


**Figure 38.** -- Total abundance-at-length estimates of flathead sole (*Hippoglossoides elassodon*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018–2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

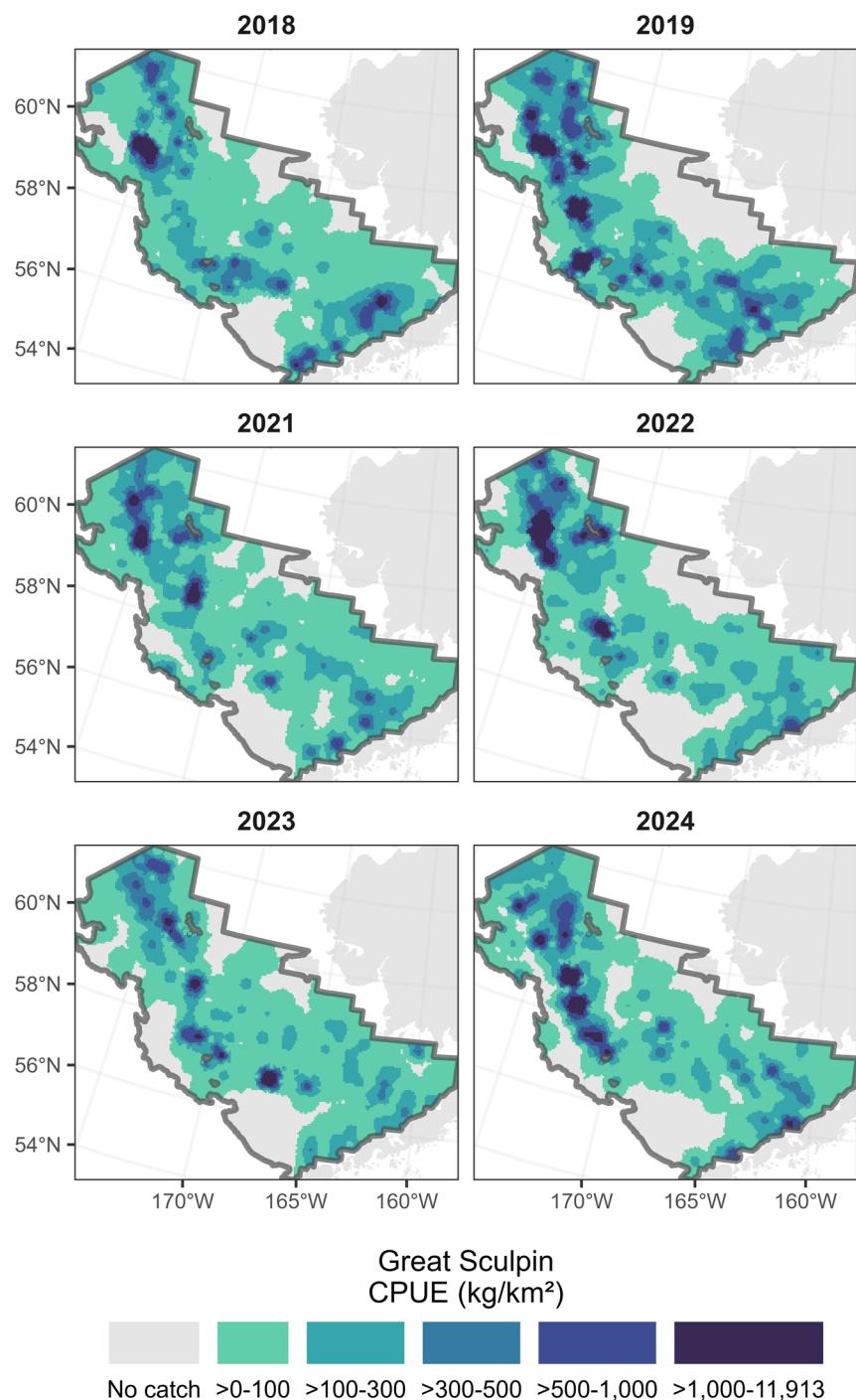
**Table 37.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which flathead sole (*Hippoglossoides elassodon*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)    | Biomass SD (t) | 95% LCL (t)    | 95% UCL (t)    | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|----------------|----------------|----------------|----------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                |                |                |                |                  |
| 10                              | 289.17                          | 52.21                         | 22,759         | 4,109          | 14,541         | 30,977         | 34               |
| 20                              | 20.86                           | 7.38                          | 859            | 304            | 251            | 1,467          | 14               |
| 31                              | 1,645.34                        | 249.10                        | 156,272        | 23,660         | 108,953        | 203,591        | 69               |
| 32                              | 1,123.22                        | 556.80                        | 9,937          | 4,926          | 85             | 19,788         | 5                |
| 41                              | 314.72                          | 91.25                         | 19,610         | 5,686          | 8,239          | 30,981         | 28               |
| 42                              | 2,642.85                        | 938.44                        | 63,751         | 22,637         | 18,477         | 109,026        | 16               |
| 43                              | 245.14                          | 203.20                        | 5,163          | 4,280          | 0              | 13,724         | 10               |
| 50                              | 1,310.43                        | 132.17                        | 49,847         | 5,028          | 39,792         | 59,902         | 26               |
| 61                              | 4,423.33                        | 991.59                        | 388,267        | 87,039         | 214,189        | 562,344        | 60               |
| 62                              | 479.92                          | 446.93                        | 3,101          | 2,888          | 0              | 8,877          | 6                |
| 82                              | 151.03                          | 37.61                         | 2,711          | 675            | 1,361          | 4,062          | 9                |
| 90                              | 148.80                          | 39.78                         | 1,717          | 459            | 799            | 2,635          | 8                |
| <b>Total</b>                    | <b>1,468.58</b>                 | <b>190.00</b>                 | <b>723,996</b> | <b>93,670</b>  | <b>536,655</b> | <b>911,336</b> | <b>285</b>       |

**Table 38.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (millions) with SD (thousands), 95% lower (LCL; millions) and upper (UCL; millions) confidence limits, and number of hauls in which flathead sole (*Hippoglossoides elassodon*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (M)     | 95% UCL (M)     | Population (M)  | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-----------------|-----------------|-----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                 |                 |                 |                   |                 |
| 10                              | 544.15                          | 102.81                        | 26.64           | 59.01           | 42.83           | 8,091.85          | 34              |
| 20                              | 42.99                           | 12.77                         | 0.72            | 2.82            | 1.77            | 525.98            | 14              |
| 31                              | 5,376.59                        | 860.25                        | 347.25          | 674.07          | 510.66          | 81,704.94         | 69              |
| 32                              | 3,442.77                        | 1,477.09                      | 4.32            | 56.59           | 30.46           | 13,067.39         | 5               |
| 41                              | 707.87                          | 218.12                        | 16.93           | 71.29           | 44.11           | 13,591.11         | 28              |
| 42                              | 5,916.98                        | 2,054.08                      | 43.63           | 241.83          | 142.73          | 49,548.85         | 16              |
| 43                              | 716.41                          | 584.59                        | 0.00            | 39.72           | 15.09           | 12,313.69         | 10              |
| 50                              | 8,582.19                        | 1,019.58                      | 248.89          | 404.02          | 326.46          | 38,783.60         | 25              |
| 61                              | 13,438.20                       | 2,264.64                      | 782.00          | 1,577.13        | 1,179.56        | 198,783.35        | 60              |
| 62                              | 1,024.00                        | 927.78                        | 0.00            | 18.61           | 6.62            | 5,994.87          | 6               |
| 82                              | 308.95                          | 75.08                         | 2.85            | 8.24            | 5.55            | 1,348.00          | 9               |
| 90                              | 456.19                          | 137.68                        | 2.09            | 8.44            | 5.26            | 1,588.71          | 8               |
| <b>Total</b>                    | <b>4,687.91</b>                 | <b>457.02</b>                 | <b>1,860.48</b> | <b>2,761.70</b> | <b>2,311.09</b> | <b>225,306.26</b> | <b>284</b>      |

## Great Sculpin (*Myoxocephalus polyacanthocephalus*)


Between 2023 and 2024, the estimated biomass of great sculpin increased by 33% on the 2024 eastern Bering Sea Shelf survey (Tables 39 and 40; Figs. 39 and 40) and the population was estimated at 22.6 million individuals (Tables 39 and 41; Fig. 39).

**Table 39.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for great sculpin (*Myoxocephalus polyacanthocephalus*) in the eastern Bering Sea shelf survey area.

| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 163 of 350 (46.6%)     |
| <b>Bottom Depth (m)</b>          | 23 — 176               |
| <b>Bottom Temperature (°C)</b>   | -0.7 — 4.7             |
| <b>Surface Temperature (°C)</b>  | 2.1 — 8.8              |
| <b>Population</b>                | 22.6 million           |
| <b>Biomass (t)</b>               | 61,076                 |
| <b>Percent of Total Catch</b>    | 0.4%                   |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 33% increase from 2023 |



**Figure 39.** -- Time series of great sculpin (*Myoxocephalus polyacanthocephalus*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



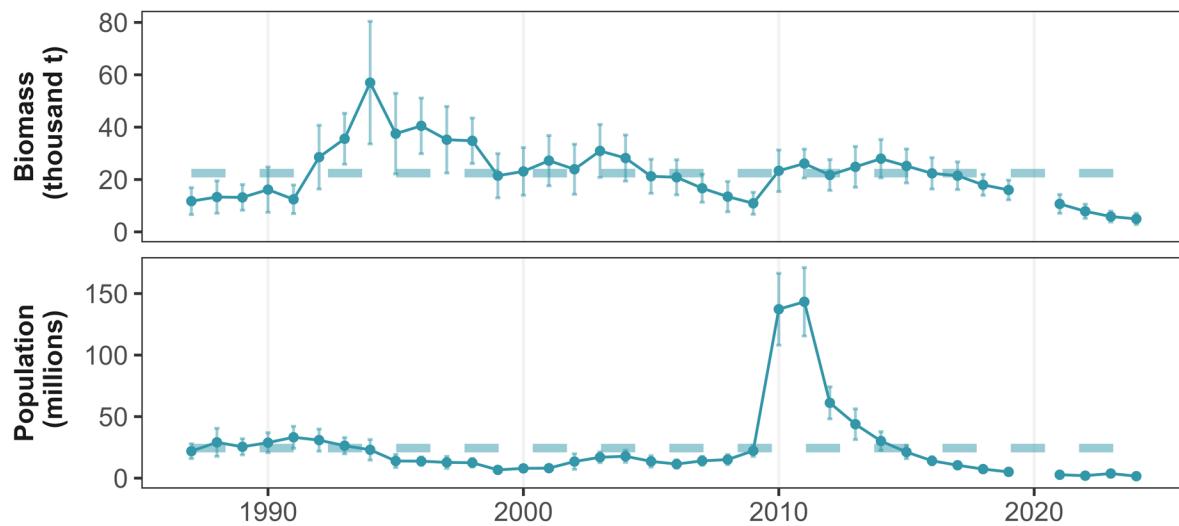
**Figure 40.** -- CPUE (kg/km<sup>2</sup>) distribution of great sculpin (*Myoxocephalus polyacanthocephalus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

**Table 40.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which great sculpin (*Myoxocephalus polyacanthocephalus*) were weighed during the 2024 eastern Bering Sea shelf survey.

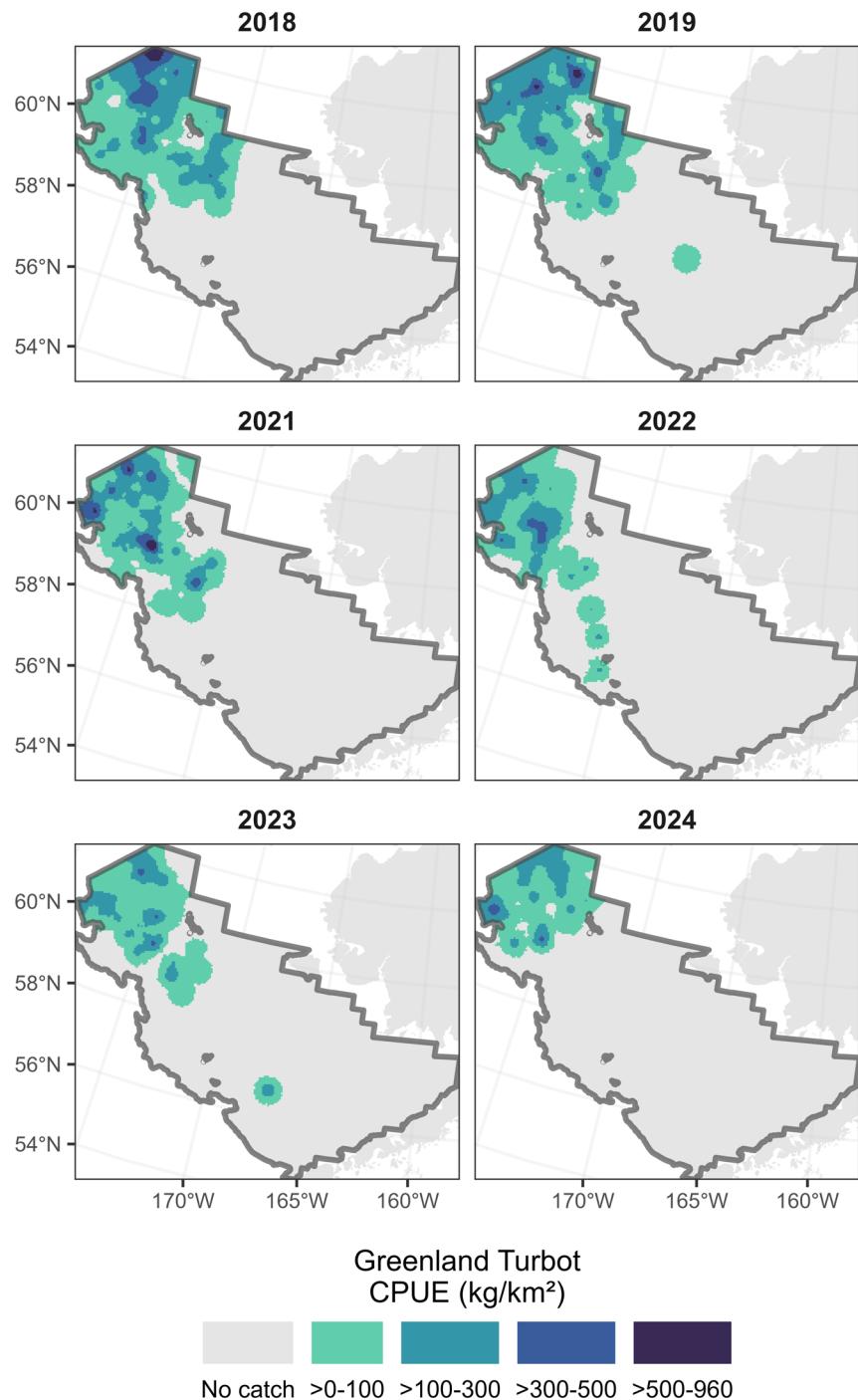
| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)   | Biomass SD (t) | 95% LCL (t)   | 95% UCL (t)   | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|---------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |               |               |                  |
| 10                              | 83.41                           | 26.43                         | 6,565         | 2,081          | 2,404         | 10,726        | 37               |
| 20                              | 11.23                           | 3.74                          | 462           | 154            | 154           | 771           | 10               |
| 31                              | 91.43                           | 19.16                         | 8,684         | 1,820          | 5,044         | 12,323        | 35               |
| 32                              | 55.88                           | 29.77                         | 494           | 263            | 0             | 1,021         | 3                |
| 41                              | 112.92                          | 38.09                         | 7,036         | 2,373          | 2,290         | 11,783        | 16               |
| 42                              | 224.48                          | 101.42                        | 5,415         | 2,446          | 522           | 10,308        | 11               |
| 43                              | 199.20                          | 93.26                         | 4,196         | 1,964          | 267           | 8,125         | 10               |
| 50                              | 7.46                            | 7.46                          | 284           | 284            | 0             | 851           | 1                |
| 61                              | 268.33                          | 119.04                        | 23,553        | 10,449         | 2,655         | 44,451        | 20               |
| 62                              | 244.29                          | 90.14                         | 1,579         | 582            | 414           | 2,743         | 5                |
| 82                              | 86.82                           | 34.28                         | 1,559         | 615            | 328           | 2,790         | 7                |
| 90                              | 108.34                          | 28.04                         | 1,250         | 324            | 603           | 1,897         | 8                |
| <b>Total</b>                    | <b>123.89</b>                   | <b>23.42</b>                  | <b>61,076</b> | <b>11,545</b>  | <b>37,986</b> | <b>84,167</b> | <b>163</b>       |

**Table 41.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which great sculpin (*Myoxocephalus polyacanthocephalus*) were encountered during the 2024 eastern Bering Sea shelf survey.

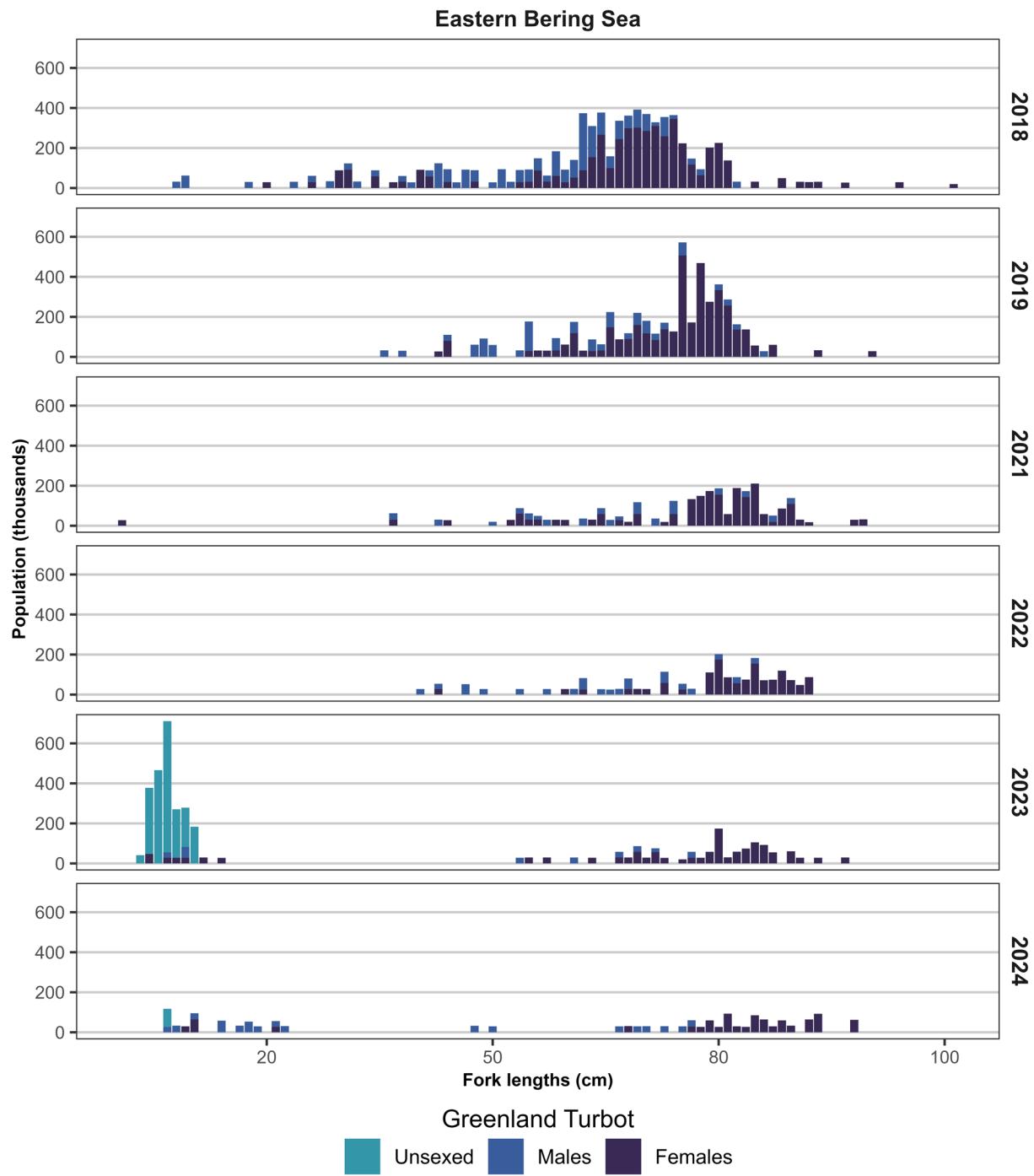
| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)      | 95% UCL (K)      | Population (K)   | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|------------------|------------------|------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                  |                  |                  |                   |                 |
| 10                              | 49.16                           | 11.20                         | 2,105.96         | 5,632.02         | 3,868.99         | 881.51            | 37              |
| 20                              | 11.76                           | 3.61                          | 187.44           | 781.49           | 484.46           | 148.51            | 10              |
| 31                              | 37.63                           | 7.55                          | 2,140.63         | 5,007.37         | 3,574.00         | 716.68            | 35              |
| 32                              | 22.08                           | 9.81                          | 21.79            | 368.84           | 195.31           | 86.76             | 3               |
| 41                              | 37.18                           | 12.34                         | 779.54           | 3,853.94         | 2,316.74         | 768.60            | 16              |
| 42                              | 52.74                           | 21.42                         | 238.64           | 2,305.62         | 1,272.13         | 516.74            | 11              |
| 43                              | 79.13                           | 24.39                         | 639.49           | 2,694.21         | 1,666.85         | 513.68            | 10              |
| 50                              | 4.32                            | 4.32                          | 0.00             | 492.57           | 164.19           | 164.19            | 1               |
| 61                              | 75.17                           | 32.24                         | 938.78           | 12,256.98        | 6,597.88         | 2,829.55          | 20              |
| 62                              | 69.32                           | 21.62                         | 168.49           | 727.32           | 447.90           | 139.71            | 5               |
| 82                              | 46.16                           | 14.98                         | 290.88           | 1,366.55         | 828.71           | 268.92            | 7               |
| 90                              | 98.30                           | 19.25                         | 690.07           | 1,578.58         | 1,134.33         | 222.13            | 8               |
| <b>Total</b>                    | <b>45.74</b>                    | <b>6.61</b>                   | <b>16,034.92</b> | <b>29,068.06</b> | <b>22,551.49</b> | <b>3,258.28</b>   | <b>163</b>      |


## Greenland Turbot (*Reinhardtius hippoglossoides*)

Between 2023 and 2024, the estimated biomass of Greenland turbot decreased to 4,959 t, extrapolated from 53 individuals caught on the 2024 eastern Bering Sea Shelf survey (Tables 42 and 43; Figs. 41 and 42) and the population was estimated at 1.6 million individuals (Tables 42 and 44; Fig. 41).


In 2024, Greenland turbot were encountered exclusively in the northwest portion of the middle and outer domains near the U.S.-Russia Maritime Boundary (Fig. 42). Greenland turbot are typically most abundant on the upper continental slope outside of the standard eastern Bering Sea shelf survey area, although juveniles may spend several years on the continental shelf before moving to deeper water (Sohn et al. 2010, Vestfals et al. 2016). Length modes for Greenland turbot are difficult to distinguish, though appear to be 20 and 70 cm for males and 80-85 cm for females in 2024 (Fig. 43).

**Table 42.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Greenland turbot (*Reinhardtius hippoglossoides*) in the eastern Bering Sea shelf survey area.


|                          | Eastern Bering Sea Shelf                     |
|--------------------------|----------------------------------------------|
| Stations Present         | 26 of 350 (7.4%)                             |
| Bottom Depth (m)         | 73 — 147                                     |
| Bottom Temperature (°C)  | -0.2 — 2.1                                   |
| Surface Temperature (°C) | 5.8 — 8.9                                    |
| Population               | 1.6 million                                  |
| Biomass (t)              | 4,959                                        |
| Percent of Total Catch   | <0.01%                                       |
| Biomass                  |                                              |
| Survey catch totals      | Decreased from 130 to 53 individuals in 2024 |



**Figure 41.** -- Time series of Greenland turbot (*Reinhardtius hippoglossoides*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 42.** -- CPUE (kg/km<sup>2</sup>) distribution of Greenland turbot (*Reinhardtius hippoglossoides*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.



**Figure 43.** -- Total abundance-at-length estimates of Greenland turbot (*Reinhardtius hippoglossoides*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

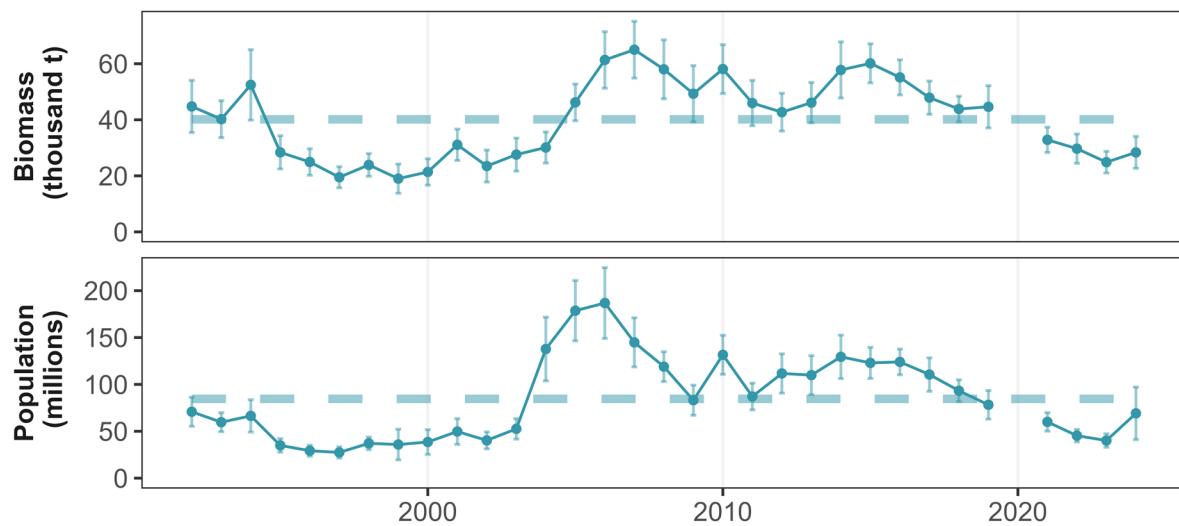
**Table 43.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which Greenland turbot (*Reinhardtius hippoglossoides*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)  | Biomass SD (t) | 95% LCL (t)  | 95% UCL (t)  | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|--------------|----------------|--------------|--------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |              |                |              |              |                  |
| 10                              | -                               | -                             | -            | -              | -            | -            | -                |
| 20                              | -                               | -                             | -            | -              | -            | -            | -                |
| 31                              | -                               | -                             | -            | -              | -            | -            | -                |
| 32                              | -                               | -                             | -            | -              | -            | -            | -                |
| 41                              | 5.82                            | 4.13                          | 363          | 257            | 0            | 877          | 3                |
| 42                              | -                               | -                             | -            | -              | -            | -            | -                |
| 43                              | 0.11                            | 0.11                          | 2            | 2              | 0            | 7            | 1                |
| 50                              | -                               | -                             | -            | -              | -            | -            | -                |
| 61                              | 24.17                           | 9.67                          | 2,122        | 849            | 424          | 3,819        | 8                |
| 62                              | -                               | -                             | -            | -              | -            | -            | -                |
| 82                              | 77.06                           | 28.10                         | 1,383        | 505            | 374          | 2,393        | 8                |
| 90                              | 94.39                           | 32.01                         | 1,089        | 369            | 350          | 1,828        | 6                |
| <b>Total</b>                    | <b>10.06</b>                    | <b>2.20</b>                   | <b>4,959</b> | <b>1,085</b>   | <b>2,789</b> | <b>7,130</b> | <b>26</b>        |

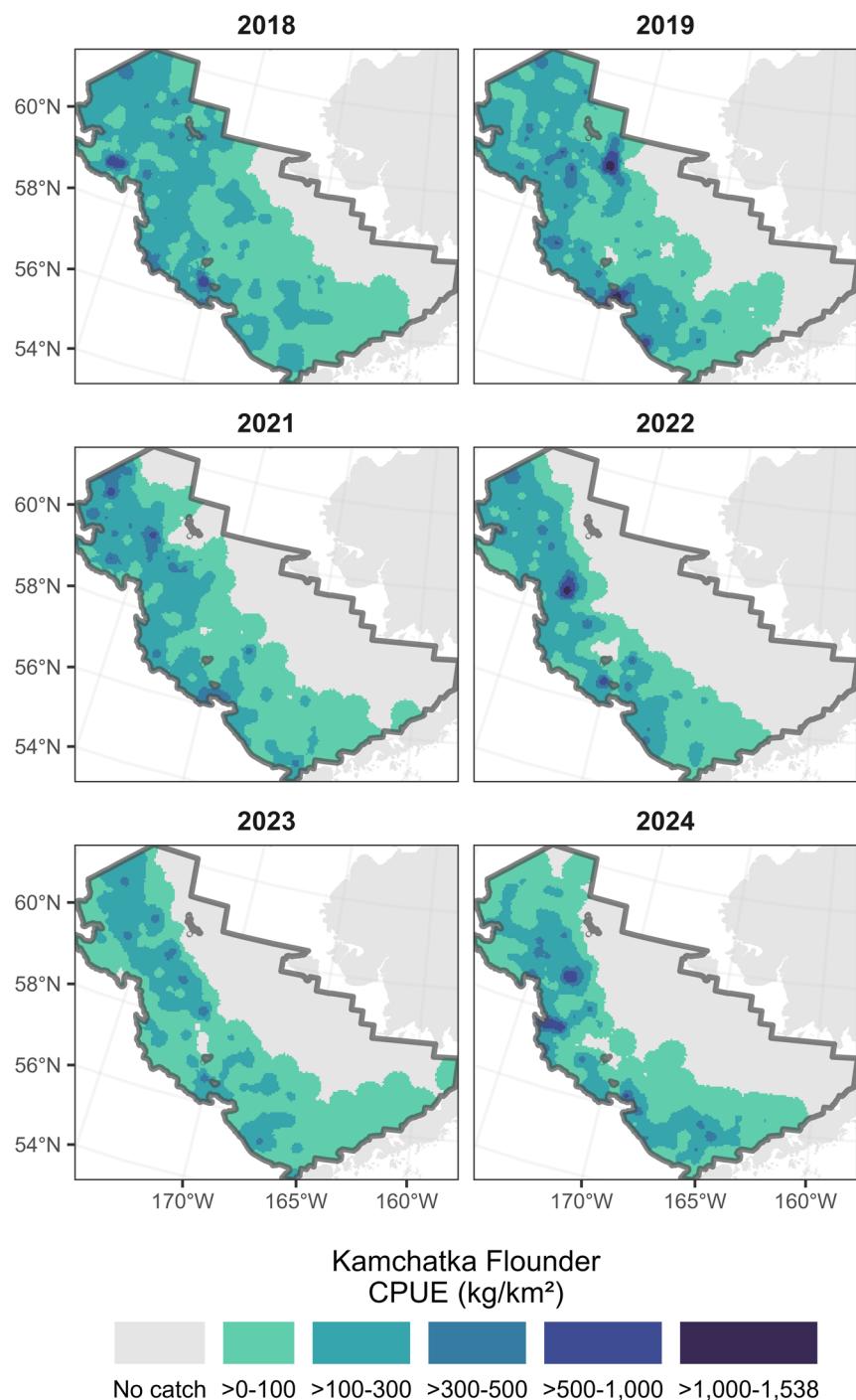
**Table 44.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Greenland turbot (*Reinhardtius hippoglossoides*) were encountered during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)     | 95% UCL (K)     | Population (K)  | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-----------------|-----------------|-----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                 |                 |                 |                   |                 |
| 10                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 20                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 31                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 32                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 41                              | 2.96                            | 1.83                          | 0.00            | 412.28          | 184.72          | 113.78            | 3               |
| 42                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 43                              | 1.57                            | 1.57                          | 0.00            | 99.51           | 33.17           | 33.17             | 1               |
| 50                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 61                              | 4.63                            | 1.90                          | 73.11           | 739.70          | 406.40          | 166.65            | 8               |
| 62                              | -                               | -                             | -               | -               | -               | -                 | -               |
| 82                              | 33.94                           | 9.81                          | 257.15          | 961.43          | 609.29          | 176.07            | 8               |
| 90                              | 31.29                           | 8.70                          | 160.34          | 561.73          | 361.03          | 100.35            | 6               |
| <b>Total</b>                    | <b>3.23</b>                     | <b>0.58</b>                   | <b>1,018.81</b> | <b>2,170.42</b> | <b>1,594.62</b> | <b>287.90</b>     | <b>26</b>       |

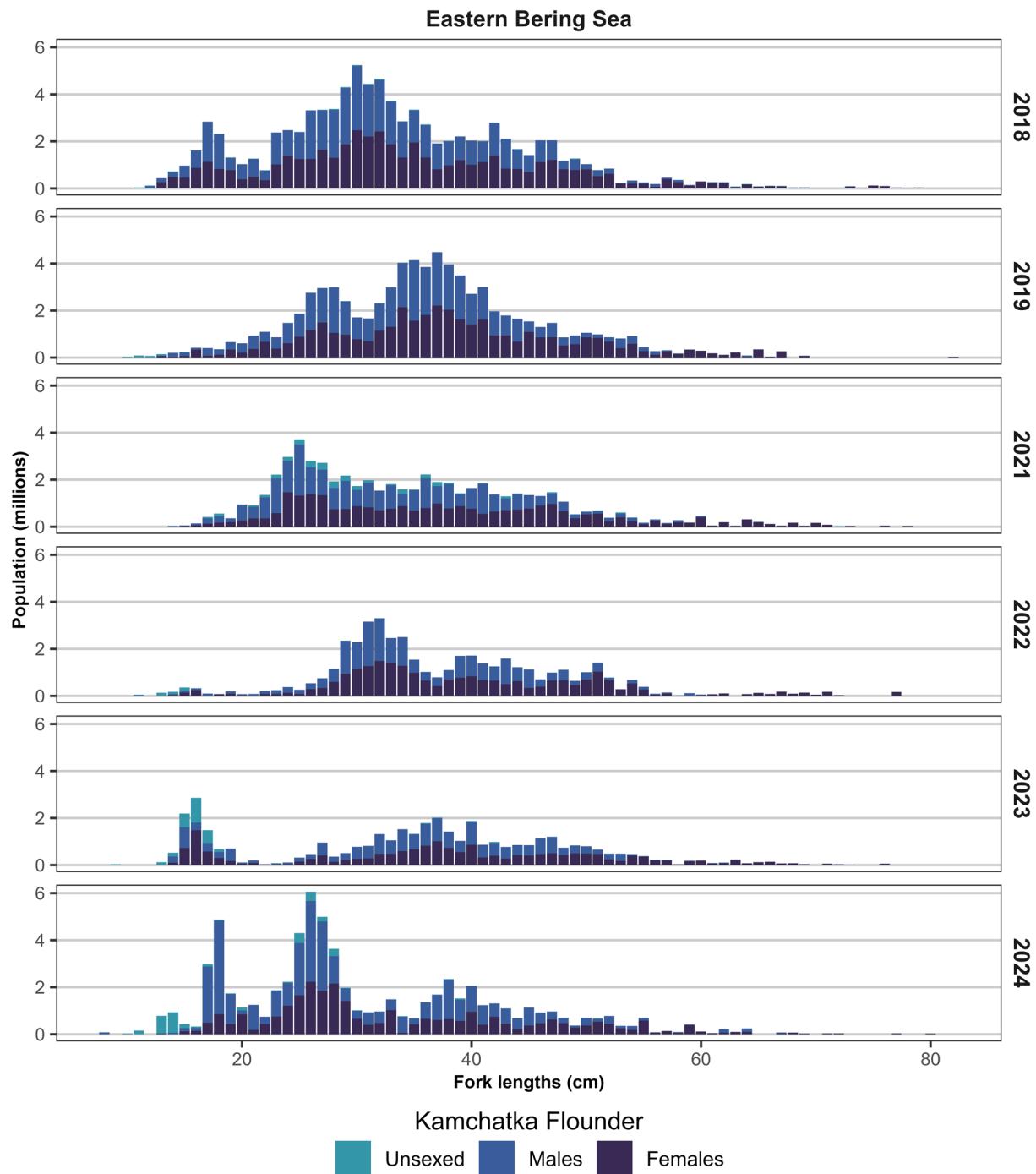
## Kamchatka Flounder (*Atheresthes evermanni*)


Between 2023 and 2024, the estimated biomass of Kamchatka flounder increased by 14% on the 2024 eastern Bering Sea Shelf survey (Tables 45 and 46; Figs. 44 and 45) and the population was estimated at 69.1 million individuals (Tables 45 and 47; Fig. 44).

The Kamchatka flounder sex ratio was roughly 1:1, with length modes at approximately 18 and 26 cm for both males and females (Fig. 46). There was a greater number of small Kamchatka flounder (< 20 cm) observed in the eastern Bering Sea than in previous years and a greater proportion of individuals observed between 20 and 30 cm than in 2023 and 2022 (Fig. 46).


As previously mentioned, Kamchatka flounder and [arrowtooth flounder](#) are congeneric (Yang 1988). The survey program adopted methods to reliably distinguish between the two species in 1992 (note truncated time series in Fig. 44). While the two species typically occupy similar areas (Baker and Hollowed 2014), Kamchatka flounder in 2024 occupied areas in the middle and outer domain and were most abundant along the northwestern edge (Fig. 45), while arrowtooth flounder were mainly found in the southern end of the eastern Bering Sea and northwestern edge of the outer domain (Fig. 22). Kamchatka flounder are much less abundant than arrowtooth flounder in the eastern Bering Sea.

**Table 45. --** Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Kamchatka flounder (*Atheresthes evermanni*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 135 of 350 (38.6%)     |
| <b>Bottom Depth (m)</b>          | 64 — 192               |
| <b>Bottom Temperature (°C)</b>   | 0.5 — 4.4              |
| <b>Surface Temperature (°C)</b>  | 3.5 — 8.8              |
| <b>Population</b>                | 69.1 million           |
| <b>Biomass (t)</b>               | 28,362                 |
| <b>Percent of Total Catch</b>    | 0.2%                   |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 14% increase from 2023 |



**Figure 44. --** Time series of Kamchatka flounder (*Atheresthes evermanni*) biomass (thousand t) and population (millions) from the 1992-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 45.** -- CPUE (kg/km<sup>2</sup>) distribution of Kamchatka flounder (*Atheresthes evermanni*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.



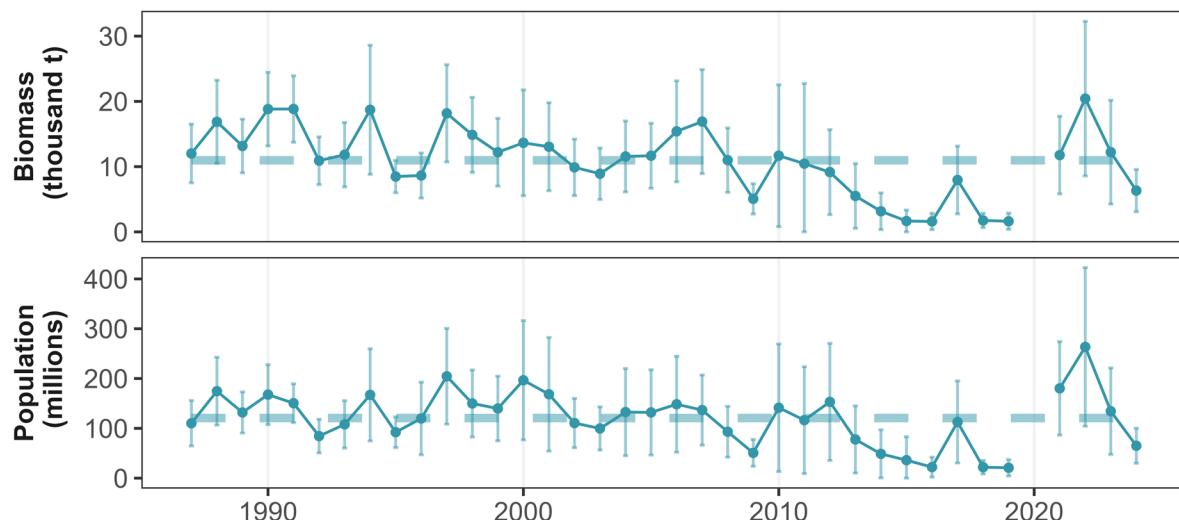
**Figure 46.** -- Total abundance-at-length estimates of Kamchatka flounder (*Atheresthes evermanni*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018–2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

**Table 46.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which Kamchatka flounder (*Atheresthes evermanni*) were weighed during the 2024 eastern Bering Sea shelf survey.

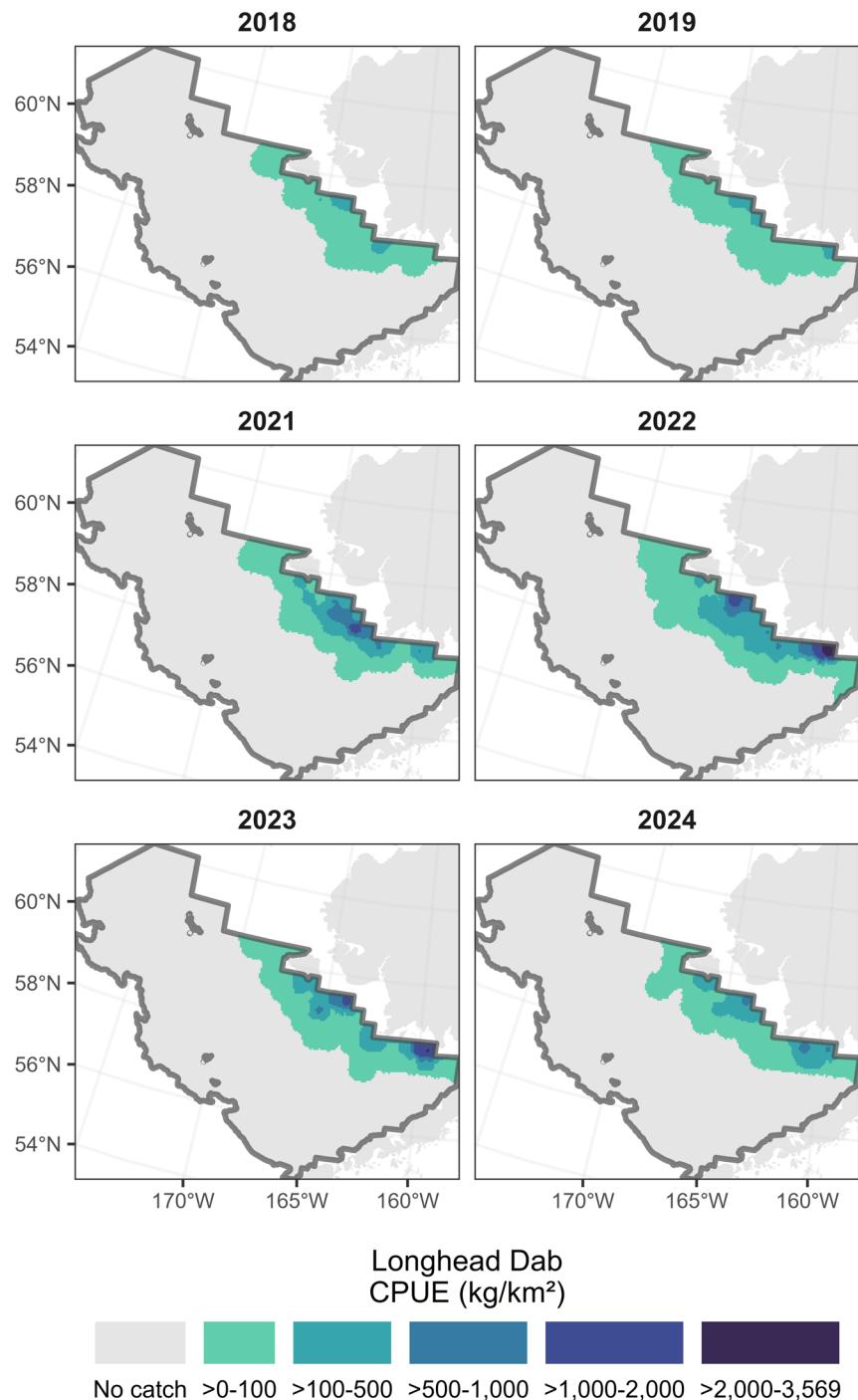
| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)   | Biomass SD (t) | 95% LCL (t)   | 95% UCL (t)   | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|---------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |               |               |                  |
| 10                              | 0.41                            | 0.41                          | 33            | 33             | 0             | 98            | 1                |
| 20                              | -                               | -                             | -             | -              | -             | -             | -                |
| 31                              | 39.77                           | 9.47                          | 3,777         | 899            | 1,978         | 5,576         | 34               |
| 32                              | 41.67                           | 28.24                         | 369           | 250            | 0             | 868           | 2                |
| 41                              | 15.94                           | 10.19                         | 993           | 635            | 0             | 2,263         | 4                |
| 42                              | 22.90                           | 11.16                         | 552           | 269            | 14            | 1,091         | 4                |
| 43                              | 78.96                           | 35.25                         | 1,663         | 743            | 178           | 3,148         | 5                |
| 50                              | 136.40                          | 27.85                         | 5,188         | 1,059          | 3,069         | 7,307         | 23               |
| 61                              | 154.28                          | 25.37                         | 13,542        | 2,227          | 9,089         | 17,996        | 48               |
| 62                              | 214.46                          | 29.21                         | 1,386         | 189            | 1,008         | 1,763         | 6                |
| 82                              | 14.99                           | 11.84                         | 269           | 213            | 0             | 694           | 2                |
| 90                              | 51.10                           | 17.36                         | 590           | 200            | 189           | 990           | 6                |
| <b>Total</b>                    | <b>57.53</b>                    | <b>5.77</b>                   | <b>28,362</b> | <b>2,846</b>   | <b>22,670</b> | <b>34,055</b> | <b>135</b>       |

**Table 47.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Kamchatka flounder (*Atheresthes evermanni*) were encountered during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)      | 95% UCL (K)      | Population (K)   | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|------------------|------------------|------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                  |                  |                  |                   |                 |
| 10                              | 5.44                            | 5.44                          | 0.00             | 1,284.88         | 428.30           | 428.29            | 1               |
| 20                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 31                              | 173.61                          | 48.32                         | 7,309.74         | 25,669.02        | 16,489.38        | 4,589.82          | 34              |
| 32                              | 142.20                          | 120.77                        | 0.00             | 3,394.81         | 1,257.98         | 1,068.42          | 2               |
| 41                              | 13.76                           | 8.99                          | 0.00             | 1,977.57         | 857.60           | 559.98            | 4               |
| 42                              | 45.97                           | 23.74                         | 0.00             | 2,254.53         | 1,108.99         | 572.77            | 4               |
| 43                              | 52.08                           | 22.94                         | 130.66           | 2,063.33         | 1,096.99         | 483.17            | 5               |
| 50                              | 401.64                          | 117.43                        | 6,343.65         | 24,211.86        | 15,277.76        | 4,467.05          | 23              |
| 61                              | 349.01                          | 140.80                        | 5,916.36         | 55,353.18        | 30,634.77        | 12,359.21         | 48              |
| 62                              | 205.05                          | 42.26                         | 778.88           | 1,871.04         | 1,324.96         | 273.04            | 6               |
| 82                              | 8.97                            | 7.09                          | 0.00             | 415.61           | 161.10           | 127.25            | 2               |
| 90                              | 42.59                           | 13.42                         | 181.69           | 801.26           | 491.47           | 154.89            | 6               |
| <b>Total</b>                    | <b>140.22</b>                   | <b>28.40</b>                  | <b>41,123.17</b> | <b>97,135.42</b> | <b>69,129.30</b> | <b>14,003.06</b>  | <b>135</b>      |


## Longhead Dab (*Myzopsetta proboscidea*)

Previous scientific name: *Limanda proboscidea*


Between 2023 and 2024, the estimated biomass of longhead dab decreased by 48% on the 2024 eastern Bering Sea Shelf survey (Tables 48 and 49; Figs. 47 and 48) and the population was estimated at 65 million individuals (Tables 48 and 50; Fig. 47).

**Table 48.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for longhead dab (*Myzopsetta proboscidea*) in the eastern Bering Sea shelf survey area.

| Eastern Bering Sea Shelf  |                        |
|---------------------------|------------------------|
| Stations Present          | 38 of 350 (10.9%)      |
| Bottom Depth (m)          | 21 — 55                |
| Bottom Temperature (°C)   | 2 — 5.7                |
| Surface Temperature (°C)  | 2.1 — 7                |
| Population                | 65 million             |
| Biomass (t)               | 6,328                  |
| Percent of Total Catch    | <0.01%                 |
| Biomass                   |                        |
| Percent Change in Biomass | 48% decrease from 2023 |



**Figure 47.** -- Time series of longhead dab (*Myzopsetta proboscidea*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

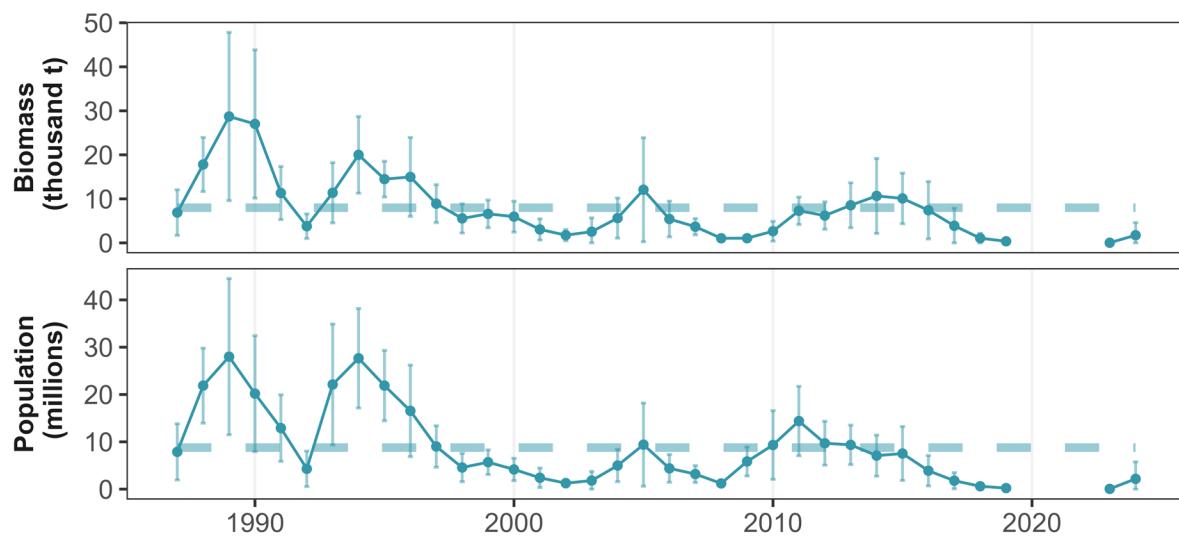


**Figure 48.** -- CPUE (kg/km<sup>2</sup>) distribution of longhead dab (*Myzopsetta proboscidea*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

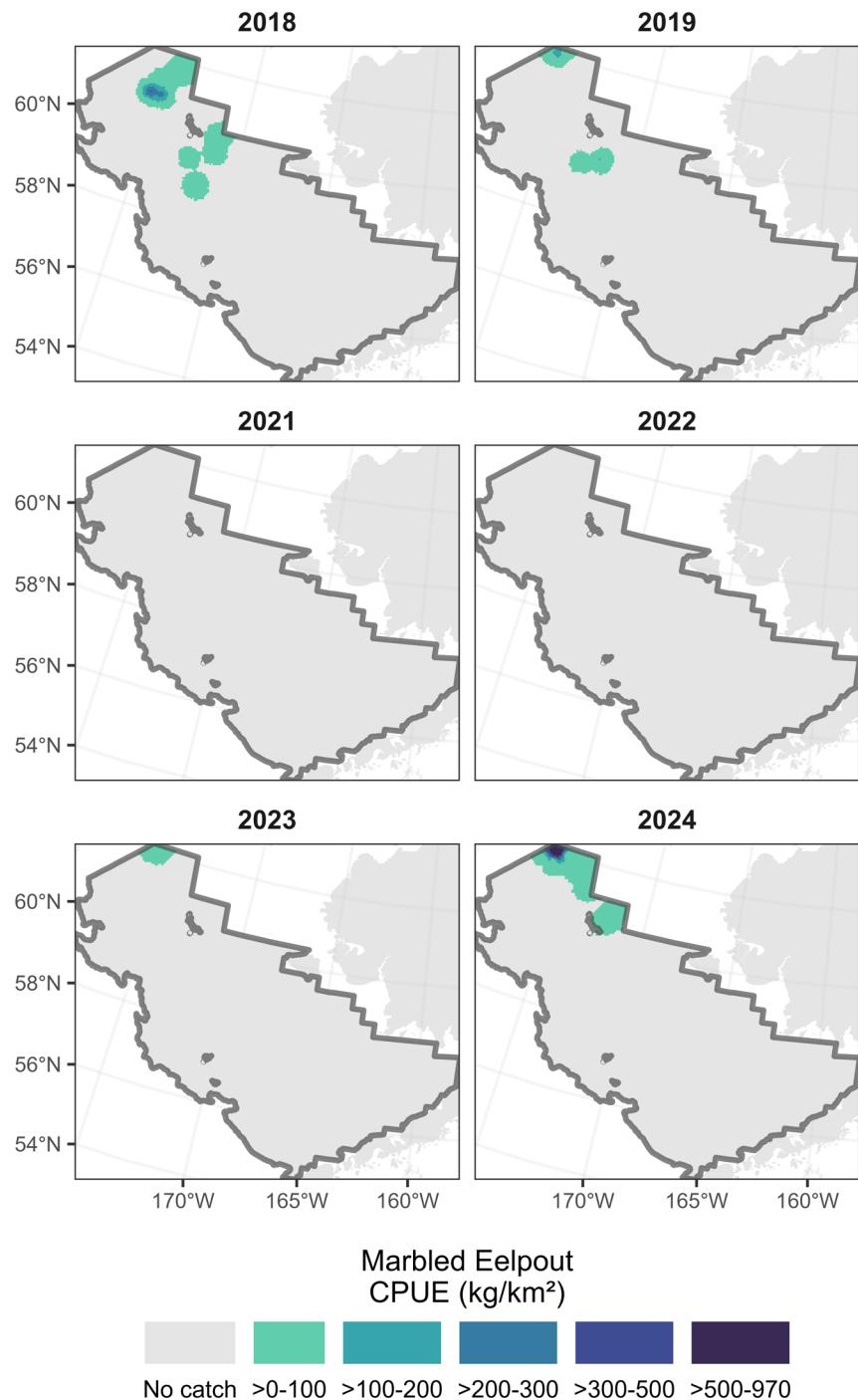
**Table 49.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which longhead dab (*Myzopsetta proboscidea*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)  | Biomass SD (t) | 95% LCL (t)  | 95% UCL (t)  | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|--------------|----------------|--------------|--------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |              |                |              |              |                  |
| 10                              | 70.42                           | 20.06                         | 5,543        | 1,579          | 2,386        | 8,700        | 26               |
| 20                              | 19.07                           | 8.41                          | 785          | 346            | 93           | 1,478        | 12               |
| 31                              | -                               | -                             | -            | -              | -            | -            | -                |
| 32                              | -                               | -                             | -            | -              | -            | -            | -                |
| 41                              | -                               | -                             | -            | -              | -            | -            | -                |
| 42                              | -                               | -                             | -            | -              | -            | -            | -                |
| 43                              | -                               | -                             | -            | -              | -            | -            | -                |
| 50                              | -                               | -                             | -            | -              | -            | -            | -                |
| 61                              | -                               | -                             | -            | -              | -            | -            | -                |
| 62                              | -                               | -                             | -            | -              | -            | -            | -                |
| 82                              | -                               | -                             | -            | -              | -            | -            | -                |
| 90                              | -                               | -                             | -            | -              | -            | -            | -                |
| <b>Total</b>                    | <b>12.84</b>                    | <b>3.28</b>                   | <b>6,328</b> | <b>1,616</b>   | <b>3,096</b> | <b>9,560</b> | <b>38</b>        |

**Table 50.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (millions) with SD (millions), 95% lower (LCL; millions) and upper (UCL; millions) confidence limits, and number of hauls in which longhead dab (*Myzopsetta proboscidea*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (M)  | 95% UCL (M)   | Population (M) | Population SD (M) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|--------------|---------------|----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |              |               |                |                   |                 |
| 10                              | 681.50                          | 209.85                        | 20.60        | 86.67         | 53.64          | 16.52             | 26              |
| 20                              | 275.95                          | 147.43                        | 0.00         | 23.51         | 11.37          | 6.07              | 12              |
| 31                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 32                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 41                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 42                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 43                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 50                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 61                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 62                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 82                              | -                               | -                             | -            | -             | -              | -                 | -               |
| 90                              | -                               | -                             | -            | -             | -              | -                 | -               |
| <b>Total</b>                    | <b>131.86</b>                   | <b>35.70</b>                  | <b>29.81</b> | <b>100.20</b> | <b>65.01</b>   | <b>17.60</b>      | <b>38</b>       |

## Marbled Eelpout (*Lycodes raridens*)


Between 2023 and 2024, the estimated biomass of marbled eelpout increased to 1,740 t, extrapolated from 79 individuals caught on the 2024 eastern Bering Sea Shelf survey (Table 51; Figs. 49 and 50) and the population was estimated at 2.2 million individuals (Table 51; Fig. 49).

**Table 51.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for marbled eelpout (*Lycodes raridens*) in the eastern Bering Sea shelf survey area.

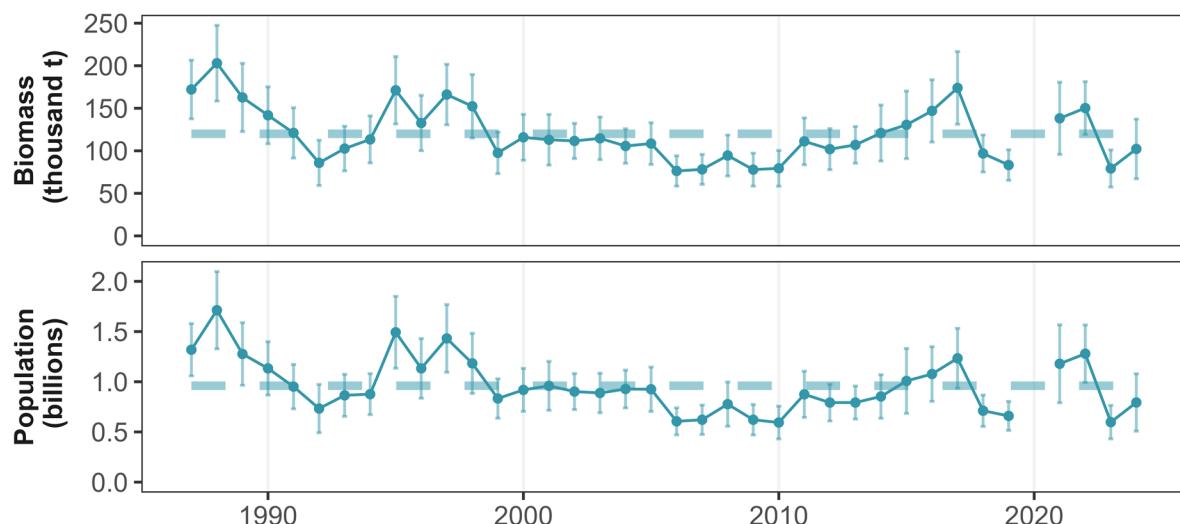
|                                 | Eastern Bering Sea Shelf                   |
|---------------------------------|--------------------------------------------|
| <b>Stations Present</b>         | 5 of 350 (1.4%)                            |
| <b>Bottom Depth (m)</b>         | 62 — 96                                    |
| <b>Bottom Temperature (°C)</b>  | -1.3 — 1.1                                 |
| <b>Surface Temperature (°C)</b> | 5.9 — 6.3                                  |
| <b>Population</b>               | 2.2 million                                |
| <b>Biomass (t)</b>              | 1,740                                      |
| <b>Percent of Total Catch</b>   | <0.01%                                     |
| <b>Biomass</b>                  |                                            |
| <b>Survey catch totals</b>      | Increased from 2 to 79 individuals in 2024 |



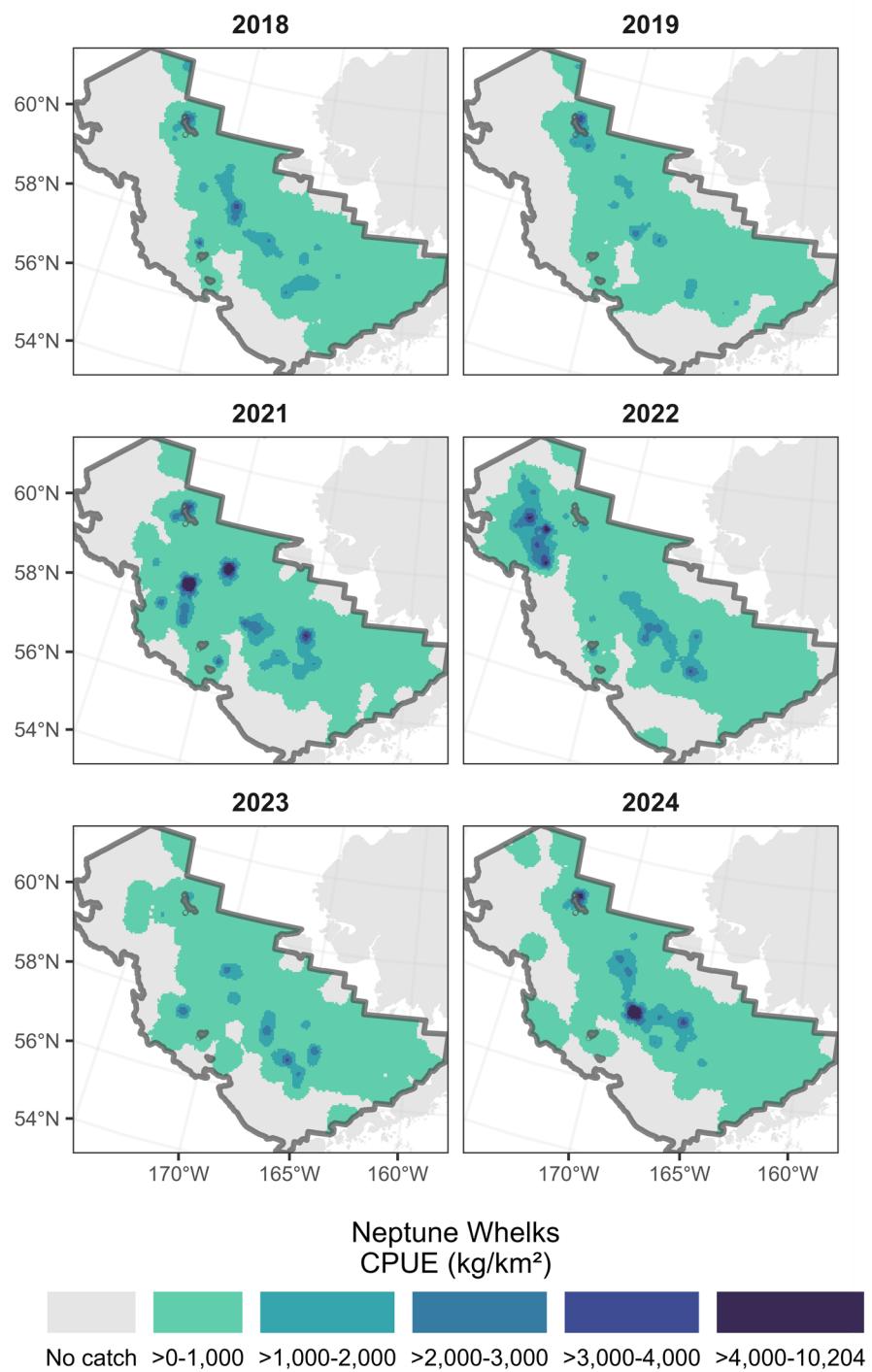
**Figure 49.** -- Time series of marbled eelpout (*Lycodes raridens*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 50.** -- CPUE (kg/km<sup>2</sup>) distribution of marbled eelpout (*Lycodes raridens*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.


## Neptune Whelks (*Neptunea heros* and *Neptunea ventricosa*)

**Previous common name:** Neptune snail, Northern Neptune snail


Between 2023 and 2024, the estimated biomass of Neptune whelks increased by 29% on the 2024 eastern Bering Sea Shelf survey in (Table 52; Figs. 51 and 52) and the population was estimated at 793.6 million individuals (Table 52; Fig. 51).

**Table 52.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Neptune whelks (*Neptunea heros* and *Neptunea ventricosa*) in the eastern Bering Sea shelf survey area.

| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 152 of 350 (43.4%)     |
| <b>Bottom Depth (m)</b>          | 25 — 135               |
| <b>Bottom Temperature (°C)</b>   | -1.6 — 4.3             |
| <b>Surface Temperature (°C)</b>  | 2 — 8.4                |
| <b>Population</b>                | 793.6 million          |
| <b>Biomass (t)</b>               | 102,204                |
| <b>Percent of Total Catch</b>    | 0.7%                   |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 29% increase from 2023 |



**Figure 51.** -- Time series of Neptune whelks (*Neptunea heros* and *Neptunea ventricosa*) biomass (thousand t) and population (billions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

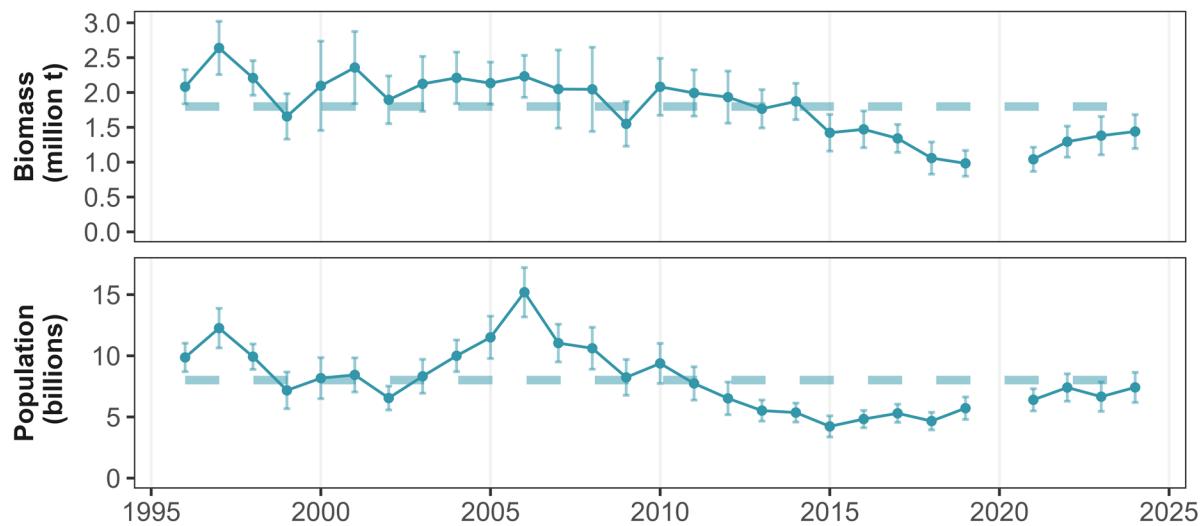


**Figure 52. --** CPUE (kg/km<sup>2</sup>) distribution of Neptune whelks (*Neptunea heros* and *Neptunea ventricosa*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

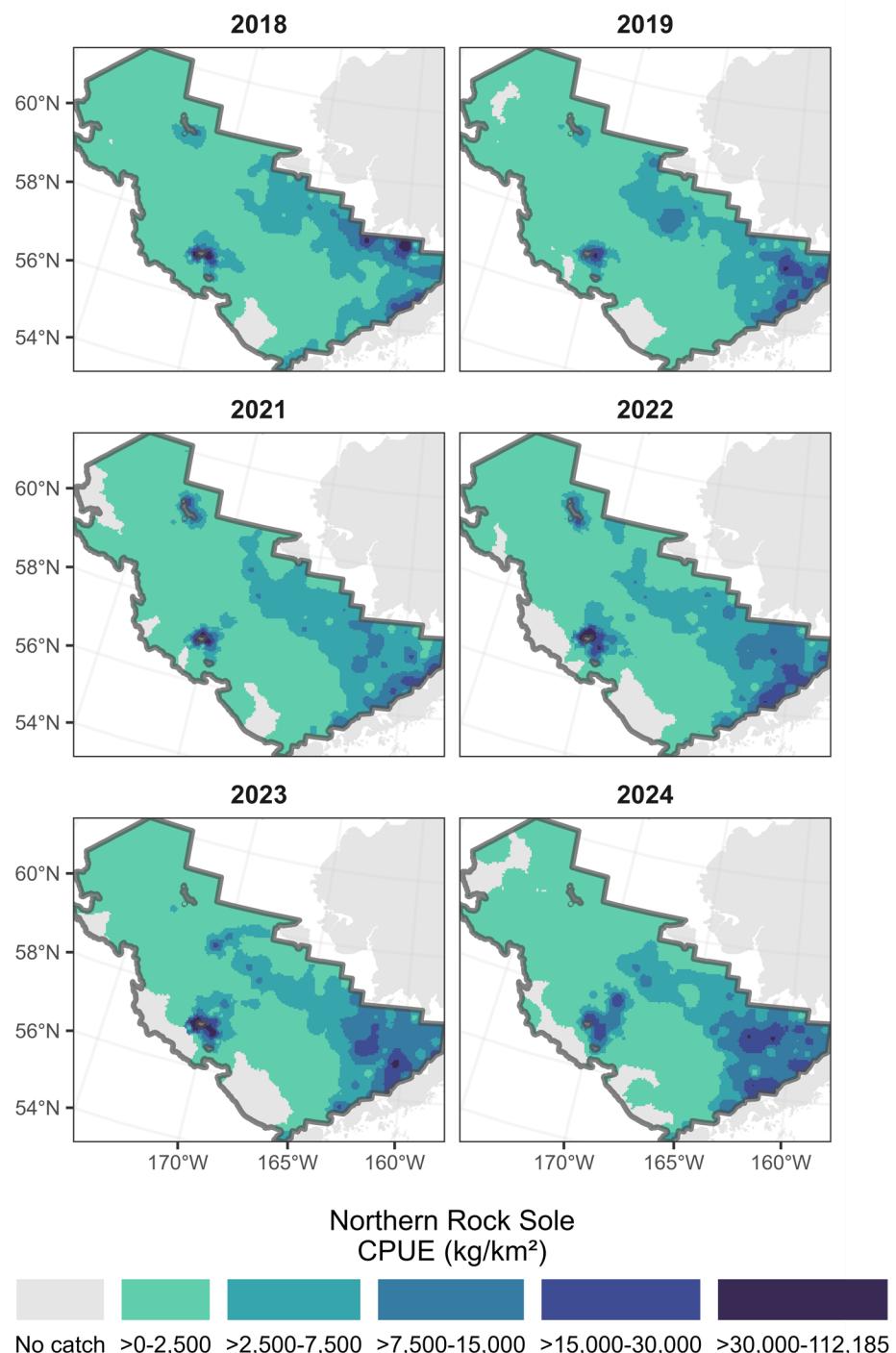
## Northern Rock Sole (*Lepidopsetta polyxystra*)

Between 2023 and 2024, the estimated biomass of northern rock sole increased by 4% on the 2024 eastern Bering Sea Shelf survey (Tables 53 and 54; Figs. 53 and 54) and the population was estimated at 7.4 billion individuals (Tables 53 and 55; Fig. 53).

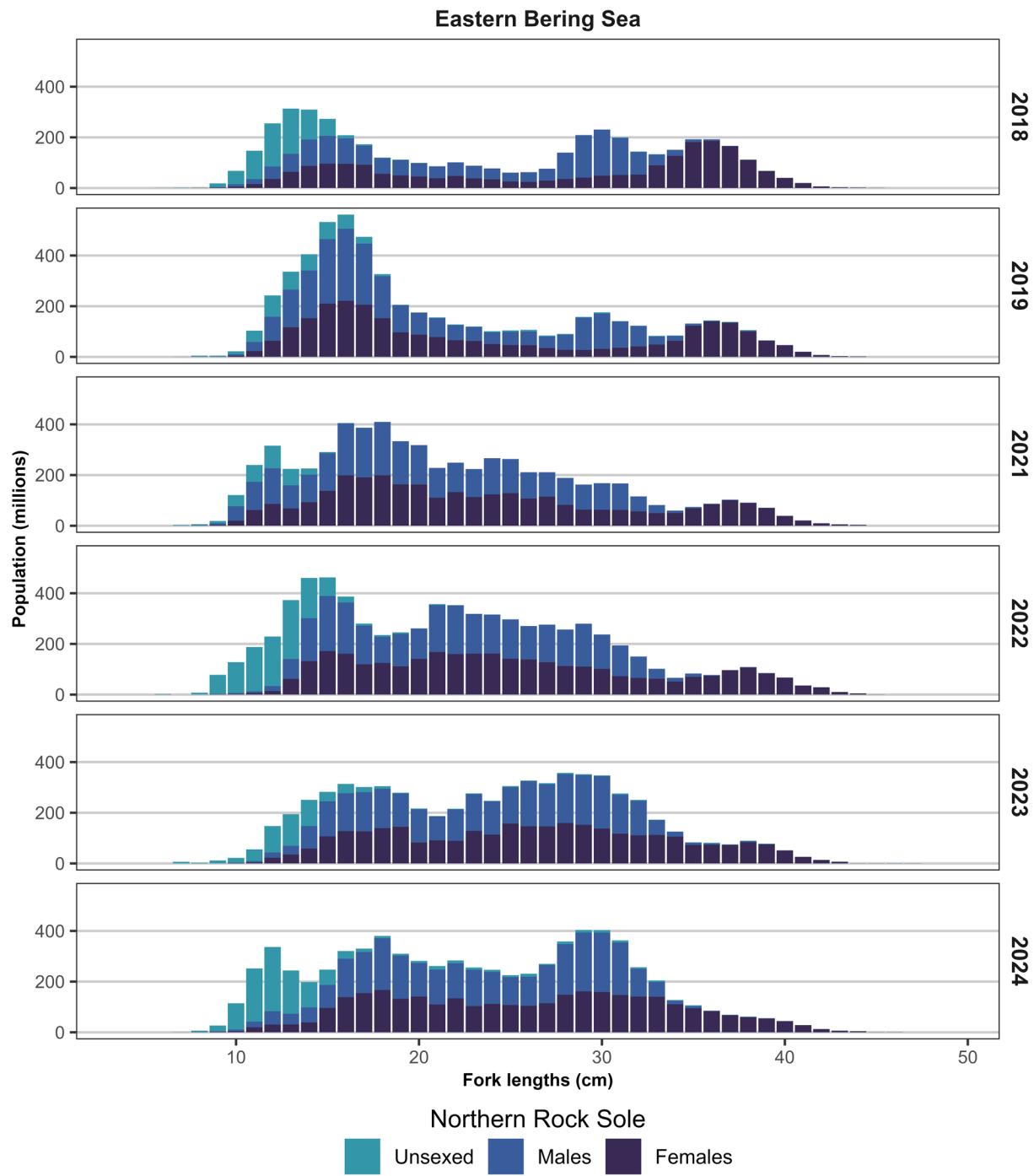
The distribution of northern rock sole in 2024 was similar to the distribution in 2023. The highest densities in the eastern Bering Sea were observed in the southeast portion of the inner domain, along the Alaska Peninsula and in the vicinity of the Pribilof Islands (Fig. 54). The distribution of northern rock sole appears to be correlated with the extent of the cold pool, as relatively low densities of northern rock sole were observed where bottom temperatures were  $< 1^{\circ}\text{C}$  in the middle and outer domains (Fig. 54; and Tables 54 and 55). In colder years, such as 2010, when the cold pool was large and touched the western tip of Nunivak Island (Figs. 7 and 8), the highest concentrations of rock sole were in the southwest part of the eastern Bering Sea shelf.


The length modes in the eastern Bering Sea were similar to those seen in 2023, approximately 18 and 30 cm for males and females (Fig. 55). More small individuals (11-13 cm) were observed than in 2023 (Fig. 55).

While spawning and feeding migrations for northern rock sole are poorly understood, they are believed to use active tidal stream transport during nighttime hours ([Nichol and Somerton 2009](#)) to migrate from shallow summer feeding grounds to deep winter and spring spawning grounds ([Fadeev 1965](#), [Shubnikov and Lisovenko 1964](#)).


Northern and southern rock sole (not presented in this report) are congeners and can be difficult to distinguish in the field based on morphology. The survey program adopted methods to reliably distinguish between the two species in 1996 (note truncated time series in Fig. 53). Despite belonging to the same genus, having a similar appearance, and co-occurring, the two species have differing geographic distributions (Fig. 54). Southern rock sole are distributed in the southeastern corner of the Bering sea and northern rock sole are distributed across the eastern Bering Sea.

**Table 53. --** Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for northern rock sole (*Lepidopsetta polyxystra*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                       |
|----------------------------------|-----------------------|
| <b>Stations Present</b>          | 268 of 350 (76.6%)    |
| <b>Bottom Depth (m)</b>          | 21 — 176              |
| <b>Bottom Temperature (°C)</b>   | -1.3 — 5.7            |
| <b>Surface Temperature (°C)</b>  | 2 — 8.7               |
| <b>Population</b>                | 7.4 billion           |
| <b>Biomass (t)</b>               | 1.4 million           |
| <b>Percent of Total Catch</b>    | 9.6%                  |
| <b>Biomass</b>                   |                       |
| <b>Percent Change in Biomass</b> | 4% increase from 2023 |



**Figure 53. --** Time series of northern rock sole (*Lepidopsetta polyxystra*) biomass (million t) and population (billions) from the 1996-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 54.** -- CPUE (kg/km<sup>2</sup>) distribution of northern rock sole (*Lepidopsetta polyxystra*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

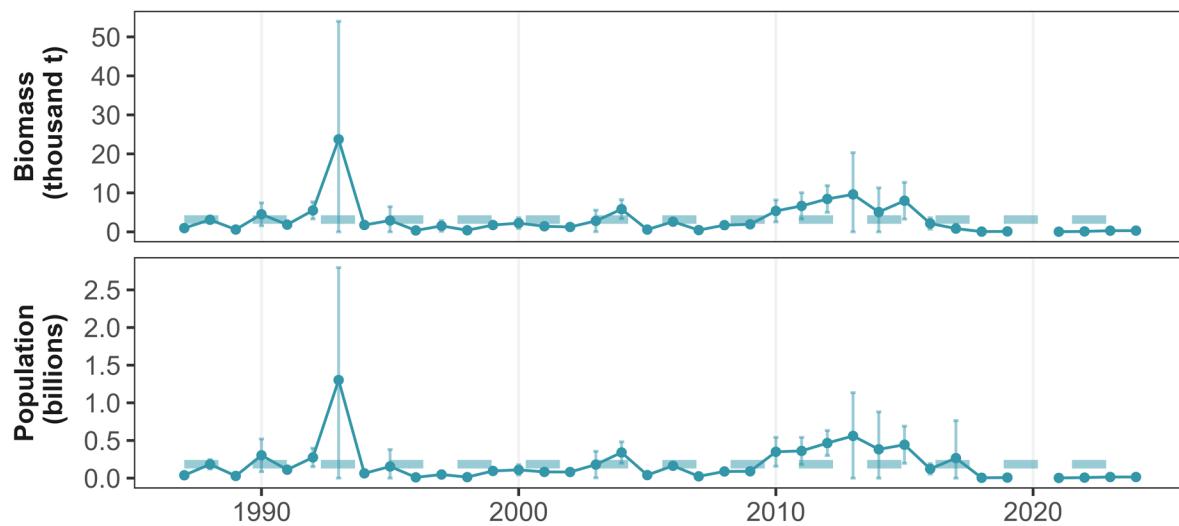


**Figure 55.** -- Total abundance-at-length estimates of northern rock sole (*Lepidopsetta polyxystra*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

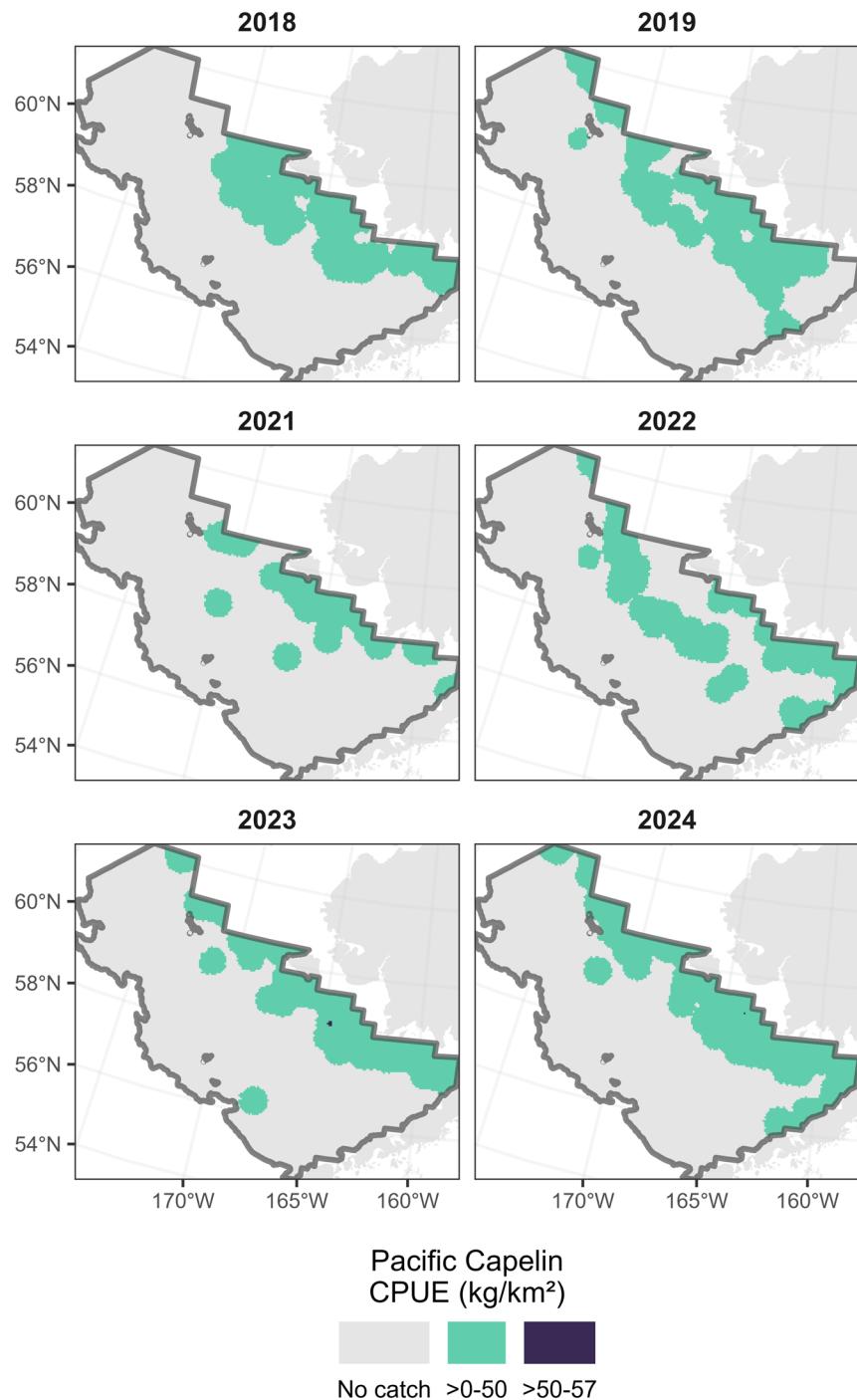
**Table 54.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which northern rock sole (*Lepidopsetta polyxystra*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)      | Biomass SD (t) | 95% LCL (t)      | 95% UCL (t)      | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|------------------|----------------|------------------|------------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                  |                |                  |                  |                  |
| 10                              | 9,289.06                        | 984.59                        | 731,101          | 77,493         | 576,116          | 886,087          | 58               |
| 20                              | 2,915.98                        | 516.32                        | 120,119          | 21,269         | 77,581           | 162,656          | 31               |
| 31                              | 3,370.12                        | 694.68                        | 320,089          | 65,980         | 188,128          | 452,049          | 66               |
| 32                              | 3,979.28                        | 2,416.60                      | 35,204           | 21,379         | 0                | 77,962           | 5                |
| 41                              | 538.15                          | 172.86                        | 33,532           | 10,771         | 11,990           | 55,075           | 41               |
| 42                              | 7,868.47                        | 2,408.92                      | 189,804          | 58,108         | 73,587           | 306,021          | 16               |
| 43                              | 343.43                          | 164.38                        | 7,234            | 3,463          | 309              | 14,159           | 12               |
| 50                              | 2.04                            | 1.34                          | 78               | 51             | 0                | 179              | 4                |
| 61                              | 22.27                           | 7.67                          | 1,955            | 673            | 609              | 3,302            | 21               |
| 62                              | 8.85                            | 7.21                          | 57               | 47             | 0                | 150              | 2                |
| 82                              | 30.72                           | 5.85                          | 552              | 105            | 341              | 762              | 11               |
| 90                              | 1.34                            | 1.34                          | 15               | 15             | 0                | 46               | 1                |
| <b>Total</b>                    | <b>2,920.42</b>                 | <b>246.54</b>                 | <b>1,439,739</b> | <b>121,544</b> | <b>1,196,651</b> | <b>1,682,827</b> | <b>268</b>       |

**Table 55.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which northern rock sole (*Lepidopsetta polyxystra*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)         | 95% UCL (K)         | Population (K)      | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|---------------------|---------------------|---------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                     |                     |                     |                   |                 |
| 10                              | 56,468.65                       | 5,997.78                      | 3,500,284.04        | 5,388,522.39        | 4,444,403.21        | 472,059.59        | 58              |
| 20                              | 17,523.80                       | 3,322.00                      | 448,173.99          | 995,549.96          | 721,861.97          | 136,843.99        | 31              |
| 31                              | 15,628.92                       | 3,417.15                      | 835,300.12          | 2,133,522.63        | 1,484,411.38        | 324,555.63        | 66              |
| 32                              | 11,768.11                       | 6,566.12                      | 0.00                | 220,286.62          | 104,109.32          | 58,088.65         | 5               |
| 41                              | 1,609.34                        | 562.04                        | 30,236.77           | 170,318.94          | 100,277.86          | 35,020.54         | 41              |
| 42                              | 22,455.16                       | 6,737.58                      | 216,616.57          | 866,715.46          | 541,666.02          | 162,524.72        | 16              |
| 43                              | 721.64                          | 322.31                        | 1,622.42            | 28,778.26           | 15,200.34           | 6,788.96          | 12              |
| 50                              | 6.06                            | 3.73                          | 0.00                | 514.45              | 230.39              | 142.03            | 4               |
| 61                              | 51.35                           | 16.89                         | 1,541.68            | 7,472.17            | 4,506.92            | 1,482.62          | 21              |
| 62                              | 18.65                           | 14.83                         | 0.00                | 312.16              | 120.49              | 95.83             | 2               |
| 82                              | 63.09                           | 10.75                         | 746.91              | 1,518.60            | 1,132.76            | 192.92            | 11              |
| 90                              | 2.58                            | 2.58                          | 0.00                | 89.14               | 29.71               | 29.71             | 1               |
| <b>Total</b>                    | <b>15,046.86</b>                | <b>1,247.06</b>               | <b>6,188,371.15</b> | <b>8,647,529.58</b> | <b>7,417,950.36</b> | <b>614,789.61</b> | <b>268</b>      |

## Pacific Capelin (*Mallotus villosus*)


Between 2023 and 2024, the estimated biomass of Pacific capelin increased by 4% on the 2024 eastern Bering Sea Shelf survey (Tables 56 and 57; Figs. 56 and 57) and the population was estimated at 15.2 million individuals (Tables 56 and 58; Fig. 56).

**Table 56.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Pacific capelin (*Mallotus villosus*) in the eastern Bering Sea shelf survey area.

|                                  | Eastern Bering Sea Shelf |
|----------------------------------|--------------------------|
| <b>Stations Present</b>          | 56 of 350 (16.0%)        |
| <b>Bottom Depth (m)</b>          | 21 — 92                  |
| <b>Bottom Temperature (°C)</b>   | -1.6 — 5.7               |
| <b>Surface Temperature (°C)</b>  | 2.1 — 7                  |
| <b>Population</b>                | 15.2 million             |
| <b>Biomass (t)</b>               | 318                      |
| <b>Percent of Total Catch</b>    | <0.01%                   |
| <b>Biomass</b>                   |                          |
| <b>Percent Change in Biomass</b> | 4% increase from 2023    |



**Figure 56.** -- Time series of Pacific capelin (*Mallotus villosus*) biomass (thousand t) and population (billions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 57.** -- CPUE (kg/km<sup>2</sup>) distribution of Pacific capelin (*Mallotus villosus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

**Table 57.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which Pacific capelin (*Mallotus villosus*) were weighed during the 2024 eastern Bering Sea shelf survey.

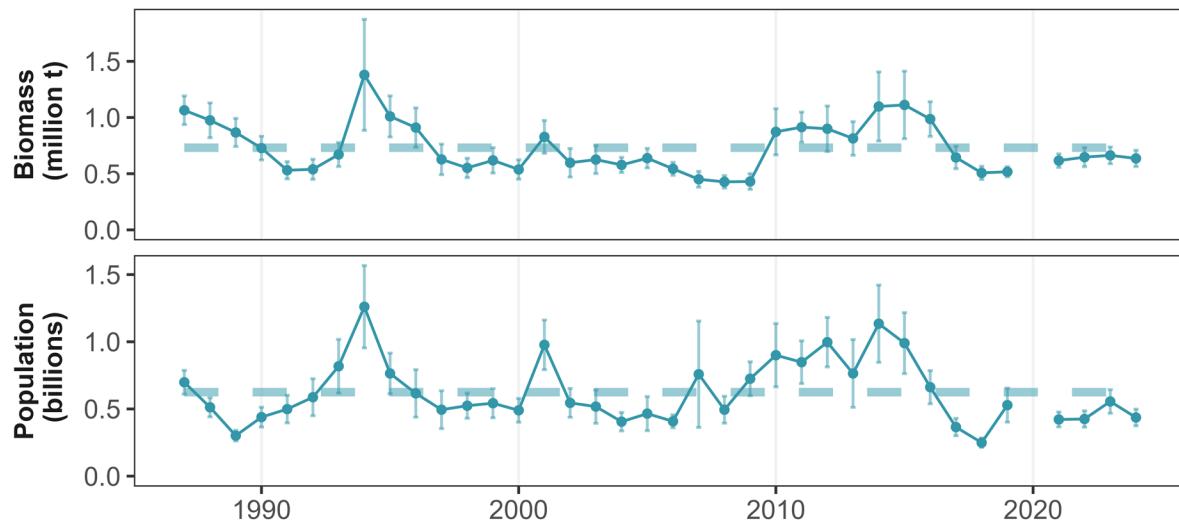
| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t) | Biomass SD (t) | 95% LCL (t) | 95% UCL (t) | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|-------------|----------------|-------------|-------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |                |             |             |                  |
| 10                              | 3.78                            | 1.06                          | 298         | 84             | 130         | 465         | 35               |
| 20                              | 0.19                            | 0.09                          | 8           | 4              | 1           | 15          | 8                |
| 31                              | 0.05                            | 0.04                          | 5           | 4              | 0           | 13          | 2                |
| 32                              | -                               | -                             | -           | -              | -           | -           | -                |
| 41                              | 0.06                            | 0.02                          | 4           | 1              | 1           | 6           | 7                |
| 42                              | -                               | -                             | -           | -              | -           | -           | -                |
| 43                              | 0.02                            | 0.02                          | 0           | 0              | 0           | 1           | 1                |
| 50                              | -                               | -                             | -           | -              | -           | -           | -                |
| 61                              | -                               | -                             | -           | -              | -           | -           | -                |
| 62                              | -                               | -                             | -           | -              | -           | -           | -                |
| 82                              | 0.17                            | 0.12                          | 3           | 2              | 0           | 7           | 3                |
| 90                              | -                               | -                             | -           | -              | -           | -           | -                |
| <b>Total</b>                    | <b>0.65</b>                     | <b>0.17</b>                   | <b>318</b>  | <b>84</b>      | <b>150</b>  | <b>486</b>  | <b>56</b>        |

**Table 58.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Pacific capelin (*Mallotus villosus*) were encountered during the 2024 eastern Bering Sea shelf survey.

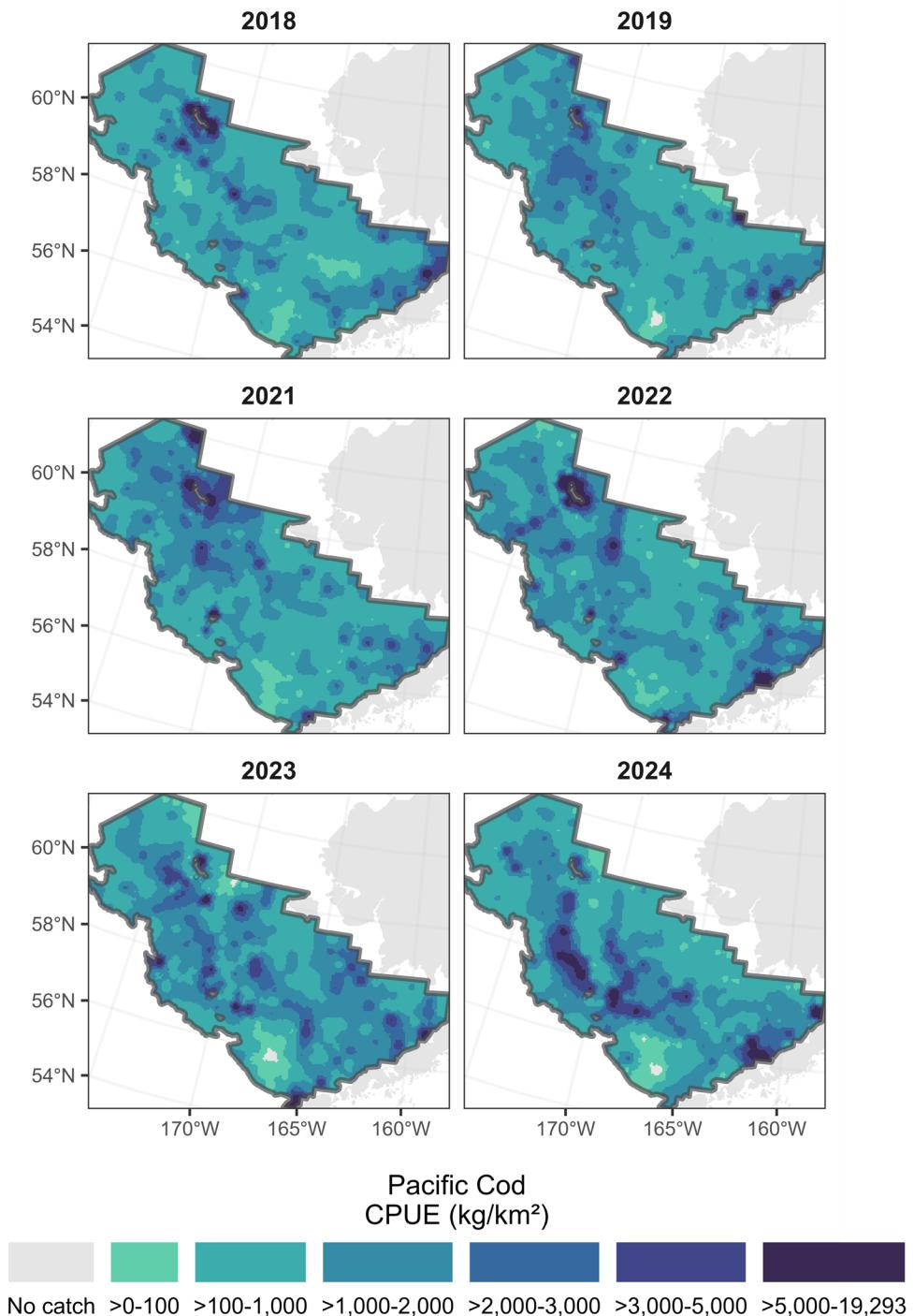
| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)     | 95% UCL (K)      | Population (K)   | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-----------------|------------------|------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                 |                  |                  |                   |                 |
| 10                              | 178.12                          | 47.40                         | 6,558.70        | 21,479.88        | 14,019.29        | 3,730.30          | 35              |
| 20                              | 10.47                           | 4.21                          | 84.33           | 778.25           | 431.29           | 173.48            | 8               |
| 31                              | 2.25                            | 1.60                          | 0.00            | 518.33           | 214.00           | 152.17            | 2               |
| 32                              | -                               | -                             | -               | -                | -                | -                 | -               |
| 41                              | 4.42                            | 1.68                          | 65.58           | 485.02           | 275.30           | 104.86            | 7               |
| 42                              | -                               | -                             | -               | -                | -                | -                 | -               |
| 43                              | 1.58                            | 1.58                          | 0.00            | 99.69            | 33.23            | 33.23             | 1               |
| 50                              | -                               | -                             | -               | -                | -                | -                 | -               |
| 61                              | -                               | -                             | -               | -                | -                | -                 | -               |
| 62                              | -                               | -                             | -               | -                | -                | -                 | -               |
| 82                              | 10.66                           | 7.46                          | 0.00            | 459.23           | 191.34           | 133.94            | 3               |
| 90                              | -                               | -                             | -               | -                | -                | -                 | -               |
| <b>Total</b>                    | <b>30.76</b>                    | <b>7.59</b>                   | <b>7,681.57</b> | <b>22,647.34</b> | <b>15,164.45</b> | <b>3,741.44</b>   | <b>56</b>       |

## Pacific Cod (*Gadus macrocephalus*)

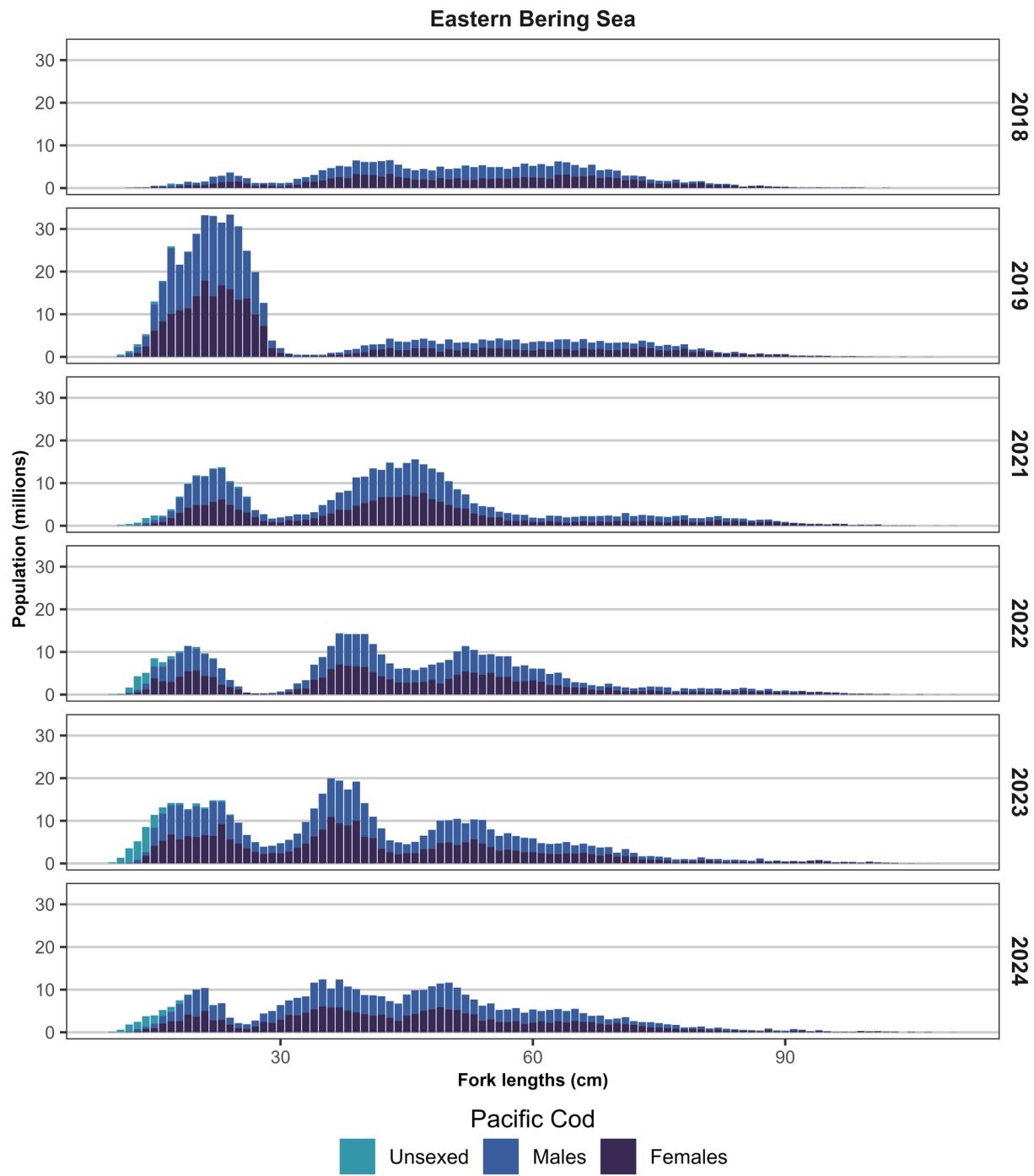
Between 2023 and 2024, the estimated biomass of Pacific cod decreased by 4% on the 2024 eastern Bering Sea Shelf survey (Tables 59 and 60; Figs. 58 and 59) and the population was estimated at 436.5 million individuals (Tables 59 and 61; Fig. 58).


Since 2019, Pacific cod biomass and abundance have stabilized around the long-term mean, likely as annual temperatures in the eastern Bering Sea have also returned to the long-term average. In 2024, Pacific cod biomass was spread throughout the eastern Bering Sea region. Some of the highest concentrations of Pacific cod were encountered to the northwest and to the east of the Pribilof islands and the southwest portion of the middle domain near the Alaska Peninsula. Pacific cod size composition in the eastern Bering Sea is relatively uniform, though the three modes around 22 cm, 36 cm, and 51 cm for males and 23 cm, 36 cm, and 53 cm for females seen in 2023 persisted for 2024 (Fig. 60).

Pacific cod migration between the eastern and northern Bering Sea shelf survey areas is likely related to interannual variability in temperature patterns. Satellite tagging studies indicate high mobility from the Gulf of Alaska to the northern Bering Sea (Nielsen et al. 2023). It is speculated that, during the recent warm stanza (2014 - 2021), higher-than-average bottom temperatures in the southeastern shelf created thermal corridors (between 1° and 6°C) for Pacific cod to move into the middle and inner domains, where they likely fed on capelin, pacific herring, and smelt that were also found in high density in the inner domain (Ciannelli and Bailey 2005). This led to a decrease in Pacific cod abundance in the eastern Bering Sea, along with a concomitant increase of same-sized Pacific cod in the adjacent northern Bering Sea, suggesting a northward migration (Stevenson and Lauth 2019). These migrations to the northern Bering Sea were potentially already taking place prior to 2017, as high densities of Pacific cod were observed along the northern edge of the eastern Bering Sea shelf survey area from 2014 to 2016 (Conner et al. 2017, Conner et al. 2017, Conner and Lauth 2017).


Since 2017 and 2019, when abundance peaked in the northern Bering Sea, Pacific cod have begun to decline to the north and have begun to increase in the eastern Bering Sea (Fig. 59). This peak in northern Bering Sea abundance was likely facilitated by the three warm years preceding 2017, when Pacific cod abundance and biomass were relatively high, with large aggregations in the middle and inner domains, close to the border between the eastern and northern Bering Sea shelf survey areas.

**Table 59.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Pacific cod (*Gadus macrocephalus*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                       |
|----------------------------------|-----------------------|
| <b>Stations Present</b>          | 335 of 350 (95.7%)    |
| <b>Bottom Depth (m)</b>          | 21 — 192              |
| <b>Bottom Temperature (°C)</b>   | -1.3 — 5.7            |
| <b>Surface Temperature (°C)</b>  | 2 — 8.9               |
| <b>Population</b>                | 436.5 million         |
| <b>Biomass (t)</b>               | 635,840               |
| <b>Percent of Total Catch</b>    | 4.2%                  |
| <b>Biomass</b>                   |                       |
| <b>Percent Change in Biomass</b> | 4% decrease from 2023 |



**Figure 58.** -- Time series of Pacific cod (*Gadus macrocephalus*) biomass (million t) and population (billions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 59.** -- CPUE (kg/km<sup>2</sup>) distribution of Pacific cod (*Gadus macrocephalus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.



**Figure 60.** -- Total abundance-at-length estimates of Pacific cod (*Gadus macrocephalus*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

**Table 60.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (thousand t) with SD (t), 95% lower (LCL; thousand t) and upper (UCL; thousand t) confidence limits, and number of hauls in which Pacific cod (*Gadus macrocephalus*) were weighed during the 2024 eastern Bering Sea shelf survey.

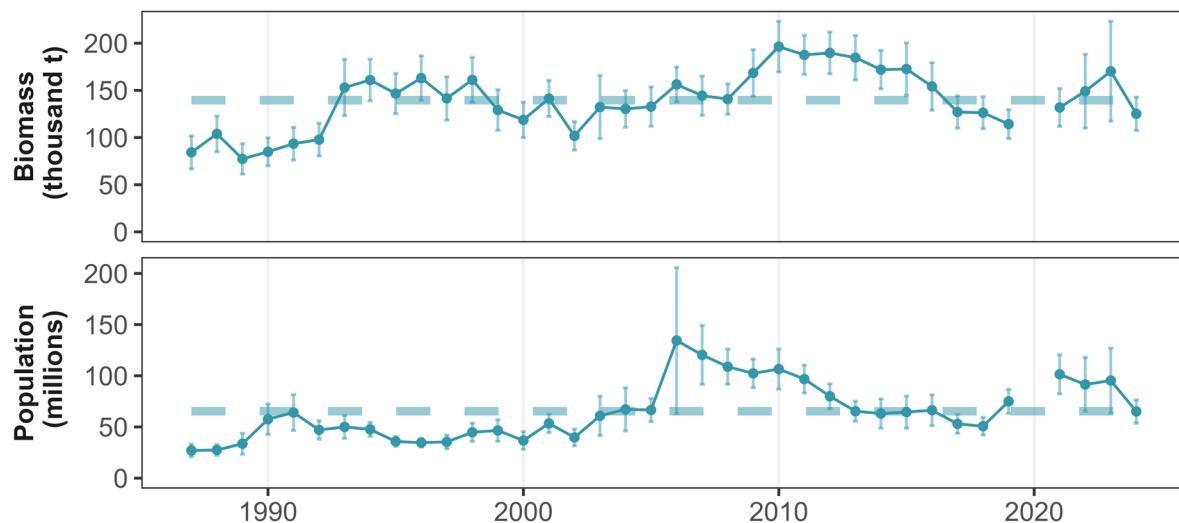
| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (Kt)  | Biomass SD (t) | 95% LCL (Kt)  | 95% UCL (Kt)  | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|---------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |               |               |                  |
| 10                              | 1,081.72                        | 218.20                        | 85.14         | 17,173         | 50.79         | 119.48        | 56               |
| 20                              | 697.14                          | 95.95                         | 28.72         | 3,952          | 20.81         | 36.62         | 31               |
| 31                              | 1,540.92                        | 154.46                        | 146.35        | 14,671         | 117.01        | 175.70        | 67               |
| 32                              | 3,024.01                        | 745.33                        | 26.75         | 6,594          | 13.57         | 39.94         | 5                |
| 41                              | 1,310.86                        | 227.25                        | 81.68         | 14,160         | 53.36         | 110.00        | 44               |
| 42                              | 2,644.93                        | 596.44                        | 63.80         | 14,387         | 35.03         | 92.58         | 18               |
| 43                              | 1,723.36                        | 427.42                        | 36.30         | 9,003          | 18.29         | 54.31         | 13               |
| 50                              | 625.83                          | 162.25                        | 23.81         | 6,172          | 11.46         | 36.15         | 16               |
| 61                              | 1,237.79                        | 166.81                        | 108.65        | 14,642         | 79.37         | 137.93        | 60               |
| 62                              | 1,641.37                        | 129.66                        | 10.61         | 838            | 8.93          | 12.28         | 6                |
| 82                              | 769.38                          | 200.84                        | 13.81         | 3,606          | 6.60          | 21.02         | 11               |
| 90                              | 885.92                          | 136.80                        | 10.22         | 1,579          | 7.07          | 13.38         | 8                |
| <b>Total</b>                    | <b>1,289.76</b>                 | <b>73.88</b>                  | <b>635.84</b> | <b>36,421</b>  | <b>563.00</b> | <b>708.68</b> | <b>335</b>       |

**Table 61.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (millions) with SD (thousands), 95% lower (LCL; millions) and upper (UCL; millions) confidence limits, and number of hauls in which Pacific cod (*Gadus macrocephalus*) were encountered during the 2024 eastern Bering Sea shelf survey.

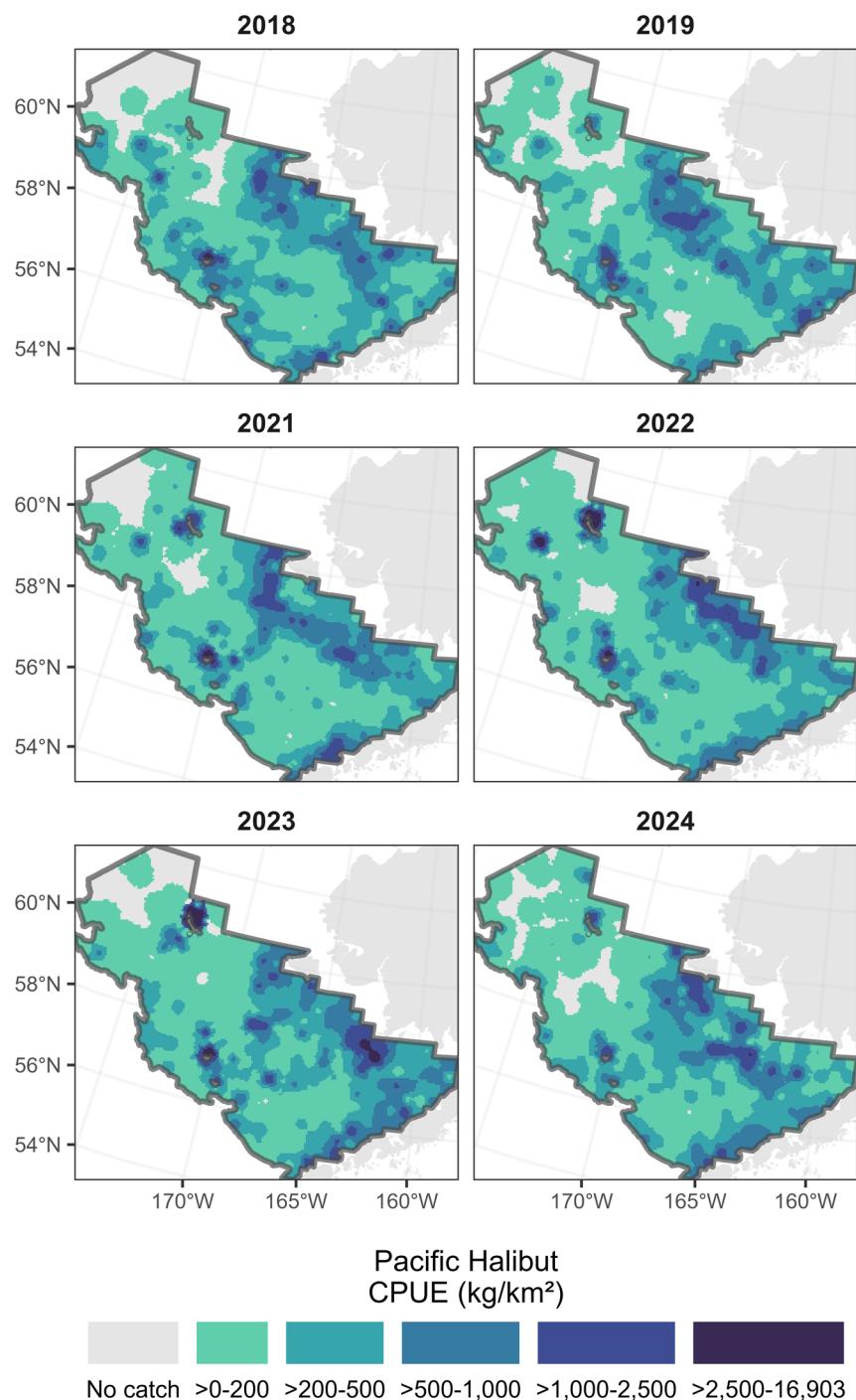
| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (M)   | 95% UCL (M)   | Population (M) | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|---------------|---------------|----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |               |                |                   |                 |
| 10                              | 1,026.32                        | 153.72                        | 56.58         | 104.98        | 80.78          | 12,098.99         | 56              |
| 20                              | 759.39                          | 141.72                        | 19.61         | 42.96         | 31.28          | 5,837.81          | 31              |
| 31                              | 1,275.19                        | 178.92                        | 87.13         | 155.10        | 121.12         | 16,993.35         | 67              |
| 32                              | 1,285.34                        | 238.41                        | 7.15          | 15.59         | 11.37          | 2,109.11          | 5               |
| 41                              | 838.28                          | 179.41                        | 29.88         | 74.59         | 52.23          | 11,178.90         | 44              |
| 42                              | 1,949.47                        | 539.69                        | 20.99         | 73.06         | 47.03          | 13,018.40         | 18              |
| 43                              | 1,608.34                        | 594.34                        | 8.84          | 58.92         | 33.88          | 12,519.04         | 13              |
| 50                              | 289.00                          | 79.83                         | 4.92          | 17.07         | 10.99          | 3,036.68          | 16              |
| 61                              | 387.38                          | 57.84                         | 23.85         | 44.16         | 34.00          | 5,076.59          | 60              |
| 62                              | 584.79                          | 53.32                         | 3.09          | 4.47          | 3.78           | 344.50            | 6               |
| 82                              | 370.91                          | 72.75                         | 4.05          | 9.27          | 6.66           | 1,306.19          | 11              |
| 90                              | 295.82                          | 58.36                         | 2.07          | 4.76          | 3.41           | 673.46            | 8               |
| <b>Total</b>                    | <b>885.47</b>                   | <b>62.92</b>                  | <b>374.49</b> | <b>498.57</b> | <b>436.53</b>  | <b>31,018.26</b>  | <b>335</b>      |

## Pacific Halibut (*Hippoglossus stenolepis*)

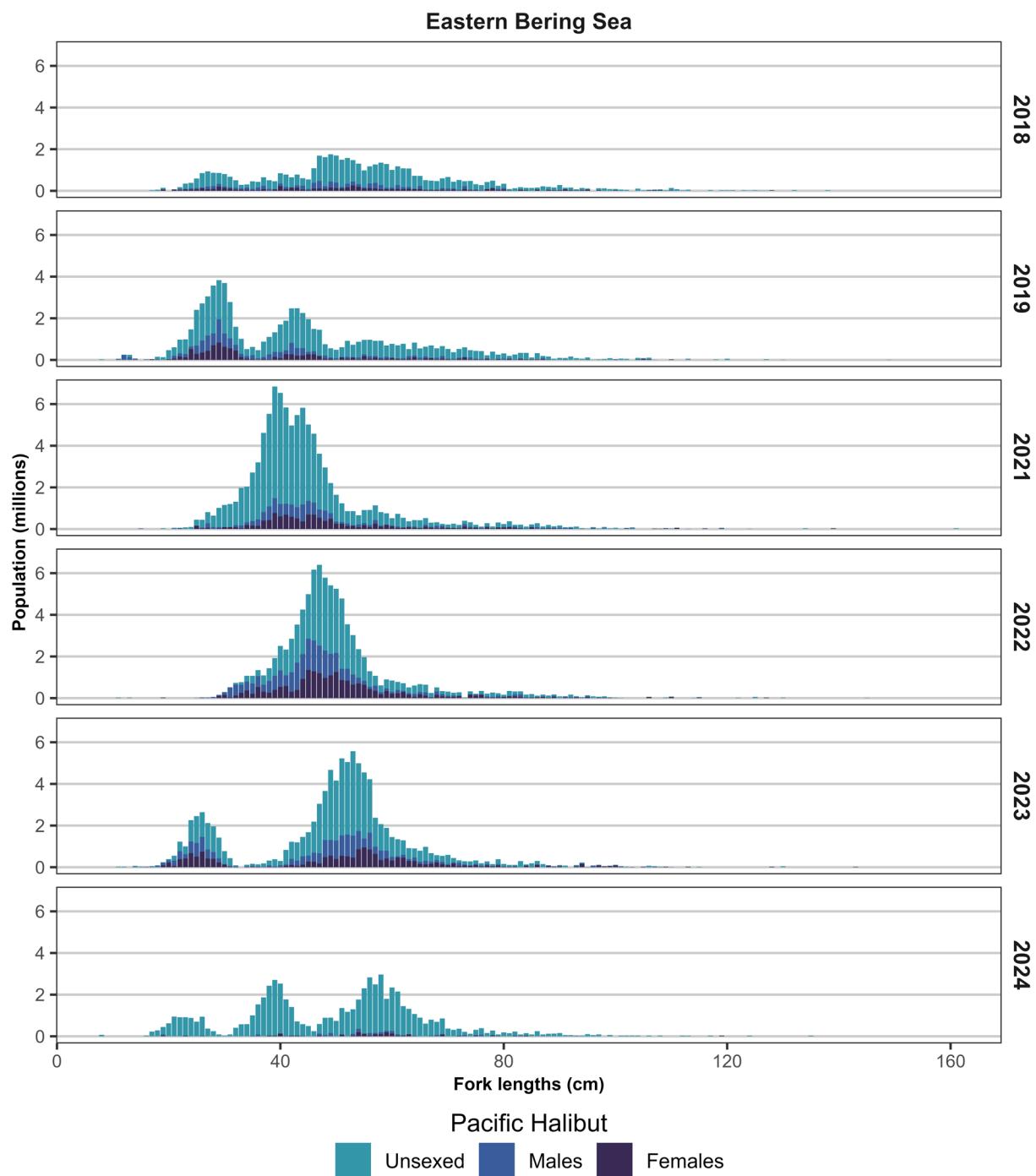
Between 2023 and 2024, the estimated biomass of Pacific halibut decreased by 26% on the 2024 eastern Bering Sea Shelf survey (Tables 62 and 63; Figs. 61 and 62) and the population was estimated at 65.1 million individuals (Tables 62 and 64; Fig. 61).


Management of Pacific halibut stocks is the purview of the International Pacific Halibut Commission (IPHC), and their stock assessments include all available fisheries and scientific survey data from both the United States and Canada, in addition to data from an IPHC longline survey (Stewart and Martell 2015).

To ensure a majority of the halibut caught at sea could be released alive, many of these animals were deliberately left unsexed and unweighed by survey teams. In instances when an IPHC secretariat was present on board the vessel or NOAA scientists collected specimen data on behalf of IPHC, subsampled halibut were lengthed, weighed, and sexed at minimum prior to otolith collection.


The distribution of Pacific halibut in the 2024 Bering Sea shelf survey area was similar to that observed in 2023, with the greatest densities south of Nunavik Island (Fig. 62) and southwest of Cape Newenham. Three length modes of 25, 39, and 60 cm were observed Pacific halibut (unsexed; Fig. 63) in the eastern Bering Sea.

**Table 62. --** Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Pacific halibut (*Hippoglossus stenolepis*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 247 of 350 (70.6%)     |
| <b>Bottom Depth (m)</b>          | 21 — 192               |
| <b>Bottom Temperature (°C)</b>   | -1.2 — 5.6             |
| <b>Surface Temperature (°C)</b>  | 2.1 — 8.8              |
| <b>Population</b>                | 65.1 million           |
| <b>Biomass (t)</b>               | 125,145                |
| <b>Percent of Total Catch</b>    | 0.8%                   |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 26% decrease from 2023 |



**Figure 61. --** Time series of Pacific halibut (*Hippoglossus stenolepis*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 62.** -- CPUE (kg/km<sup>2</sup>) distribution of Pacific halibut (*Hippoglossus stenolepis*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

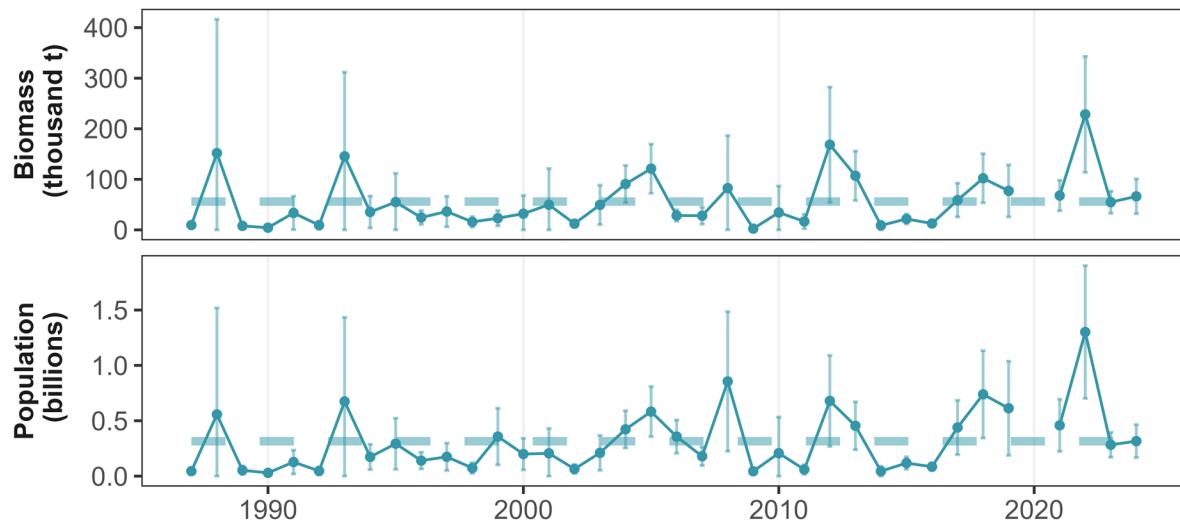


**Figure 63.** -- Total abundance-at-length estimates of Pacific halibut (*Hippoglossus stenolepis*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

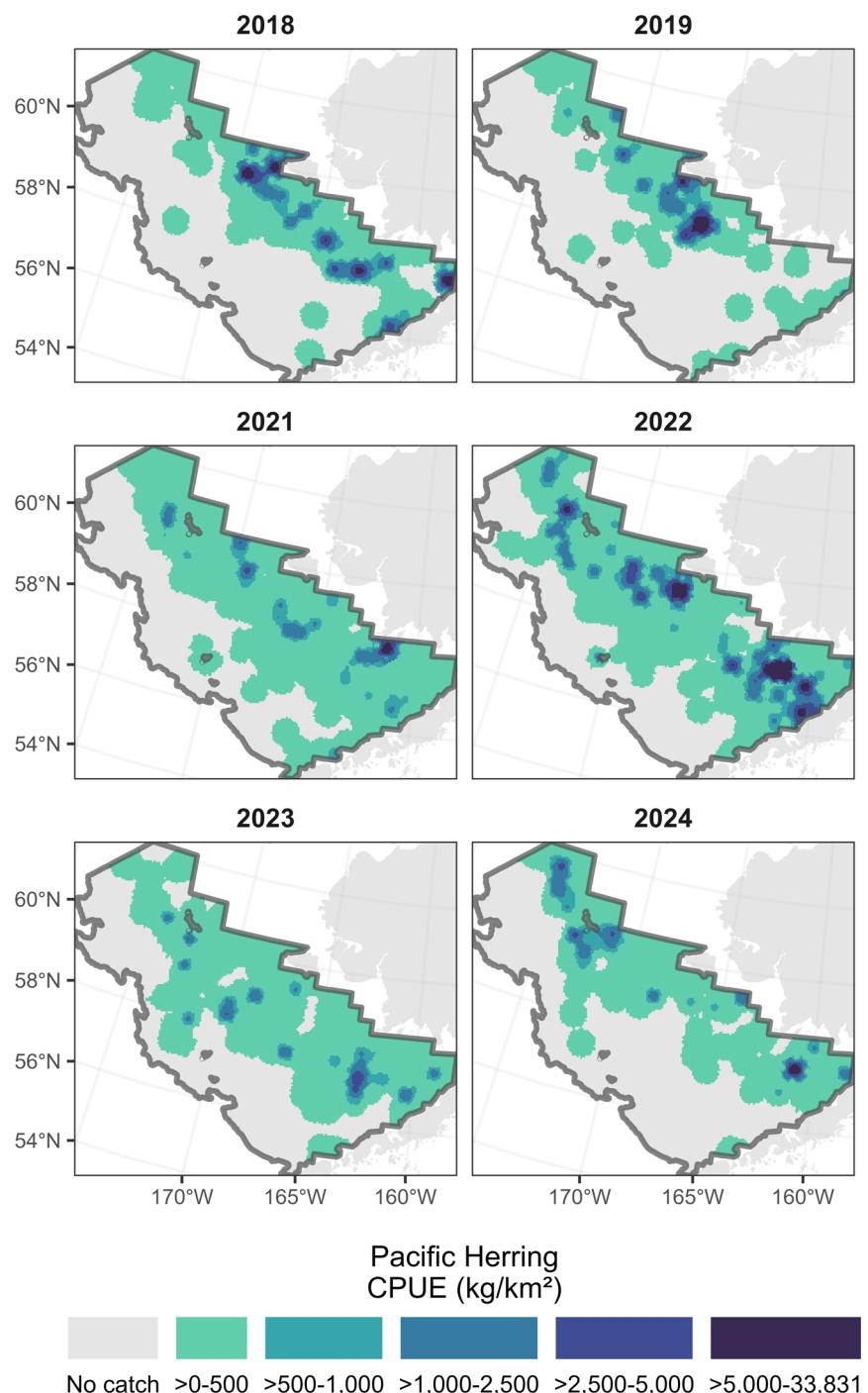
**Table 63.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which Pacific halibut (*Hippoglossus stenolepis*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)    | Biomass SD (t) | 95% LCL (t)    | 95% UCL (t)    | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|----------------|----------------|----------------|----------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                |                |                |                |                  |
| 10                              | 459.48                          | 68.44                         | 36,164         | 5,387          | 25,390         | 46,937         | 55               |
| 20                              | 558.18                          | 91.53                         | 22,993         | 3,770          | 15,453         | 30,534         | 28               |
| 31                              | 326.41                          | 37.58                         | 31,002         | 3,569          | 23,863         | 38,141         | 63               |
| 32                              | 319.07                          | 114.89                        | 2,823          | 1,016          | 790            | 4,855          | 5                |
| 41                              | 80.32                           | 36.61                         | 5,005          | 2,281          | 442            | 9,567          | 21               |
| 42                              | 321.21                          | 120.02                        | 7,748          | 2,895          | 1,958          | 13,539         | 15               |
| 43                              | 58.09                           | 28.36                         | 1,224          | 597            | 29             | 2,418          | 7                |
| 50                              | 201.77                          | 43.59                         | 7,675          | 1,658          | 4,359          | 10,992         | 18               |
| 61                              | 96.90                           | 19.95                         | 8,505          | 1,751          | 5,003          | 12,008         | 28               |
| 62                              | 33.63                           | 33.63                         | 217            | 217            | 0              | 652            | 1                |
| 82                              | 95.79                           | 68.73                         | 1,720          | 1,234          | 0              | 4,188          | 5                |
| 90                              | 5.93                            | 5.93                          | 68             | 68             | 0              | 205            | 1                |
| <b>Total</b>                    | <b>253.85</b>                   | <b>17.95</b>                  | <b>125,145</b> | <b>8,851</b>   | <b>107,443</b> | <b>142,847</b> | <b>247</b>       |

**Table 64.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Pacific halibut (*Hippoglossus stenolepis*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)      | 95% UCL (K)      | Population (K)   | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|------------------|------------------|------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                  |                  |                  |                   |                 |
| 10                              | 355.94                          | 61.39                         | 18,350.75        | 37,679.02        | 28,014.88        | 4,832.07          | 55              |
| 20                              | 257.35                          | 41.84                         | 7,154.37         | 14,047.97        | 10,601.17        | 1,723.40          | 28              |
| 31                              | 150.56                          | 19.76                         | 10,546.37        | 18,053.88        | 14,300.12        | 1,876.88          | 63              |
| 32                              | 138.22                          | 51.35                         | 314.13           | 2,131.41         | 1,222.77         | 454.32            | 5               |
| 41                              | 34.67                           | 13.39                         | 491.90           | 3,828.34         | 2,160.12         | 834.11            | 21              |
| 42                              | 117.59                          | 46.45                         | 595.70           | 5,077.36         | 2,836.53         | 1,120.42          | 15              |
| 43                              | 29.66                           | 12.31                         | 106.08           | 1,143.29         | 624.68           | 259.30            | 7               |
| 50                              | 47.20                           | 11.44                         | 925.07           | 2,665.68         | 1,795.37         | 435.15            | 18              |
| 61                              | 35.92                           | 7.17                          | 1,894.53         | 4,411.30         | 3,152.91         | 629.19            | 28              |
| 62                              | 10.78                           | 10.78                         | 0.00             | 208.90           | 69.63            | 69.63             | 1               |
| 82                              | 18.21                           | 8.46                          | 23.34            | 630.57           | 326.95           | 151.81            | 5               |
| 90                              | 2.67                            | 2.67                          | 0.00             | 92.36            | 30.79            | 30.79             | 1               |
| <b>Total</b>                    | <b>132.12</b>                   | <b>11.60</b>                  | <b>53,702.57</b> | <b>76,569.30</b> | <b>65,135.93</b> | <b>5,716.68</b>   | <b>247</b>      |

## Pacific Herring (*Clupea pallasi*)


Between 2023 and 2024, the estimated biomass of Pacific herring increased by 21% on the 2024 eastern Bering Sea Shelf survey (Tables 65 and 66; Figs. 64 and 65) and the population was estimated at 315.9 million individuals (Tables 65 and 67; Fig. 64).

**Table 65.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Pacific herring (*Clupea pallasi*) in the eastern Bering Sea shelf survey area.

|                                  | Eastern Bering Sea Shelf |
|----------------------------------|--------------------------|
| <b>Stations Present</b>          | 96 of 350 (27.4%)        |
| <b>Bottom Depth (m)</b>          | 21 — 105                 |
| <b>Bottom Temperature (°C)</b>   | -1.2 — 5.7               |
| <b>Surface Temperature (°C)</b>  | 2 — 8.3                  |
| <b>Population</b>                | 315.9 million            |
| <b>Biomass (t)</b>               | 66,282                   |
| <b>Percent of Total Catch</b>    | 0.4%                     |
| <b>Biomass</b>                   |                          |
| <b>Percent Change in Biomass</b> | 21% increase from 2023   |



**Figure 64.** -- Time series of Pacific herring (*Clupea pallasi*) biomass (thousand t) and population (billions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

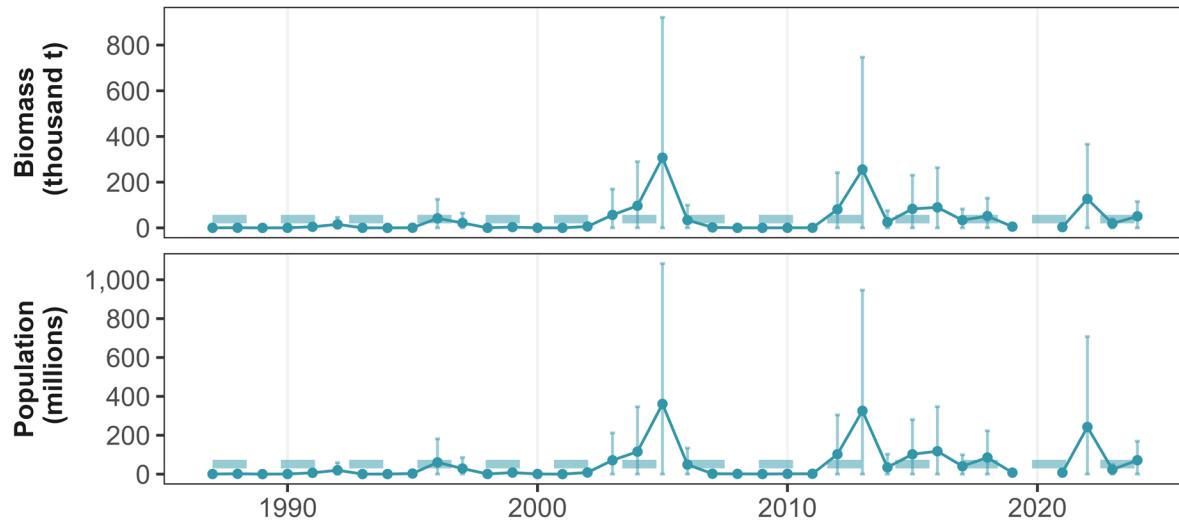


**Figure 65.** -- CPUE (kg/km<sup>2</sup>) distribution of Pacific herring (*Clupea pallasii*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

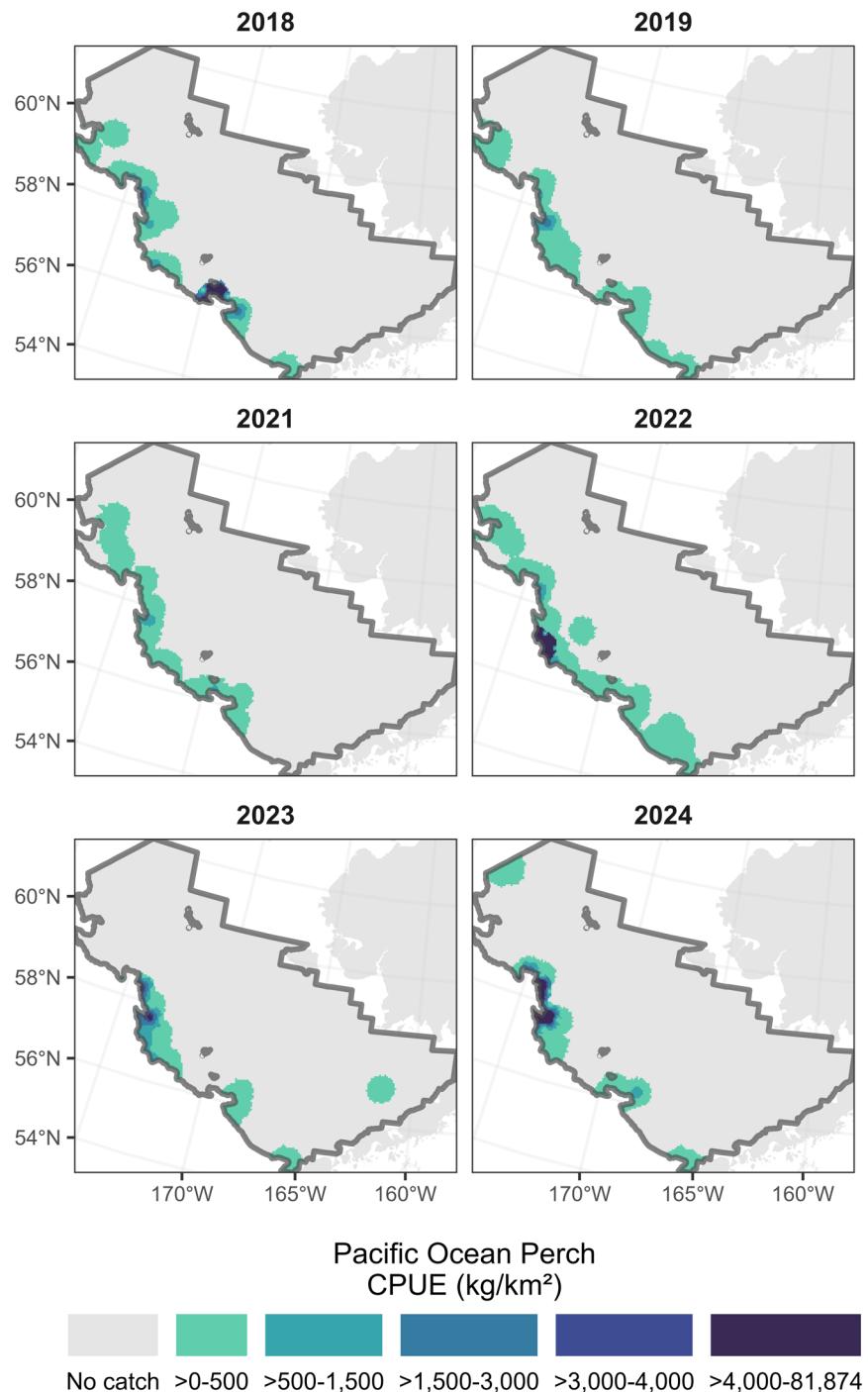
**Table 66.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which Pacific herring (*Clupea pallasi*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)   | Biomass SD (t) | 95% LCL (t)   | 95% UCL (t)    | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|---------------|----------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |               |                |                  |
| 10                              | 114.61                          | 48.50                         | 9,020         | 3,818          | 1,385         | 16,655         | 26               |
| 20                              | 105.39                          | 60.92                         | 4,341         | 2,509          | 0             | 9,360          | 15               |
| 31                              | 156.62                          | 143.40                        | 14,875        | 13,620         | 0             | 42,116         | 11               |
| 32                              | -                               | -                             | -             | -              | -             | -              | -                |
| 41                              | 188.60                          | 71.77                         | 11,751        | 4,472          | 2,808         | 20,695         | 24               |
| 42                              | -                               | -                             | -             | -              | -             | -              | -                |
| 43                              | 632.82                          | 266.95                        | 13,329        | 5,623          | 2,084         | 24,575         | 8                |
| 50                              | -                               | -                             | -             | -              | -             | -              | -                |
| 61                              | 1.38                            | 1.03                          | 121           | 90             | 0             | 302            | 2                |
| 62                              | -                               | -                             | -             | -              | -             | -              | -                |
| 82                              | 707.62                          | 334.11                        | 12,704        | 5,998          | 707           | 24,701         | 9                |
| 90                              | 12.04                           | 12.04                         | 139           | 139            | 0             | 417            | 1                |
| <b>Total</b>                    | <b>134.45</b>                   | <b>34.78</b>                  | <b>66,282</b> | <b>17,147</b>  | <b>31,989</b> | <b>100,576</b> | <b>96</b>        |

**Table 67.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Pacific herring (*Clupea pallasi*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)       | 95% UCL (K)       | Population (K)    | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                   |                   |                   |                   |                 |
| 10                              | 776.08                          | 369.51                        | 2,916.17          | 119,246.89        | 61,081.53         | 29,082.68         | 26              |
| 20                              | 547.63                          | 300.54                        | 0.00              | 47,319.01         | 22,558.85         | 12,380.08         | 15              |
| 31                              | 547.01                          | 528.16                        | 0.00              | 152,281.53        | 51,953.95         | 50,163.79         | 10              |
| 32                              | -                               | -                             | -                 | -                 | -                 | -                 | -               |
| 41                              | 1,067.93                        | 430.69                        | 12,870.66         | 120,215.26        | 66,542.96         | 26,836.15         | 24              |
| 42                              | -                               | -                             | -                 | -                 | -                 | -                 | -               |
| 43                              | 2,873.06                        | 1,240.96                      | 8,238.66          | 112,795.56        | 60,517.11         | 26,139.23         | 8               |
| 50                              | -                               | -                             | -                 | -                 | -                 | -                 | -               |
| 61                              | 4.43                            | 3.29                          | 0.00              | 965.62            | 388.69            | 288.47            | 2               |
| 62                              | -                               | -                             | -                 | -                 | -                 | -                 | -               |
| 82                              | 2,921.31                        | 1,375.61                      | 3,053.83          | 101,842.36        | 52,448.09         | 24,697.13         | 9               |
| 90                              | 39.10                           | 39.10                         | 0.00              | 1,353.36          | 451.12            | 451.12            | 1               |
| <b>Total</b>                    | <b>640.87</b>                   | <b>150.83</b>                 | <b>167,225.82</b> | <b>464,658.78</b> | <b>315,942.30</b> | <b>74,358.24</b>  | <b>95</b>       |

## Pacific Ocean Perch (*Sebastes alutus*)


Between 2023 and 2024, the estimated biomass of Pacific ocean perch increased by 168% on the 2024 eastern Bering Sea Shelf survey (Tables 68 and 69; Figs. 66 and 67) and the population was estimated at 71.6 million individuals (Tables 68 and 70; Fig. 66).

**Table 68.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Pacific ocean perch (*Sebastes alutus*) in the eastern Bering Sea shelf survey area.

|                                  | Eastern Bering Sea Shelf |
|----------------------------------|--------------------------|
| <b>Stations Present</b>          | 13 of 350 (3.7%)         |
| <b>Bottom Depth (m)</b>          | 84 — 192                 |
| <b>Bottom Temperature (°C)</b>   | 0.9 — 5.4                |
| <b>Surface Temperature (°C)</b>  | 5.6 — 8.7                |
| <b>Population</b>                | 71.6 million             |
| <b>Biomass (t)</b>               | 50,664                   |
| <b>Percent of Total Catch</b>    | 0.3%                     |
| <b>Biomass</b>                   |                          |
| <b>Percent Change in Biomass</b> | 168% increase from 2023  |



**Figure 66.** -- Time series of Pacific ocean perch (*Sebastes alutus*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

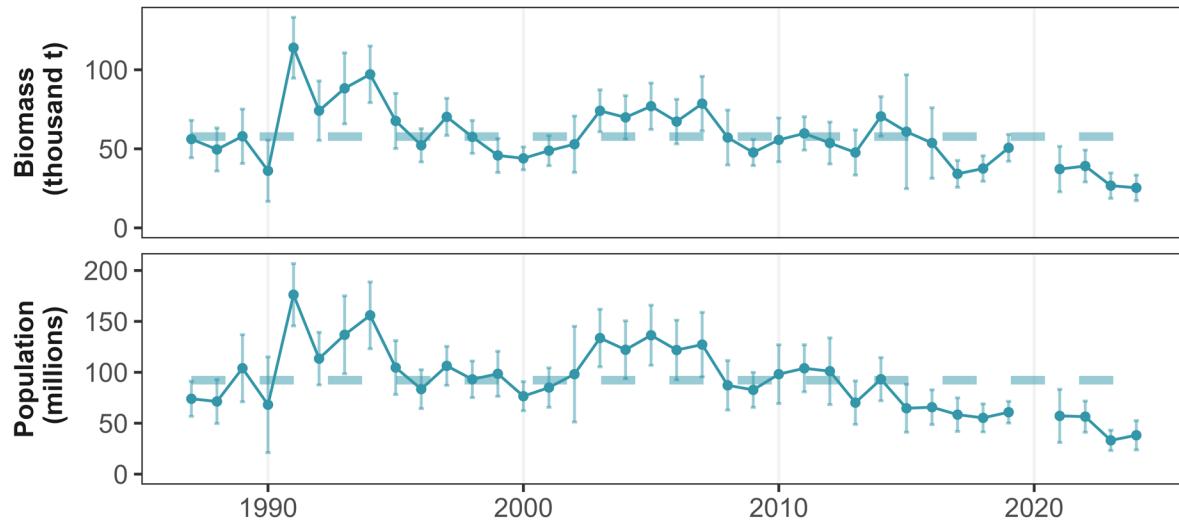


**Figure 67.** -- CPUE (kg/km<sup>2</sup>) distribution of Pacific ocean perch (*Sebastodes alutus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

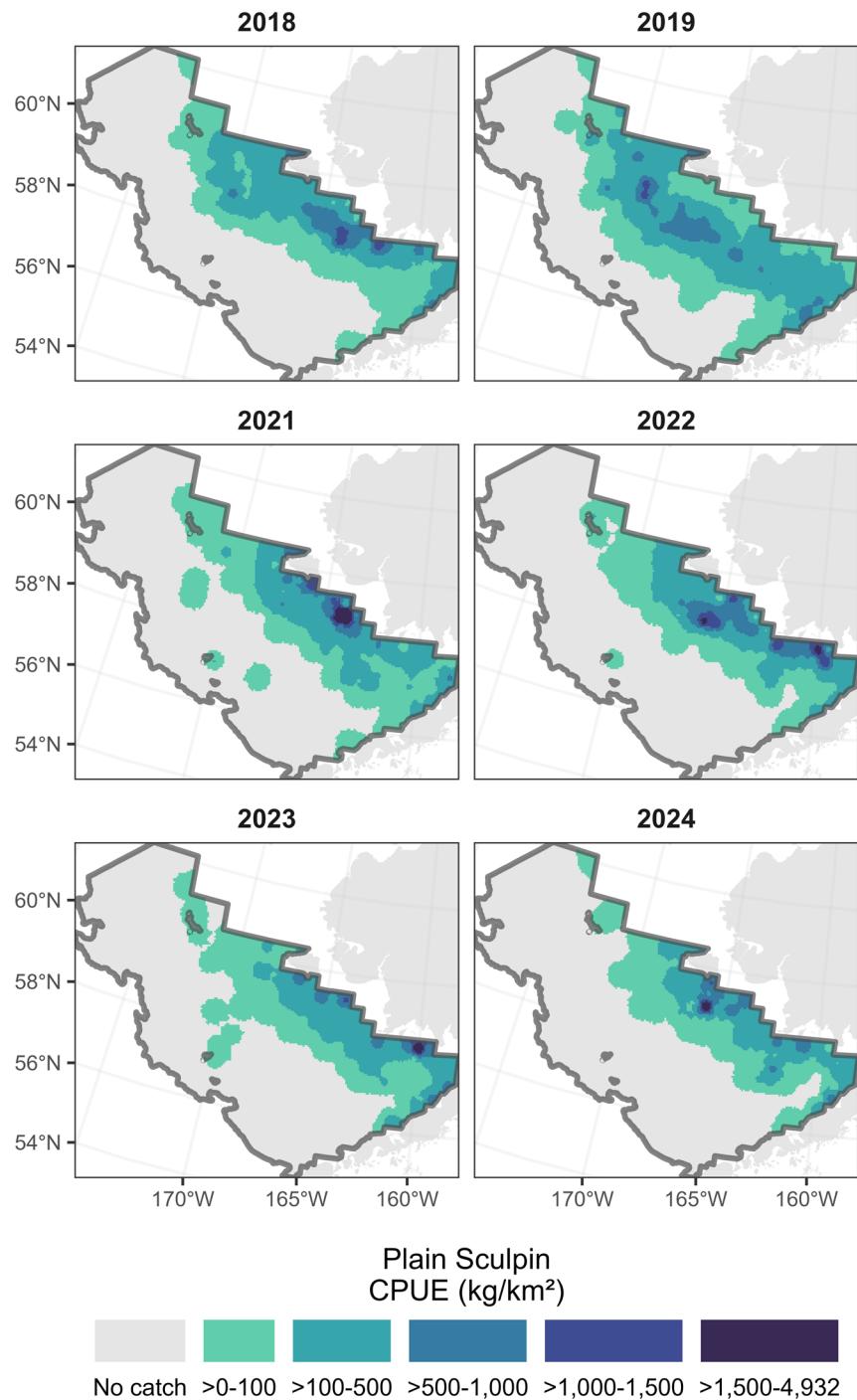
**Table 69.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which Pacific ocean perch (*Sebastes alutus*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)   | Biomass SD (t) | 95% LCL (t) | 95% UCL (t)    | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|-------------|----------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |             |                |                  |
| 10                              | -                               | -                             | -             | -              | -           | -              | -                |
| 20                              | -                               | -                             | -             | -              | -           | -              | -                |
| 31                              | 0.20                            | 0.20                          | 19            | 19             | 0           | 58             | 1                |
| 32                              | -                               | -                             | -             | -              | -           | -              | -                |
| 41                              | -                               | -                             | -             | -              | -           | -              | -                |
| 42                              | -                               | -                             | -             | -              | -           | -              | -                |
| 43                              | -                               | -                             | -             | -              | -           | -              | -                |
| 50                              | 42.69                           | 38.07                         | 1,624         | 1,448          | 0           | 4,520          | 3                |
| 61                              | 558.45                          | 368.21                        | 49,019        | 32,320         | 0           | 113,659        | 8                |
| 62                              | -                               | -                             | -             | -              | -           | -              | -                |
| 82                              | -                               | -                             | -             | -              | -           | -              | -                |
| 90                              | 0.14                            | 0.14                          | 2             | 2              | 0           | 5              | 1                |
| <b>Total</b>                    | <b>102.77</b>                   | <b>65.63</b>                  | <b>50,664</b> | <b>32,352</b>  | <b>0</b>    | <b>115,369</b> | <b>13</b>        |

**Table 70.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Pacific ocean perch (*Sebastes alutus*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K) | 95% UCL (K)       | Population (K)   | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-------------|-------------------|------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |                   |                  |                   |                 |
| 10                              | -                               | -                             | -           | -                 | -                | -                 | -               |
| 20                              | -                               | -                             | -           | -                 | -                | -                 | -               |
| 31                              | 0.30                            | 0.30                          | 0.00        | 84.89             | 28.30            | 28.30             | 1               |
| 32                              | -                               | -                             | -           | -                 | -                | -                 | -               |
| 41                              | -                               | -                             | -           | -                 | -                | -                 | -               |
| 42                              | -                               | -                             | -           | -                 | -                | -                 | -               |
| 43                              | -                               | -                             | -           | -                 | -                | -                 | -               |
| 50                              | 38.87                           | 32.69                         | 0.00        | 3,965.39          | 1,478.73         | 1,243.33          | 3               |
| 61                              | 798.34                          | 556.40                        | 0.00        | 167,753.54        | 70,075.60        | 48,838.97         | 8               |
| 62                              | -                               | -                             | -           | -                 | -                | -                 | -               |
| 82                              | -                               | -                             | -           | -                 | -                | -                 | -               |
| 90                              | 2.58                            | 2.58                          | 0.00        | 89.14             | 29.71            | 29.71             | 1               |
| <b>Total</b>                    | <b>145.26</b>                   | <b>99.10</b>                  | <b>0.00</b> | <b>169,321.96</b> | <b>71,612.33</b> | <b>48,854.81</b>  | <b>13</b>       |

## Plain Sculpin (*Myoxocephalus jaok*)


Between 2023 and 2024, the estimated biomass of plain sculpin decreased by 5% on the 2024 eastern Bering Sea Shelf survey (Tables 71 and 72; Figs. 68 and 69) and the population was estimated at 38.2 million individuals (Tables 71 and 73; Fig. 68).

**Table 71.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for plain sculpin (*Myoxocephalus jaok*) in the eastern Bering Sea shelf survey area.

| Eastern Bering Sea Shelf         |                       |
|----------------------------------|-----------------------|
| <b>Stations Present</b>          | 82 of 350 (23.4%)     |
| <b>Bottom Depth (m)</b>          | 21 — 68               |
| <b>Bottom Temperature (°C)</b>   | -1.6 — 5.7            |
| <b>Surface Temperature (°C)</b>  | 2 — 7                 |
| <b>Population</b>                | 38.2 million          |
| <b>Biomass (t)</b>               | 25,338                |
| <b>Percent of Total Catch</b>    | 0.2%                  |
| <b>Biomass</b>                   |                       |
| <b>Percent Change in Biomass</b> | 5% decrease from 2023 |



**Figure 68.** -- Time series of plain sculpin (*Myoxocephalus jaok*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

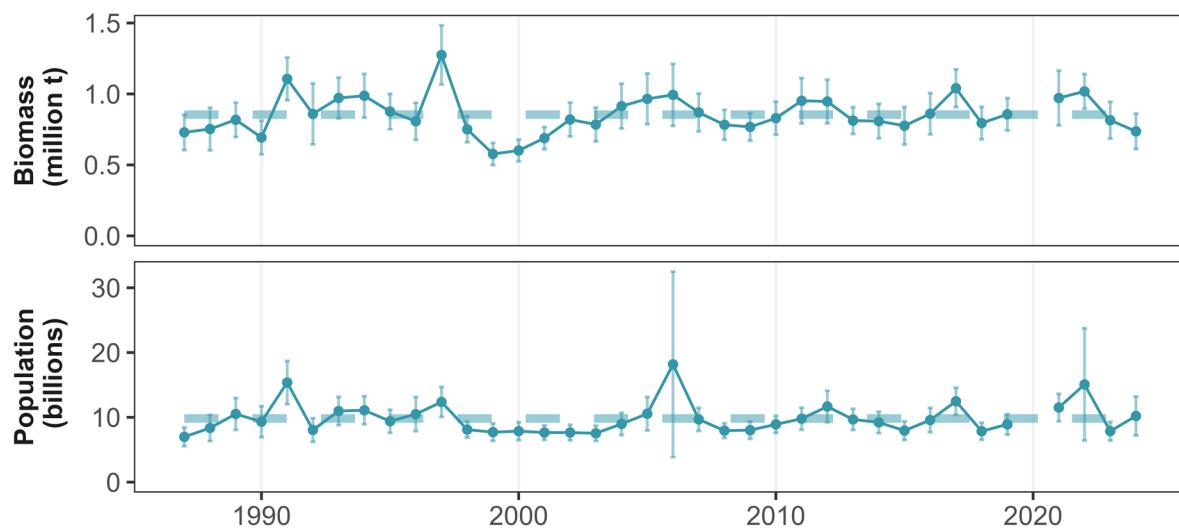


**Figure 69.** -- CPUE (kg/km<sup>2</sup>) distribution of plain sculpin (*Myoxocephalus jaok*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

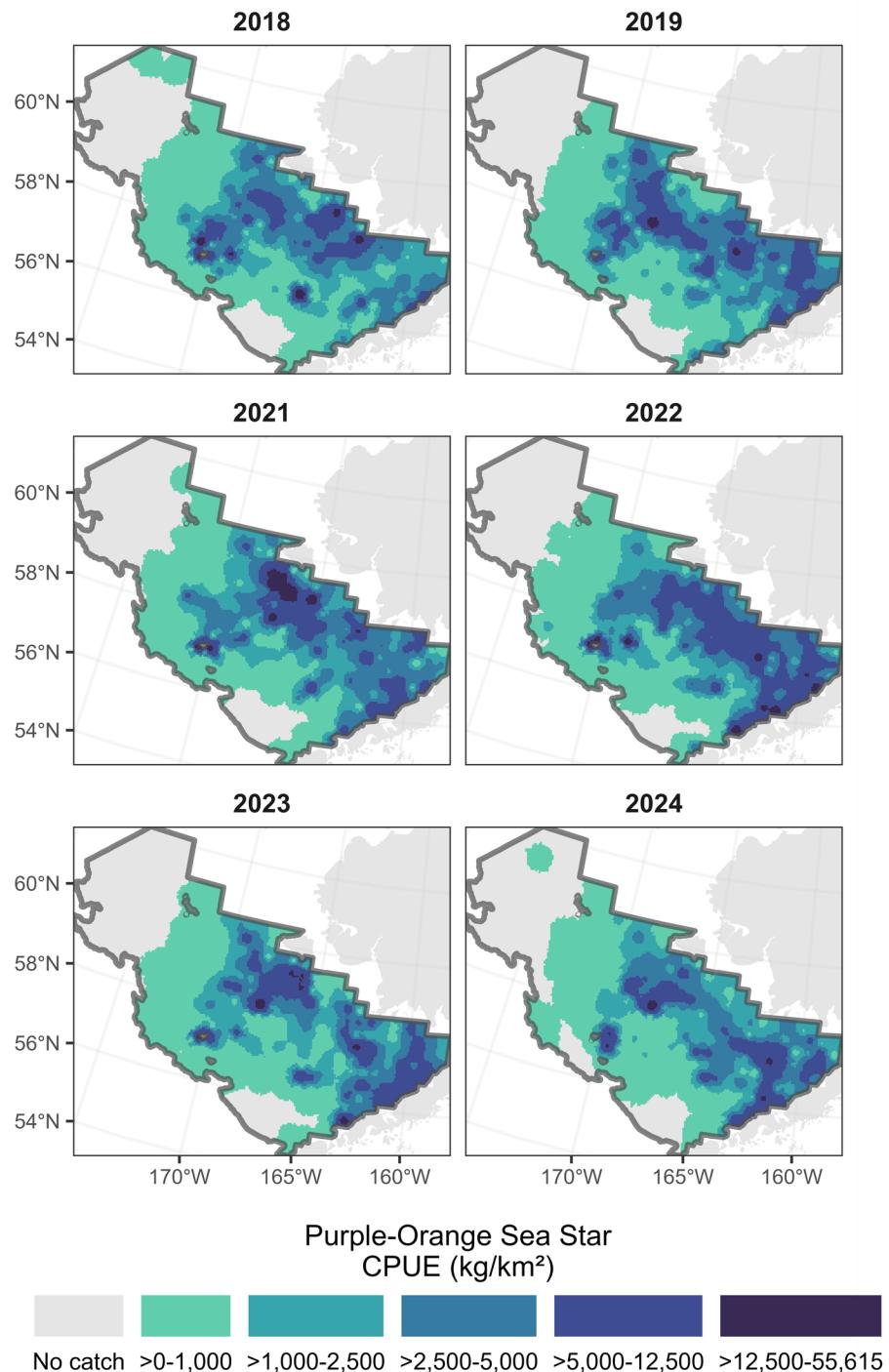
**Table 72.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which plain sculpin (*Myoxocephalus jaok*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)   | Biomass SD (t) | 95% LCL (t)   | 95% UCL (t)   | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|---------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |               |               |                  |
| 10                              | 189.73                          | 30.43                         | 14,933        | 2,395          | 10,142        | 19,724        | 47               |
| 20                              | 243.78                          | 78.45                         | 10,042        | 3,231          | 3,579         | 16,505        | 27               |
| 31                              | 1.18                            | 0.84                          | 112           | 80             | 0             | 272           | 2                |
| 32                              | -                               | -                             | -             | -              | -             | -             | -                |
| 41                              | 3.86                            | 1.80                          | 241           | 112            | 16            | 465           | 5                |
| 42                              | -                               | -                             | -             | -              | -             | -             | -                |
| 43                              | -                               | -                             | -             | -              | -             | -             | -                |
| 50                              | -                               | -                             | -             | -              | -             | -             | -                |
| 61                              | -                               | -                             | -             | -              | -             | -             | -                |
| 62                              | -                               | -                             | -             | -              | -             | -             | -                |
| 82                              | 0.54                            | 0.54                          | 10            | 10             | 0             | 29            | 1                |
| 90                              | -                               | -                             | -             | -              | -             | -             | -                |
| <b>Total</b>                    | <b>51.40</b>                    | <b>8.16</b>                   | <b>25,338</b> | <b>4,025</b>   | <b>17,288</b> | <b>33,387</b> | <b>82</b>        |

**Table 73.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which plain sculpin (*Myoxocephalus jaok*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)      | 95% UCL (K)      | Population (K)   | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|------------------|------------------|------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                  |                  |                  |                   |                 |
| 10                              | 272.71                          | 59.53                         | 12,092.27        | 30,834.62        | 21,463.44        | 4,685.59          | 47              |
| 20                              | 398.28                          | 132.34                        | 5,503.43         | 27,309.28        | 16,406.35        | 5,451.46          | 27              |
| 31                              | 0.98                            | 0.73                          | 0.00             | 231.65           | 93.42            | 69.12             | 2               |
| 32                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 41                              | 3.12                            | 1.44                          | 15.46            | 373.81           | 194.63           | 89.59             | 5               |
| 42                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 43                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 50                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 61                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 62                              | -                               | -                             | -                | -                | -                | -                 | -               |
| 82                              | 1.86                            | 1.86                          | 0.00             | 100.09           | 33.36            | 33.36             | 1               |
| 90                              | -                               | -                             | -                | -                | -                | -                 | -               |
| <b>Total</b>                    | <b>77.47</b>                    | <b>14.58</b>                  | <b>23,812.47</b> | <b>52,569.96</b> | <b>38,191.21</b> | <b>7,189.37</b>   | <b>82</b>       |

## Purple-Orange Sea Star (*Asterias amurensis*)


Between 2023 and 2024, the estimated biomass of purple-orange sea star decreased by 10% on the 2024 eastern Bering Sea Shelf survey (Tables 74 and 75; Figs. 70 and 71) and the population was estimated at 10.2 billion individuals (Tables 74 and 76; Fig. 70).

**Table 74.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for purple-orange sea star (*Asterias amurensis*) in the eastern Bering Sea shelf survey area.

|                                  | Eastern Bering Sea Shelf |
|----------------------------------|--------------------------|
| <b>Stations Present</b>          | 226 of 350 (64.6%)       |
| <b>Bottom Depth (m)</b>          | 21 — 155                 |
| <b>Bottom Temperature (°C)</b>   | -1.3 — 5.7               |
| <b>Surface Temperature (°C)</b>  | 2 — 8.7                  |
| <b>Population</b>                | 10.2 billion             |
| <b>Biomass (t)</b>               | 736,479                  |
| <b>Percent of Total Catch</b>    | 4.9%                     |
| <b>Biomass</b>                   |                          |
| <b>Percent Change in Biomass</b> | 10% decrease from 2023   |



**Figure 70.** -- Time series of purple-orange sea star (*Asterias amurensis*) biomass (million t) and population (billions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

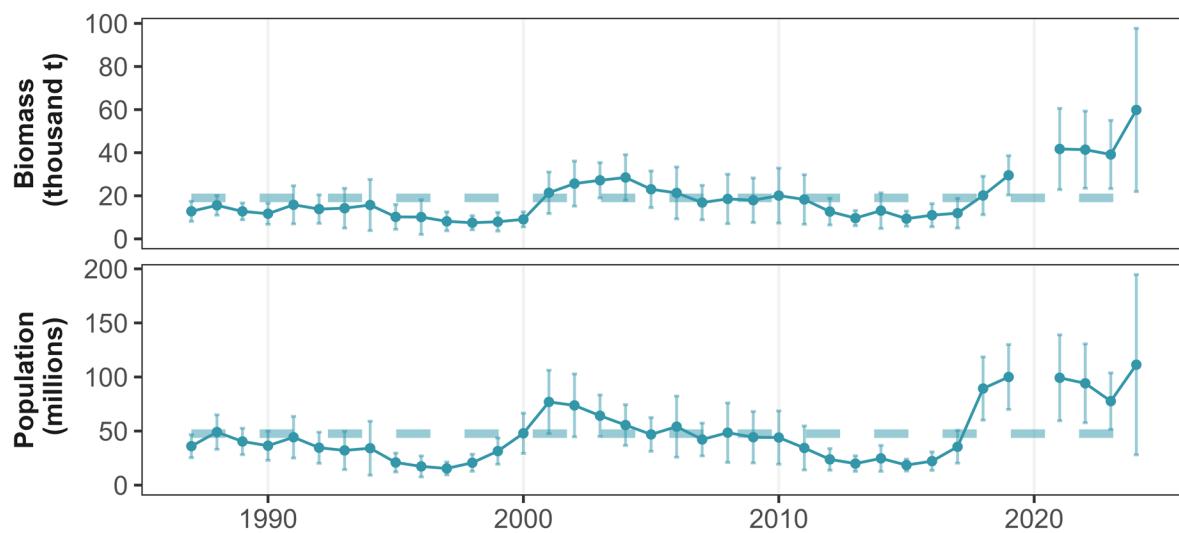


**Figure 71.** -- CPUE (kg/km<sup>2</sup>) distribution of purple-orange sea star (*Asterias amurensis*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

**Table 75.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which purple-orange sea star (*Asterias amurensis*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)    | Biomass SD (t) | 95% LCL (t)    | 95% UCL (t)    | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|----------------|----------------|----------------|----------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                |                |                |                |                  |
| 10                              | 3,729.05                        | 410.86                        | 293,497        | 32,337         | 228,823        | 358,172        | 58               |
| 20                              | 3,230.04                        | 436.21                        | 133,056        | 17,969         | 97,118         | 168,993        | 31               |
| 31                              | 1,845.20                        | 328.29                        | 175,254        | 31,181         | 112,892        | 237,616        | 60               |
| 32                              | 604.11                          | 251.16                        | 5,344          | 2,222          | 900            | 9,788          | 5                |
| 41                              | 1,255.19                        | 526.28                        | 78,211         | 32,793         | 12,625         | 143,796        | 35               |
| 42                              | 2,080.68                        | 947.09                        | 50,190         | 22,846         | 4,499          | 95,882         | 16               |
| 43                              | 13.19                           | 4.80                          | 278            | 101            | 76             | 480            | 7                |
| 50                              | 3.94                            | 2.28                          | 150            | 87             | 0              | 324            | 5                |
| 61                              | 5.62                            | 2.27                          | 493            | 199            | 95             | 891            | 8                |
| 62                              | -                               | -                             | -              | -              | -              | -              | -                |
| 82                              | -                               | -                             | -              | -              | -              | -              | -                |
| 90                              | 0.49                            | 0.49                          | 6              | 6              | 0              | 17             | 1                |
| <b>Total</b>                    | <b>1,493.90</b>                 | <b>127.37</b>                 | <b>736,479</b> | <b>62,794</b>  | <b>610,890</b> | <b>862,067</b> | <b>226</b>       |

**Table 76.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which purple-orange sea star (*Asterias amurensis*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)         | 95% UCL (K)          | Population (K)       | Population SD (K)   | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|---------------------|----------------------|----------------------|---------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                     |                      |                      |                     |                 |
| 10                              | 45,533.67                       | 6,927.10                      | 2,493,354.97        | 4,674,161.74         | 3,583,758.35         | 545,201.69          | 58              |
| 20                              | 45,638.89                       | 7,273.91                      | 1,280,741.40        | 2,479,284.92         | 1,880,013.16         | 299,635.88          | 31              |
| 31                              | 24,732.99                       | 5,280.08                      | 1,346,112.90        | 3,352,090.61         | 2,349,101.76         | 501,494.43          | 60              |
| 32                              | 6,569.63                        | 2,754.48                      | 9,383.55            | 106,855.95           | 58,119.75            | 24,368.10           | 5               |
| 41                              | 12,420.55                       | 5,479.54                      | 91,064.60           | 1,456,784.99         | 773,924.80           | 341,430.10          | 35              |
| 42                              | 64,366.84                       | 50,896.69                     | 0.00                | 4,008,136.53         | 1,552,664.53         | 1,227,736.00        | 16              |
| 43                              | 43.17                           | 17.69                         | 164.21              | 1,654.43             | 909.32               | 372.56              | 7               |
| 50                              | 63.60                           | 38.45                         | 0.00                | 5,344.20             | 2,419.29             | 1,462.45            | 5               |
| 61                              | 45.62                           | 25.58                         | 0.00                | 8,495.90             | 4,004.65             | 2,245.63            | 8               |
| 62                              | -                               | -                             | -                   | -                    | -                    | -                   | -               |
| 82                              | -                               | -                             | -                   | -                    | -                    | -                   | -               |
| 90                              | 5.13                            | 5.13                          | 0.00                | 177.47               | 59.16                | 59.16               | 1               |
| <b>Total</b>                    | <b>20,700.17</b>                | <b>3,051.46</b>               | <b>7,196,297.63</b> | <b>13,213,651.90</b> | <b>10,204,974.76</b> | <b>1,504,338.57</b> | <b>226</b>      |

## Rex Sole (*Glyptocephalus zachirus*)


Between 2023 and 2024, the estimated biomass of rex sole increased by 53% on the 2024 eastern Bering Sea Shelf survey (Tables 77 and 78; Figs. 72 and 73) and the population was estimated at 111.4 million individuals (Tables 77 and 79; Fig. 72).

**Table 77.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for rex sole (*Glyptocephalus zachirus*) in the eastern Bering Sea shelf survey area.

|                                  | Eastern Bering Sea Shelf |
|----------------------------------|--------------------------|
| <b>Stations Present</b>          | 80 of 350 (22.9%)        |
| <b>Bottom Depth (m)</b>          | 35 — 192                 |
| <b>Bottom Temperature (°C)</b>   | 1.2 — 5.4                |
| <b>Surface Temperature (°C)</b>  | 3 — 8.8                  |
| <b>Population</b>                | 111.4 million            |
| <b>Biomass (t)</b>               | 59,845                   |
| <b>Percent of Total Catch</b>    | 0.4%                     |
| <b>Biomass</b>                   |                          |
| <b>Percent Change in Biomass</b> | 53% increase from 2023   |



**Figure 72.** -- Time series of rex sole (*Glyptocephalus zachirus*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



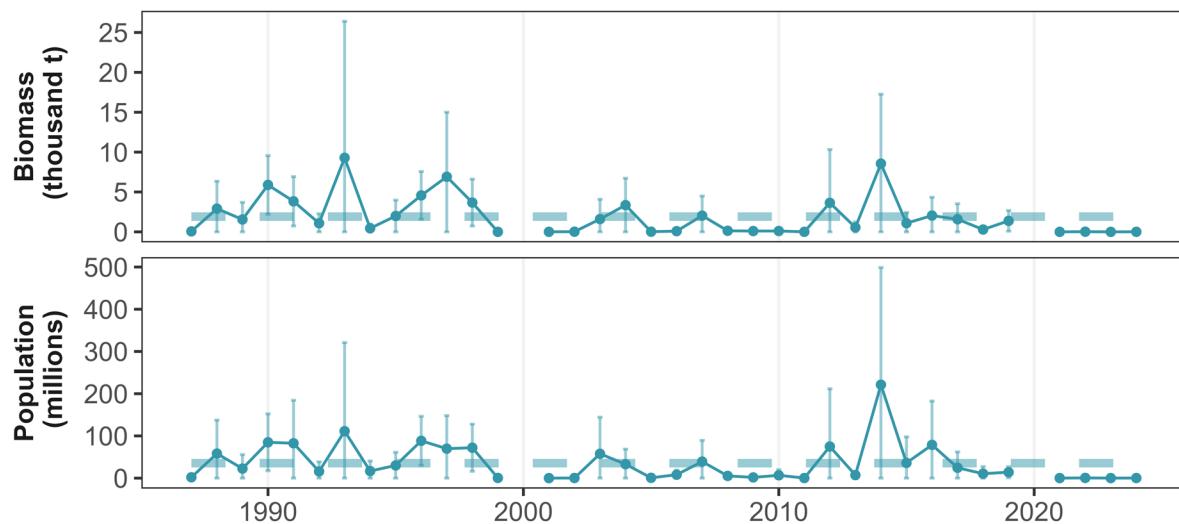
**Figure 73.** -- CPUE (kg/km<sup>2</sup>) distribution of rex sole (*Glyptocephalus zachirus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

**Table 78.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which rex sole (*Glyptocephalus zachirus*) were weighed during the 2024 eastern Bering Sea shelf survey.

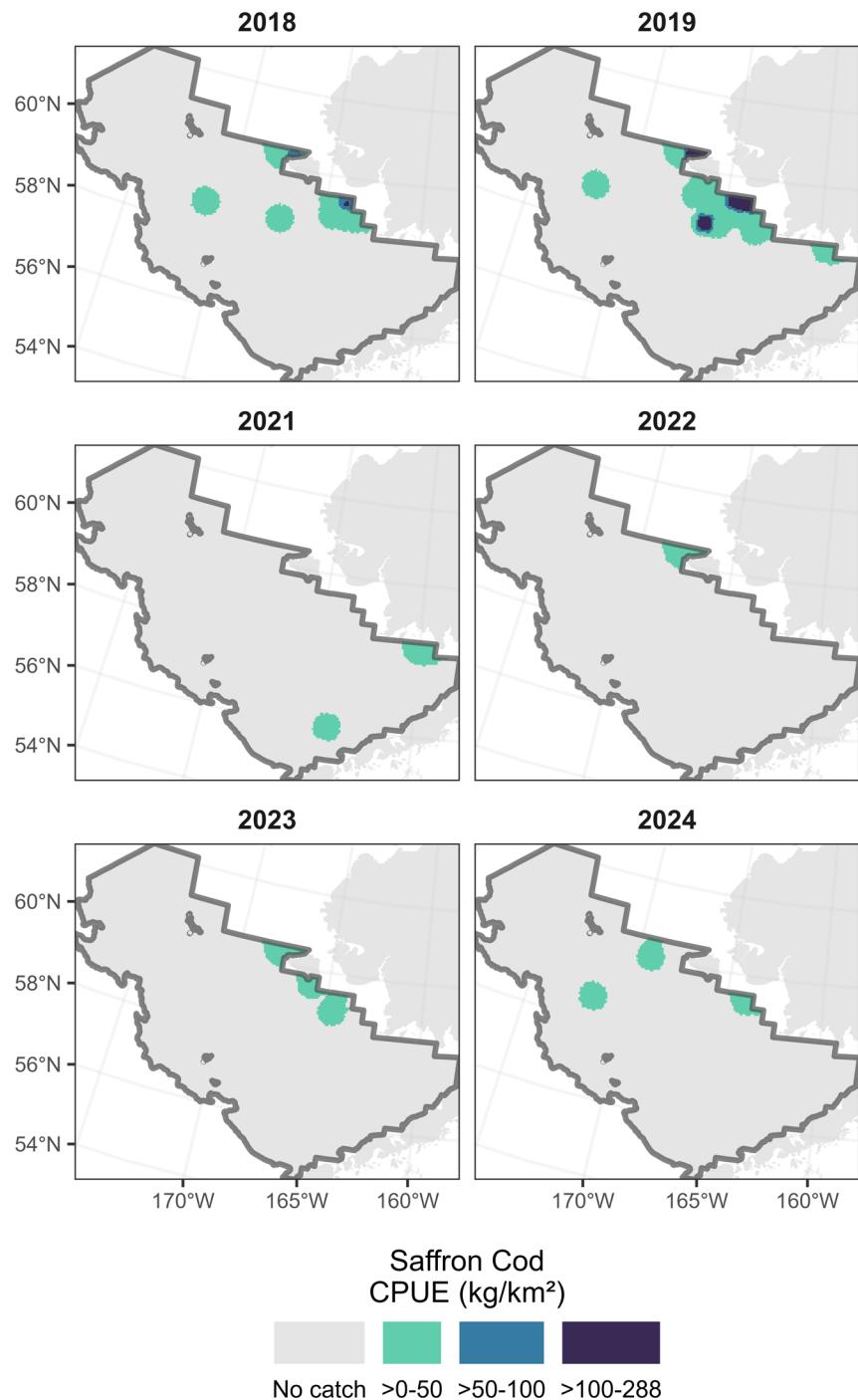
| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)   | Biomass SD (t) | 95% LCL (t)   | 95% UCL (t)   | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|---------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |               |               |                  |
| 10                              | 2.11                            | 1.41                          | 166           | 111            | 0             | 388           | 3                |
| 20                              | -                               | -                             | -             | -              | -             | -             | -                |
| 31                              | 65.88                           | 24.40                         | 6,257         | 2,318          | 1,622         | 10,892        | 23               |
| 32                              | 3.91                            | 3.91                          | 35            | 35             | 0             | 104           | 1                |
| 41                              | -                               | -                             | -             | -              | -             | -             | -                |
| 42                              | -                               | -                             | -             | -              | -             | -             | -                |
| 43                              | -                               | -                             | -             | -              | -             | -             | -                |
| 50                              | 521.98                          | 130.69                        | 19,856        | 4,971          | 9,913         | 29,798        | 25               |
| 61                              | 382.01                          | 206.52                        | 33,532        | 18,127         | 0             | 69,786        | 28               |
| 62                              | -                               | -                             | -             | -              | -             | -             | -                |
| 82                              | -                               | -                             | -             | -              | -             | -             | -                |
| 90                              | -                               | -                             | -             | -              | -             | -             | -                |
| <b>Total</b>                    | <b>121.39</b>                   | <b>38.42</b>                  | <b>59,845</b> | <b>18,939</b>  | <b>21,966</b> | <b>97,724</b> | <b>80</b>        |

**Table 79.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which rex sole (*Glyptocephalus zachirus*) were encountered during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)      | 95% UCL (K)       | Population (K)    | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|------------------|-------------------|-------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                  |                   |                   |                   |                 |
| 10                              | 2.96                            | 1.82                          | 0.00             | 519.96            | 232.94            | 143.51            | 3               |
| 20                              | -                               | -                             | -                | -                 | -                 | -                 | -               |
| 31                              | 90.51                           | 30.57                         | 2,789.34         | 14,403.35         | 8,596.34          | 2,903.50          | 23              |
| 32                              | 40.22                           | 40.22                         | 0.00             | 1,067.44          | 355.81            | 355.81            | 1               |
| 41                              | -                               | -                             | -                | -                 | -                 | -                 | -               |
| 42                              | -                               | -                             | -                | -                 | -                 | -                 | -               |
| 43                              | -                               | -                             | -                | -                 | -                 | -                 | -               |
| 50                              | 892.89                          | 194.67                        | 19,154.21        | 48,774.83         | 33,964.52         | 7,405.15          | 25              |
| 61                              | 777.04                          | 466.02                        | 0.00             | 150,017.54        | 68,205.98         | 40,905.78         | 28              |
| 62                              | -                               | -                             | -                | -                 | -                 | -                 | -               |
| 82                              | -                               | -                             | -                | -                 | -                 | -                 | -               |
| 90                              | -                               | -                             | -                | -                 | -                 | -                 | -               |
| <b>Total</b>                    | <b>225.88</b>                   | <b>84.53</b>                  | <b>28,008.21</b> | <b>194,702.99</b> | <b>111,355.60</b> | <b>41,673.69</b>  | <b>80</b>       |


## Saffron Cod (*Eleginus gracilis*)

Alternate common name: tomcod


Between 2023 and 2024, the estimated biomass of saffron cod increased to 10 t, extrapolated from 7 individuals caught on the 2024 eastern Bering Sea Shelf survey (Tables 80 and 81; Figs. 74 and 75) and the population was estimated at 212,949 individuals (Tables 80 and 82; Fig. 74).

**Table 80.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for saffron cod (*Eleginus gracilis*) in the eastern Bering Sea shelf survey area.

|                          | Eastern Bering Sea Shelf                  |
|--------------------------|-------------------------------------------|
| Stations Present         | 3 of 350 (0.9%)                           |
| Bottom Depth (m)         | 21 — 93                                   |
| Bottom Temperature (°C)  | 0.9 — 4.9                                 |
| Surface Temperature (°C) | 2.1 — 6.8                                 |
| Population               | 212,949                                   |
| Biomass (t)              | 10                                        |
| Percent of Total Catch   | <0.01%                                    |
| Biomass                  |                                           |
| Survey catch totals      | Increased from 4 to 7 individuals in 2024 |



**Figure 74.** -- Time series of saffron cod (*Eleginus gracilis*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

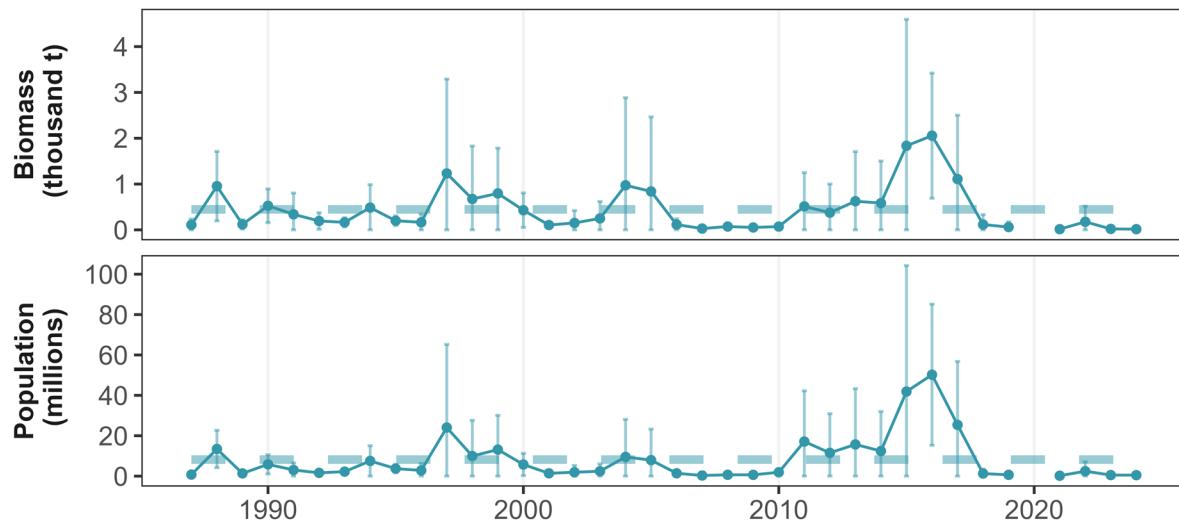


**Figure 75.** -- CPUE (kg/km<sup>2</sup>) distribution of saffron cod (*Eleginops gracilis*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

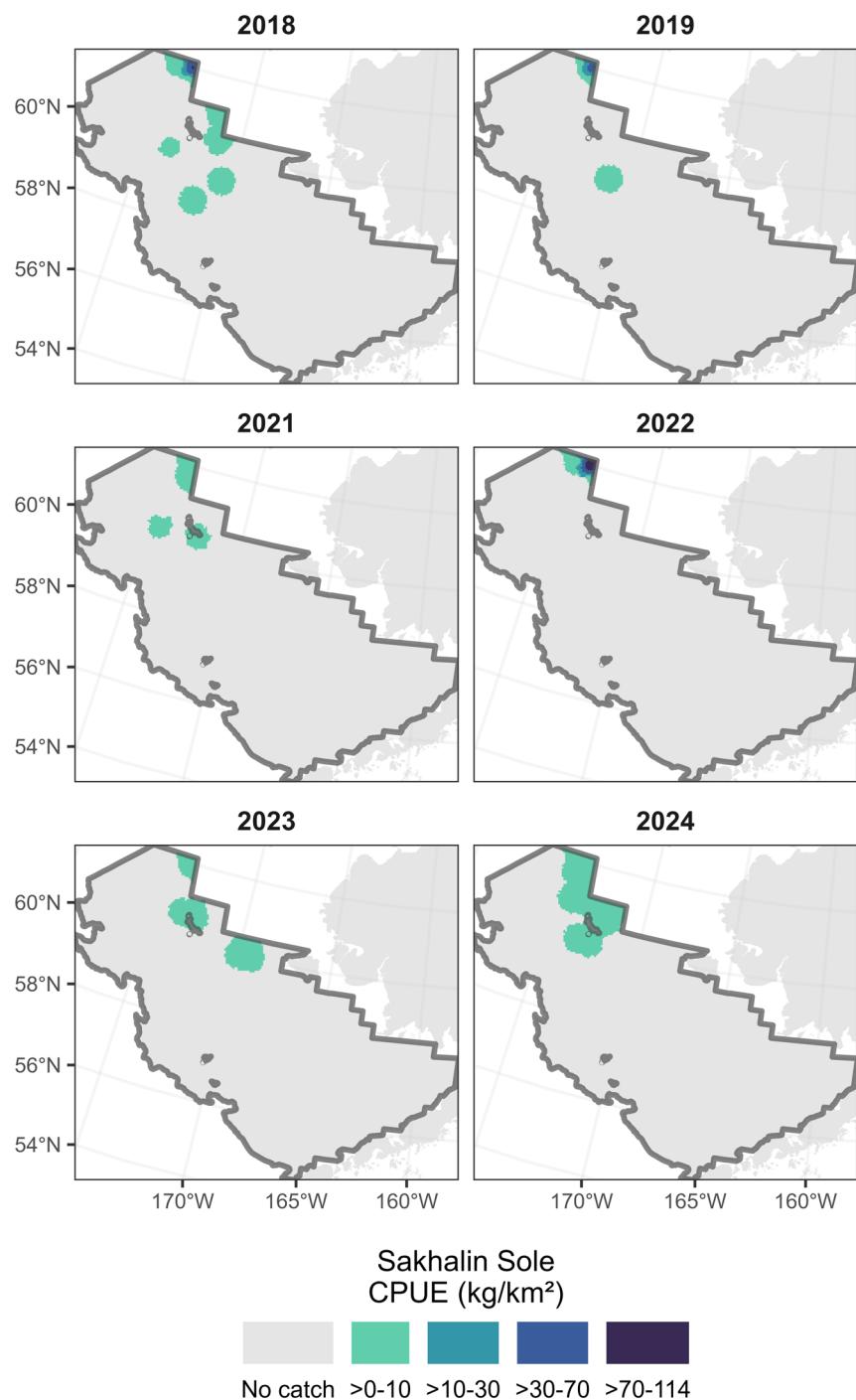
**Table 81.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which saffron cod (*Eleginops gracilis*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t) | Biomass SD (t) | 95% LCL (t) | 95% UCL (t) | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|-------------|----------------|-------------|-------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |                |             |             |                  |
| 10                              | 0.01                            | 0.01                          | 1           | 1              | 0           | 2           | 1                |
| 20                              | 0.17                            | 0.17                          | 7           | 7              | 0           | 21          | 1                |
| 31                              | -                               | -                             | -           | -              | -           | -           | -                |
| 32                              | -                               | -                             | -           | -              | -           | -           | -                |
| 41                              | 0.03                            | 0.03                          | 2           | 2              | 0           | 6           | 1                |
| 42                              | -                               | -                             | -           | -              | -           | -           | -                |
| 43                              | -                               | -                             | -           | -              | -           | -           | -                |
| 50                              | -                               | -                             | -           | -              | -           | -           | -                |
| 61                              | -                               | -                             | -           | -              | -           | -           | -                |
| 62                              | -                               | -                             | -           | -              | -           | -           | -                |
| 82                              | -                               | -                             | -           | -              | -           | -           | -                |
| 90                              | -                               | -                             | -           | -              | -           | -           | -                |
| <b>Total</b>                    | <b>0.02</b>                     | <b>0.01</b>                   | <b>10</b>   | <b>7</b>       | <b>0</b>    | <b>24</b>   | <b>3</b>         |

**Table 82.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which saffron cod (*Eleginops gracilis*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K) | 95% UCL (K)   | Population (K) | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-------------|---------------|----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |               |                |                   |                 |
| 10                              | 0.45                            | 0.45                          | 0.00        | 106.88        | 35.63          | 35.63             | 1               |
| 20                              | 3.59                            | 3.59                          | 0.00        | 443.62        | 147.87         | 147.87            | 1               |
| 31                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 32                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 41                              | 0.47                            | 0.47                          | 0.00        | 88.35         | 29.45          | 29.45             | 1               |
| 42                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 43                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 50                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 61                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 62                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 82                              | -                               | -                             | -           | -             | -              | -                 | -               |
| 90                              | -                               | -                             | -           | -             | -              | -                 | -               |
| <b>Total</b>                    | <b>0.43</b>                     | <b>0.31</b>                   | <b>0.00</b> | <b>522.81</b> | <b>212.95</b>  | <b>154.93</b>     | <b>3</b>        |

## Sakhalin Sole (*Limanda sakhalinensis*)


Between 2023 and 2024, the estimated biomass of Sakhalin sole decreased to 16 t, extrapolated from 15 individuals caught on the 2024 eastern Bering Sea Shelf survey (Tables 83 and 84; Figs. 76 and 77) and the population was estimated at 495,735 individuals (Tables 83 and 85; Fig. 76).

**Table 83.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for Sakhalin sole (*Limanda sakhalinensis*) in the eastern Bering Sea shelf survey area.

|                                 | Eastern Bering Sea Shelf                    |
|---------------------------------|---------------------------------------------|
| <b>Stations Present</b>         | 10 of 350 (2.9%)                            |
| <b>Bottom Depth (m)</b>         | 62 — 83                                     |
| <b>Bottom Temperature (°C)</b>  | -1.6 — 0.7                                  |
| <b>Surface Temperature (°C)</b> | 5 — 6.7                                     |
| <b>Population</b>               | 495,735                                     |
| <b>Biomass (t)</b>              | 16                                          |
| <b>Percent of Total Catch</b>   | <0.01%                                      |
| <b>Biomass</b>                  |                                             |
| <b>Survey catch totals</b>      | Decreased from 18 to 15 individuals in 2024 |



**Figure 76.** -- Time series of Sakhalin sole (*Limanda sakhalinensis*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

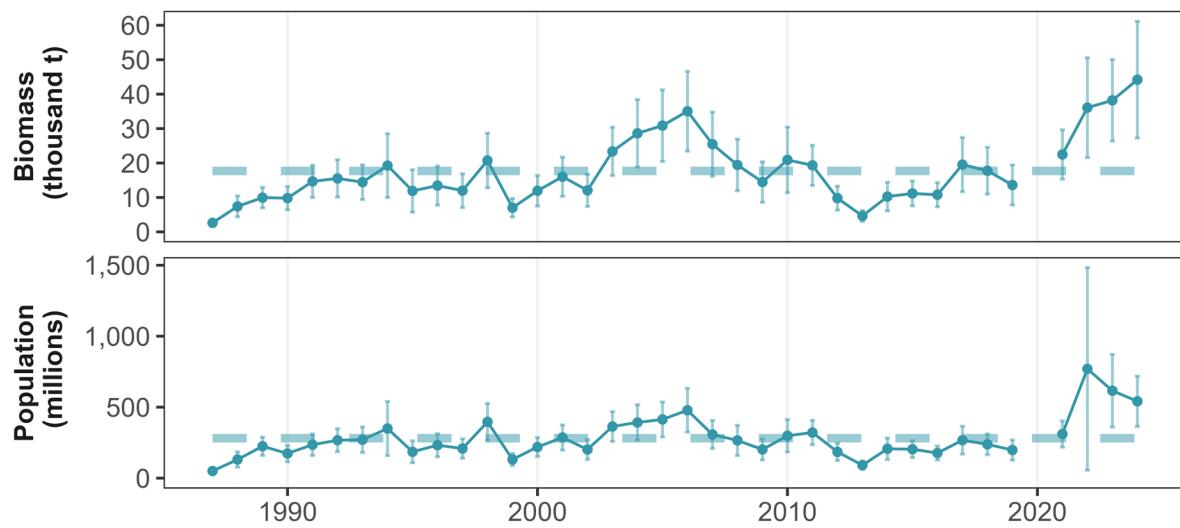


**Figure 77. --** CPUE (kg/km<sup>2</sup>) distribution of Sakhalin sole (*Limanda sakhalinensis*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

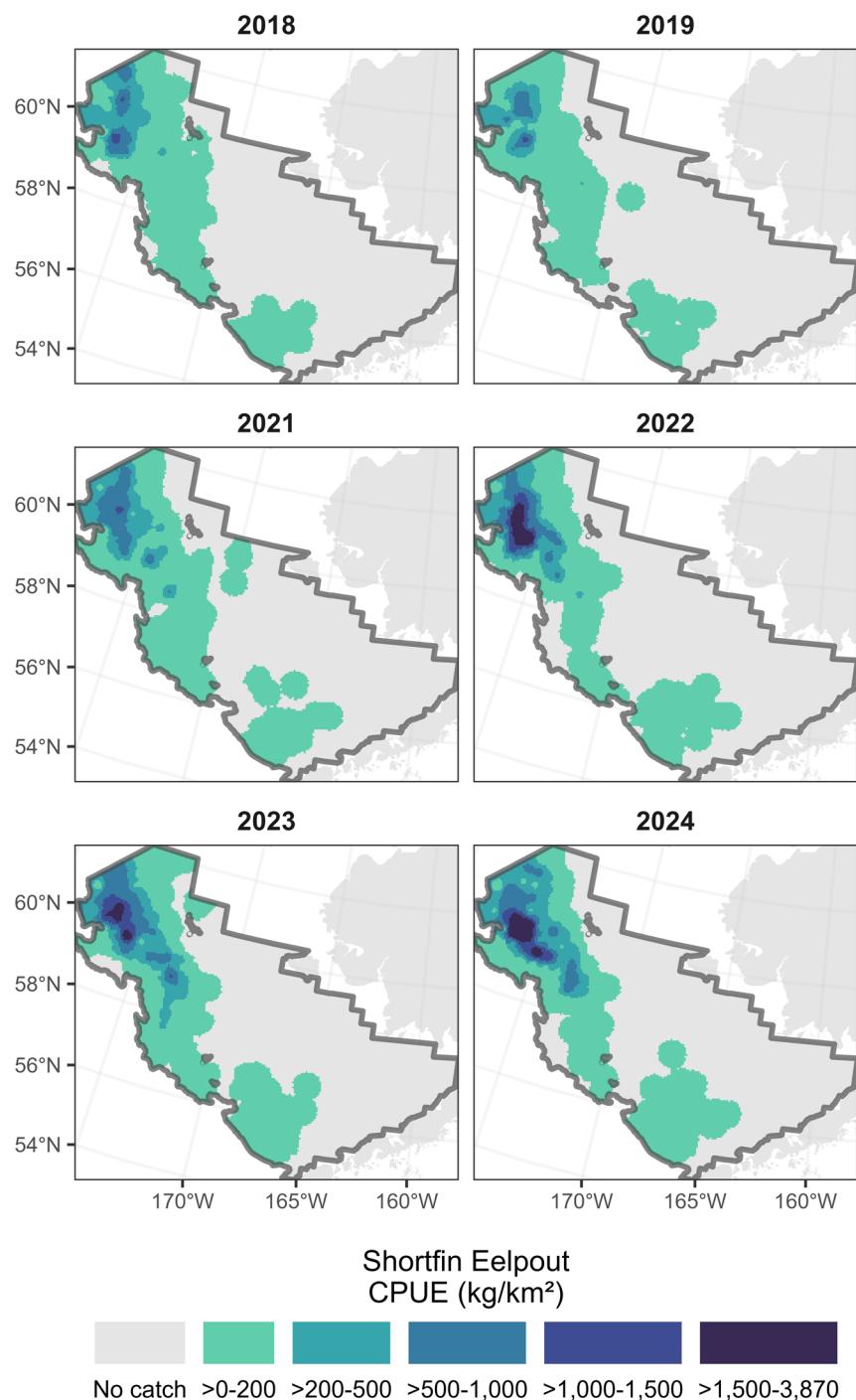
**Table 84.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which Sakhalin sole (*Limanda sakhalinensis*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t) | Biomass SD (t) | 95% LCL (t) | 95% UCL (t) | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|-------------|----------------|-------------|-------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |                |             |             |                  |
| 10                              | -                               | -                             | -           | -              | -           | -           | -                |
| 20                              | -                               | -                             | -           | -              | -           | -           | -                |
| 31                              | -                               | -                             | -           | -              | -           | -           | -                |
| 32                              | -                               | -                             | -           | -              | -           | -           | -                |
| 41                              | 0.11                            | 0.06                          | 7           | 4              | 0           | 14          | 4                |
| 42                              | -                               | -                             | -           | -              | -           | -           | -                |
| 43                              | 0.19                            | 0.17                          | 4           | 4              | 0           | 11          | 2                |
| 50                              | -                               | -                             | -           | -              | -           | -           | -                |
| 61                              | -                               | -                             | -           | -              | -           | -           | -                |
| 62                              | -                               | -                             | -           | -              | -           | -           | -                |
| 82                              | 0.26                            | 0.14                          | 5           | 3              | 0           | 10          | 4                |
| 90                              | -                               | -                             | -           | -              | -           | -           | -                |
| <b>Total</b>                    | <b>0.03</b>                     | <b>0.01</b>                   | <b>16</b>   | <b>6</b>       | <b>4</b>    | <b>27</b>   | <b>10</b>        |

**Table 85.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which Sakhalin sole (*Limanda sakhalinensis*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)   | 95% UCL (K)   | Population (K) | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|---------------|---------------|----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |               |                |                   |                 |
| 10                              | -                               | -                             | -             | -             | -              | -                 | -               |
| 20                              | -                               | -                             | -             | -             | -              | -                 | -               |
| 31                              | -                               | -                             | -             | -             | -              | -                 | -               |
| 32                              | -                               | -                             | -             | -             | -              | -                 | -               |
| 41                              | 2.40                            | 1.24                          | 0.00          | 303.92        | 149.49         | 77.22             | 4               |
| 42                              | -                               | -                             | -             | -             | -              | -                 | -               |
| 43                              | 5.62                            | 3.88                          | 0.00          | 281.74        | 118.34         | 81.70             | 2               |
| 50                              | -                               | -                             | -             | -             | -              | -                 | -               |
| 61                              | -                               | -                             | -             | -             | -              | -                 | -               |
| 62                              | -                               | -                             | -             | -             | -              | -                 | -               |
| 82                              | 12.69                           | 6.28                          | 2.43          | 453.39        | 227.91         | 112.74            | 4               |
| 90                              | -                               | -                             | -             | -             | -              | -                 | -               |
| <b>Total</b>                    | <b>1.01</b>                     | <b>0.32</b>                   | <b>177.31</b> | <b>814.16</b> | <b>495.74</b>  | <b>159.21</b>     | <b>10</b>       |

## Shortfin Eelpout (*Lycodes brevipes*)


Between 2023 and 2024, the estimated biomass of shortfin eelpout increased by 16% on the 2024 eastern Bering Sea Shelf survey in (Table 86; Figs. 78 and 79) and the population was estimated at 541.3 million individuals (Table 86; Fig. 78).

**Table 86.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for shortfin eelpout (*Lycodes brevipes*) in the eastern Bering Sea shelf survey area.

|                                  | Eastern Bering Sea Shelf |
|----------------------------------|--------------------------|
| <b>Stations Present</b>          | 97 of 350 (27.7%)        |
| <b>Bottom Depth (m)</b>          | 68 — 176                 |
| <b>Bottom Temperature (°C)</b>   | -0.2 — 4.2               |
| <b>Surface Temperature (°C)</b>  | 4.6 — 8.9                |
| <b>Population</b>                | 541.3 million            |
| <b>Biomass (t)</b>               | 44,202                   |
| <b>Percent of Total Catch</b>    | 0.3%                     |
| <b>Biomass</b>                   |                          |
| <b>Percent Change in Biomass</b> | 16% increase from 2023   |



**Figure 78.** -- Time series of shortfin eelpout (*Lycodes brevipes*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

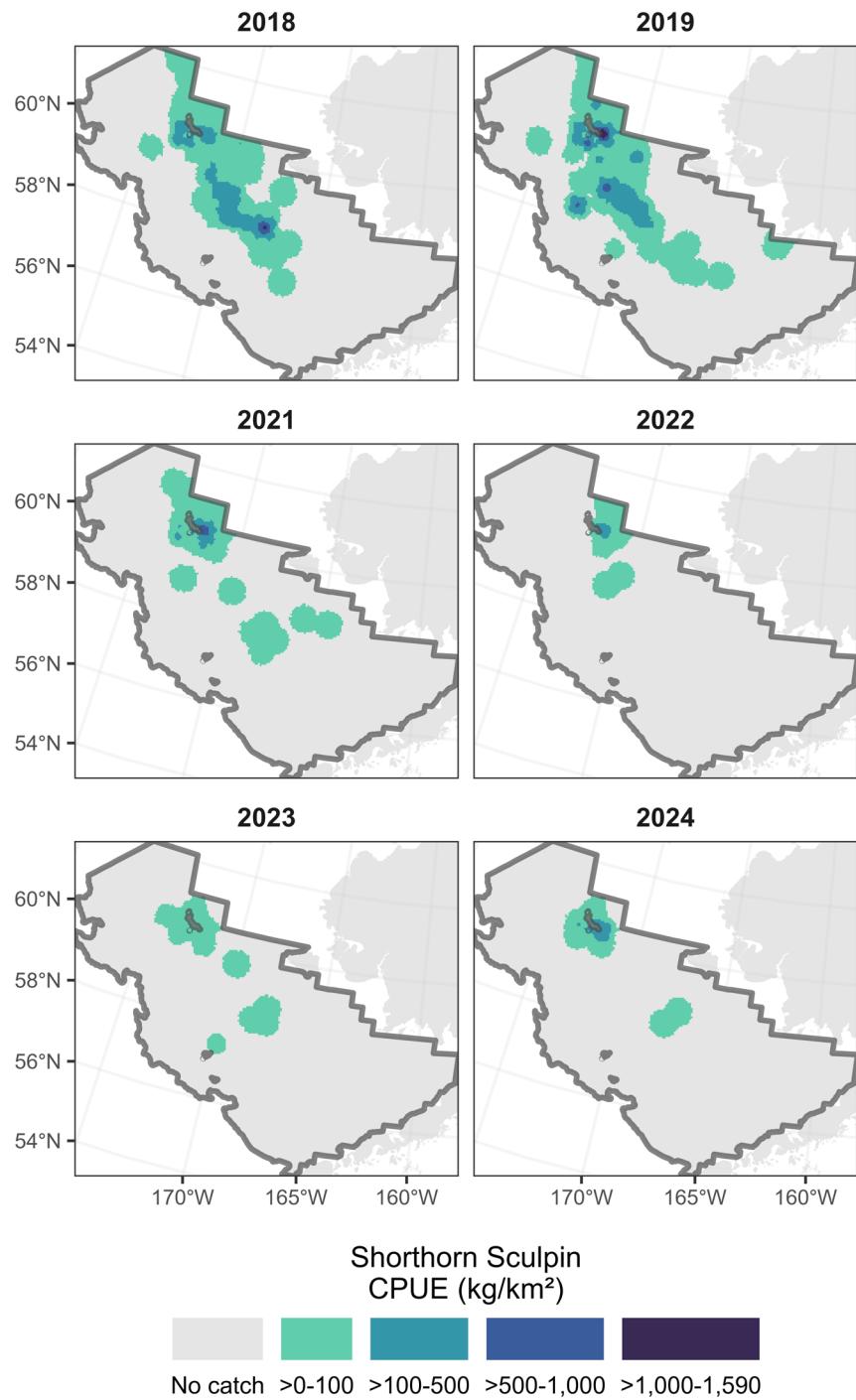


**Figure 79.** -- CPUE (kg/km<sup>2</sup>) distribution of shortfin eelpout (*Lycodes brevipes*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

## Shorthorn Sculpin (*Myoxocephalus scorpius*)

**Previous scientific name:** *Myoxocephalus verrucosus*

**Previous common name:** warty sculpin


Between 2023 and 2024, the estimated biomass of shorthorn sculpin increased to 1,330 t, extrapolated from 31 individuals caught on the 2024 eastern Bering Sea Shelf survey (Tables 87 and 88; Figs. 80 and 81) and the population was estimated at 1.3 million individuals (Tables 87 and 89; Fig. 80).

**Table 87.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for shorthorn sculpin (*Myoxocephalus scorpius*) in the eastern Bering Sea shelf survey area.

| Eastern Bering Sea Shelf        |                                             |
|---------------------------------|---------------------------------------------|
| <b>Stations Present</b>         | 7 of 350 (2.0%)                             |
| <b>Bottom Depth (m)</b>         | 44 — 75                                     |
| <b>Bottom Temperature (°C)</b>  | -0.7 — 2.5                                  |
| <b>Surface Temperature (°C)</b> | 3.6 — 6.1                                   |
| <b>Population</b>               | 1.3 million                                 |
| <b>Biomass (t)</b>              | 1,330                                       |
| <b>Percent of Total Catch</b>   | <0.01%                                      |
| <b>Biomass</b>                  |                                             |
| <b>Survey catch totals</b>      | Increased from 16 to 31 individuals in 2024 |



**Figure 80.** -- Time series of shorthorn sculpin (*Myoxocephalus scorpius*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

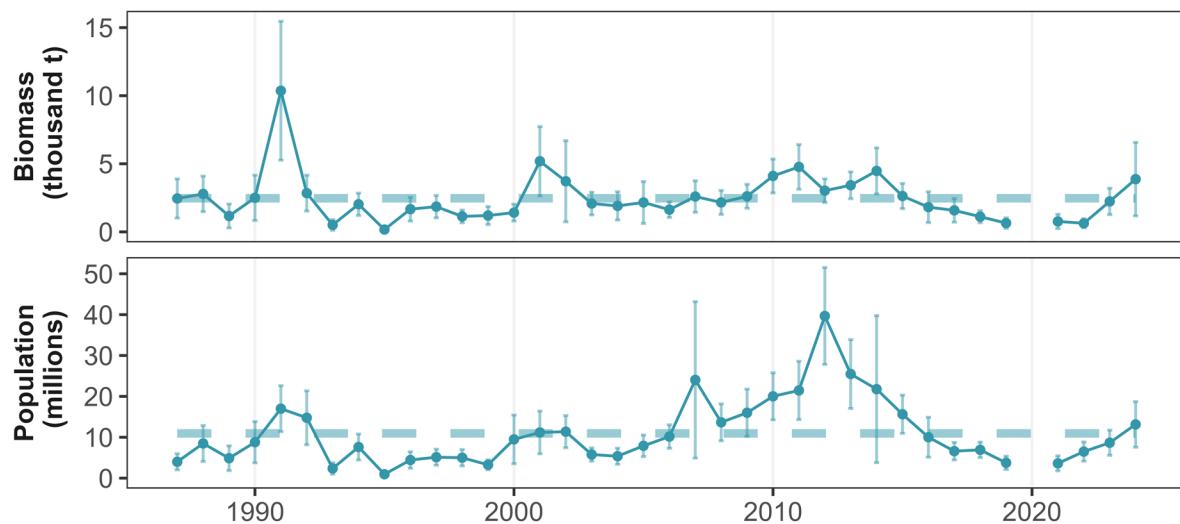


**Figure 81. --** CPUE (kg/km<sup>2</sup>) distribution of shorthorn sculpin (*Myoxocephalus scorpius*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

**Table 88.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which shorthorn sculpin (*Myoxocephalus scorpius*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)  | Biomass SD (t) | 95% LCL (t) | 95% UCL (t)  | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|--------------|----------------|-------------|--------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |              |                |             |              |                  |
| 10                              | -                               | -                             | -            | -              | -           | -            | -                |
| 20                              | 0.74                            | 0.74                          | 31           | 31             | 0           | 92           | 1                |
| 31                              | -                               | -                             | -            | -              | -           | -            | -                |
| 32                              | -                               | -                             | -            | -              | -           | -            | -                |
| 41                              | 1.90                            | 1.34                          | 119          | 83             | 0           | 285          | 2                |
| 42                              | -                               | -                             | -            | -              | -           | -            | -                |
| 43                              | 56.07                           | 35.05                         | 1,181        | 738            | 0           | 2,658        | 4                |
| 50                              | -                               | -                             | -            | -              | -           | -            | -                |
| 61                              | -                               | -                             | -            | -              | -           | -            | -                |
| 62                              | -                               | -                             | -            | -              | -           | -            | -                |
| 82                              | -                               | -                             | -            | -              | -           | -            | -                |
| 90                              | -                               | -                             | -            | -              | -           | -            | -                |
| <b>Total</b>                    | <b>2.70</b>                     | <b>1.51</b>                   | <b>1,330</b> | <b>744</b>     | <b>0</b>    | <b>2,817</b> | <b>7</b>         |

**Table 89.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which shorthorn sculpin (*Myoxocephalus scorpius*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K) | 95% UCL (K)     | Population (K)  | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-------------|-----------------|-----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |                 |                 |                   |                 |
| 10                              | -                               | -                             | -           | -               | -               | -                 | -               |
| 20                              | 0.74                            | 0.74                          | 0.00        | 91.01           | 30.34           | 30.34             | 1               |
| 31                              | -                               | -                             | -           | -               | -               | -                 | -               |
| 32                              | -                               | -                             | -           | -               | -               | -                 | -               |
| 41                              | 1.05                            | 0.73                          | 0.00        | 156.94          | 65.44           | 45.75             | 2               |
| 42                              | -                               | -                             | -           | -               | -               | -                 | -               |
| 43                              | 57.93                           | 41.74                         | 0.00        | 2,978.81        | 1,220.25        | 879.28            | 4               |
| 50                              | -                               | -                             | -           | -               | -               | -                 | -               |
| 61                              | -                               | -                             | -           | -               | -               | -                 | -               |
| 62                              | -                               | -                             | -           | -               | -               | -                 | -               |
| 82                              | -                               | -                             | -           | -               | -               | -                 | -               |
| 90                              | -                               | -                             | -           | -               | -               | -                 | -               |
| <b>Total</b>                    | <b>2.67</b>                     | <b>1.79</b>                   | <b>0.00</b> | <b>3,078.01</b> | <b>1,316.03</b> | <b>880.99</b>     | <b>7</b>        |

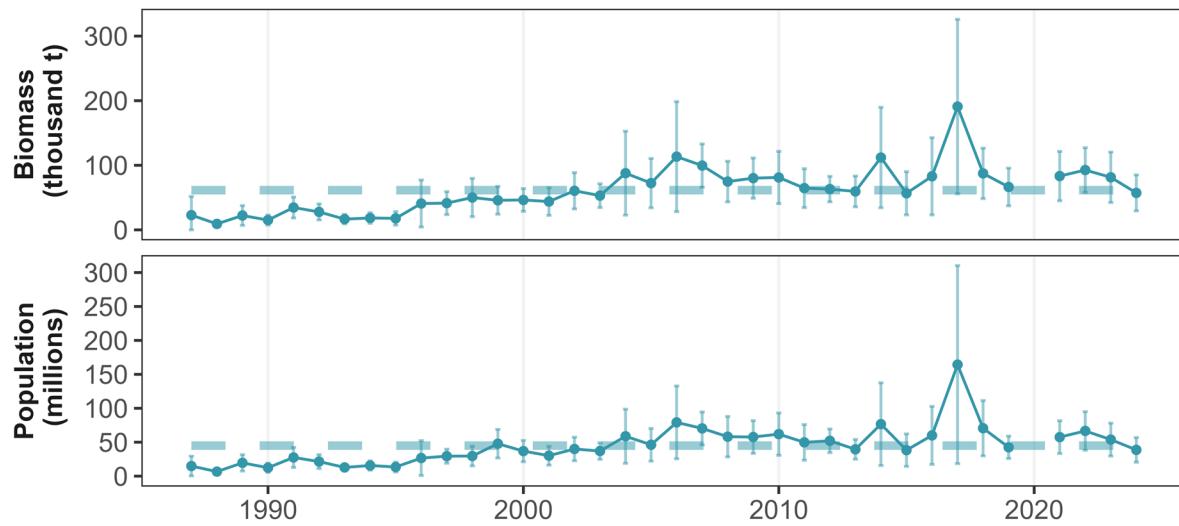
## Snailfishes (Liparidae)

Between 2023 and 2024, the snailfishes biomass estimate increased by 73% on the 2024 eastern Bering Sea Shelf survey in (Table 90; Figs. 82) and the population was estimated at 13.1 million individuals (Table 90; Fig. 82).

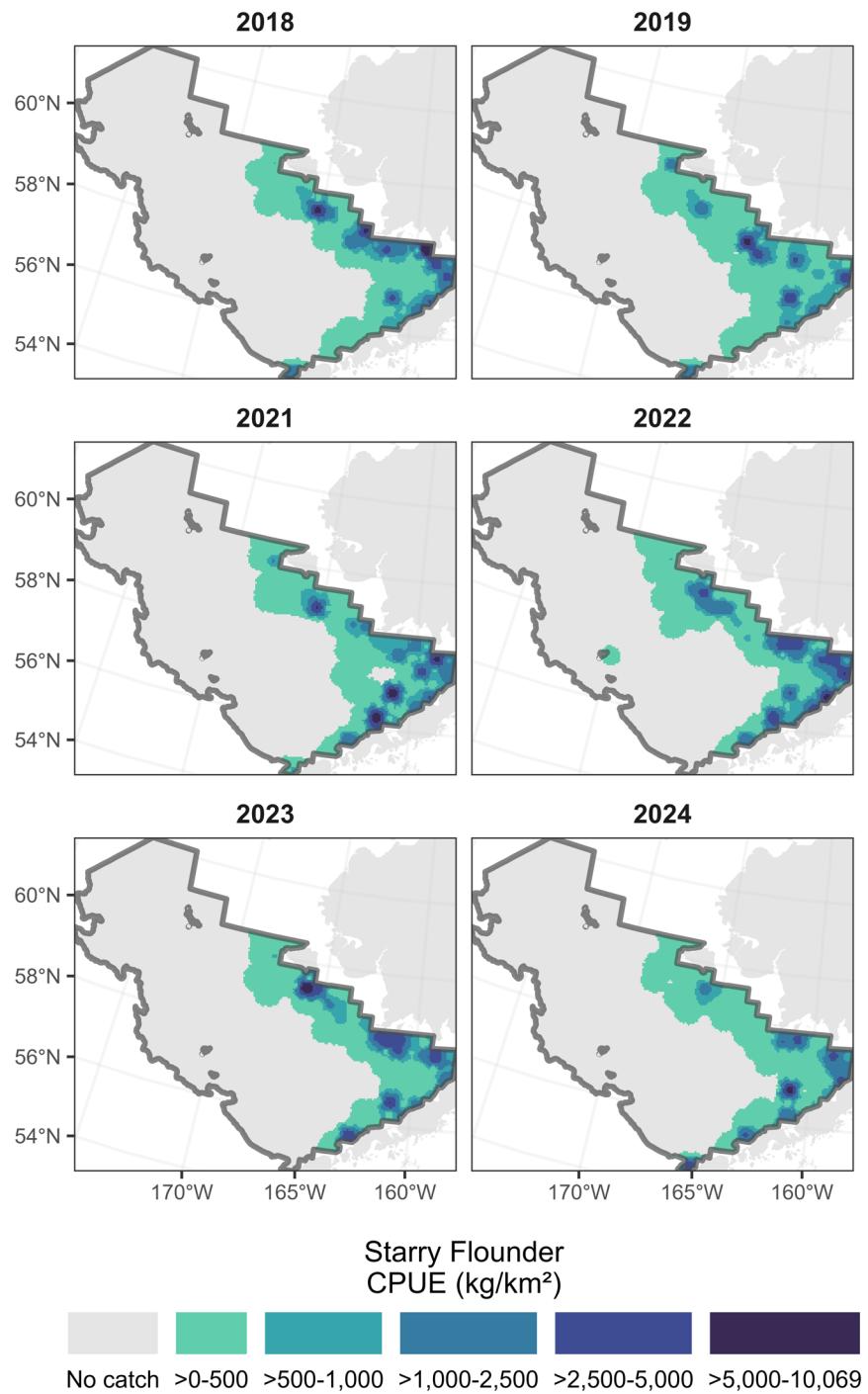
**Table 90.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for snailfishes (Liparidae) in the eastern Bering Sea shelf survey area.

| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 77 of 350 (22.0%)      |
| <b>Bottom Depth (m)</b>          | 31 — 176               |
| <b>Bottom Temperature (°C)</b>   | -1.6 — 5.4             |
| <b>Surface Temperature (°C)</b>  | 3.1 — 8.9              |
| <b>Population</b>                | 13.1 million           |
| <b>Biomass (t)</b>               | 3,873                  |
| <b>Percent of Total Catch</b>    | <0.01%                 |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 73% increase from 2023 |




**Figure 82.** -- Time series of snailfishes (Liparidae) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

## Starry Flounder (*Platichthys stellatus*)


Between 2023 and 2024, the estimated biomass of starry flounder decreased by 30% on the 2024 eastern Bering Sea Shelf survey (Tables 91 and 92; Figs. 83 and 84) and the population was estimated at 38.7 million individuals (Tables 91 and 93; Fig. 83).

**Table 91.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for starry flounder (*Platichthys stellatus*) in the eastern Bering Sea shelf survey area.

|                                  | Eastern Bering Sea Shelf |
|----------------------------------|--------------------------|
| <b>Stations Present</b>          | 57 of 350 (16.3%)        |
| <b>Bottom Depth (m)</b>          | 21 — 84                  |
| <b>Bottom Temperature (°C)</b>   | 2 — 5.6                  |
| <b>Surface Temperature (°C)</b>  | 2.1 — 6.8                |
| <b>Population</b>                | 38.7 million             |
| <b>Biomass (t)</b>               | 57,240                   |
| <b>Percent of Total Catch</b>    | 0.4%                     |
| <b>Biomass</b>                   |                          |
| <b>Percent Change in Biomass</b> | 30% decrease from 2023   |



**Figure 83.** -- Time series of starry flounder (*Platichthys stellatus*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.

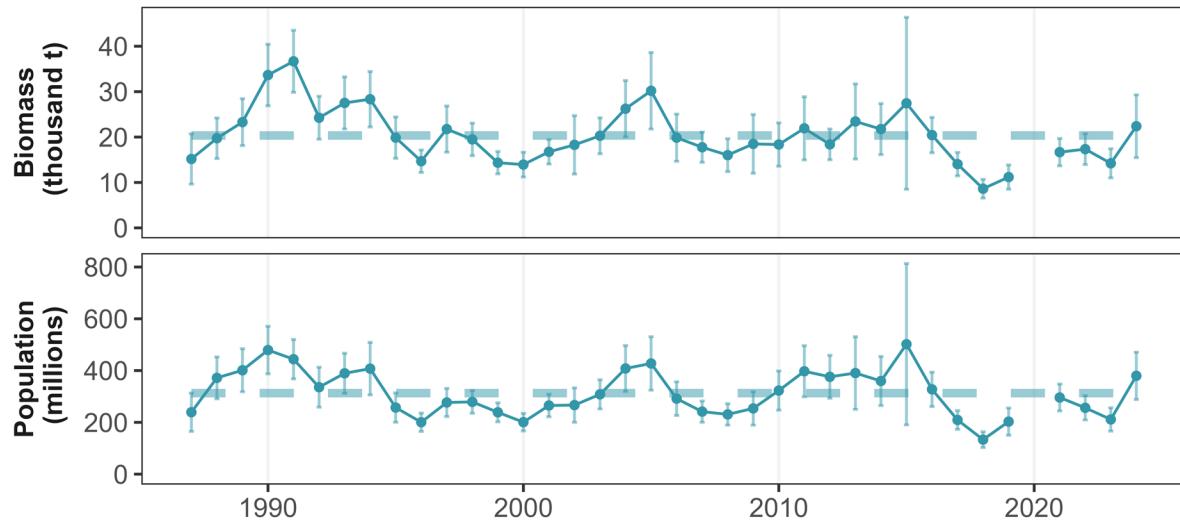


**Figure 84.** -- CPUE (kg/km<sup>2</sup>) distribution of starry flounder (*Platichthys stellatus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

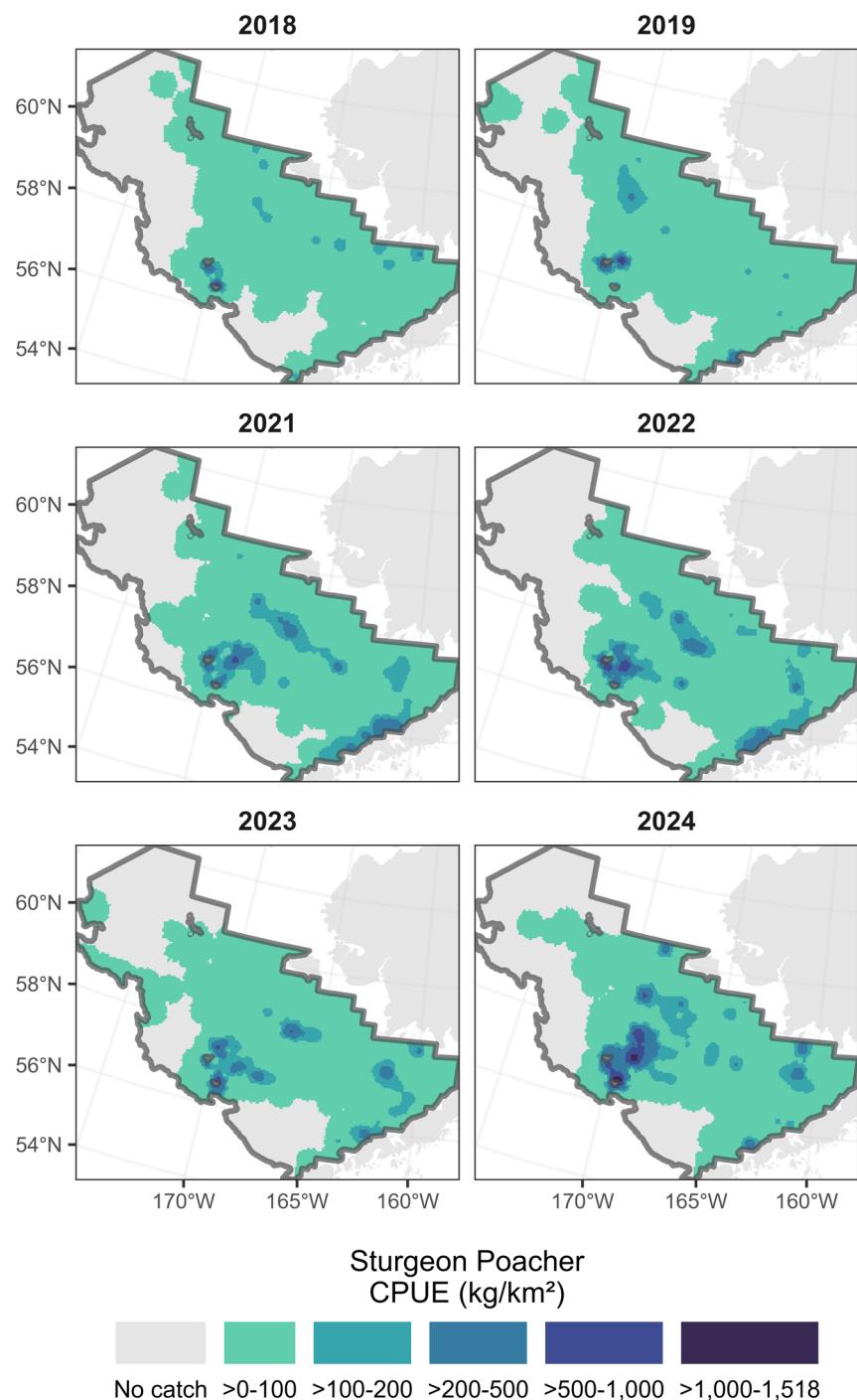
**Table 92.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (thousand t) with SD (thousand t), 95% lower (LCL; thousand t) and upper (UCL; thousand t) confidence limits, and number of hauls in which starry flounder (*Platichthys stellatus*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (Kt) | Biomass SD (Kt) | 95% LCL (Kt) | 95% UCL (Kt) | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|--------------|-----------------|--------------|--------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |              |                 |              |              |                  |
| 10                              | 461.18                          | 116.98                        | 36.30        | 9.21            | 17.88        | 54.71        | 34               |
| 20                              | 143.71                          | 60.74                         | 5.92         | 2.50            | 0.92         | 10.92        | 15               |
| 31                              | 158.17                          | 106.66                        | 15.02        | 10.13           | 0.00         | 35.28        | 8                |
| 32                              | -                               | -                             | -            | -               | -            | -            | -                |
| 41                              | -                               | -                             | -            | -               | -            | -            | -                |
| 42                              | -                               | -                             | -            | -               | -            | -            | -                |
| 43                              | -                               | -                             | -            | -               | -            | -            | -                |
| 50                              | -                               | -                             | -            | -               | -            | -            | -                |
| 61                              | -                               | -                             | -            | -               | -            | -            | -                |
| 62                              | -                               | -                             | -            | -               | -            | -            | -                |
| 82                              | -                               | -                             | -            | -               | -            | -            | -                |
| 90                              | -                               | -                             | -            | -               | -            | -            | -                |
| <b>Total</b>                    | <b>116.11</b>                   | <b>28.23</b>                  | <b>57.24</b> | <b>13.92</b>    | <b>29.41</b> | <b>85.07</b> | <b>57</b>        |

**Table 93.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (millions) with SD (millions), 95% lower (LCL; millions) and upper (UCL; millions) confidence limits, and number of hauls in which starry flounder (*Platichthys stellatus*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (M)  | 95% UCL (M)  | Population (M) | Population SD (M) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|--------------|--------------|----------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |              |              |                |                   |                 |
| 10                              | 355.89                          | 96.47                         | 12.82        | 43.20        | 28.01          | 7.59              | 34              |
| 20                              | 90.02                           | 35.31                         | 0.80         | 6.62         | 3.71           | 1.45              | 15              |
| 31                              | 73.50                           | 50.60                         | 0.00         | 16.59        | 6.98           | 4.81              | 8               |
| 32                              | -                               | -                             | -            | -            | -              | -                 | -               |
| 41                              | -                               | -                             | -            | -            | -              | -                 | -               |
| 42                              | -                               | -                             | -            | -            | -              | -                 | -               |
| 43                              | -                               | -                             | -            | -            | -              | -                 | -               |
| 50                              | -                               | -                             | -            | -            | -              | -                 | -               |
| 61                              | -                               | -                             | -            | -            | -              | -                 | -               |
| 62                              | -                               | -                             | -            | -            | -              | -                 | -               |
| 82                              | -                               | -                             | -            | -            | -              | -                 | -               |
| 90                              | -                               | -                             | -            | -            | -              | -                 | -               |
| <b>Total</b>                    | <b>78.50</b>                    | <b>18.47</b>                  | <b>20.49</b> | <b>56.91</b> | <b>38.70</b>   | <b>9.10</b>       | <b>57</b>       |

## Sturgeon Poacher (*Podothecus accipenserinus*)


Between 2023 and 2024, the estimated biomass of sturgeon poacher increased by 57% on the 2024 eastern Bering Sea Shelf survey in (Table 94; Figs. 85 and 86) and the population was estimated at 379.7 million individuals (Table 94; Fig. 85).

**Table 94.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for sturgeon poacher (*Podothecus accipenserinus*) in the eastern Bering Sea shelf survey area.

| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 195 of 350 (55.7%)     |
| <b>Bottom Depth (m)</b>          | 21 — 129               |
| <b>Bottom Temperature (°C)</b>   | -1 — 5.7               |
| <b>Surface Temperature (°C)</b>  | 2 — 8.4                |
| <b>Population</b>                | 379.7 million          |
| <b>Biomass (t)</b>               | 22,385                 |
| <b>Percent of Total Catch</b>    | 0.1%                   |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 57% increase from 2023 |

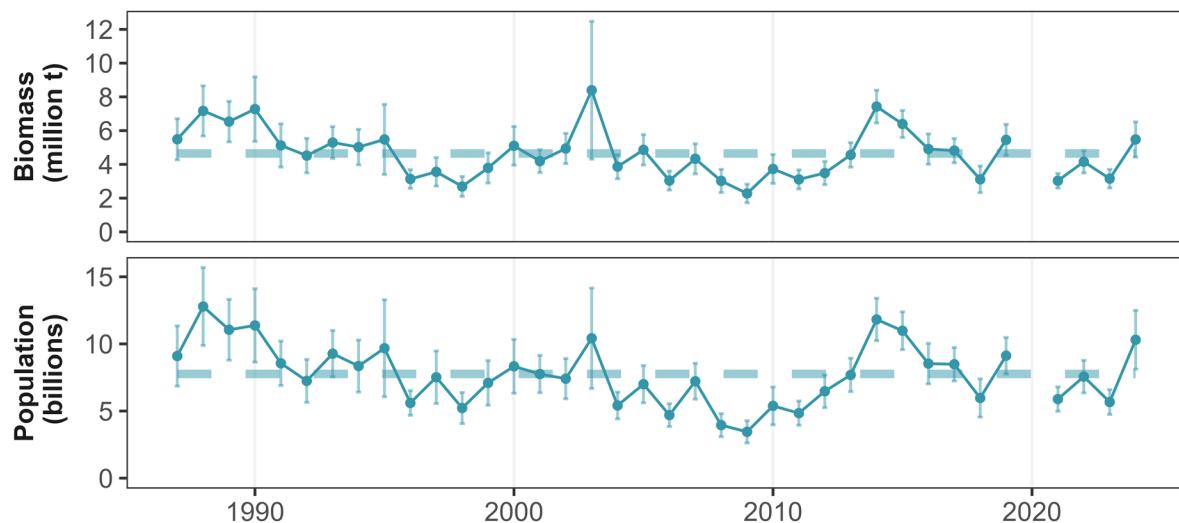


**Figure 85.** -- Time series of sturgeon poacher (*Podothecus accipenserinus*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 86.** -- CPUE (kg/km<sup>2</sup>) distribution of sturgeon poacher (*Podothecus accipenserinus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

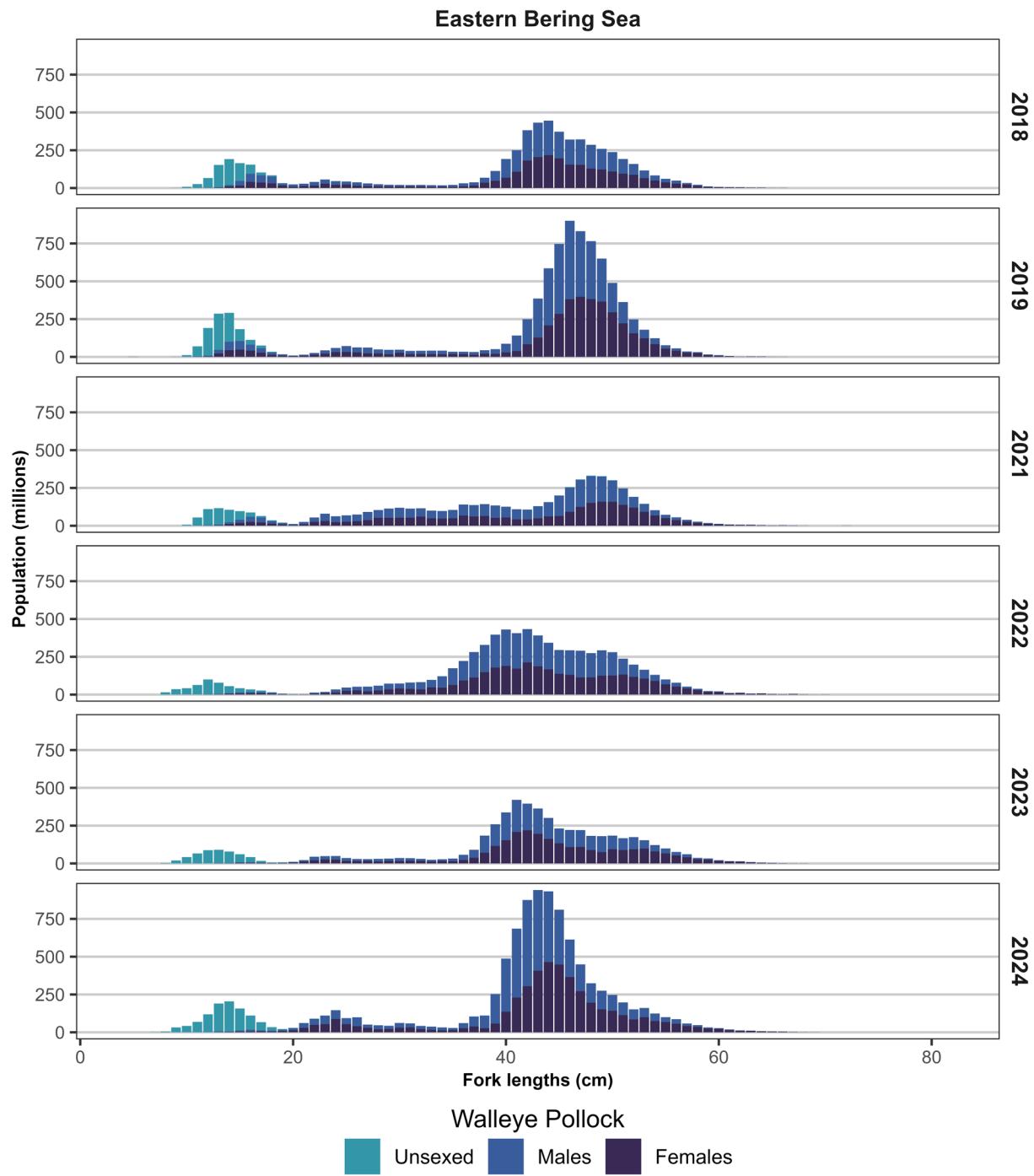
## Walleye Pollock (*Gadus chalcogrammus*)


Between 2023 and 2024, the estimated biomass of walleye pollock increased by 74% on the 2024 eastern Bering Sea Shelf survey (Tables 95 and 96; Figs. 87 and 88) and the population was estimated at 10.3 billion individuals (Tables 95 and 97; Fig. 87).

During colder years (2006 to 2013), the highest densities of pollock were along the outer half of the eastern Bering Sea shelf (> 70 m) and the lowest densities of pollock were along the inner shelf. During the recent warm stanza (2014 to 2021), pollock were more widely distributed across the shelf when compared to cold years. In these instances, high catch densities sometimes reached into the inner domain close to Nunivak Island and up against the northern edge of the standard eastern Bering Sea shelf survey area. These distribution patterns are consistent with shoreward and northward feeding migrations typical of pollock during the spring and summer ([Kotwicki et al. 2005](#)).

In 2024, the overall distribution of pollock was relatively consistent with previous years, but more concentrated in the northwestern outer shelf, with a significant increase in biomass (Fig. 88). The total abundance of adult fish > 40 cm was much higher when compared to 2023, with length modes around 43 cm for males and 44 cm for females. The total abundance of juvenile fish (< 20 cm) was also much higher in 2024 than in 2023, with a mode of 14 cm for unsexed individuals. Pollock in the 20-35 cm size range (representing 2-3 year-olds) were also present in higher abundances than in previous years, with a length mode around 24 cm (Fig. 89). Individuals in the 20-30 cm size range are historically absent or rare in survey catch samples in the eastern Bering Sea, because they likely occupy a position high above the seafloor where they are unavailable to the survey trawl ([Kotwicki et al. 2015](#)). Their vertical availability depends on environmental factors and can be affected by bottom depth, light conditions, and fish density ([Kotwicki et al. 2014, 2015](#)).

**Table 95. --** Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for walleye pollock (*Gadus chalcogrammus*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 348 of 350 (99.4%)     |
| <b>Bottom Depth (m)</b>          | 21 — 192               |
| <b>Bottom Temperature (°C)</b>   | -1.6 — 5.7             |
| <b>Surface Temperature (°C)</b>  | 2 — 8.9                |
| <b>Population</b>                | 10.3 billion           |
| <b>Biomass (t)</b>               | 5.5 million            |
| <b>Percent of Total Catch</b>    | 36.4%                  |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 74% increase from 2023 |



**Figure 87. --** Time series of walleye pollock (*Gadus chalcogrammus*) biomass (million t) and population (billions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 88.** -- CPUE (kg/km<sup>2</sup>) distribution of walleye pollock (*Gadus chalcogrammus*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

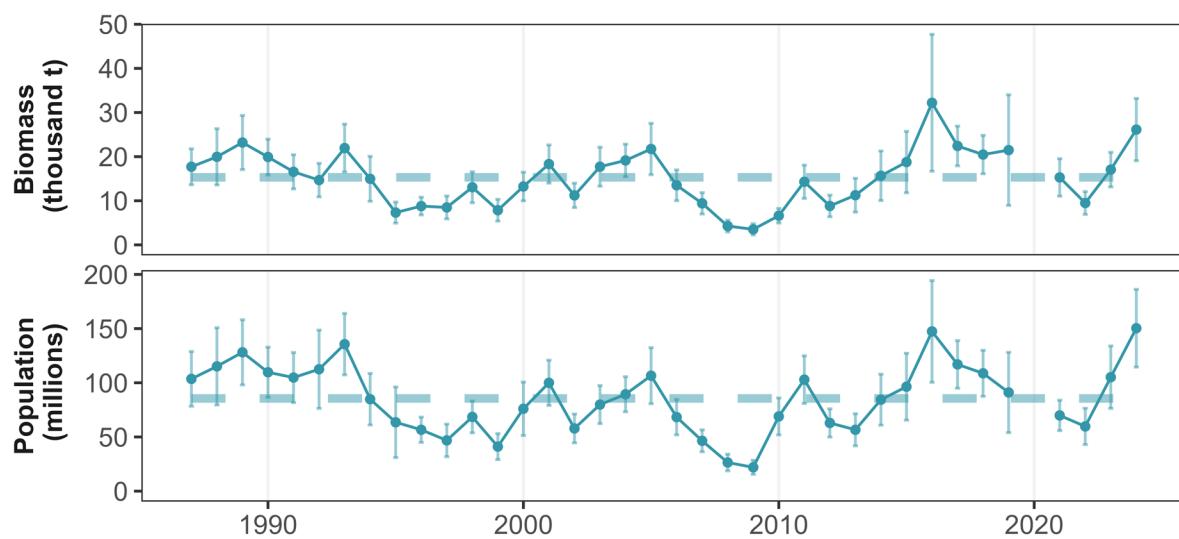


**Figure 89.** -- Total abundance-at-length estimates of walleye pollock (*Gadus chalcogrammus*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

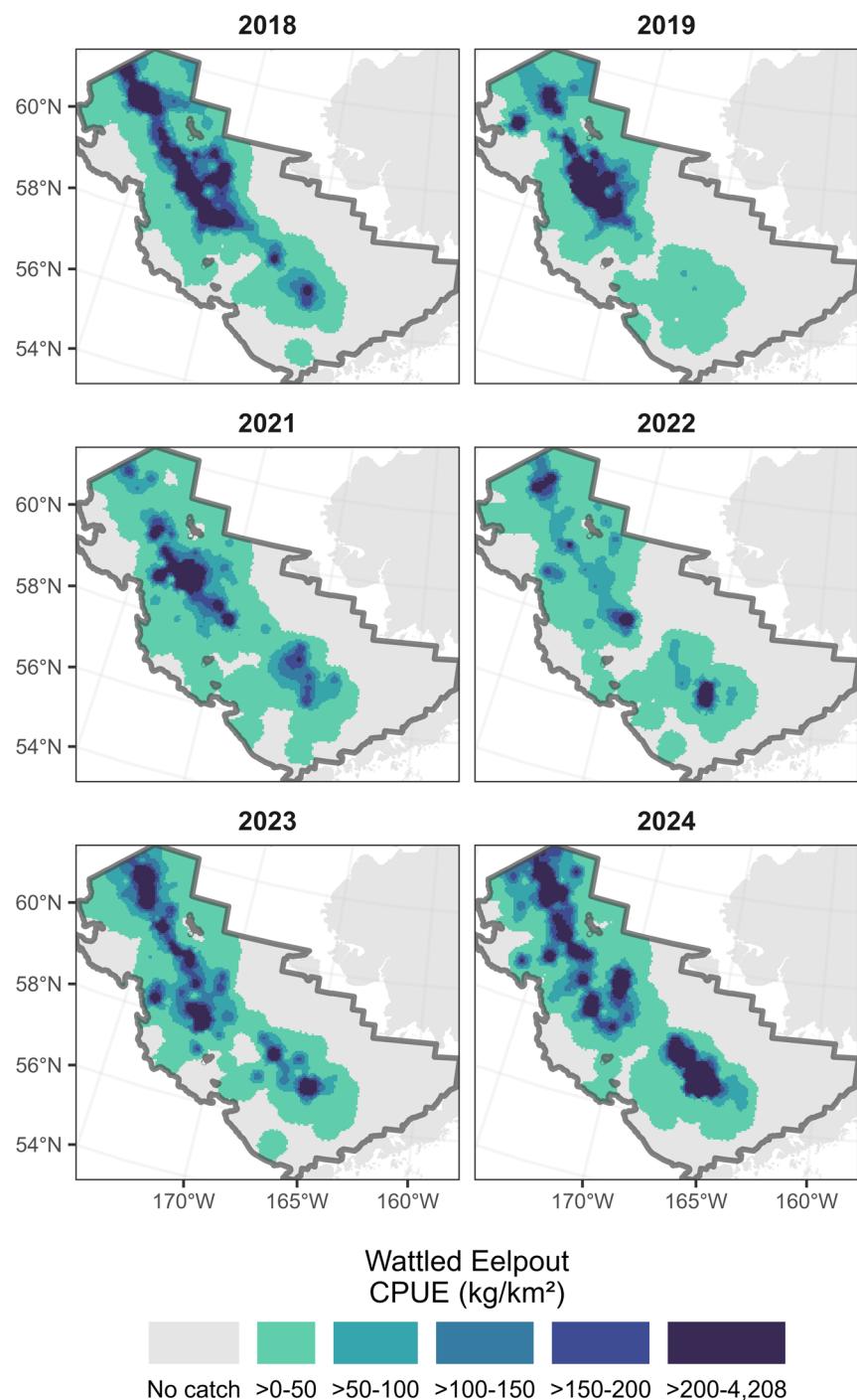
**Table 96.** -- Mean CPUE (thousand kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (thousand t) with SD (thousand t), 95% lower (LCL; thousand t) and upper (UCL; thousand t) confidence limits, and number of hauls in which walleye pollock (*Gadus chalcogrammus*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean<br>(Kkg/km <sup>2</sup> ) | CPUE SD<br>(kg/km <sup>2</sup> ) | Biomass<br>(Kt) | Biomass SD<br>(Kt) | 95% LCL<br>(Kt) | 95% UCL<br>(Kt) | Hauls w/<br>weights |
|---------------------------------|-------------------------------------|----------------------------------|-----------------|--------------------|-----------------|-----------------|---------------------|
| <b>Eastern Bering Sea Shelf</b> |                                     |                                  |                 |                    |                 |                 |                     |
| 10                              | 3.51                                | 584.52                           | 276.20          | 46.01              | 184.19          | 368.21          | 58                  |
| 20                              | 4.43                                | 782.86                           | 182.63          | 32.25              | 118.13          | 247.12          | 31                  |
| 31                              | 5.61                                | 1,955.52                         | 533.30          | 185.73             | 161.83          | 904.76          | 69                  |
| 32                              | 23.03                               | 7,989.79                         | 203.78          | 70.68              | 62.41           | 345.15          | 5                   |
| 41                              | 8.66                                | 2,586.09                         | 539.67          | 161.14             | 217.40          | 861.95          | 44                  |
| 42                              | 13.64                               | 5,298.53                         | 329.02          | 127.81             | 73.39           | 584.64          | 18                  |
| 43                              | 7.07                                | 1,123.66                         | 149.00          | 23.67              | 101.67          | 196.34          | 13                  |
| 50                              | 8.51                                | 4,446.81                         | 323.74          | 169.15             | 0.00            | 662.05          | 24                  |
| 61                              | 32.30                               | 4,525.09                         | 2,835.50        | 397.20             | 2,041.10        | 3,629.89        | 60                  |
| 62                              | 5.35                                | 702.49                           | 34.55           | 4.54               | 25.47           | 43.63           | 6                   |
| 82                              | 1.97                                | 553.88                           | 35.41           | 9.94               | 15.52           | 55.30           | 12                  |
| 90                              | 2.88                                | 640.46                           | 33.27           | 7.39               | 18.49           | 48.05           | 8                   |
| <b>Total</b>                    | <b>11.11</b>                        | <b>1,058.03</b>                  | <b>5,476.07</b> | <b>521.60</b>      | <b>4,432.87</b> | <b>6,519.26</b> | <b>348</b>          |

**Table 97.** -- Mean CPUE (thousand no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (millions) with SD (millions), 95% lower (LCL; millions) and upper (UCL; millions) confidence limits, and number of hauls in which walleye pollock (*Gadus chalcogrammus*) were encountered during the 2024 eastern Bering Sea shelf survey.


| Stratum                         | CPUE mean<br>(Kno/km <sup>2</sup> ) | CPUE SD<br>(no/km <sup>2</sup> ) | 95% LCL<br>(M)  | 95% UCL<br>(M)   | Population<br>(M) | Population<br>SD (M) | Hauls w/<br>counts |
|---------------------------------|-------------------------------------|----------------------------------|-----------------|------------------|-------------------|----------------------|--------------------|
| <b>Eastern Bering Sea Shelf</b> |                                     |                                  |                 |                  |                   |                      |                    |
| 10                              | 4.66                                | 938.43                           | 219.27          | 514.71           | 366.99            | 73.86                | 58                 |
| 20                              | 8.60                                | 1,414.48                         | 237.77          | 470.84           | 354.31            | 58.27                | 31                 |
| 31                              | 9.08                                | 3,258.29                         | 243.14          | 1,481.01         | 862.08            | 309.47               | 69                 |
| 32                              | 48.91                               | 21,498.05                        | 52.36           | 813.10           | 432.73            | 190.19               | 5                  |
| 41                              | 16.72                               | 4,789.07                         | 444.94          | 1,638.57         | 1,041.76          | 298.41               | 44                 |
| 42                              | 28.32                               | 11,914.56                        | 108.30          | 1,257.91         | 683.11            | 287.40               | 18                 |
| 43                              | 15.11                               | 2,285.87                         | 221.98          | 414.58           | 318.28            | 48.15                | 13                 |
| 50                              | 12.15                               | 6,558.76                         | 0.00            | 961.13           | 462.15            | 249.49               | 24                 |
| 61                              | 62.71                               | 10,306.61                        | 3,695.28        | 7,314.01         | 5,504.65          | 904.68               | 60                 |
| 62                              | 12.41                               | 1,160.88                         | 65.17           | 95.18            | 80.17             | 7.50                 | 6                  |
| 82                              | 5.50                                | 1,699.72                         | 37.80           | 159.86           | 98.83             | 30.52                | 12                 |
| 90                              | 8.92                                | 4,595.33                         | 0.00            | 208.94           | 102.89            | 53.03                | 8                  |
| <b>Total</b>                    | <b>20.91</b>                        | <b>2,221.35</b>                  | <b>8,117.73</b> | <b>12,498.14</b> | <b>10,307.93</b>  | <b>1,095.10</b>      | <b>348</b>         |

## Wattled Eelpout (*Lycodes palearis*)


Between 2023 and 2024, the estimated biomass of wattled eelpout increased by 53% on the 2024 eastern Bering Sea Shelf survey in (Table 98; Figs. 90 and 91) and the population was estimated at 150.4 million individuals (Table 98; Fig. 90).

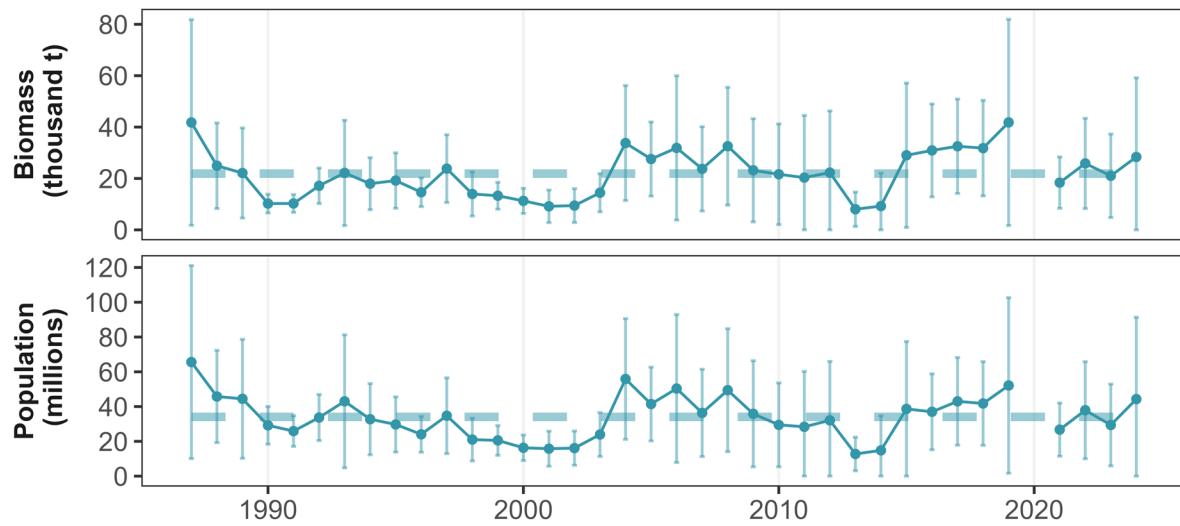
**Table 98.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for wattled eelpout (*Lycodes palearis*) in the eastern Bering Sea shelf survey area.

| Eastern Bering Sea Shelf         |                        |
|----------------------------------|------------------------|
| <b>Stations Present</b>          | 144 of 350 (41.1%)     |
| <b>Bottom Depth (m)</b>          | 54 — 147               |
| <b>Bottom Temperature (°C)</b>   | -1.2 — 4.2             |
| <b>Surface Temperature (°C)</b>  | 3 — 8.8                |
| <b>Population</b>                | 150.4 million          |
| <b>Biomass (t)</b>               | 26,135                 |
| <b>Percent of Total Catch</b>    | 0.2%                   |
| <b>Biomass</b>                   |                        |
| <b>Percent Change in Biomass</b> | 53% increase from 2023 |

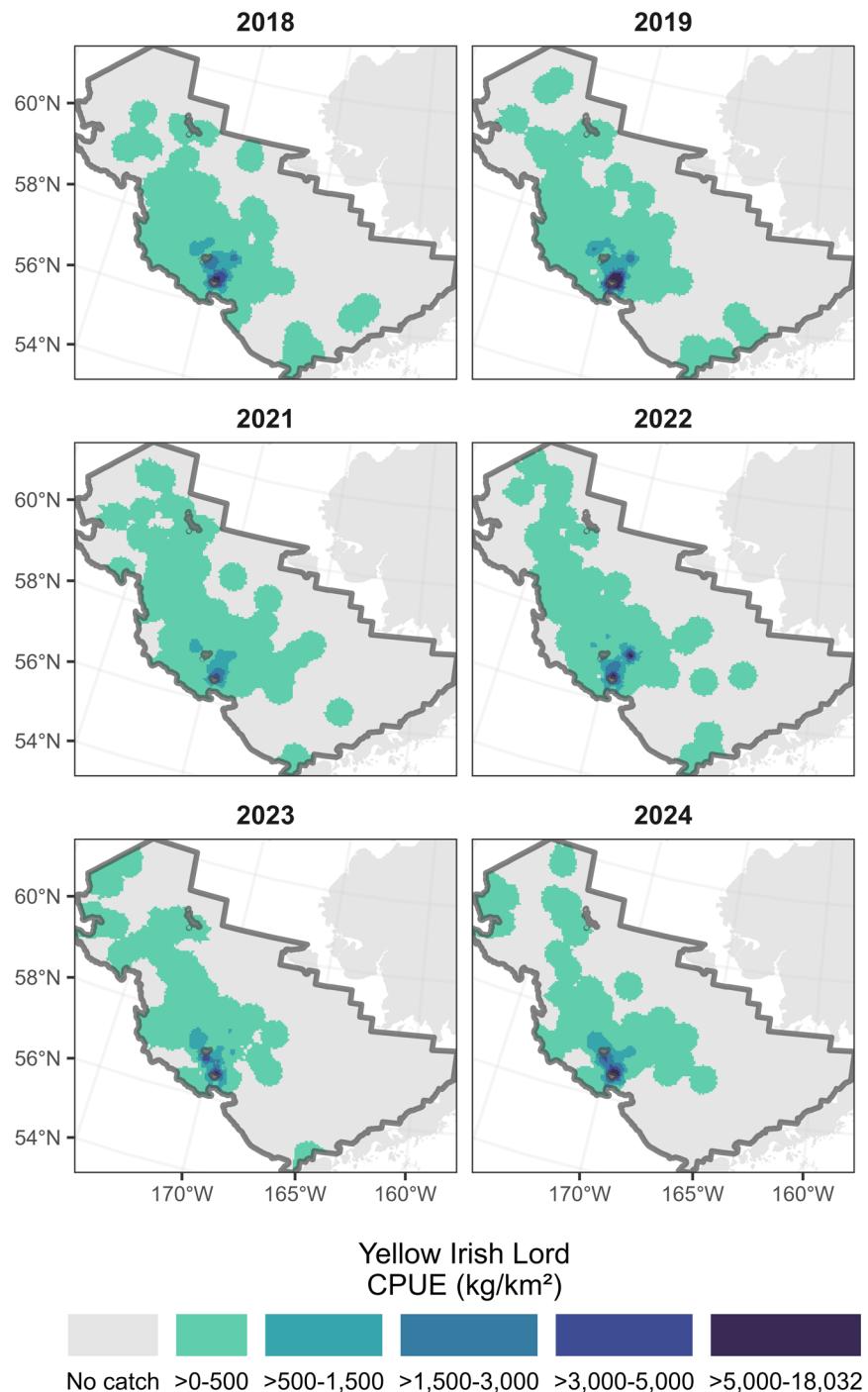


**Figure 90.** -- Time series of wattled eelpout (*Lycodes palearis*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.




**Figure 91.** -- CPUE (kg/km<sup>2</sup>) distribution of wattled eelpout (*Lycodes palearis*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

## Yellow Irish Lord (*Hemilepidotus jordani*)


Between 2023 and 2024, the estimated biomass of yellow Irish lord increased by 35% on the 2024 eastern Bering Sea Shelf survey (Tables 99 and 100; Figs. 92 and 93) and the population was estimated at 44.3 million individuals (Tables 99 and 101; Fig. 92).

**Table 99.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for yellow Irish lord (*Hemilepidotus jordani*) in the eastern Bering Sea shelf survey area.

|                                  | Eastern Bering Sea Shelf |
|----------------------------------|--------------------------|
| <b>Stations Present</b>          | 44 of 350 (12.6%)        |
| <b>Bottom Depth (m)</b>          | 55 — 176                 |
| <b>Bottom Temperature (°C)</b>   | 0.4 — 4                  |
| <b>Surface Temperature (°C)</b>  | 2.5 — 8.9                |
| <b>Population</b>                | 44.3 million             |
| <b>Biomass (t)</b>               | 28,370                   |
| <b>Percent of Total Catch</b>    | 0.2%                     |
| <b>Biomass</b>                   |                          |
| <b>Percent Change in Biomass</b> | 35% increase from 2023   |



**Figure 92.** -- Time series of yellow Irish lord (*Hemilepidotus jordani*) biomass (thousand t) and population (millions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 93.** -- CPUE (kg/km<sup>2</sup>) distribution of yellow Irish lord (*Hemilepidotus jordani*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.

**Table 100.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which yellow Irish lord (*Hemilepidotus jordani*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)   | Biomass SD (t) | 95% LCL (t) | 95% UCL (t)   | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|---------------|----------------|-------------|---------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |               |                |             |               |                  |
| 10                              | -                               | -                             | -             | -              | -           | -             | -                |
| 20                              | -                               | -                             | -             | -              | -           | -             | -                |
| 31                              | 1.69                            | 0.77                          | 161           | 73             | 15          | 306           | 6                |
| 32                              | 1,652.45                        | 1,650.80                      | 14,619        | 14,604         | 0           | 43,827        | 3                |
| 41                              | 9.63                            | 4.91                          | 600           | 306            | 0           | 1,211         | 9                |
| 42                              | 493.02                          | 202.61                        | 11,893        | 4,887          | 2,118       | 21,668        | 11               |
| 43                              | 1.75                            | 1.19                          | 37            | 25             | 0           | 87            | 2                |
| 50                              | -                               | -                             | -             | -              | -           | -             | -                |
| 61                              | 8.12                            | 3.01                          | 713           | 264            | 185         | 1,240         | 11               |
| 62                              | 51.40                           | 51.40                         | 332           | 332            | 0           | 996           | 1                |
| 82                              | 0.95                            | 0.95                          | 17            | 17             | 0           | 51            | 1                |
| 90                              | -                               | -                             | -             | -              | -           | -             | -                |
| <b>Total</b>                    | <b>57.55</b>                    | <b>31.26</b>                  | <b>28,370</b> | <b>15,409</b>  | <b>0</b>    | <b>59,189</b> | <b>44</b>        |

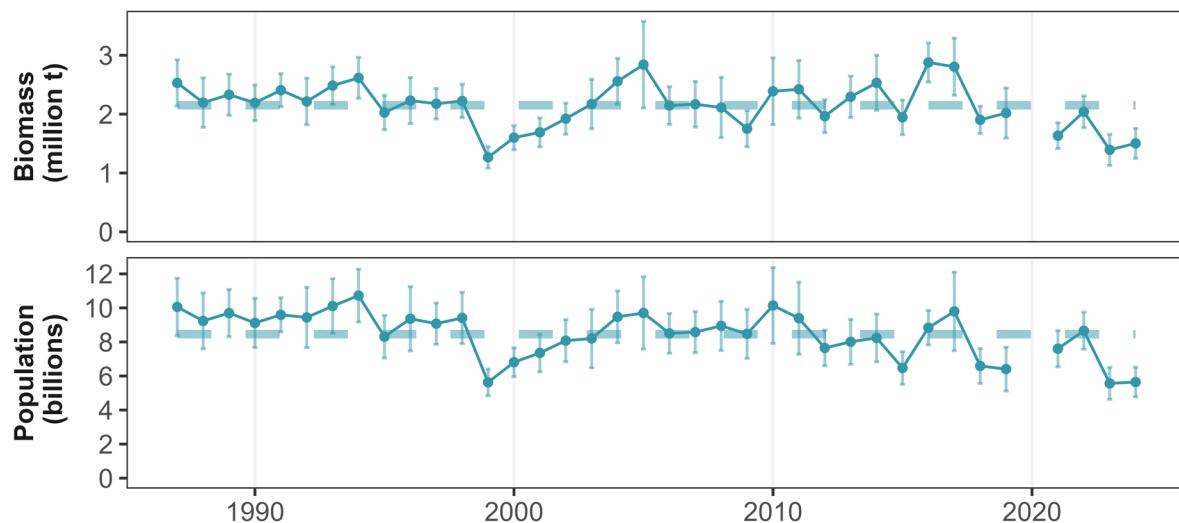
**Table 101.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which yellow Irish lord (*Hemilepidotus jordani*) were encountered during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K) | 95% UCL (K)      | Population (K)   | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|-------------|------------------|------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |             |                  |                  |                   |                 |
| 10                              | -                               | -                             | -           | -                | -                | -                 | -               |
| 20                              | -                               | -                             | -           | -                | -                | -                 | -               |
| 31                              | 2.72                            | 1.20                          | 31.03       | 486.49           | 258.76           | 113.86            | 6               |
| 32                              | 2,520.35                        | 2,509.30                      | 0.00        | 66,694.99        | 22,296.82        | 22,199.09         | 3               |
| 41                              | 15.81                           | 8.66                          | 0.00        | 2,064.20         | 984.88           | 539.66            | 9               |
| 42                              | 754.65                          | 318.68                        | 2,829.54    | 33,578.15        | 18,203.84        | 7,687.15          | 11              |
| 43                              | 6.16                            | 4.72                          | 0.00        | 328.65           | 129.74           | 99.46             | 2               |
| 50                              | -                               | -                             | -           | -                | -                | -                 | -               |
| 61                              | 14.94                           | 5.55                          | 337.90      | 2,285.57         | 1,311.73         | 486.92            | 11              |
| 62                              | 167.33                          | 167.33                        | 0.00        | 3,243.61         | 1,081.20         | 1,081.20          | 1               |
| 82                              | 1.83                            | 1.83                          | 0.00        | 98.45            | 32.82            | 32.82             | 1               |
| 90                              | -                               | -                             | -           | -                | -                | -                 | -               |
| <b>Total</b>                    | <b>89.86</b>                    | <b>47.73</b>                  | <b>0.00</b> | <b>91,357.76</b> | <b>44,299.80</b> | <b>23,528.98</b>  | <b>44</b>       |

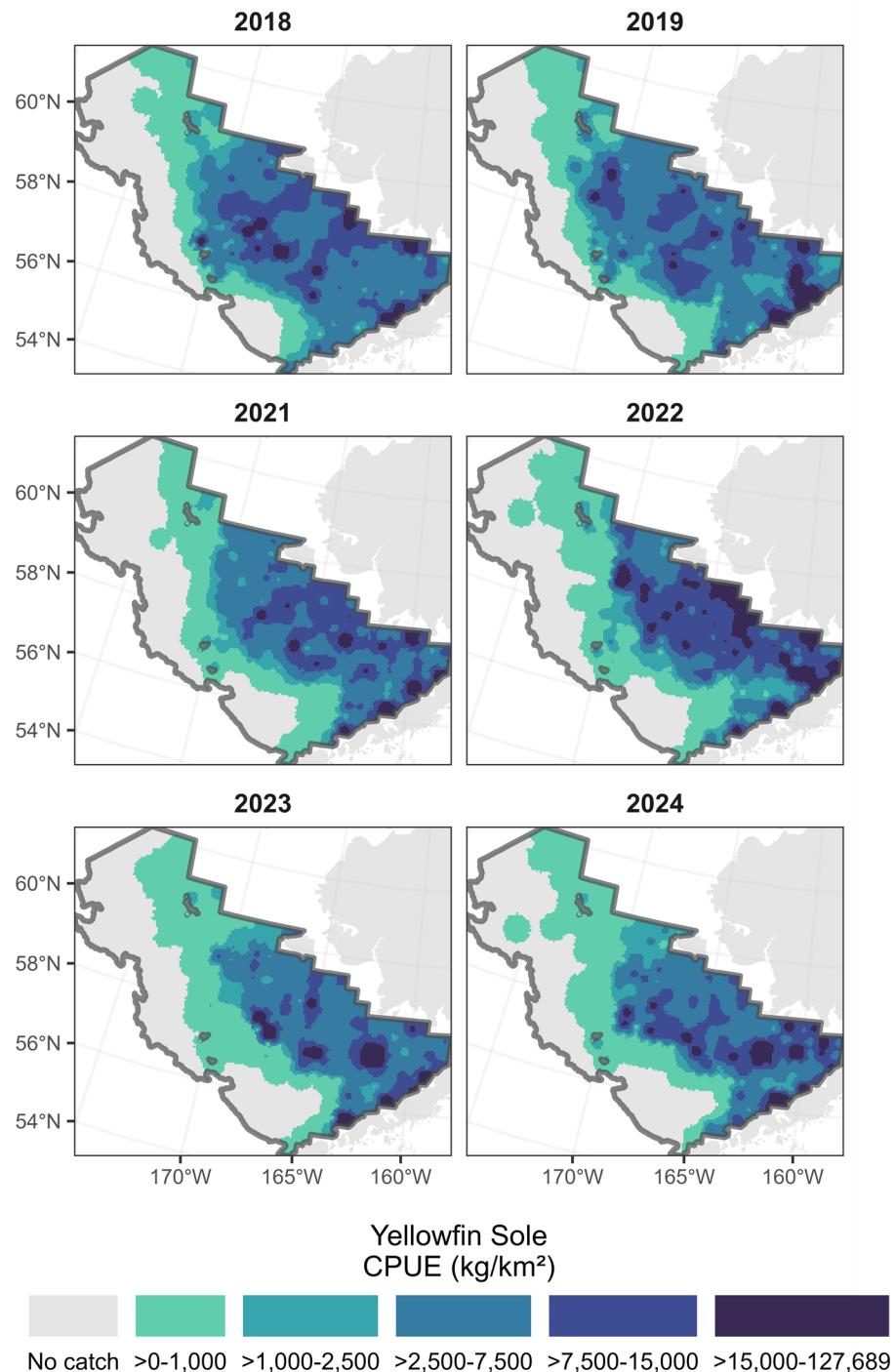
## Yellowfin Sole (*Limanda aspera*)

Between 2023 and 2024, the estimated biomass of yellowfin sole increased by 8% on the 2024 eastern Bering Sea Shelf survey (Tables 102 and 103; Figs. 94 and 95) and the population was estimated at 5.6 billion individuals (Tables 102 and 104; Fig. 94).

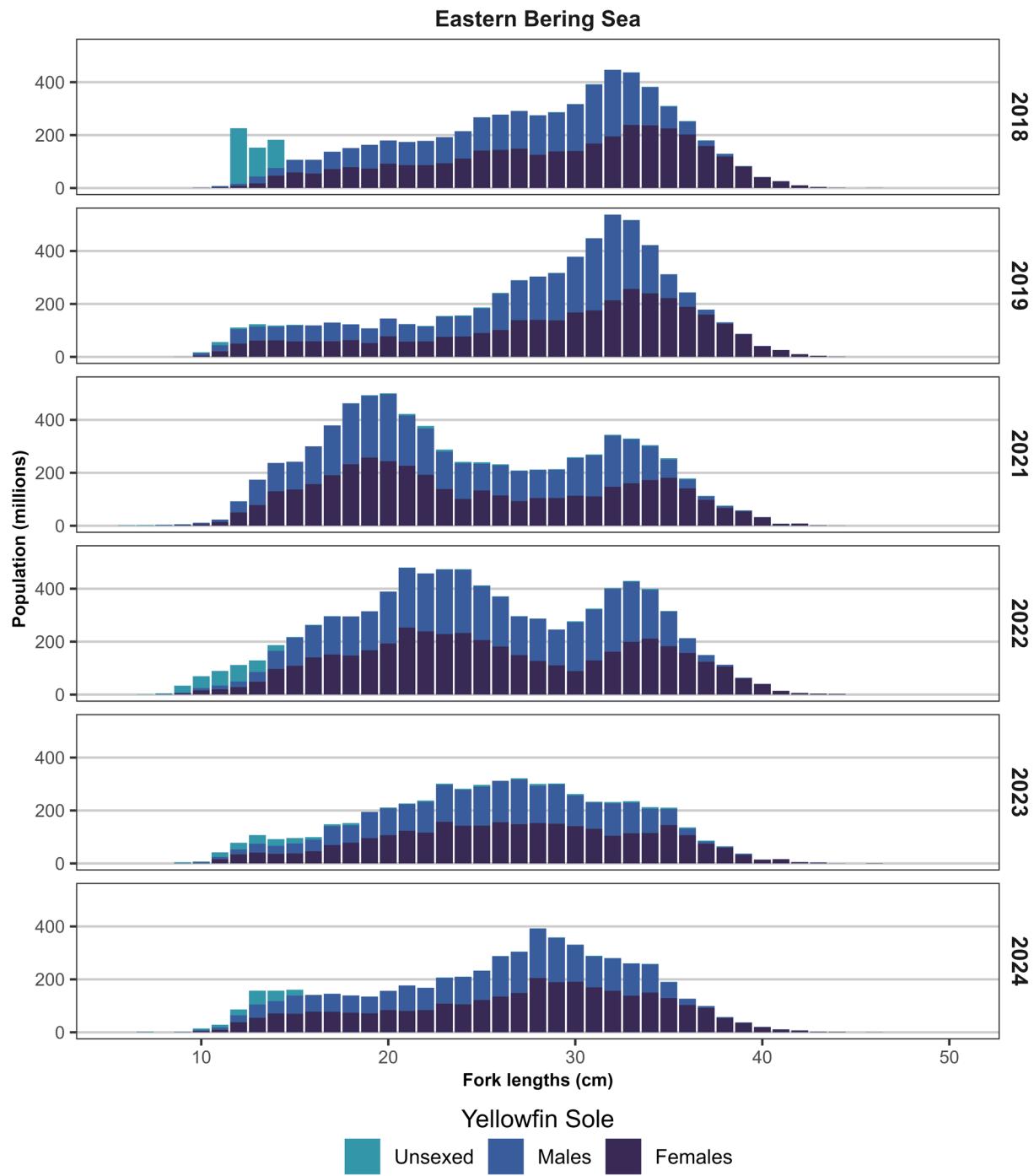
In 2024, similar to previous years, the yellowfin sole population in the eastern Bering Sea was distributed along the inner and middle domain between Norton Sound and the Alaska Peninsula. The highest densities were observed along the Alaska coast south of Nunivak Island and along the Alaska Peninsula (Fig. 95). High densities continue to be observed near Togiak Bay and the spawning grounds in Kuskokwim Bay and Bristol Bay.


In 2024 the abundance-at-length in the eastern Bering Sea was similar to 2023, but fewer individuals in the 20 to 25 cm size range were encountered. The length mode was also similar to the previous year at approximately 28 cm for males and females (Fig. 96).

Yellowfin sole support one of the largest commercial flatfish fisheries in the world (Wilderbuer et al. 2018) and is the most abundant flatfish species in the eastern Bering Sea (Table 6). The cross-shelf distribution of yellowfin sole, and the availability of sexually mature males and females to the summer Bering Sea bottom trawl survey, varies from year to year because of temperature-mediated differences in the timing of their spring-summer spawning migration into shallow waters (Nichol et al. 2019).


Most spawning activity occurs at bottom depths less than 30 m (Nichol 1995). Size segregation among spawning and non-spawning portions of the population can also affect the spatial distribution of yellowfin sole (Nichol et al. 2019). This segregation occurs because length or age at sexual maturity differs for males and females (Nichol 1998) and sexually immature individuals undergo a gradual (multi-year) ontogenetic migration away from the nearshore that differs from the annual spawning migrations of mature individuals (Nichol 1997). Interannual differences in the proportion of the yellowfin sole population that is available to the eastern Bering Sea shelf survey, as well as the sex and size composition of this available population, may bias survey estimates. The bottom temperature and the survey start date are both used in the stock assessment model to adjust the catchability parameter (Nichol et al. 2019, Wilderbuer et al. 2018).

**Table 102.** -- Summary of 2024 catch presence, temperature ranges, and extrapolated biomass and population estimates for yellowfin sole (*Limanda aspera*) in the eastern Bering Sea shelf survey area.


| Eastern Bering Sea Shelf         |                       |
|----------------------------------|-----------------------|
| <b>Stations Present</b>          | 213 of 350 (60.9%)    |
| <b>Bottom Depth (m)</b>          | 21 — 137              |
| <b>Bottom Temperature (°C)</b>   | -1.6 — 5.7            |
| <b>Surface Temperature (°C)</b>  | 2 — 8.4               |
| <b>Population</b>                | 5.6 billion           |
| <b>Biomass (t)</b>               | 1.5 million           |
| <b>Percent of Total Catch</b>    | 10.0%                 |
| <b>Biomass</b>                   |                       |
| <b>Percent Change in Biomass</b> | 8% increase from 2023 |



**Figure 94.** -- Time series of yellowfin sole (*Limanda aspera*) biomass (million t) and population (billions) from the 1987-2024 eastern Bering Sea shelf survey (points and solid lines). Dashed lines represent time-series average and error bars represent estimated 95% confidence intervals.



**Figure 95.** -- CPUE (kg/km<sup>2</sup>) distribution of yellowfin sole (*Limanda aspera*) from the 2018-2019 and 2021-2024 eastern Bering Sea shelf survey.



**Figure 96.** -- Total abundance-at-length estimates of yellowfin sole (*Limanda aspera*) by sex (unsexed, males, and females) in centimeters (cm) encountered during the 2018-2024 eastern Bering Sea shelf surveys. Length distributions are scaled to the total estimated population size.

**Table 103.** -- Mean CPUE (kg/km<sup>2</sup>) with standard deviation (SD; kg/km<sup>2</sup>), estimated biomass (t) with SD (t), 95% lower (LCL; t) and upper (UCL; t) confidence limits, and number of hauls in which yellowfin sole (*Limanda aspera*) were weighed during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (kg/km <sup>2</sup> ) | CPUE SD (kg/km <sup>2</sup> ) | Biomass (t)      | Biomass SD (t) | 95% LCL (t)      | 95% UCL (t)      | Hauls w/ weights |
|---------------------------------|---------------------------------|-------------------------------|------------------|----------------|------------------|------------------|------------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                  |                |                  |                  |                  |
| 10                              | 9,831.78                        | 1,077.06                      | 773,817          | 84,771         | 604,275          | 943,358          | 58               |
| 20                              | 3,960.92                        | 517.02                        | 163,163          | 21,298         | 120,568          | 205,759          | 31               |
| 31                              | 4,434.88                        | 858.32                        | 421,218          | 81,522         | 258,174          | 584,263          | 51               |
| 32                              | 327.90                          | 197.58                        | 2,901            | 1,748          | 0                | 6,397            | 4                |
| 41                              | 1,296.82                        | 486.28                        | 80,805           | 30,300         | 20,205           | 141,405          | 35               |
| 42                              | 2,504.14                        | 1,357.42                      | 60,405           | 32,744         | 0                | 125,893          | 15               |
| 43                              | 19.75                           | 12.96                         | 416              | 273            | 0                | 962              | 7                |
| 50                              | -                               | -                             | -                | -              | -                | -                | -                |
| 61                              | 0.12                            | 0.12                          | 10               | 10             | 0                | 31               | 1                |
| 62                              | 0.74                            | 0.74                          | 5                | 5              | 0                | 14               | 1                |
| 82                              | 48.27                           | 25.76                         | 867              | 463            | 0                | 1,792            | 9                |
| 90                              | 0.96                            | 0.96                          | 11               | 11             | 0                | 33               | 1                |
| <b>Total</b>                    | <b>3,050.00</b>                 | <b>258.81</b>                 | <b>1,503,618</b> | <b>127,590</b> | <b>1,248,439</b> | <b>1,758,798</b> | <b>213</b>       |

**Table 104.** -- Mean CPUE (no/km<sup>2</sup>) with standard deviation (SD; no/km<sup>2</sup>), estimated population (thousands) with SD (thousands), 95% lower (LCL; thousands) and upper (UCL; thousands) confidence limits, and number of hauls in which yellowfin sole (*Limanda aspera*) were encountered during the 2024 eastern Bering Sea shelf survey.

| Stratum                         | CPUE mean (no/km <sup>2</sup> ) | CPUE SD (no/km <sup>2</sup> ) | 95% LCL (K)         | 95% UCL (K)         | Population (K)      | Population SD (K) | Hauls w/ counts |
|---------------------------------|---------------------------------|-------------------------------|---------------------|---------------------|---------------------|-------------------|-----------------|
| <b>Eastern Bering Sea Shelf</b> |                                 |                               |                     |                     |                     |                   |                 |
| 10                              | 39,419.07                       | 3,725.96                      | 2,515,996.76        | 3,689,012.88        | 3,102,504.82        | 293,254.03        | 58              |
| 20                              | 24,150.58                       | 4,030.19                      | 662,807.37          | 1,326,873.20        | 994,840.29          | 166,016.46        | 31              |
| 31                              | 12,404.72                       | 2,614.01                      | 681,632.89          | 1,674,729.94        | 1,178,181.42        | 248,274.26        | 51              |
| 32                              | 399.29                          | 220.00                        | 0.00                | 7,425.04            | 3,532.42            | 1,946.31          | 4               |
| 41                              | 3,260.10                        | 1,323.28                      | 38,228.88           | 368,044.30          | 203,136.59          | 82,453.86         | 35              |
| 42                              | 6,516.11                        | 3,650.49                      | 0.00                | 333,297.51          | 157,182.43          | 88,057.54         | 15              |
| 43                              | 62.20                           | 34.76                         | 0.00                | 2,774.51            | 1,310.09            | 732.21            | 7               |
| 50                              | -                               | -                             | -                   | -                   | -                   | -                 | -               |
| 61                              | 0.59                            | 0.59                          | 0.00                | 155.68              | 51.89               | 51.89             | 1               |
| 62                              | 3.52                            | 3.52                          | 0.00                | 68.22               | 22.74               | 22.74             | 1               |
| 82                              | 128.81                          | 63.50                         | 32.48               | 4,592.64            | 2,312.56            | 1,140.04          | 9               |
| 90                              | 2.56                            | 2.56                          | 0.00                | 88.73               | 29.58               | 29.58             | 1               |
| <b>Total</b>                    | <b>11,446.69</b>                | <b>883.61</b>                 | <b>4,771,880.63</b> | <b>6,514,329.01</b> | <b>5,643,104.82</b> | <b>435,612.10</b> | <b>213</b>      |

## Data Sources

Groundfish Assessment Program's Bering Sea team and the Shellfish Assessment Program conduct the Bering Sea shelf surveys each summer. The haul-level data collected from the survey are extrapolated to catch-per-unit-effort (CPUE), population-level abundance, population-level abundance by size class, and population-level biomass estimates. Those estimates are presented in this document, which was generated using R and R Markdown. R is a programming language and environment for statistical computing and graphics. R Markdown provides a framework for reproducible, transparent, and documentable report writing. For results of previous surveys, please refer to the AFSC technical memoranda listed on the NOAA<sup>10</sup>, the AFSC website<sup>11</sup>, and Groundfish Assessment Program website<sup>12</sup>.

Many of the data sources and tools used to develop the figures and content of this document have been developed by members across the AFSC's Groundfish Assessment Program. These tools and public-serving data products aim to provide transparency and accessibility to Bering Sea ecosystem data. The *akgfmmaps*<sup>13</sup> R package (v4.0.3), developed by Sean Rohan, was used for producing the species distribution plots and other maps in this document. The *coldpool*<sup>14</sup> R package (v3.4.3), developed by Sean Rohan and Lewis Barnett, uses reproducible interpolation techniques to better understand changes in surface temperature, bottom temperature, and the cold pool in the Bering Sea (Rohan et al. 2022). The *gapindex*<sup>15</sup> R package (v3.0.2), developed by Zack Oyafuso and Margaret Siple, calculates design-based indices of abundance and composition for all AFSC Groundfish Assessment Program bottom trawl surveys.

The catch, environmental, and location data collected and calculated from the survey can be directly accessed and downloaded from the Fisheries One Stop Shop data platform (FOSS). The FOSS web-based data portal allows users to select, view, and download data from the eastern Bering Sea shelf survey, northern Bering Sea shelf survey, and other surveys conducted by AFSC's Resource Assessment and Conservation Engineering Division. The catch, environmental, location data and biomass, population, size composition, and age composition estimates collected and calculated from the survey can be accessed and downloaded from the Alaska Fisheries Information Network (AKFIN<sup>16</sup>; Alaska Fisheries Information Network (AKFIN) (2024)) with a user log in provided by AKFIN. Data from NOAA surveys are used in the NOAA Fisheries Distribution Mapping and Analysis Portal (DisMAP<sup>17</sup>) that provides public access to maps and other information about the distributions of marine species in U.S. Marine Ecosystems.

To learn more about the sustained participation of fishing communities that are substantially dependent on or engaged in North Pacific groundfish and crab fisheries, please review the AFSC's Annual Community Engagement and Participation Overview (ACEPO) for Federal Groundfish and Crab Fisheries of the North

---

<sup>10</sup> <https://repository.library.noaa.gov/>

<sup>11</sup> <https://www.fisheries.noaa.gov/resource/publication-database/alaska-fisheries-science-center-technical-memorandums>

<sup>12</sup> <https://www.fisheries.noaa.gov/alaska/science-data/groundfish-assessment-program-bottom-trawl-surveys>

<sup>13</sup> <https://github.com/afsc-gap-products/akgfmmaps>

<sup>14</sup> <https://github.com/afsc-gap-products/coldpool>

<sup>15</sup> <https://github.com/afsc-gap-products/gapindex>

<sup>16</sup> <https://www.psmfc.org/program/alaska-fisheries-information-network-akfin>

<sup>17</sup> <https://apps-st.fisheries.noaa.gov/dismap>

Pacific<sup>18</sup>. Additionally, the AFSC's Human Dimensions of Fisheries Data Explorer<sup>19</sup> provides access to data, data visualizations, and other tools for understanding the economic and socio-cultural dimensions of Alaska fisheries.

---

<sup>18</sup> <https://shinyfin.psmfc.org/acepo/>

<sup>19</sup> <https://reports.psmfc.org/akfin>



## Acknowledgments

Recognition and appreciation are extended to the captains and crews of the FV *Alaska Knight* and FV *Northwest Explorer*. Without their expertise, goodwill, and sacrifice, this survey would not be possible. Thank you to United States Seafoods and B&N Fisheries Company for providing the vessels and always maintaining safety as a top priority. Great appreciation is also extended to all the scientists, researchers, contractors, interns, and volunteers who worked tirelessly aboard each vessel to complete the survey in a safe and successful manner. The survey would not have been possible without the major contributions from other AFSC groups including the net shed, the research survey support team, the data management group, and the administrative team. Finally, appreciation is extended to Rebecca Haehn-Tam, Rebecca Howard, and Shannon Nardi for reviewing this document. Their excellent comments and suggestions greatly improved this work.

We would like to thank the many communities of the Bering Sea region and their members who have helped contribute to this document. The knowledge, experiences, and insights of the people of Alaska have been instrumental in expanding the scope of our science and knowledge to encompass the many issues that face this important ecosystem. We appreciate feedback from those residing in the region who are willing to share their insights, including identifying species of interest or concern that should be included in this document, and participating in an open dialog about how we can improve our collective knowledge of the ecosystem and the region.

NOAA Fisheries' Alaska Fisheries Science Center's work is conducted in the waters and along the coastlines of Alaska, which include the traditional homelands and waters of the Inupiat, Yupiit, Siberian Yupiit, Unangax, Alutiiq/Sugpiaq, Eyak, Dena'ina Athabascan, Tlingit, Haida, and Tsimshian who have stewarded their lands and waters since time immemorial. We are indebted to these peoples for their wisdom and knowledge of their lands and waters.

This document was prepared in the greater Seattle area, which is located on the traditional lands of the Coast Salish people, including the Duwamish people, past and present. We are grateful for their continued sharing of vision, wisdom, values, and leadership.



## Citations

Alverson, D. L., and Pereyra, W. T. (1969). Demersal fish explorations in the northeastern Pacific Ocean – an evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. *J. Fish. Res. Bd. Can.*, 26(8), 1985–2001. <https://doi.org/10.1139/f69-188>

Baker, M. R. (2021). Contrast of warm and cold phases in the Bering Sea to understand spatial distributions of arctic and sub-arctic gadids. *Polar Biol.*, 44, 1083–1105. <https://doi.org/10.1007/s00300-021-02856-x>

Baker, M. R., and Hollowed, A. B. (2014). Delineating ecological regions in marine systems: Integrating physical structure and community composition to inform spatial management in the eastern Bering Sea. *Deep-Sea Res. II*, 109, 215–240. <https://doi.org/10.1016/j.dsr2.2014.03.001>

Bakkala, R. G. (1993). Structure and historical changes in the groundfish complex of the eastern Bering Sea. U.S. Dep. Commer., NOAA Tech. Rep. 114. <https://repository.library.noaa.gov/view/noaa/6111>

Bakkala, R. G., Traynor, J. J., Teshima, K., Shimada, A. M., and Yamaguchi, H. (1985). Results of cooperative U.S.-Japan groundfish investigations in the eastern Bering Sea during June–November 1982. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-87; 456 p. <https://repository.library.noaa.gov/view/noaa/23324>

Bakkala, R. G., and Wakabayashi, K. (1985). Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May–August 1979. *Int. N. Pac. Fish. Comm. Bull.* 44, 252.

Ciannelli, L., and Bailey, K. M. (2005). Landscape dynamics and resulting species interactions: The cod–capelin system in the southeastern Bering Sea. *Mar. Ecol. Prog. Ser.*, 291, 227–236. <https://doi.org/10.3354/meps291227>

Coachman, L. K. (1986). Circulation, water masses, and fluxes on the southeastern Bering Sea shelf. *Cont. Shelf Res.*, 5(1–2), 23–108. [https://doi.org/10.1016/0278-4343\(86\)90011-7](https://doi.org/10.1016/0278-4343(86)90011-7)

Cokelet, E. D. (2016). 3-D water properties and geostrophic circulation on the eastern Bering Sea shelf. *Deep Sea Res. Part II Top. Stud. Oceanogr.*, 134, 65–85. <https://doi.org/10.1016/j.dsr2.2016.08.009>

Conner, J., and Lauth, R. R. (2017). Results of the 2016 eastern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate resources. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-352, 159 p. <https://doi.org/10.7289/V5/TM-AFSC-352>

Conner, J., Nichol, D. G., and Lauth, R. R. (2017). Results of the 2015 eastern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate resources. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-353, 154 p. <https://doi.org/10.7289/V5/TM-AFSC-353>

Conner, J., Stevenson, D. E., and Lauth, R. R. (2017). Results of the 2014 eastern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate resources. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-350, 154 p. <https://doi.org/10.7289/V5/TM-AFSC-350>

Cooper, D. W., Rogers, L. A., and Wilderbuer, T. (2020). Environmentally driven forecasts of northern rock sole (*Lepidopsetta polyxystra*) recruitment in the eastern Bering Sea. *Fish. Oceanogr.*, 29, 111–121. <https://doi.org/10.1111/fog.12458>

DeFilippo, L., Kotwicki, S., Barnett, L., Richar, J., Litzow, M. A., Stockhausen, W. T., and Palof, K. (2023). Evaluating the impacts of reduced sampling density in a systematic fisheries-independent survey design. *Frontiers in Marine Science*, 10, 1219283. <https://doi.org/10.3389/fmars.2023.1219283>

Eisner, L. B., Zuenko, Y. I., Basyuk, E. O., Britt, L. L., Duffy-Anderson, J. T., Kotwicki, S., Ladd, C., and Cheng, W. (2020). Environmental impacts on walleye pollock (*Gadus chalcogrammus*) distribution across the Bering Sea shelf. *Part II Top. Stud. Oceanogr.*, 104881, 181–182. <https://doi.org/10.1016/j.dsr2.2020.104881>

Fadeev, N. S. (1965). Comparative outline of the biology of flatfishes in the southeastern part of the Bering Sea and condition of their resources. *Soviet Fish. Invest. Northeastern Pac.*, 4, 112–129.

Fedewa, E. J., Jackson, T. M., Richar, J. I., Gardner, J. L., and Litzow, M. A. (2020). Recent shifts in northern Bering Sea snow crab (*Chionoecetes opilio*) size structure and the potential role of climate-mediated range contraction. *Deep Sea Res. Part II Top. Stud. Oceanogr.*, 104878, 181–182. <https://doi.org/10.1016/j.dsr2.2020.104878>

Goddard, P. D. (1997). The effects of tow duration and subsampling on CPUE, species composition and length distribution of bottom trawl survey catches. M.S. Thesis. University of Washington, Seattle WA. 119 p.

Grüss, A., Thorson, J. T., Stawitz, C. C., Reum, J. C. P., Rohan, S. K., and Barnes, C. L. (2021). Synthesis of interannual variability in spatial demographic processes supports the strong influence of cold-pool extent on eastern Bering Sea walleye pollock (*Gadus chalcogrammus*). *Prog. Oceanogr.*, 194, 102569. <https://doi.org/10.1016/j.pocean.2021.102569>

Hall, N. G. (2012). Review of the eastern Bering Sea crab and groundfish bottom trawl surveys (p. 37). Center for Independent Experts. [www.npfmc.org/wp-content/PDFdocuments/resources/SAFE/CrabSAFE/912Chapters/HallReview912.pdf](http://www.npfmc.org/wp-content/PDFdocuments/resources/SAFE/CrabSAFE/912Chapters/HallReview912.pdf)

Halliday, K. L., and Sassano, J. A. (1988). Data report: 1986 bottom trawl survey of the eastern Bering Sea continental shelf. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-147, 147 p.. U.S. Dep. Commer. <https://repository.library.noaa.gov/view/noaa/23347>

Hoff, G. R. (2016). Results of the 2016 eastern Bering Sea upper continental slope survey of groundfishes and invertebrate resources. U.S. Dep. Commer., NOAA Tech. Memo. NOAA-AFSC-339, 272 p. <https://doi.org/10.7289/V5/TM-AFSC-339>

Hoff, G. R., and Britt, L. L. (2011). Results of the 2010 eastern Bering Sea upper continental slope survey of groundfish and invertebrate resources. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-224, 300 p. <https://repository.library.noaa.gov/view/noaa/3834>

Hollowed, A. B., Angliss, R. P., Sigler, M. F., Megrey, B. A., and Ito, D. H. (2007). Implementation plan for Loss of Sea Ice (LOSI) program. AFSC Processed Rep. 2007-5, 48 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115. <https://repository.library.noaa.gov/view/noaa/8607>

Hunt, G. L., Jr., Coyle, K. O., Eisner, L. B., Farley, E. V., Heintz, R. A., Mueter, F., Napp, J. M., Overland, J. E., Ressler, P. H., and Salo, S. (2011). Climate impacts on eastern Bering Sea foodwebs: A synthesis of new data and an assessment of the oscillating control hypothesis. *ICES J. Mar. Sci.*, 68(6), 1230–1243. <https://doi.org/10.1093/icesjms/fsr036>

Kapur, M. S. (2023). *Stock assessment and fishery evaluation report for the 2023 Bering Sea and Aleutian Islands. Chapter 9. Assessment of the flathead sole-{Bering} flounder stock Complex in the Bering Sea and Aleutian Islands.* (p. 176). North Pacific Fishery Management Council. 1007 West 3rd Ave., Suite 400, L92 Building, 4th floor, Anchorage, AK 99501. <https://www.fisheries.noaa.gov/resource/data/2023-assessment-flathead-sole-bering-flounder-stock-complex-bering-sea-and-aleutian>

Kotwicki, S., Buckley, T. W., Honkalehto, T., and Walters, G. (2005). Variation in the distribution of walleye pollock (*Theragra chalcogramma*) with temperature and implications for seasonal migration. *Fish. Bull. U.S.*, 103(4), 574–587. <https://spo.nmfs.noaa.gov/content/variation-distribution-walleye-pollock-theragra-chalcogramma-temperature-and-implications>

Kotwicki, S., Horne, J. K., Punt, A. E., and Ianelli, J. N. (2015). Factors affecting the availability of walleye pollock to acoustic and bottom trawl survey gear. *ICES J. Mar. Sci.*, 72(5), 1425–1439. <https://doi.org/10.1093/icesjms/fsv011>

Kotwicki, S., Ianelli, J. N., and Punt, A. E. (2014). Correcting density-dependent effects in abundance estimates from bottom-trawl surveys. *ICES J. Mar. Sci.*, 71(5), 1107–1116. <https://doi.org/10.1093/icesjms/fst208>

Kotwicki, S., and Lauth, R. R. (2013). Detecting temporal trends and environmentally-driven changes in the spatial distribution of bottom fishes and crabs on the eastern Bering Sea shelf. *Deep-Sea Res. II*, 94, 231–243. <https://doi.org/10.1016/j.dsr2.2013.03.017>

Kotwicki, S., Lauth, R. R., Williams, K., and Goodman, S. E. (2017). Selectivity ratio: A useful tool for comparing size selectivity of multiple survey gears. *Fisheries Research*, 191, 76–86. <https://doi.org/10.1016/j.fishres.2017.02.012>

Kotwicki, S., and Ono, K. (2019). The effect of random and density-dependent variation in sampling efficiency on variance of abundance estimates from fishery surveys. *Fish and Fisheries*, 20, 760–774. <https://doi.org/10.1111/faf.12375>

Laman, E. A., Pirtle, J. L., Harris, J., Siple, M. C., Rooper, C. N., Hurst, T. P., and Conrath, C. L. (2022). Advancing model-based essential fish habitat descriptions for North Pacific species in the Bering Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-459, 538 p. <https://doi.org/10.25923/y5gc-nk42>

Lauth, R. R. (2011). Results of the 2010 eastern and northern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate fauna. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-227, 256 p. <https://repository.library.noaa.gov/view/noaa/3852>

Lauth, R. R., Dawson, E. J., and Conner, J. (2019). Results of the 2017 eastern and northern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate fauna. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-396, 260 p. <https://doi.org/10.25923/H118-NW41>

Lauth, R. R., and Kotwicki, S. (2014). A calibration function for correcting mean net spread values obtained from marport spread sensors used in conjunction with the Marport MK II receiver. AFSC Processed Rep. 2014-02, 26 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115. <https://apps.afsc.fisheries.noaa.gov/Publications/ProcRpt/PR2014-02.pdf>

Markowitz, E. H., Dawson, E. J., Anderson, C. B., Rohan, S. K., Charriere, N. E., Prohaska, B. K., and Stevenson, D. E. (2023). Results of the 2022 eastern and northern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate fauna. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-469, 213 p. <https://doi.org/10.25923/rt50-th19>

Markowitz, E. H., Dawson, E. J., Charriere, N. E., Prohaska, B. K., Rohan, S. K., Haehn, R. A., Stevenson, D. E., and Britt, L. L. (2022). Results of the 2018 eastern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate fauna. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-450, 183 p. <https://doi.org/10.25923/m4pw-t510>

Markowitz, E. H., Dawson, E. J., Charriere, N. E., Prohaska, B. K., Rohan, S. K., Stevenson, D. E., and Britt, L. L. (2022a). Results of the 2019 eastern and northern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate fauna. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-451, 225 p. <https://doi.org/10.25923/d641-xb21>

Markowitz, E. H., Dawson, E. J., Charriere, N. E., Prohaska, B. K., Rohan, S. K., Stevenson, D. E., and Britt, L. L. (2022b). Results of the 2021 eastern and northern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate fauna. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-452, 227 p. <https://doi.org/10.25923/g1ny-y360>

Markowitz, E. H., Dawson, E. J., Wassermann, S., Anderson, C. B., Rohan, S. K., Charriere, B. K., and Stevenson, D. E. (2024). Results of the 2023 eastern and northern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate fauna. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-487, 242 p. <https://doi.org/10.25923/2mry-yx09>

Miller, T. J. (2013). A comparison of hierarchical models for relative catch efficiency based on paired-gear data for US Northwest Atlantic fish stocks. *Can. J. Fish. Aquat. Sci.*, 70(9), 1306–1316. <https://doi.org/10.1139/cjfas-2013-0136>

Nichol, D. G. (1995). Spawning and maturation of female yellowfin sole in the eastern Bering Sea. *Proceedings of the International Flatfish Symposium; October 1994, Anchorage, Alaska*, 35–50.

Nichol, D. G. (1997). Effects of geography and bathymetry on growth and maturity of yellowfin sole, *Pleuronectes asper*, in the eastern Bering Sea. *Ocean. Lit. Rev.*, 12(44), 1548. <https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/1997/953/nichol.pdf>

Nichol, D. G. (1998). Annual and between-sex variability of yellowfin sole, *Pleuronectes asper*. *Fish. Bull. U.S.*, 96, 547–561. <https://spo.nmfs.noaa.gov/content/annual-and-between-sex-variability-yellowfin-sole-pleuronectes-aspe-spring-summer>

Nichol, D. G., Kotwicki, S., Wilderbuer, T. K., Lauth, R. R., and Iannelli, J. N. (2019). Availability of yellowfin sole (*Limanda aspera*) to the eastern Bering Sea trawl survey and its effect on estimates of survey biomass. *Fish. Res.*, 211, 319–330. <https://doi.org/10.1016/j.fishres.2018.11.017>

Nichol, D. G., and Somerton, D. A. (2009). Evidence of the selection of tidal streams by northern rock sole (*Lepidopsetta polyxystra*) for transport in the eastern Bering Sea. *Fish. Bull. U.S.*, 107(2), 221–234.

Nielsen, J. K., McDermott, S., Levy, C., Rand, K., and Dawson, E. J. (2023). *Seasonal and annual movement patterns of pacific cod in Alaska indicate connectivity between management areas* [Presentation]. Western Groundfish Conference.

O'Leary, C. A., DeFilippo, L. V., Thorson, J. T., Kotwicki, S., Hoff, G. R., Kulik, V. V., Ianelli, J. N., and Punt, A. E. (2022). Understanding transboundary stocks' availability by combining multiple fisheries-independent surveys and oceanographic conditions in spatiotemporal models. *ICES J. Mar. Sci.*, 79, 1063–1074. <https://doi.org/10.1093/icesjms/fsac046>

Pereyra, W. T., Reeves, J. E., and Bakkala, R. G. (1977). Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. Northwest and Alaska Fisheries Center Processed Report. 2725 Montlake Boulevard E., Seattle, WA 98112. <https://repository.library.noaa.gov/view/noaa/5391>

Rohan, S., Barnett, L., and Charriere, N. (2022). Evaluating approaches to estimating mean temperatures and cold pool area from AFSC bottom trawl surveys of the eastern Bering Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-456, 42 p. <https://doi.org/10.25923/1wwh-q418>

Rose, C. S., and Walters, G. E. (1990). *Proceedings of the symposium on application of stock assessment techniques applies to gadids* [Conference Proceedings]. Int. North Pac. Fish. Comm. Bull. 50, 57–67.

Shubnikov, D. A., and Lisovenko, L. A. (1964). Data on the biology of rock sole of the southeastern Bering Sea. *Soviet Fish. Invest. Northeast Pac.*, 2, 220–226.

Sigler, M. F., Aydin, K. Y., Boveng, P. L., Farley, E. V., Jr., Heintz, R. A., and Lauth, R. R. (2015). Alaska Fisheries Science Center Loss of Sea Ice (LOSI) Plan for FY15-FY19. AFSC Processed Rep. 2015-01, 11 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115. <https://apps.afsc.fisheries.noaa.gov/Publications/ProcRpt/PR2015-01.pdf>

Smith, G. B., and Bakkala, R. G. (1982). Demersal fish resources of the eastern Bering Sea: Spring 1976. U.S. Dep. Commer., NOAA Tech. Rep. NMFS-SSRF-754, 129 p. <https://spo.nmfs.noaa.gov/content/demersal-fish-resources-eastern-bering-sea-spring-1976>

Sohn, D., Ciannelli, L., and Duffy-Anderson, J. T. (2010). Distribution and drift pathways of Greenland halibut (*Reinhardtius hippoglossoides*) during early life stages in the eastern Bering Sea and Aleutian Islands. *Fish. Oceanogr.*, 19(5), 339–353. <https://doi.org/10.1111/j.1365-2419.2010.00549.x>

Somerton, D. A., and Otto, R. S. (1999). Net efficiency of a survey trawl for snow crab, *Chionoecetes opilio*, and Tanner crab, *Chionoecetes bairdi*. *Fish. Bull. U.S.* 97(3), 617–625.

Somerton, D. A., Otto, R. S., and Syrjala, S. E. (2002). Can changes in tow duration on bottom trawl surveys lead to changes in CPUE and mean size? *Fish. Res.*, 55(1-3), 63–70.

Spies, I., Wilderbuer, T. K., Nichol, D. G., Hoff, J., and Palsson, W. (2018). *Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions*. North

Pacific Fishery Management Council, 1007 West 3rd Ave., Suite 400, L92 Building, 4th floor, Anchorage, AK 99501.

Stabeno, P. J., and Bell, S. W. (2019). Extreme conditions in the Bering Sea (2017–2018): Record-breaking low sea-ice extent. *Geophys. Res. Lett.*, 46, 8952–8959. <https://doi.org/10.1029/2019GL083816>

Stabeno, P. J., Farley, E. V., Kachel, N. B., Moore, S., Mordy, C. W., Napp, J. M., Overland, J. E., Pinchuk, A. I., and Sigler, M. F. (2012). A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem. *Deep-Sea Res. II*, 65, 14–30. <https://doi.org/10.1016/j.dsr2.2012.02.019>

Stabeno, P. J., Kachel, N. B., Moore, S. E., Napp, J. M., Sigler, M., Yamaguchi, A., and Zerbini, A. N. (2012). Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. *Deep-Sea Res. II*, 65, 31–45. <https://doi.org/10.1016/j.dsr2.2012.02.020>

Stauffer, G. D. (compiler). (2004). NOAA protocols for groundfish bottom trawl surveys of the Nation's fishery resources, March 16, 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SPO-65, 205 p. <https://repository.library.noaa.gov/view/noaa/12855>

Stevenson, D. E., and Hoff, G. R. (2009). Species identification confidence in the eastern Bering Sea shelf survey (1982–2008). Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115. <https://repository.library.noaa.gov/view/noaa/11979>

Stevenson, D. E., Kotwicki, S., Thorson, J. T., Correa, G. M., and Buckley, T. (2022). The influence of age and cohort on the distribution of walleye pollock (*Gadus chalcogrammus*) in the eastern Bering Sea. *Can. J. Fish. Aquat. Sci.*, 79, 1934–1949. <https://doi.org/10.1139/cjfas-2021-0300>

Stevenson, D. E., and Lauth, R. R. (2012). Latitudinal trends and temporal shifts in the catch composition of bottom trawls conducted on the eastern Bering Sea shelf. *Deep-Sea Res. II*, 65, 251–259. <https://doi.org/10.1016/j.dsr2.2012.02.021>

Stevenson, D. E., and Lauth, R. R. (2019). Bottom trawl surveys in the northern Bering Sea indicate recent shifts in the distribution of marine species. *Polar Biol.*, 42(2), 407–421. <https://doi.org/10.1007/s00300-018-2431-1>

Stevenson, D. E., Weinberg, K. L., and Lauth, R. R. (2016). Estimating confidence in trawl efficiency and catch quantification for the eastern Bering Sea Shelf survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-335, 51 p. <https://doi.org/10.7289/V5/TM-AFSC-335>

Stewart, I. J., and Martell, S. J. D. (2015). Reconciling stock assessment paradigms to better inform fisheries management. *ICES J. Mar. Sci.*, 72, 2187–2196. <https://doi.org/10.1093/icesjms/fsv061>

Thorson, J. T., Ciannelli, L., and Litzow, M. A. (2020). Defining indices of ecosystem variability using biological samples of fish communities: A generalization of empirical orthogonal functions. *Prog. Oceanogr.*, 181, 102244. <https://doi.org/10.1016/j.pocean.2019.102244>

Vestfals, C. D., Ciannelli, L., and Hoff, G. R. (2016). Changes in habitat utilization of slope-spawning flatfish across a bathymetric gradient. *ICES J. Mar. Sci.*, 73(7), 1875–1889. <https://doi.org/10.1093/icesjms/fsw112>

Wakabayashi, K. R., Bakkala, G., and Alton, M. S. (1985). Methods of the U.S.-Japan demersal trawl surveys, p. 7-29. In R. G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979. Int. North Pac. Fish. Comm. Bull. 44.

Webster, R. A., Soderlund, E., Dykstra, C. L., and Stewart, I. J. (2020). Monitoring change in a dynamic environment: Spatiotemporal modelling of calibrated data from different types of fisheries surveys of pacific halibut. *Can. J. Fish. Aquat. Sci.*, 77(8), 1421–1432. <https://doi.org/10.1139/cjfas-2019-0240>

Webster, R. A., and Stewart, I. J. (2023). *Revision of the IPHC length-weight relationship* (Report IPHC-2023-AM099-INF04; pp. 1–29). International Pacific Halibut Commission. <https://www.iphc.int/uploads/2023/11/iphc-2023-am099-inf04.pdf>

Wilderbuer, T. K., Nichol, D. G., and Ianelli, J. (2018). Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pacific Fishery Management Council, 1007 West 3rd Ave., Suite 400, L92 Building, 4th floor, Anchorage, AK 99501.

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized additive models. *J. Am. Stat. Assoc.*, 99(467), 673–686. <https://doi.org/10.1198/016214504000000980>

Yang, M. S. (1988). Morphological differences between two congeneric species of pleuronectid flatfishes: arrowtooth flounder, *Atheresthes stomias*, and Kamchatka flounder, *A. evermanni*. *Fish. Bull. U.S.*, 86(608-611).

Yang, M. S., and Livingston, P. A. (1986). Food habits and diet overlap of two congeneric species, *Atheresthes stomias* and *Atheresthes evermanni*, in the eastern Bering Sea. *Fish. Bull. U.S.*, 84(3)(615–623).

Zacher, L. S., Richar, J. I., Fedewa, E. J., Ryznar, E. R., and Litzow, M. A. (2024). *The 2024 eastern Bering Sea continental shelf trawl survey: Results for commercial crab species*. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-491, 225 p.. <https://doi.org/10.25923/q0fw-z324>

Zador, S., Aydin, K., and Cope, J. (2011). Fine-scale analysis of arrowtooth flounder *Atheresthes stomias* catch rates reveals spatial trends in abundance. *Mar. Ecol. Prog. Ser.*, 438, 229–239. <https://doi.org/10.3354/meps09316>

Zhang, C. I., Wilderbuer, T. K., and Walters, G. E. (1998). Biological characteristics and fishery assessment of Alaska plaice, *Pleuronectes quadrituberculatus*, in the eastern Bering Sea. *Mar. Fish. Rev.*, 60(4), 16–27. <https://spo.nmfs.noaa.gov/content/biological-characteristics-and-fishery-assessment-alaska-plaice-pleuronectes-0>

Zimmermann, M., Dew, C. B., and Malley, B. A. (2009). History of Alaska red king crab, *Paralithodes camtschaticus*, bottom trawl surveys, 1940–61. *Mar. Fish. Rev.*, 71(1), 22. [https://apps.afsc.fisheries.noaa.gov/Publications/Crab\\_History/support\\_files.htm](https://apps.afsc.fisheries.noaa.gov/Publications/Crab_History/support_files.htm)

Zimmermann, M., and Goddard, P. (1996). Biology and distribution of arrowtooth, *Atheresthes stomias*, and Kamchatka, *A. evermanni*, flounders in Alaskan waters. *Oceanogr. Lit. Rev.*, 98, 358–370. <https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/1996/942/zimmermann.pdf>



## **Appendix A: List of taxa encountered in the eastern Bering Sea shelf**

Appendix A lists all fish and invertebrate taxa encountered during the eastern Bering Sea shelf bottom trawl survey.

### **List of Tables**

- Appendix **A-105**: Fish taxa encountered during the 2024 eastern Bering Sea shelf survey listed alphabetically by family.
- Appendix **A-106**: Invertebrate taxa encountered during the 2024 eastern Bering Sea shelf survey listed alphabetically by phylum.

**Appendix Table A-105.--** Fish taxa encountered during the 2024 eastern Bering Sea shelf survey listed alphabetically by family.

| Family          | Scientific name                          | Common name                | #Hauls | Bottom depth (m) |      |       | Latitude |      |
|-----------------|------------------------------------------|----------------------------|--------|------------------|------|-------|----------|------|
|                 |                                          |                            |        | Min.             | Max. | Avg.  | N        | S    |
| Agonidae        | <i>Aspidophoroides monopterygius</i>     | Aleutian alligatorfish     | 56     | 40               | 145  | 69.1  | 56.3     | 60.7 |
|                 | <i>Bathyagonus alascanus</i>             | gray starsnout             | 2      | 88               | 120  | 104.0 | 55.3     | 56.7 |
|                 | <i>Leptagonus decagonus</i>              | Atlantic poacher           | 1      | 79               | 79   | 79.0  | 62.0     | 62.0 |
|                 | <i>Occella dodecaedron</i>               | Bering poacher             | 32     | 18               | 53   | 34.3  | 57.7     | 60.3 |
|                 | <i>Percis japonica</i>                   | dragon poacher             | 1      | 105              | 105  | 105.0 | 60.0     | 60.0 |
|                 | <i>Podothecus accipenserinus</i>         | sturgeon poacher           | 195    | 18               | 127  | 56.6  | 55.0     | 60.3 |
|                 | <i>Podothecus veterinus</i>              | veteran poacher            | 2      | 73               | 95   | 84.0  | 56.7     | 60.0 |
| Ammodytidae     | <i>Sarritor frenatus</i>                 | sawback poacher            | 56     | 66               | 190  | 103.6 | 54.8     | 61.7 |
|                 | <i>Ammodytes</i> sp.                     | sand lance unid.           | 12     | 20               | 49   | 33.0  | 57.3     | 59.7 |
| Anarhichadidae  | <i>Anarhichas orientalis</i>             | Bering wolffish            | 3      | 23               | 82   | 46.3  | 54.7     | 60.3 |
| Anoplopomatidae | <i>Anoplopoma fimbria</i>                | sablefish                  | 13     | 94               | 157  | 125.7 | 54.8     | 56.7 |
|                 | <i>Bathyraja aleutica</i>                | Aleutian skate             | 18     | 95               | 190  | 139.2 | 54.8     | 59.6 |
|                 | <i>Bathyraja aleutica</i> egg case       | Aleutian skate egg case    | 3      | 128              | 144  | 134.3 | 55.0     | 55.4 |
|                 | <i>Bathyraja interrupta</i>              | Bering skate               | 74     | 66               | 190  | 119.2 | 54.7     | 60.7 |
|                 | <i>Bathyraja interrupta</i> egg case     | Bering skate egg case      | 14     | 109              | 190  | 142.0 | 54.8     | 58.7 |
| Bathymasteridae | <i>Bathyraja minispinosa</i>             | whitebrow skate            | 1      | 190              | 190  | 190.0 | 58.7     | 58.7 |
|                 | <i>Bathymaster signatus</i>              | searcher                   | 18     | 77               | 190  | 125.7 | 55.3     | 60.7 |
| Clupeidae       | <i>Clupea pallasii</i>                   | Pacific herring            | 96     | 18               | 103  | 57.2  | 55.3     | 62.0 |
|                 | <i>Artemiellus pacificus</i>             | hookhorn sculpin           | 5      | 60               | 72   | 66.6  | 56.7     | 57.4 |
|                 | <i>Gymnophanths detrisus</i>             | purplegray sculpin         | 1      | 68               | 68   | 68.0  | 61.7     | 61.7 |
|                 | <i>Gymnophanths galeatus</i>             | armorhead sculpin          | 1      | 65               | 65   | 65.0  | 60.0     | 60.0 |
|                 | <i>Gymnophanths pistilliger</i>          | threaded sculpin           | 42     | 18               | 82   | 38.5  | 54.7     | 60.0 |
|                 | <i>Hemilepidotus jordani</i>             | yellow Irish lord          | 44     | 53               | 174  | 87.9  | 56.3     | 61.7 |
|                 | <i>Hemilepidotus papilio</i>             | butterfly sculpin          | 4      | 57               | 73   | 63.0  | 60.0     | 62.0 |
|                 | <i>Icelinus borealis</i>                 | northern sculpin           | 32     | 51               | 135  | 81.2  | 56.6     | 60.3 |
|                 | <i>Icelus spatula</i>                    | spatulate sculpin          | 28     | 59               | 153  | 95.6  | 55.0     | 61.0 |
|                 | <i>Icelus spiniger</i>                   | thorny sculpin             | 49     | 64               | 190  | 121.1 | 56.0     | 61.3 |
| Cottidae        | <i>Myoxocephalus jaok</i>                | plain sculpin              | 82     | 18               | 66   | 38.5  | 56.3     | 62.0 |
|                 | <i>Myoxocephalus polyacanthocephalus</i> | great sculpin              | 163    | 20               | 174  | 73.1  | 55.0     | 62.0 |
|                 | <i>Myoxocephalus scorpius</i>            | shorthorn (=warty) sculpin | 7      | 42               | 73   | 57.0  | 58.3     | 60.7 |
|                 | <i>Triglops macellus</i>                 | roughspine sculpin         | 16     | 84               | 135  | 107.5 | 55.0     | 56.7 |
|                 | <i>Triglops pingelii</i>                 | ribbed sculpin             | 14     | 40               | 144  | 71.6  | 56.0     | 60.3 |

| Family          | Scientific name                    | Common name            | #Hauls | Bottom depth (m) |      |       | Latitude |      |
|-----------------|------------------------------------|------------------------|--------|------------------|------|-------|----------|------|
|                 |                                    |                        |        | Min.             | Max. | Avg.  | N        | S    |
|                 | <i>Triglops scepticus</i>          | spectacled sculpin     | 5      | 143              | 190  | 163.8 | 54.8     | 58.7 |
| Cyclopteridae   | <i>Aptocyclus ventricosus</i>      | smooth lump sucker     | 2      | 128              | 140  | 134.0 | 60.0     | 60.7 |
|                 | <i>Boreogadus saida</i>            | Arctic cod             | 8      | 18               | 133  | 76.8  | 59.3     | 62.0 |
| Gadidae         | <i>Eleginops gracilis</i>          | saffron cod            | 3      | 18               | 91   | 51.0  | 58.6     | 60.0 |
|                 | <i>Gadus chalcogrammus</i>         | walleye pollock        | 348    | 18               | 190  | 79.2  | 54.7     | 62.0 |
|                 | <i>Gadus macrocephalus</i>         | Pacific cod            | 335    | 18               | 190  | 78.2  | 54.7     | 62.0 |
|                 | <i>Microgadus proximus</i>         | Pacific tomcod         | 2      | 28               | 32   | 30.0  | 59.0     | 60.3 |
| Hemitripteridae | <i>Blepsias bilobus</i>            | crested sculpin        | 1      | 66               | 66   | 66.0  | 59.3     | 59.3 |
|                 | <i>Hemitripterus bolini</i>        | bigmouth sculpin       | 69     | 66               | 190  | 113.0 | 55.3     | 61.0 |
|                 | Hexagrammidae                      | greenling unid.        | 1      | 73               | 73   | 73.0  | 60.0     | 60.0 |
|                 | <i>Hexagrammos decagrammus</i>     | kelp greenling         | 4      | 64               | 89   | 73.2  | 56.0     | 57.6 |
| Hexagrammidae   | <i>Hexagrammos stelleri</i>        | whitespotted greenling | 5      | 18               | 37   | 25.4  | 58.2     | 59.3 |
|                 | <i>Pleurogrammus monopterygius</i> | Atka mackerel          | 2      | 73               | 82   | 77.5  | 54.7     | 60.0 |
|                 | <i>Careproctus phasma</i>          | monster snailfish      | 47     | 61               | 145  | 101.9 | 58.3     | 62.0 |
|                 | <i>Careproctus rastinus</i>        | salmon snailfish       | 2      | 105              | 113  | 109.0 | 61.3     | 61.3 |
| Liparidae       | <i>Careproctus scottae</i>         | peachskin snailfish    | 31     | 61               | 174  | 111.0 | 55.3     | 62.0 |
|                 | <i>Crystallichthys cyclospilus</i> | blotched snailfish     | 2      | 128              | 157  | 142.5 | 54.8     | 59.0 |
|                 | Liparidae                          | snailfish unid.        | 2      | 29               | 57   | 43.0  | 59.4     | 60.3 |
|                 | <i>Liparis gibbus</i>              | variegated snailfish   | 26     | 28               | 128  | 73.1  | 57.7     | 62.0 |
|                 | <i>Liparis</i> sp.                 |                        | 1      | 28               | 28   | 28.0  | 60.3     | 60.3 |
| Osmeridae       | <i>Mallotus villosus</i>           | Pacific capelin        | 56     | 18               | 90   | 41.4  | 56.3     | 62.0 |
|                 | <i>Thaleichthys pacificus</i>      | eulachon               | 24     | 40               | 153  | 110.5 | 55.0     | 58.0 |
|                 | <i>Atheresthes evermanni</i>       | Kamchatka flounder     | 135    | 62               | 190  | 109.6 | 55.0     | 61.7 |
|                 | <i>Atheresthes stomias</i>         | arrowtooth flounder    | 206    | 43               | 190  | 96.6  | 54.7     | 61.0 |
|                 | <i>Glyptocephalus zachirus</i>     | rex sole               | 80     | 32               | 190  | 113.9 | 54.7     | 59.7 |
|                 | <i>Hippoglossoides elassodon</i>   | flathead sole          | 285    | 29               | 190  | 87.8  | 54.7     | 62.0 |
| Pleuronectidae  | <i>Hippoglossoides robustus</i>    | Bering flounder        | 65     | 41               | 140  | 76.6  | 58.0     | 62.0 |
|                 | <i>Hippoglossus stenolepis</i>     | Pacific halibut        | 247    | 18               | 190  | 72.1  | 54.7     | 62.0 |
|                 | <i>Isopsetta isolepis</i>          | butter sole            | 23     | 35               | 82   | 57.4  | 54.7     | 58.3 |
|                 | <i>Lepidopsetta bilineata</i>      | southern rock sole     | 6      | 49               | 84   | 70.8  | 55.0     | 56.6 |
|                 | <i>Lepidopsetta polyxystra</i>     | northern rock sole     | 268    | 18               | 174  | 66.8  | 54.7     | 62.0 |
|                 | <i>Limanda aspera</i>              | yellowfin sole         | 213    | 18               | 135  | 56.2  | 55.0     | 62.0 |
|                 | <i>Limanda sakhalinensis</i>       | Sakhalin sole          | 10     | 60               | 81   | 69.1  | 60.0     | 62.0 |

| Family         | Scientific name                                             | Common name                            | #Hauls | Bottom depth (m) |      |       | Latitude |      |
|----------------|-------------------------------------------------------------|----------------------------------------|--------|------------------|------|-------|----------|------|
|                |                                                             |                                        |        | Min.             | Max. | Avg.  | N        | S    |
|                | <i>Microstomus pacificus</i>                                | Dover sole                             | 7      | 73               | 135  | 102.7 | 55.0     | 56.7 |
|                | <i>Myzopsetta proboscidea</i>                               | longhead dab                           | 38     | 18               | 53   | 31.1  | 58.0     | 60.3 |
|                | <i>Platichthys stellatus</i>                                | starry flounder                        | 57     | 18               | 82   | 39.3  | 54.7     | 60.3 |
|                | <i>Platichthys stellatus X Pleuronectes quadrifasciatus</i> | hybrid starry flounder X Alaska plaice | 4      | 26               | 65   | 40.8  | 57.0     | 59.4 |
|                | <i>Pleuronectes quadrifasciatus</i>                         | Alaska plaice                          | 202    | 18               | 117  | 56.7  | 55.3     | 62.0 |
|                | <i>Psettichthys melanostictus</i>                           | sand sole                              | 2      | 49               | 51   | 50.0  | 55.3     | 55.7 |
|                | <i>Reinhardtius hippoglossoides</i>                         | Greenland turbot                       | 26     | 71               | 145  | 103.5 | 59.4     | 62.0 |
| Psychrolutidae | <i>Dasycottus setiger</i>                                   | spinyhead sculpin                      | 63     | 81               | 190  | 120.8 | 55.0     | 61.0 |
|                | <i>Malacocottus zonurus</i>                                 | darkfin sculpin                        | 2      | 130              | 190  | 160.0 | 56.0     | 58.7 |
| Ptilichthyidae | <i>Ptilichthys goodei</i>                                   | quillfish                              | 1      | 88               | 88   | 88.0  | 56.7     | 56.7 |
| Rajidae        | <i>Arctoraja parmiifera</i>                                 | Alaska skate                           | 338    | 18               | 190  | 79.9  | 54.7     | 62.0 |
|                | <i>Arctoraja parmiifera</i> egg case                        | Alaska skate egg case                  | 41     | 43               | 174  | 97.6  | 54.8     | 60.7 |
|                | <i>Beringraja binoculata</i>                                | big skate                              | 13     | 47               | 94   | 69.0  | 54.7     | 57.3 |
|                | <i>Beringraja rhina</i>                                     | longnose skate                         | 1      | 174              | 174  | 174.0 | 59.6     | 59.6 |
| Salmonidae     | <i>Oncorhynchus keta</i>                                    | chum salmon                            | 1      | 97               | 97   | 97.0  | 56.7     | 56.7 |
| Sebastidae     | <i>Sebastes aleutianus</i>                                  | rougheye rockfish                      | 1      | 133              | 133  | 133.0 | 55.7     | 55.7 |
|                | <i>Sebastes alutus</i>                                      | Pacific ocean perch                    | 13     | 82               | 190  | 140.0 | 54.7     | 61.0 |
|                | <i>Sebastes melanostictus</i>                               | blackspotted rockfish                  | 2      | 130              | 132  | 131.0 | 56.0     | 56.0 |
|                | <i>Sebastes polypinnis</i>                                  | northern rockfish                      | 5      | 130              | 155  | 140.2 | 55.7     | 58.7 |
|                | <i>Sebastes variabilis</i>                                  | dusky rockfish                         | 3      | 85               | 157  | 124.0 | 54.8     | 56.3 |
| Squalidae      | <i>Squalus suckleyi</i>                                     | spiny dogfish                          | 1      | 116              | 116  | 116.0 | 58.0     | 58.0 |
|                | <i>Leptoclinus maculatus</i>                                | daubed shanny                          | 12     | 69               | 135  | 96.8  | 55.0     | 59.3 |
|                | <i>Lumpenus fabricii</i>                                    | slender eelblenny                      | 1      | 29               | 29   | 29.0  | 59.7     | 59.7 |
| Stichaeidae    | <i>Lumpenus sagitta</i>                                     | snake prickleback                      | 1      | 51               | 51   | 51.0  | 55.3     | 55.3 |
|                | <i>Poroclinus rothrocki</i>                                 | whitebarred prickleback                | 4      | 116              | 125  | 119.8 | 56.3     | 58.0 |
| Trichodontidae | <i>Trichodon trichodon</i>                                  | Pacific sandfish                       | 7      | 20               | 40   | 33.4  | 56.7     | 58.3 |
| Zaproridae     | <i>Zaprora silenus</i>                                      | prowfish                               | 3      | 85               | 190  | 130.7 | 56.3     | 58.7 |
| Zoarcidae      | <i>Lycodes brevipes</i>                                     | shortfin eelpout                       | 97     | 66               | 174  | 111.8 | 55.0     | 61.7 |
|                | <i>Lycodes palearis</i>                                     | wattled eelpout                        | 144    | 52               | 145  | 85.2  | 56.0     | 62.0 |
|                | <i>Lycodes rariensis</i>                                    | marbled eelpout                        | 5      | 60               | 94   | 78.2  | 60.7     | 62.0 |

**Appendix Table A-106.--** Invertebrate taxa encountered during the 2024 eastern Bering Sea shelf survey listed alphabetically by phylum.

| Phylum     | Scientific name                  | Common name               | #Hauls | Bottom depth (m) |      |       | Latitude |      |
|------------|----------------------------------|---------------------------|--------|------------------|------|-------|----------|------|
|            |                                  |                           |        | Min.             | Max. | Avg.  | N        | S    |
| Annelida   | Annelida                         | worm unid.                | 3      | 73               | 94   | 83.3  | 60.0     | 61.7 |
|            | <i>Aphroditia negligens</i>      |                           | 5      | 94               | 134  | 115.0 | 55.0     | 60.3 |
|            | Aphroditidae                     | sea mouse unid.           | 29     | 91               | 190  | 130.8 | 55.7     | 60.7 |
|            | <i>Chaetopterus</i> sp.          | parchment tubeworms       | 3      | 111              | 118  | 115.3 | 56.3     | 56.7 |
|            | Echiura                          | echiuroid worm unid.      | 1      | 59               | 59   | 59.0  | 57.0     | 57.0 |
|            | <i>Eunoe depressa</i>            | depressed scale worm      | 34     | 40               | 133  | 87.7  | 56.7     | 61.0 |
|            | <i>Eunoe nodosa</i>              | giant scale worm          | 54     | 43               | 139  | 89.6  | 56.0     | 62.0 |
|            | <i>Eunoe</i> sp.                 |                           | 18     | 39               | 109  | 67.1  | 55.3     | 60.0 |
|            | Hirudinea                        | leech unid.               | 3      | 52               | 132  | 97.3  | 56.3     | 59.0 |
|            | <i>Notostomum cyclostomum</i>    | striped sea leech         | 19     | 50               | 153  | 92.1  | 56.3     | 62.0 |
|            | Polychaeta                       | polychaete worm unid.     | 3      | 60               | 73   | 66.7  | 56.7     | 57.3 |
|            | <i>Polychaeta tubes</i>          |                           | 23     | 58               | 134  | 98.9  | 55.7     | 62.0 |
|            | Serpulidae                       | serpulid worm             | 2      | 153              | 190  | 171.5 | 56.3     | 58.7 |
|            | Sipuncula                        | peanut worm unid.         | 9      | 23               | 122  | 75.6  | 55.7     | 62.0 |
|            |                                  | tube worm unid.           | 1      | 61               | 61   | 61.0  | 60.3     | 60.3 |
| Arthropoda | Amphipoda                        | amphipod unid.            | 1      | 133              | 133  | 133.0 | 55.7     | 55.7 |
|            | <i>Argis</i> sp.                 |                           | 60     | 23               | 190  | 94.8  | 55.0     | 62.0 |
|            | <i>Chionoecetes bairdi</i>       | Tanner crab               | 236    | 29               | 190  | 90.7  | 54.7     | 61.0 |
|            | <i>Chionoecetes hybrid</i>       | hybrid Tanner crab        | 97     | 40               | 174  | 91.1  | 55.0     | 62.0 |
|            | <i>Chionoecetes opilio</i>       | snow crab                 | 201    | 40               | 174  | 90.7  | 55.0     | 62.0 |
|            | <i>Chirona evermanni</i>         | giant barnacle            | 8      | 61               | 157  | 106.8 | 54.8     | 60.3 |
|            | <i>Chorilia longipes</i>         | longhorned decorator crab | 1      | 190              | 190  | 190.0 | 58.7     | 58.7 |
|            | <i>Crangon</i> sp.               |                           | 85     | 18               | 190  | 92.3  | 55.0     | 62.0 |
|            | <i>Elassochirus cavimanus</i>    | purple hermit             | 21     | 69               | 190  | 124.4 | 54.7     | 59.0 |
|            | <i>Elassochirus tenuimanus</i>   | widehand hermit crab      | 6      | 49               | 85   | 64.3  | 55.0     | 57.3 |
|            | <i>Erimacrus isenbeckii</i>      | horsehair crab            | 46     | 34               | 153  | 57.5  | 56.0     | 61.0 |
|            | <i>Glebocarcinus oregonensis</i> | Oregon rock crab          | 17     | 51               | 99   | 75.6  | 55.3     | 57.3 |
|            | <i>Hyas coarctatus</i>           | circumboreal toad crab    | 75     | 34               | 120  | 58.1  | 56.7     | 62.0 |
|            | <i>Hyas lyratus</i>              | Pacific lyre crab         | 118    | 29               | 190  | 86.4  | 54.8     | 60.7 |
|            | Isopoda                          | isopod unid.              | 1      | 64               | 64   | 64.0  | 57.0     | 57.0 |
|            | <i>Labidochirus splendescens</i> | splendid hermit           | 151    | 29               | 190  | 84.2  | 54.8     | 62.0 |
|            | <i>Lithodes aequispinus</i>      | golden king crab          | 1      | 174              | 174  | 174.0 | 58.3     | 58.3 |
|            | <i>Metacarcinus magister</i>     | Dungeness crab            | 2      | 49               | 51   | 50.0  | 55.3     | 55.7 |

| Phylum      | Scientific name                    | Common name                | #Hauls | Bottom depth (m) |      |       | Latitude |      |
|-------------|------------------------------------|----------------------------|--------|------------------|------|-------|----------|------|
|             |                                    |                            |        | Min.             | Max. | Avg.  | N        | S    |
|             | <i>Oregonia gracilis</i>           | graceful decorator crab    | 29     | 24               | 120  | 64.8  | 54.7     | 61.0 |
|             | <i>Pagurus aleuticus</i>           | Aleutian hermit            | 138    | 44               | 174  | 99.5  | 54.7     | 60.0 |
|             | <i>Pagurus capillatus</i>          | hairy hermit crab          | 105    | 18               | 155  | 84.1  | 55.7     | 60.0 |
|             | <i>Pagurus confragosus</i>         | knobbyhand hermit          | 99     | 32               | 190  | 102.6 | 54.8     | 59.3 |
|             | <i>Pagurus ochotensis</i>          | Alaskan hermit             | 112    | 18               | 92   | 45.6  | 54.7     | 60.3 |
|             | <i>Pagurus rathbuni</i>            | longfinger hermit          | 93     | 58               | 174  | 101.1 | 57.3     | 62.0 |
|             | <i>Pagurus trigonocheirus</i>      | fuzzy hermit crab          | 184    | 34               | 174  | 79.4  | 55.0     | 62.0 |
|             | <i>Pandalus eous</i>               | Alaskan pink shrimp        | 72     | 44               | 190  | 123.6 | 54.8     | 61.3 |
|             | <i>Pandalus goniurus</i>           | humpy shrimp               | 32     | 28               | 133  | 88.5  | 56.3     | 62.0 |
|             | <i>Pandalus jordani</i>            | ocean shrimp               | 4      | 135              | 144  | 139.5 | 55.0     | 55.7 |
|             | <i>Pandalus</i> sp.                |                            | 3      | 23               | 73   | 41.7  | 56.7     | 60.3 |
|             | <i>Paralithodes camtschaticus</i>  | red king crab              | 102    | 23               | 88   | 49.2  | 56.0     | 60.3 |
|             | <i>Paralithodes platypus</i>       | blue king crab             | 8      | 43               | 96   | 71.4  | 59.7     | 61.3 |
|             | <i>Polycheles</i> sp.              |                            | 1      | 64               | 64   | 64.0  | 57.3     | 57.3 |
|             | <i>Rocinela angustata</i>          | sea cockroach              | 1      | 132              | 132  | 132.0 | 55.7     | 55.7 |
|             | <i>Spirontocaris lamellicornis</i> | Dana blade shrimp          | 1      | 61               | 61   | 61.0  | 60.3     | 60.3 |
|             | <i>Telmessus cheiragonus</i>       | helmet crab                | 25     | 18               | 35   | 26.9  | 57.0     | 60.3 |
|             | <i>Thoracica</i>                   | barnacle unid.             | 24     | 29               | 174  | 84.8  | 56.3     | 60.3 |
|             |                                    | empty barnacle shells      | 1      | 190              | 190  | 190.0 | 58.7     | 58.7 |
| Brachiopoda | Brachiopoda                        | lampshell unid.            | 3      | 65               | 190  | 136.0 | 56.3     | 60.0 |
|             | <i>Alcyonidium pedunculatum</i>    | fruit leather bryozoan     | 7      | 35               | 66   | 50.4  | 57.3     | 58.7 |
| Bryozoa     | Bryozoa                            | bryozoan unid.             | 20     | 29               | 190  | 68.0  | 56.7     | 61.7 |
|             | <i>Bugula</i> sp.                  |                            | 2      | 62               | 67   | 64.5  | 60.0     | 61.0 |
|             | <i>Rhamphostomella costata</i>     | ribbed bryozoan            | 4      | 57               | 78   | 67.5  | 57.0     | 60.3 |
|             | <i>Serratiflustra serrulata</i>    | leafy bryozoan             | 4      | 37               | 55   | 47.5  | 57.7     | 60.0 |
|             | <i>Aplidium</i> sp.                |                            | 3      | 65               | 70   | 67.3  | 59.7     | 60.0 |
|             | Asciidiacea                        | tunicate unid.             | 1      | 73               | 73   | 73.0  | 56.7     | 56.7 |
|             | <i>Boltenia ovifera</i>            | sea onion                  | 50     | 20               | 85   | 55.5  | 56.3     | 60.7 |
|             | <i>Halocynthia aurantium</i>       | sea peach                  | 19     | 52               | 81   | 64.8  | 57.0     | 60.4 |
| Chordata    | <i>Halocynthia</i> sp.             | sea peach unid.            | 15     | 59               | 77   | 67.7  | 57.0     | 59.7 |
|             | <i>Styela rustica</i>              | sea potato                 | 65     | 40               | 95   | 61.3  | 55.7     | 61.0 |
|             | Thaliacea                          | salp unid.                 | 7      | 46               | 153  | 112.0 | 55.0     | 57.7 |
|             |                                    | compound ascidian unid.    | 39     | 34               | 155  | 64.3  | 56.3     | 60.4 |
|             | Actiniaria                         | sea anemone unid.          | 78     | 34               | 190  | 105.5 | 55.3     | 62.0 |
| Cnidaria    | Actiniidae                         | actinid sea anemones unid. | 4      | 101              | 133  | 114.2 | 57.3     | 59.0 |
|             | <i>Aurelia labiata</i>             |                            | 8      | 40               | 77   | 57.1  | 56.7     | 59.7 |
|             | <i>Aurelia</i> sp.                 |                            | 13     | 37               | 190  | 94.3  | 56.0     | 61.3 |
|             | <i>Balticina willemoesi</i>        |                            | 4      | 111              | 120  | 116.5 | 56.3     | 57.0 |

| Phylum        | Scientific name                   | Common name               | #Hauls | Bottom depth (m) |      |       | Latitude |      |
|---------------|-----------------------------------|---------------------------|--------|------------------|------|-------|----------|------|
|               |                                   |                           |        | Min.             | Max. | Avg.  | N        | S    |
|               | <i>Chrysaora melanaster</i>       |                           | 263    | 20               | 174  | 85.2  | 55.0     | 62.0 |
|               | <i>Cyanea capillata</i>           | lion's mane jelly         | 1      | 153              | 153  | 153.0 | 56.3     | 56.3 |
|               | <i>Gersemia</i> sp.               | sea raspberry             | 50     | 23               | 88   | 57.7  | 56.7     | 62.0 |
|               | <i>Hydroidolina</i>               | hydroid unid.             | 42     | 18               | 101  | 55.2  | 56.3     | 62.0 |
|               | <i>Hydrozoa</i>                   |                           | 1      | 20               | 20   | 20.0  | 59.3     | 59.3 |
|               | <i>Liponema brevicorne</i>        | tentacle-shedding anemone | 43     | 66               | 190  | 125.1 | 54.8     | 60.0 |
|               | <i>Metridium farcimen</i>         | gigantic anemone          | 7      | 66               | 108  | 85.1  | 55.7     | 58.3 |
|               | <i>Metridium</i> sp.              |                           | 77     | 28               | 153  | 71.1  | 55.0     | 60.3 |
|               | <i>Pennatuloidae</i>              | sea whip or sea pen unid. | 20     | 51               | 144  | 106.0 | 55.0     | 57.3 |
|               | <i>Phacellophora camtschatica</i> | egg yolk jelly            | 3      | 144              | 174  | 157.0 | 56.0     | 58.3 |
|               | <i>Scyphozoa</i>                  | jellyfish unid.           | 14     | 45               | 190  | 101.7 | 55.0     | 58.7 |
|               | <i>Stomphia coccinea</i>          | swimming anemone          | 9      | 101              | 138  | 127.8 | 58.3     | 61.3 |
|               | <i>Stomphia</i> sp.               |                           | 38     | 65               | 145  | 102.5 | 55.3     | 62.0 |
|               | <i>Urticina crassicornis</i>      | mottled anemone           | 9      | 29               | 88   | 59.3  | 55.4     | 58.3 |
|               | <i>Urticina</i> sp.               |                           | 10     | 29               | 91   | 61.7  | 56.0     | 58.7 |
|               | <i>Zoanthidae A</i> sp.           | hot dog zoanthid          | 1      | 174              | 174  | 174.0 | 58.3     | 58.3 |
| Ctenophora    | Ctenophora                        | comb jelly unid.          | 2      | 30               | 32   | 31.0  | 57.0     | 57.4 |
|               | <i>Asterias amurensis</i>         | purple-orange sea star    | 226    | 18               | 153  | 61.3  | 55.0     | 61.3 |
|               | <i>Ceramaster</i> sp.             |                           | 2      | 32               | 157  | 94.5  | 54.8     | 57.0 |
|               | <i>Crossaster papposus</i>        | rose sea star             | 16     | 43               | 157  | 75.8  | 54.8     | 61.0 |
|               | <i>Ctenodiscus crispatus</i>      | common mud star           | 73     | 76               | 190  | 117.9 | 55.0     | 61.7 |
|               | <i>Cucumaria fallax</i>           | sea football              | 21     | 20               | 89   | 68.0  | 56.0     | 58.3 |
|               | <i>Cucumaria</i> sp.              |                           | 1      | 53               | 53   | 53.0  | 57.3     | 57.3 |
|               | <i>Diplopteraster multipes</i>    | pincushion sea star       | 12     | 65               | 190  | 113.2 | 54.8     | 58.7 |
|               | <i>Dipsacaster borealis</i>       | northern sea star         | 2      | 157              | 174  | 165.5 | 54.8     | 58.3 |
|               | <i>Dipsacaster</i> sp.            |                           | 1      | 155              | 155  | 155.0 | 58.7     | 58.7 |
|               | <i>Echinacea</i>                  | sea urchin unid.          | 13     | 53               | 190  | 131.1 | 56.3     | 59.3 |
| Echinodermata | <i>Echinarachnius parma</i>       | parma sand dollar         | 12     | 63               | 109  | 78.4  | 54.7     | 61.0 |
|               | <i>Evasterias echinosoma</i>      | giant sea star            | 30     | 29               | 84   | 60.9  | 55.7     | 58.3 |
|               | <i>Gorgonocephalus eucnemis</i>   | basketstar                | 216    | 35               | 190  | 80.7  | 55.0     | 62.0 |
|               | <i>Henricia</i> sp.               |                           | 24     | 51               | 190  | 118.5 | 54.8     | 60.7 |
|               | <i>Holothuroidea</i>              | sea cucumber unid.        | 2      | 37               | 57   | 47.0  | 60.0     | 60.3 |
|               | <i>Leptasterias arctica</i>       |                           | 45     | 50               | 116  | 69.9  | 56.6     | 62.0 |
|               | <i>Leptasterias groenlandica</i>  |                           | 16     | 64               | 155  | 87.1  | 58.0     | 62.0 |
|               | <i>Leptasterias polaris</i>       |                           | 127    | 43               | 157  | 91.4  | 56.0     | 62.0 |
|               | <i>Leptasterias</i> sp.           |                           | 2      | 106              | 117  | 111.5 | 57.7     | 57.7 |
|               | <i>Leptychaster anomalus</i>      |                           | 21     | 86               | 190  | 120.1 | 55.0     | 59.7 |
|               | <i>Leptychaster arcticus</i>      | North Pacific sea star    | 4      | 64               | 71   | 66.8  | 60.0     | 62.0 |

| Phylum   | Scientific name                          | Common name              | #Hauls | Bottom depth (m) |      |       | Latitude |      |
|----------|------------------------------------------|--------------------------|--------|------------------|------|-------|----------|------|
|          |                                          |                          |        | Min.             | Max. | Avg.  | N        | S    |
| Cnidaria | <i>Lethasterias nanimensis</i>           | blackspined sea star     | 73     | 50               | 155  | 81.4  | 56.0     | 60.7 |
|          | <i>Molpadia intermedia</i>               | sweet sea potato         | 4      | 108              | 132  | 125.8 | 55.4     | 56.3 |
|          | <i>Ophiura sarsii</i>                    | notched brittlestar      | 59     | 58               | 140  | 82.4  | 56.3     | 62.0 |
|          | <i>Ophiura</i> sp.                       |                          | 31     | 61               | 113  | 86.4  | 58.0     | 62.0 |
|          | <i>Ophiuroidea</i>                       | brittlestar unid.        | 4      | 67               | 190  | 126.0 | 56.3     | 58.7 |
|          | <i>Pedicellaster magister</i>            | majestic sea star        | 1      | 190              | 190  | 190.0 | 58.7     | 58.7 |
|          | <i>Pisaster</i> sp.                      |                          | 1      | 77               | 77   | 77.0  | 56.7     | 56.7 |
|          | <i>Pseudarchaster parelii</i>            | scarlet sea star         | 2      | 117              | 157  | 137.0 | 54.8     | 57.7 |
|          | <i>Pseudarchaster</i> sp.                |                          | 1      | 155              | 155  | 155.0 | 58.7     | 58.7 |
|          | <i>Psolus</i> sp.                        |                          | 5      | 57               | 73   | 63.2  | 60.0     | 60.7 |
|          | <i>Pteraster obscurus</i>                | obscure sea star         | 34     | 61               | 145  | 102.2 | 55.7     | 62.0 |
|          | <i>Pteraster</i> sp.                     |                          | 4      | 109              | 190  | 152.8 | 54.8     | 58.7 |
|          | <i>Pteraster tesselatus</i>              |                          | 1      | 153              | 153  | 153.0 | 56.3     | 56.3 |
|          | <i>Pycnopodia helianthoides</i>          | sunflower sea star       | 3      | 51               | 79   | 69.0  | 55.3     | 55.7 |
|          | <i>Solaster</i> sp.                      |                          | 6      | 61               | 174  | 124.2 | 54.8     | 60.3 |
|          | <i>Strongylocentrotus droebachiensis</i> | green sea urchin         | 37     | 29               | 157  | 108.1 | 56.3     | 61.0 |
|          | <i>Strongylocentrotus fragilis</i>       | orange-pink sea urchin   | 2      | 133              | 157  | 145.0 | 54.8     | 56.7 |
|          | <i>Strongylocentrotus</i> sp.            |                          | 10     | 49               | 144  | 103.8 | 55.0     | 59.0 |
| Mollusca | <i>Synallactes challengerii</i>          |                          | 2      | 143              | 190  | 166.5 | 57.7     | 58.7 |
|          | <i>Aforia circinata</i>                  | keeled Aforia            | 45     | 90               | 174  | 116.5 | 55.0     | 61.3 |
|          | <i>Arctomelon boreale</i>                |                          | 2      | 174              | 190  | 182.0 | 58.3     | 58.7 |
|          | <i>Arctomelon</i> sp.                    |                          | 1      | 157              | 157  | 157.0 | 54.8     | 54.8 |
|          | <i>Aulacofusus herendeeni</i>            | thin-ribbed whelk        | 13     | 98               | 155  | 121.5 | 57.7     | 59.3 |
|          | <i>Beringius beiringii</i>               | Bering beringius         | 26     | 39               | 174  | 107.5 | 56.3     | 61.0 |
|          | <i>Beringius</i> sp.                     |                          | 38     | 44               | 140  | 101.7 | 55.3     | 61.3 |
|          | <i>Berryteuthis magister</i>             | magistrate armhook squid | 4      | 133              | 155  | 139.0 | 58.7     | 59.7 |
|          | <i>Bivalvia</i>                          | bivalve unid.            | 1      | 64               | 64   | 64.0  | 57.3     | 57.3 |
|          | <i>Boreotrophon alaskanus</i>            | Alaskan trophon          | 1      | 133              | 133  | 133.0 | 61.0     | 61.0 |
|          | <i>Boreotrophon beringi</i>              | Bering trophon           | 1      | 128              | 128  | 128.0 | 55.0     | 55.0 |
|          | <i>Boreotrophon</i> sp.                  |                          | 3      | 63               | 97   | 84.0  | 57.0     | 59.0 |
|          | <i>Buccinum angulosum</i>                | angular whelk            | 68     | 58               | 145  | 95.9  | 57.6     | 62.0 |
|          | <i>Buccinum angulosum transliratum</i>   | transect whelk           | 1      | 113              | 113  | 113.0 | 59.7     | 59.7 |
|          | <i>Buccinum pectrum</i>                  | sinuous whelk            | 23     | 28               | 157  | 82.3  | 54.8     | 60.7 |
|          | <i>Buccinum polare</i>                   | polar whelk              | 51     | 58               | 101  | 74.0  | 57.0     | 62.0 |
|          | <i>Buccinum scalariforme</i>             | ladder whelk             | 125    | 23               | 174  | 96.8  | 56.0     | 62.0 |
|          | <i>Buccinum</i> sp.                      |                          | 13     | 43               | 190  | 87.2  | 58.0     | 61.3 |
|          | <i>Chlamys rubida</i>                    | reddish scallop          | 1      | 77               | 77   | 77.0  | 56.7     | 56.7 |
|          | <i>Chlamys</i> sp.                       |                          | 3      | 45               | 106  | 78.3  | 56.4     | 57.7 |
|          | <i>Ciliatocardium ciliatum</i>           | hairy cockle             | 11     | 61               | 134  | 82.9  | 57.7     | 62.0 |

| Phylum | Scientific name                | Common name                | #Hauls | Bottom depth (m) |      |       | Latitude |      |
|--------|--------------------------------|----------------------------|--------|------------------|------|-------|----------|------|
|        |                                |                            |        | Min.             | Max. | Avg.  | N        | S    |
|        | <i>Clinocardium</i> sp.        |                            | 7      | 60               | 100  | 81.1  | 58.7     | 61.0 |
|        | <i>Clinopegma magnum</i>       | helmet whelk               | 51     | 61               | 140  | 94.1  | 56.6     | 62.0 |
|        | <i>Colus</i> sp.               |                            | 24     | 61               | 157  | 100.7 | 55.0     | 62.0 |
|        | <i>Cryptonatica aleutica</i>   | Aleutian moonsnail         | 7      | 43               | 83   | 69.4  | 58.7     | 62.0 |
|        | <i>Cryptonatica russa</i>      | rusty moonsnail            | 19     | 61               | 108  | 87.8  | 55.7     | 62.0 |
|        | <i>Cyclocardia</i> sp.         |                            | 2      | 49               | 53   | 51.0  | 56.3     | 57.7 |
|        | Decapodiformes                 | squid unid.                | 1      | 108              | 108  | 108.0 | 56.3     | 56.3 |
|        | <i>Enteroctopus dofleini</i>   | giant octopus              | 21     | 85               | 174  | 131.3 | 54.8     | 60.7 |
|        | <i>Euspira pallida</i>         | pale moonsnail             | 15     | 53               | 127  | 85.1  | 58.0     | 62.0 |
|        | <i>Fusitriton oregonensis</i>  | Oregon triton              | 102    | 53               | 190  | 108.1 | 54.8     | 60.7 |
|        | <i>Fusitriton</i> sp.          |                            | 1      | 82               | 82   | 82.0  | 54.7     | 54.7 |
|        | Gastropoda                     | snail unid.                | 1      | 111              | 111  | 111.0 | 56.7     | 56.7 |
|        | Gastropoda egg                 | snail egg                  | 119    | 18               | 155  | 78.3  | 55.3     | 62.0 |
|        | <i>Gonatopsis borealis</i>     | boreopacific armhook squid | 1      | 134              | 134  | 134.0 | 58.7     | 58.7 |
|        | <i>Grandicrepidula grandis</i> | great slippersnail         | 1      | 60               | 60   | 60.0  | 57.3     | 57.3 |
|        | <i>Hiatella arctica</i>        | Arctic Hiatella            | 3      | 59               | 81   | 70.0  | 57.0     | 59.7 |
|        | <i>Latisipho hallii</i>        | shrew whelk                | 1      | 68               | 68   | 68.0  | 57.6     | 57.6 |
|        | <i>Macoma nasuta</i>           | bent-nose Macoma           | 5      | 25               | 135  | 70.6  | 58.0     | 61.3 |
|        | <i>Macoma</i> sp.              |                            | 1      | 60               | 60   | 60.0  | 57.0     | 57.0 |
|        | <i>Mactromeris polynyma</i>    | Arctic surfclam            | 41     | 20               | 88   | 48.3  | 55.7     | 60.3 |
|        | <i>Megangulus luteus</i>       | Alaska great-tellin        | 36     | 20               | 61   | 36.4  | 55.7     | 60.0 |
|        | <i>Modiolus modiolus</i>       | northern horsemussel       | 4      | 59               | 95   | 73.5  | 56.0     | 57.3 |
|        | <i>Musculus discors</i>        | discordant mussel          | 2      | 70               | 117  | 93.5  | 56.7     | 59.7 |
|        | <i>Muusoctopus sibiricus</i>   |                            | 7      | 95               | 135  | 110.6 | 59.0     | 60.7 |
|        | Mytilidae                      | mussel unid.               | 2      | 64               | 117  | 90.5  | 57.7     | 61.0 |
|        | <i>Mytilus</i> sp.             |                            | 4      | 62               | 73   | 68.5  | 61.0     | 62.0 |
|        | gastropod egg                  | moonsnail egg unid.        | 19     | 58               | 107  | 84.1  | 59.0     | 62.0 |
|        | <i>Neoheringius frielei</i>    |                            | 2      | 144              | 153  | 148.5 | 55.0     | 55.4 |
|        | <i>Neophinone coronata</i>     | crowned hairy snail        | 1      | 94               | 94   | 94.0  | 59.7     | 59.7 |
|        | <i>Neptunea borealis</i>       |                            | 38     | 43               | 157  | 91.5  | 57.0     | 62.0 |
|        | <i>Neptunea heros</i>          |                            | 110    | 32               | 105  | 57.3  | 56.7     | 62.0 |
|        | <i>Neptunea lyrata</i>         | lyre whelk                 | 96     | 37               | 174  | 99.3  | 55.0     | 61.3 |
|        | <i>Neptunea pribiloffensis</i> | Pribilof whelk             | 128    | 59               | 190  | 108.1 | 55.0     | 61.3 |
|        | <i>Neptunea ventricosa</i>     | fat whelk                  | 116    | 23               | 133  | 57.5  | 55.7     | 62.0 |
|        | <i>Nodulotrophon coronatus</i> |                            | 1      | 71               | 71   | 71.0  | 57.0     | 57.0 |
|        | Nudibranchia                   | nudibranch unid.           | 40     | 57               | 135  | 84.3  | 55.6     | 62.0 |
|        | Octopodidae                    | octopus unid.              | 4      | 71               | 116  | 92.5  | 58.0     | 62.0 |
|        | <i>Octopus</i> sp.             |                            | 1      | 133              | 133  | 133.0 | 58.7     | 58.7 |
|        | <i>Onchidiopsis clarki</i>     | warty blobsnail            | 5      | 61               | 72   | 66.0  | 58.3     | 60.3 |
|        | Onchidiopsis sp.               |                            | 4      | 57               | 73   | 64.0  | 60.0     | 60.3 |
|        | <i>Patinopecten caurinus</i>   | weathervane scallop        | 19     | 77               | 135  | 104.2 | 55.3     | 57.3 |
|        | <i>Plicifusus kroyeri</i>      |                            | 30     | 65               | 139  | 103.4 | 56.3     | 61.0 |

| Phylum          | Scientific name                | Common name               | #Hauls | Bottom depth (m) |      |       | Latitude |      |
|-----------------|--------------------------------|---------------------------|--------|------------------|------|-------|----------|------|
|                 |                                |                           |        | Min.             | Max. | Avg.  | N        | S    |
|                 | <i>Plicifusus</i> sp.          |                           | 9      | 57               | 134  | 104.4 | 59.0     | 61.0 |
|                 | <i>Pododesmus macrochisma</i>  | abalone jingle            | 1      | 106              | 106  | 106.0 | 57.7     | 57.7 |
|                 | <i>Pyrulofusus deformis</i>    | warped whelk              | 38     | 51               | 174  | 96.1  | 54.8     | 60.3 |
|                 | <i>Pyrulofusus melonis</i>     |                           | 48     | 66               | 145  | 119.0 | 55.0     | 61.0 |
|                 | <i>Pyrulofusus</i> sp.         |                           | 2      | 68               | 108  | 88.0  | 57.0     | 57.3 |
|                 | <i>Rossia pacifica</i>         | eastern Pacific bobtail   | 9      | 108              | 190  | 138.8 | 56.3     | 59.6 |
|                 | <i>Serripes notabilis</i>      | oblique smoothcockle      | 57     | 26               | 143  | 74.7  | 55.0     | 62.0 |
|                 | <i>Siliqua alta</i>            | Alaska razor              | 21     | 18               | 50   | 29.7  | 58.0     | 60.3 |
|                 | <i>Tachyrhynchus erosus</i>    | eroded turretsnail        | 1      | 20               | 20   | 20.0  | 59.3     | 59.3 |
|                 | <i>Tellina</i> sp.             |                           | 3      | 89               | 113  | 100.0 | 59.3     | 60.3 |
|                 | <i>Trichotropis bicarinata</i> | two-keel hairy snail      | 1      | 61               | 61   | 61.0  | 60.3     | 60.3 |
|                 | <i>Tritonia</i> sp.            |                           | 3      | 86               | 113  | 100.0 | 59.3     | 61.0 |
|                 | <i>Tritonia tetraquetra</i>    | rosy Tritonia             | 1      | 76               | 76   | 76.0  | 61.3     | 61.3 |
|                 | <i>Volutomitra</i> sp.         |                           | 1      | 127              | 127  | 127.0 | 60.0     | 60.0 |
|                 | <i>Volutopsius fragilis</i>    | fragile whelk             | 31     | 43               | 140  | 80.8  | 55.0     | 58.7 |
|                 | <i>Volutopsius</i> sp.         |                           | 18     | 58               | 144  | 85.9  | 55.0     | 61.3 |
|                 | <i>Volutopsius stefanssoni</i> | shouldered whelk          | 3      | 61               | 117  | 98.0  | 56.7     | 60.3 |
|                 | <i>Yoldia aeolica</i>          | crisscrossed Yoldia       | 4      | 43               | 84   | 68.5  | 60.7     | 61.7 |
|                 | <i>Yoldia</i> sp.              |                           | 7      | 67               | 122  | 84.1  | 56.0     | 62.0 |
|                 |                                | empty bivalve shells      | 222    | 18               | 190  | 75.8  | 55.0     | 62.0 |
|                 |                                | empty gastropod shells    | 267    | 18               | 190  | 78.7  | 55.0     | 62.0 |
| Platyhelminthes | Platyhelminthes                | flatworm unid.            | 3      | 124              | 143  | 132.7 | 56.7     | 59.3 |
|                 | <i>Aphrocallistes vastus</i>   | clay pipe sponge          | 1      | 153              | 153  | 153.0 | 56.3     | 56.3 |
|                 | <i>Mycale</i> sp.              |                           | 1      | 190              | 190  | 190.0 | 58.7     | 58.7 |
|                 | <i>Polymastia</i> sp.          |                           | 1      | 153              | 153  | 153.0 | 56.3     | 56.3 |
| Porifera        | Porifera                       | sponge unid.              | 57     | 34               | 190  | 92.4  | 55.0     | 60.7 |
|                 | <i>Suberites montalbidus</i>   | stinky sponge             | 2      | 84               | 84   | 84.0  | 56.3     | 56.4 |
|                 | <i>Suberites</i> sp.           |                           | 3      | 49               | 109  | 75.7  | 55.0     | 56.7 |
|                 |                                | soft finger sponge        | 1      | 153              | 153  | 153.0 | 56.3     | 56.3 |
|                 |                                | vase sponge unid.         | 1      | 153              | 153  | 153.0 | 56.3     | 56.3 |
| Other           |                                | unsorted catch and debris | 9      | 29               | 153  | 85.7  | 56.3     | 61.7 |

## Appendix B: List of population estimates by sex and size group for principal fish species in the eastern Bering Sea shelf

Appendix B presents population estimates by sex and size group from the 2024 eastern Bering Sea shelf bottom trawl survey for principal fish species.

### List of Tables

- Appendix **B-107**: Population estimates by sex and size for Alaska plaice (*Pleuronectes quadrituberculatus*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-108**: Population estimates by sex and size for Alaska skate (*Arctoraja parmifera*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-109**: Population estimates by sex and size for arrowtooth flounder (*Atheresthes stomias*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-110**: Population estimates by sex and size for Bering flounder (*Hippoglossoides robustus*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-111**: Population estimates by sex and size for Bering skate (*Bathyraja interrupta*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-112**: Population estimates by sex and size for flathead sole (*Hippoglossoides elassodon*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-113**: Population estimates by sex and size for Greenland turbot (*Reinhardtius hippoglossoides*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-114**: Population estimates by sex and size for Kamchatka flounder (*Atheresthes evermanni*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-115**: Population estimates by sex and size for northern rock sole (*Lepidopsetta polyxystra*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-116**: Population estimates by sex and size for Pacific cod (*Gadus macrocephalus*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-117**: Population estimates by sex and size for Pacific halibut (*Hippoglossus stenolepis*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-118**: Population estimates by sex and size for walleye pollock (*Gadus chalcogrammus*) from the 2024 eastern Bering Sea shelf survey.
- Appendix **B-119**: Population estimates by sex and size for yellowfin sole (*Limanda aspera*) from the 2024 eastern Bering Sea shelf survey.

**Appendix Table B-107.--** Population estimates by sex and size for Alaska plaice (*Pleuronectes quadrituberculatus*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Females    | Males      | Unsexed | Total      | Proportion | Cumulative<br>proportion |
|----------------|------------|------------|---------|------------|------------|--------------------------|
| 100            | 97,136     | 31,725     | 0       | 128,861    | 0.0002     | 0.0002                   |
| 110            | 315,930    | 0          | 65,146  | 381,076    | 0.0006     | 0.0008                   |
| 120            | 0          | 473,895    | 97,136  | 571,031    | 0.0009     | 0.0017                   |
| 130            | 131,819    | 194,272    | 97,136  | 423,227    | 0.0007     | 0.0024                   |
| 140            | 128,861    | 600,888    | 0       | 729,749    | 0.0012     | 0.0035                   |
| 150            | 255,101    | 1,110,836  | 0       | 1,365,937  | 0.0022     | 0.0057                   |
| 160            | 711,936    | 1,369,943  | 0       | 2,081,879  | 0.0033     | 0.0090                   |
| 170            | 952,871    | 1,269,197  | 0       | 2,222,068  | 0.0035     | 0.0125                   |
| 180            | 2,162,027  | 2,996,589  | 0       | 5,158,616  | 0.0081     | 0.0206                   |
| 190            | 2,605,317  | 3,218,395  | 0       | 5,823,712  | 0.0092     | 0.0298                   |
| 200            | 4,092,159  | 4,993,437  | 0       | 9,085,596  | 0.0143     | 0.0441                   |
| 210            | 2,945,941  | 5,276,716  | 0       | 8,222,657  | 0.0130     | 0.0571                   |
| 220            | 6,152,539  | 6,523,357  | 0       | 12,675,896 | 0.0200     | 0.0771                   |
| 230            | 4,672,842  | 4,752,753  | 0       | 9,425,595  | 0.0149     | 0.0919                   |
| 240            | 4,072,933  | 7,977,905  | 0       | 12,050,838 | 0.0190     | 0.1110                   |
| 250            | 6,045,442  | 8,853,879  | 0       | 14,899,321 | 0.0235     | 0.1344                   |
| 260            | 8,081,186  | 9,637,253  | 0       | 17,718,439 | 0.0279     | 0.1624                   |
| 270            | 9,110,489  | 11,461,796 | 0       | 20,572,285 | 0.0324     | 0.1948                   |
| 280            | 11,412,392 | 17,417,166 | 0       | 28,829,558 | 0.0455     | 0.2403                   |
| 290            | 11,305,338 | 17,561,447 | 0       | 28,866,785 | 0.0455     | 0.2858                   |
| 300            | 12,961,704 | 20,705,695 | 0       | 33,667,399 | 0.0531     | 0.3389                   |
| 310            | 13,082,935 | 25,489,866 | 0       | 38,572,801 | 0.0608     | 0.3998                   |
| 320            | 13,223,629 | 27,937,569 | 0       | 41,161,198 | 0.0649     | 0.4647                   |
| 330            | 15,322,728 | 25,111,061 | 0       | 40,433,789 | 0.0638     | 0.5285                   |
| 340            | 15,023,994 | 24,497,263 | 0       | 39,521,257 | 0.0623     | 0.5908                   |
| 350            | 12,673,355 | 25,100,153 | 0       | 37,773,508 | 0.0596     | 0.6504                   |
| 360            | 13,339,984 | 21,788,103 | 0       | 35,128,087 | 0.0554     | 0.7058                   |
| 370            | 13,824,691 | 20,580,523 | 0       | 34,405,214 | 0.0543     | 0.7600                   |
| 380            | 11,971,234 | 13,221,316 | 0       | 25,192,550 | 0.0397     | 0.7998                   |
| 390            | 11,243,640 | 9,856,529  | 0       | 21,100,169 | 0.0333     | 0.8331                   |
| 400            | 8,307,246  | 4,520,027  | 0       | 12,827,273 | 0.0202     | 0.8533                   |
| 410            | 10,279,713 | 2,022,504  | 0       | 12,302,217 | 0.0194     | 0.8727                   |
| 420            | 7,871,574  | 1,921,624  | 0       | 9,793,198  | 0.0154     | 0.8881                   |
| 430            | 9,947,115  | 429,806    | 0       | 10,376,921 | 0.0164     | 0.9045                   |
| 440            | 10,189,711 | 340,970    | 0       | 10,530,681 | 0.0166     | 0.9211                   |
| 450            | 10,323,632 | 174,042    | 0       | 10,497,674 | 0.0166     | 0.9377                   |
| 460            | 8,092,704  | 189,795    | 0       | 8,282,499  | 0.0131     | 0.9507                   |
| 470            | 5,441,625  | 54,534     | 0       | 5,496,159  | 0.0087     | 0.9594                   |
| 480            | 5,990,189  | 0          | 0       | 5,990,189  | 0.0094     | 0.9688                   |
| 490            | 5,248,258  | 29,094     | 0       | 5,277,352  | 0.0083     | 0.9772                   |
| 500            | 4,609,425  | 29,094     | 0       | 4,638,519  | 0.0073     | 0.9845                   |
| 510            | 2,300,758  | 30,499     | 0       | 2,331,257  | 0.0037     | 0.9882                   |
| 520            | 3,867,388  | 0          | 0       | 3,867,388  | 0.0061     | 0.9943                   |
| 530            | 1,442,822  | 0          | 0       | 1,442,822  | 0.0023     | 0.9965                   |
| 540            | 878,220    | 0          | 0       | 878,220    | 0.0014     | 0.9979                   |
| 550            | 589,844    | 0          | 0       | 589,844    | 0.0009     | 0.9989                   |

| Length<br>(cm) | Females            | Males              | Unsexed        | Total              | Proportion    | Cumulative<br>proportion |
|----------------|--------------------|--------------------|----------------|--------------------|---------------|--------------------------|
| 560            | 149,040            | 0                  | 0              | 149,040            | 0.0002        | 0.9991                   |
| 570            | 387,536            | 0                  | 0              | 387,536            | 0.0006        | 0.9997                   |
| 580            | 104,263            | 0                  | 0              | 104,263            | 0.0002        | 0.9999                   |
| 590            | 84,032             | 0                  | 0              | 84,032             | 0.0001        | 1.0000                   |
| <b>Total</b>   | <b>304,025,248</b> | <b>329,751,516</b> | <b>259,418</b> | <b>634,036,182</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-108.--** Population estimates by sex and size for Alaska skate (*Arctoraja parmifera*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Females | Males   | Unsexed | Total     | Proportion | Cumulative<br>proportion |
|----------------|---------|---------|---------|-----------|------------|--------------------------|
| 190            | 0       | 64,058  | 0       | 64,058    | 0.0006     | 0.0006                   |
| 200            | 32,298  | 0       | 0       | 32,298    | 0.0003     | 0.0009                   |
| 210            | 65,264  | 131,781 | 0       | 197,045   | 0.0019     | 0.0029                   |
| 220            | 148,694 | 286,405 | 0       | 435,099   | 0.0042     | 0.0071                   |
| 230            | 590,992 | 376,429 | 0       | 967,421   | 0.0094     | 0.0165                   |
| 240            | 270,987 | 462,133 | 0       | 733,120   | 0.0071     | 0.0236                   |
| 250            | 444,822 | 534,966 | 0       | 979,788   | 0.0095     | 0.0331                   |
| 260            | 281,428 | 411,002 | 0       | 692,430   | 0.0067     | 0.0398                   |
| 270            | 472,887 | 381,753 | 0       | 854,640   | 0.0083     | 0.0481                   |
| 280            | 619,577 | 414,363 | 0       | 1,033,940 | 0.0100     | 0.0582                   |
| 290            | 427,267 | 425,281 | 0       | 852,548   | 0.0083     | 0.0665                   |
| 300            | 379,418 | 257,451 | 0       | 636,869   | 0.0062     | 0.0727                   |
| 310            | 398,164 | 544,553 | 0       | 942,717   | 0.0092     | 0.0818                   |
| 320            | 376,156 | 517,626 | 0       | 893,782   | 0.0087     | 0.0905                   |
| 330            | 701,275 | 452,879 | 0       | 1,154,154 | 0.0112     | 0.1017                   |
| 340            | 386,868 | 333,014 | 0       | 719,882   | 0.0070     | 0.1087                   |
| 350            | 251,925 | 402,576 | 0       | 654,501   | 0.0064     | 0.1151                   |
| 360            | 424,392 | 480,609 | 0       | 905,001   | 0.0088     | 0.1239                   |
| 370            | 247,245 | 586,299 | 0       | 833,544   | 0.0081     | 0.1320                   |
| 380            | 557,051 | 888,131 | 0       | 1,445,182 | 0.0140     | 0.1460                   |
| 390            | 584,507 | 269,609 | 0       | 854,116   | 0.0083     | 0.1543                   |
| 400            | 365,077 | 424,972 | 0       | 790,049   | 0.0077     | 0.1620                   |
| 410            | 480,057 | 528,231 | 0       | 1,008,288 | 0.0098     | 0.1718                   |
| 420            | 645,016 | 681,863 | 0       | 1,326,879 | 0.0129     | 0.1847                   |
| 430            | 531,953 | 477,159 | 0       | 1,009,112 | 0.0098     | 0.1945                   |
| 440            | 529,591 | 566,398 | 0       | 1,095,989 | 0.0106     | 0.2051                   |
| 450            | 624,899 | 448,422 | 0       | 1,073,321 | 0.0104     | 0.2155                   |
| 460            | 658,432 | 545,748 | 0       | 1,204,180 | 0.0117     | 0.2272                   |
| 470            | 447,516 | 678,795 | 0       | 1,126,311 | 0.0109     | 0.2382                   |
| 480            | 418,566 | 466,118 | 0       | 884,684   | 0.0086     | 0.2468                   |
| 490            | 703,978 | 480,146 | 0       | 1,184,124 | 0.0115     | 0.2583                   |
| 500            | 503,431 | 401,720 | 0       | 905,151   | 0.0088     | 0.2671                   |
| 510            | 568,278 | 542,249 | 0       | 1,110,527 | 0.0108     | 0.2779                   |
| 520            | 744,436 | 376,374 | 0       | 1,120,810 | 0.0109     | 0.2888                   |
| 530            | 492,119 | 500,844 | 0       | 992,963   | 0.0096     | 0.2984                   |
| 540            | 400,863 | 597,809 | 0       | 998,672   | 0.0097     | 0.3081                   |
| 550            | 634,060 | 463,725 | 0       | 1,097,785 | 0.0107     | 0.3188                   |
| 560            | 682,667 | 384,164 | 0       | 1,066,831 | 0.0104     | 0.3291                   |
| 570            | 375,838 | 637,686 | 0       | 1,013,524 | 0.0098     | 0.3390                   |
| 580            | 479,216 | 439,544 | 0       | 918,760   | 0.0089     | 0.3479                   |
| 590            | 655,542 | 325,364 | 0       | 980,906   | 0.0095     | 0.3574                   |
| 600            | 554,112 | 466,809 | 0       | 1,020,921 | 0.0099     | 0.3674                   |
| 610            | 681,957 | 525,048 | 0       | 1,207,005 | 0.0117     | 0.3791                   |
| 620            | 383,756 | 677,056 | 0       | 1,060,812 | 0.0103     | 0.3894                   |
| 630            | 224,127 | 317,121 | 0       | 541,248   | 0.0053     | 0.3946                   |
| 640            | 666,960 | 755,313 | 0       | 1,422,273 | 0.0138     | 0.4085                   |

| Length<br>(cm) | Females   | Males     | Unsexed | Total     | Proportion | Cumulative<br>proportion |
|----------------|-----------|-----------|---------|-----------|------------|--------------------------|
| 650            | 438,752   | 344,395   | 0       | 783,147   | 0.0076     | 0.4161                   |
| 660            | 249,068   | 311,222   | 0       | 560,290   | 0.0054     | 0.4215                   |
| 670            | 627,469   | 548,646   | 0       | 1,176,115 | 0.0114     | 0.4329                   |
| 680            | 470,224   | 652,114   | 0       | 1,122,338 | 0.0109     | 0.4438                   |
| 690            | 486,641   | 443,508   | 0       | 930,149   | 0.0090     | 0.4529                   |
| 700            | 495,858   | 268,916   | 0       | 764,774   | 0.0074     | 0.4603                   |
| 710            | 438,928   | 369,471   | 0       | 808,399   | 0.0079     | 0.4682                   |
| 720            | 381,721   | 466,030   | 0       | 847,751   | 0.0082     | 0.4764                   |
| 730            | 295,377   | 318,382   | 0       | 613,759   | 0.0060     | 0.4824                   |
| 740            | 559,690   | 687,247   | 0       | 1,246,937 | 0.0121     | 0.4945                   |
| 750            | 504,075   | 159,060   | 0       | 663,135   | 0.0064     | 0.5009                   |
| 760            | 384,212   | 622,770   | 0       | 1,006,982 | 0.0098     | 0.5107                   |
| 770            | 273,573   | 510,046   | 0       | 783,619   | 0.0076     | 0.5183                   |
| 780            | 272,038   | 425,296   | 0       | 697,334   | 0.0068     | 0.5251                   |
| 790            | 273,355   | 523,257   | 0       | 796,612   | 0.0077     | 0.5328                   |
| 800            | 323,509   | 386,685   | 0       | 710,194   | 0.0069     | 0.5397                   |
| 810            | 771,968   | 440,437   | 0       | 1,212,405 | 0.0118     | 0.5515                   |
| 820            | 373,092   | 591,552   | 0       | 964,644   | 0.0094     | 0.5609                   |
| 830            | 514,372   | 655,286   | 0       | 1,169,658 | 0.0114     | 0.5722                   |
| 840            | 717,352   | 389,692   | 0       | 1,107,044 | 0.0108     | 0.5830                   |
| 850            | 247,838   | 603,834   | 0       | 851,672   | 0.0083     | 0.5913                   |
| 860            | 471,189   | 521,391   | 0       | 992,580   | 0.0096     | 0.6009                   |
| 870            | 532,645   | 888,464   | 0       | 1,421,109 | 0.0138     | 0.6147                   |
| 880            | 562,124   | 656,651   | 0       | 1,218,775 | 0.0118     | 0.6266                   |
| 890            | 378,193   | 708,170   | 0       | 1,086,363 | 0.0106     | 0.6371                   |
| 900            | 698,477   | 721,922   | 0       | 1,420,399 | 0.0138     | 0.6509                   |
| 910            | 627,492   | 821,519   | 0       | 1,449,011 | 0.0141     | 0.6650                   |
| 920            | 1,047,408 | 1,296,482 | 0       | 2,343,890 | 0.0228     | 0.6878                   |
| 930            | 894,211   | 937,776   | 0       | 1,831,987 | 0.0178     | 0.7056                   |
| 940            | 1,055,577 | 1,565,408 | 0       | 2,620,985 | 0.0255     | 0.7310                   |
| 950            | 934,648   | 1,356,548 | 0       | 2,291,196 | 0.0223     | 0.7533                   |
| 960            | 921,003   | 1,715,827 | 0       | 2,636,830 | 0.0256     | 0.7789                   |
| 970            | 1,350,905 | 1,672,889 | 0       | 3,023,794 | 0.0294     | 0.8083                   |
| 980            | 1,176,301 | 1,611,302 | 0       | 2,787,603 | 0.0271     | 0.8354                   |
| 990            | 1,436,794 | 1,185,843 | 0       | 2,622,637 | 0.0255     | 0.8608                   |
| 1000           | 1,239,277 | 1,112,972 | 0       | 2,352,249 | 0.0229     | 0.8837                   |
| 1010           | 991,057   | 1,042,590 | 0       | 2,033,647 | 0.0198     | 0.9035                   |
| 1020           | 1,357,619 | 985,294   | 0       | 2,342,913 | 0.0228     | 0.9262                   |
| 1030           | 1,021,350 | 686,645   | 0       | 1,707,995 | 0.0166     | 0.9428                   |
| 1040           | 1,128,138 | 620,604   | 0       | 1,748,742 | 0.0170     | 0.9598                   |
| 1050           | 587,428   | 356,006   | 0       | 943,434   | 0.0092     | 0.9690                   |
| 1060           | 711,577   | 180,384   | 0       | 891,961   | 0.0087     | 0.9776                   |
| 1070           | 556,242   | 204,336   | 0       | 760,578   | 0.0074     | 0.9850                   |
| 1080           | 417,184   | 153,694   | 0       | 570,878   | 0.0055     | 0.9906                   |
| 1090           | 224,376   | 201,028   | 0       | 425,404   | 0.0041     | 0.9947                   |
| 1100           | 153,757   | 0         | 0       | 153,757   | 0.0015     | 0.9962                   |
| 1110           | 93,154    | 39,535    | 0       | 132,689   | 0.0013     | 0.9975                   |
| 1120           | 60,259    | 73,221    | 0       | 133,480   | 0.0013     | 0.9988                   |
| 1130           | 35,580    | 0         | 0       | 35,580    | 0.0003     | 0.9991                   |

| Length<br>(cm) | Females           | Males             | Unsexed  | Total              | Proportion    | Cumulative<br>proportion |
|----------------|-------------------|-------------------|----------|--------------------|---------------|--------------------------|
| 1150           | 61,232            | 0                 | 0        | 61,232             | 0.0006        | 0.9997                   |
| 1200           | 29,280            | 0                 | 0        | 29,280             | 0.0003        | 1.0000                   |
| <b>Total</b>   | <b>50,967,253</b> | <b>51,963,943</b> | <b>0</b> | <b>102,931,196</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-109.--** Population estimates by sex and size for arrowtooth flounder (*Atheresthes stomias*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Males      | Females    | Unsexed   | Total      | Proportion | Cumulative<br>proportion |
|----------------|------------|------------|-----------|------------|------------|--------------------------|
| 90             | 0          | 0          | 42,686    | 42,686     | 0.0000     | 0.0000                   |
| 110            | 95,086     | 0          | 299,918   | 395,004    | 0.0004     | 0.0005                   |
| 120            | 0          | 0          | 47,598    | 47,598     | 0.0001     | 0.0005                   |
| 130            | 94,350     | 0          | 1,374,455 | 1,468,805  | 0.0016     | 0.0021                   |
| 140            | 430,630    | 0          | 1,607,809 | 2,038,439  | 0.0022     | 0.0043                   |
| 150            | 1,577,134  | 1,689,810  | 1,451,557 | 4,718,501  | 0.0051     | 0.0094                   |
| 160            | 2,576,975  | 1,320,180  | 143,666   | 4,040,821  | 0.0044     | 0.0138                   |
| 170            | 4,755,828  | 2,811,476  | 0         | 7,567,304  | 0.0082     | 0.0219                   |
| 180            | 3,916,504  | 5,183,259  | 0         | 9,099,763  | 0.0098     | 0.0318                   |
| 190            | 4,183,293  | 5,654,699  | 0         | 9,837,992  | 0.0106     | 0.0424                   |
| 200            | 3,948,083  | 8,940,464  | 0         | 12,888,547 | 0.0139     | 0.0563                   |
| 210            | 6,180,037  | 5,099,044  | 0         | 11,279,081 | 0.0122     | 0.0685                   |
| 220            | 5,602,865  | 7,355,977  | 0         | 12,958,842 | 0.0140     | 0.0825                   |
| 230            | 5,981,069  | 5,855,573  | 0         | 11,836,642 | 0.0128     | 0.0952                   |
| 240            | 6,331,967  | 7,634,551  | 0         | 13,966,518 | 0.0151     | 0.1103                   |
| 250            | 5,357,723  | 9,191,731  | 0         | 14,549,454 | 0.0157     | 0.1260                   |
| 260            | 8,066,021  | 6,687,857  | 0         | 14,753,878 | 0.0159     | 0.1419                   |
| 270            | 9,274,062  | 5,425,832  | 0         | 14,699,894 | 0.0159     | 0.1578                   |
| 280            | 6,663,092  | 8,728,357  | 0         | 15,391,449 | 0.0166     | 0.1744                   |
| 290            | 6,457,954  | 7,127,576  | 0         | 13,585,530 | 0.0147     | 0.1891                   |
| 300            | 7,663,287  | 8,506,566  | 0         | 16,169,853 | 0.0175     | 0.2065                   |
| 310            | 8,136,951  | 13,408,069 | 0         | 21,545,020 | 0.0233     | 0.2298                   |
| 320            | 6,918,162  | 13,153,389 | 0         | 20,071,551 | 0.0217     | 0.2515                   |
| 330            | 10,228,067 | 16,492,194 | 0         | 26,720,261 | 0.0288     | 0.2803                   |
| 340            | 9,739,714  | 13,823,767 | 0         | 23,563,481 | 0.0254     | 0.3057                   |
| 350            | 11,928,240 | 16,053,857 | 0         | 27,982,097 | 0.0302     | 0.3359                   |
| 360            | 18,885,470 | 20,469,298 | 0         | 39,354,768 | 0.0425     | 0.3784                   |
| 370            | 13,212,043 | 18,907,303 | 0         | 32,119,346 | 0.0347     | 0.4131                   |
| 380            | 17,517,430 | 19,050,167 | 0         | 36,567,597 | 0.0395     | 0.4526                   |
| 390            | 21,105,141 | 23,837,938 | 0         | 44,943,079 | 0.0485     | 0.5011                   |
| 400            | 16,871,336 | 35,012,689 | 0         | 51,884,025 | 0.0560     | 0.5571                   |
| 410            | 21,658,590 | 30,772,629 | 0         | 52,431,219 | 0.0566     | 0.6137                   |
| 420            | 16,866,306 | 32,917,444 | 0         | 49,783,750 | 0.0537     | 0.6674                   |
| 430            | 14,466,930 | 28,236,250 | 0         | 42,703,180 | 0.0461     | 0.7135                   |
| 440            | 15,087,913 | 26,846,107 | 0         | 41,934,020 | 0.0453     | 0.7588                   |
| 450            | 9,194,345  | 19,731,667 | 123,473   | 29,049,485 | 0.0314     | 0.7901                   |
| 460            | 5,976,777  | 18,265,454 | 61,736    | 24,303,967 | 0.0262     | 0.8164                   |
| 470            | 4,255,266  | 15,273,946 | 0         | 19,529,212 | 0.0211     | 0.8374                   |
| 480            | 2,642,494  | 16,973,992 | 61,736    | 19,678,222 | 0.0212     | 0.8587                   |
| 490            | 2,457,866  | 15,491,773 | 0         | 17,949,639 | 0.0194     | 0.8781                   |
| 500            | 1,030,526  | 11,604,672 | 0         | 12,635,198 | 0.0136     | 0.8917                   |
| 510            | 1,023,232  | 14,061,706 | 0         | 15,084,938 | 0.0163     | 0.9080                   |
| 520            | 637,057    | 14,621,337 | 61,736    | 15,320,130 | 0.0165     | 0.9245                   |
| 530            | 347,353    | 12,661,382 | 0         | 13,008,735 | 0.0140     | 0.9386                   |
| 540            | 890,710    | 12,418,266 | 0         | 13,308,976 | 0.0144     | 0.9529                   |
| 550            | 82,439     | 7,512,897  | 0         | 7,595,336  | 0.0082     | 0.9611                   |

| Length<br>(cm) | Males              | Females            | Unsexed          | Total              | Proportion    | Cumulative<br>proportion |
|----------------|--------------------|--------------------|------------------|--------------------|---------------|--------------------------|
| 560            | 0                  | 6,706,723          | 0                | 6,706,723          | 0.0072        | 0.9684                   |
| 570            | 0                  | 4,814,740          | 0                | 4,814,740          | 0.0052        | 0.9736                   |
| 580            | 0                  | 4,672,864          | 0                | 4,672,864          | 0.0050        | 0.9786                   |
| 590            | 0                  | 4,909,277          | 0                | 4,909,277          | 0.0053        | 0.9839                   |
| 600            | 268,413            | 3,193,743          | 0                | 3,462,156          | 0.0037        | 0.9876                   |
| 610            | 0                  | 2,413,954          | 0                | 2,413,954          | 0.0026        | 0.9903                   |
| 620            | 0                  | 1,318,164          | 0                | 1,318,164          | 0.0014        | 0.9917                   |
| 630            | 207,620            | 961,768            | 0                | 1,169,388          | 0.0013        | 0.9929                   |
| 640            | 0                  | 702,146            | 0                | 702,146            | 0.0008        | 0.9937                   |
| 650            | 0                  | 651,028            | 0                | 651,028            | 0.0007        | 0.9944                   |
| 660            | 0                  | 724,841            | 0                | 724,841            | 0.0008        | 0.9952                   |
| 670            | 0                  | 703,562            | 0                | 703,562            | 0.0008        | 0.9959                   |
| 680            | 0                  | 1,468,914          | 0                | 1,468,914          | 0.0016        | 0.9975                   |
| 690            | 0                  | 383,630            | 0                | 383,630            | 0.0004        | 0.9979                   |
| 700            | 0                  | 620,368            | 0                | 620,368            | 0.0007        | 0.9986                   |
| 710            | 0                  | 593,710            | 0                | 593,710            | 0.0006        | 0.9992                   |
| 720            | 60,793             | 162,482            | 0                | 223,275            | 0.0002        | 0.9995                   |
| 740            | 0                  | 472,688            | 0                | 472,688            | 0.0005        | 1.0000                   |
| <b>Total</b>   | <b>320,853,144</b> | <b>600,285,747</b> | <b>5,276,370</b> | <b>926,415,261</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-110.--** Population estimates by sex and size for Bering flounder (*Hippoglossoides robustus*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Males             | Females           | Unsexed          | Total             | Proportion    | Cumulative<br>proportion |
|----------------|-------------------|-------------------|------------------|-------------------|---------------|--------------------------|
| 90             | 29,542            | 0                 | 0                | 29,542            | 0.0006        | 0.0006                   |
| 110            | 115,397           | 95,216            | 114,475          | 325,088           | 0.0066        | 0.0073                   |
| 120            | 579,236           | 215,474           | 494,445          | 1,289,155         | 0.0264        | 0.0336                   |
| 130            | 980,635           | 353,547           | 458,989          | 1,793,171         | 0.0367        | 0.0703                   |
| 140            | 1,068,229         | 342,242           | 155,696          | 1,566,167         | 0.0320        | 0.1023                   |
| 150            | 877,758           | 363,755           | 38,773           | 1,280,286         | 0.0262        | 0.1285                   |
| 160            | 1,015,545         | 764,123           | 29,861           | 1,809,529         | 0.0370        | 0.1655                   |
| 170            | 1,147,258         | 871,816           | 0                | 2,019,074         | 0.0413        | 0.2068                   |
| 180            | 1,074,782         | 691,991           | 0                | 1,766,773         | 0.0361        | 0.2430                   |
| 190            | 947,561           | 738,108           | 0                | 1,685,669         | 0.0345        | 0.2775                   |
| 200            | 855,942           | 867,808           | 0                | 1,723,750         | 0.0353        | 0.3127                   |
| 210            | 906,407           | 1,263,147         | 0                | 2,169,554         | 0.0444        | 0.3571                   |
| 220            | 653,263           | 1,757,260         | 0                | 2,410,523         | 0.0493        | 0.4064                   |
| 230            | 925,489           | 1,583,153         | 0                | 2,508,642         | 0.0513        | 0.4577                   |
| 240            | 653,605           | 1,384,857         | 0                | 2,038,462         | 0.0417        | 0.4994                   |
| 250            | 422,419           | 1,219,378         | 0                | 1,641,797         | 0.0336        | 0.5330                   |
| 260            | 456,588           | 1,720,707         | 0                | 2,177,295         | 0.0445        | 0.5775                   |
| 270            | 371,871           | 1,532,970         | 0                | 1,904,841         | 0.0390        | 0.6165                   |
| 280            | 280,739           | 1,497,668         | 0                | 1,778,407         | 0.0364        | 0.6529                   |
| 290            | 314,010           | 1,442,974         | 0                | 1,756,984         | 0.0359        | 0.6888                   |
| 300            | 274,006           | 1,935,679         | 0                | 2,209,685         | 0.0452        | 0.7340                   |
| 310            | 201,631           | 894,613           | 0                | 1,096,244         | 0.0224        | 0.7565                   |
| 320            | 151,928           | 1,662,499         | 0                | 1,814,427         | 0.0371        | 0.7936                   |
| 330            | 144,640           | 1,637,917         | 0                | 1,782,557         | 0.0365        | 0.8300                   |
| 340            | 110,433           | 1,544,834         | 0                | 1,655,267         | 0.0339        | 0.8639                   |
| 350            | 0                 | 1,452,481         | 0                | 1,452,481         | 0.0297        | 0.8936                   |
| 360            | 0                 | 1,597,071         | 0                | 1,597,071         | 0.0327        | 0.9263                   |
| 370            | 0                 | 1,490,155         | 0                | 1,490,155         | 0.0305        | 0.9568                   |
| 380            | 50,755            | 1,024,472         | 0                | 1,075,227         | 0.0220        | 0.9787                   |
| 390            | 0                 | 504,946           | 0                | 504,946           | 0.0103        | 0.9891                   |
| 400            | 0                 | 243,267           | 0                | 243,267           | 0.0050        | 0.9941                   |
| 410            | 31,406            | 59,206            | 0                | 90,612            | 0.0019        | 0.9959                   |
| 420            | 0                 | 112,738           | 0                | 112,738           | 0.0023        | 0.9982                   |
| 440            | 0                 | 27,924            | 0                | 27,924            | 0.0006        | 0.9988                   |
| 450            | 31,500            | 0                 | 0                | 31,500            | 0.0006        | 0.9994                   |
| 470            | 0                 | 27,924            | 0                | 27,924            | 0.0006        | 1.0000                   |
| <b>Total</b>   | <b>14,672,575</b> | <b>32,921,920</b> | <b>1,292,239</b> | <b>48,886,734</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-111.--** Population estimates by sex and size for Bering skate (*Bathyraja interrupta*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Males   | Females | Unsexed | Total   | Proportion | Cumulative<br>proportion |
|----------------|---------|---------|---------|---------|------------|--------------------------|
| 160            | 0       | 34,426  | 0       | 34,426  | 0.0049     | 0.0049                   |
| 190            | 0       | 31,987  | 0       | 31,987  | 0.0045     | 0.0094                   |
| 210            | 0       | 30,121  | 0       | 30,121  | 0.0043     | 0.0136                   |
| 220            | 66,085  | 31,987  | 0       | 98,072  | 0.0138     | 0.0275                   |
| 230            | 62,554  | 0       | 0       | 62,554  | 0.0088     | 0.0363                   |
| 240            | 32,029  | 0       | 0       | 32,029  | 0.0045     | 0.0408                   |
| 250            | 28,415  | 31,987  | 0       | 60,402  | 0.0085     | 0.0493                   |
| 260            | 31,140  | 0       | 0       | 31,140  | 0.0044     | 0.0537                   |
| 280            | 29,544  | 0       | 0       | 29,544  | 0.0042     | 0.0579                   |
| 290            | 0       | 27,697  | 0       | 27,697  | 0.0039     | 0.0618                   |
| 300            | 0       | 62,885  | 0       | 62,885  | 0.0089     | 0.0707                   |
| 310            | 0       | 28,415  | 0       | 28,415  | 0.0040     | 0.0747                   |
| 330            | 29,544  | 30,844  | 0       | 60,388  | 0.0085     | 0.0832                   |
| 370            | 63,866  | 0       | 0       | 63,866  | 0.0090     | 0.0922                   |
| 380            | 0       | 33,961  | 0       | 33,961  | 0.0048     | 0.0970                   |
| 400            | 32,029  | 0       | 0       | 32,029  | 0.0045     | 0.1015                   |
| 410            | 33,654  | 63,866  | 0       | 97,520  | 0.0138     | 0.1153                   |
| 420            | 33,654  | 63,518  | 0       | 97,172  | 0.0137     | 0.1290                   |
| 430            | 0       | 29,280  | 0       | 29,280  | 0.0041     | 0.1331                   |
| 440            | 0       | 34,426  | 0       | 34,426  | 0.0049     | 0.1380                   |
| 450            | 30,080  | 0       | 0       | 30,080  | 0.0042     | 0.1422                   |
| 460            | 30,080  | 32,399  | 0       | 62,479  | 0.0088     | 0.1511                   |
| 470            | 0       | 33,961  | 0       | 33,961  | 0.0048     | 0.1558                   |
| 480            | 63,866  | 0       | 0       | 63,866  | 0.0090     | 0.1649                   |
| 530            | 63,866  | 63,866  | 0       | 127,732 | 0.0180     | 0.1829                   |
| 540            | 30,981  | 31,140  | 0       | 62,121  | 0.0088     | 0.1916                   |
| 550            | 0       | 33,686  | 0       | 33,686  | 0.0048     | 0.1964                   |
| 560            | 0       | 65,220  | 0       | 65,220  | 0.0092     | 0.2056                   |
| 580            | 32,474  | 0       | 0       | 32,474  | 0.0046     | 0.2102                   |
| 590            | 346,827 | 67,401  | 0       | 414,228 | 0.0585     | 0.2686                   |
| 600            | 419,136 | 0       | 0       | 419,136 | 0.0591     | 0.3278                   |
| 610            | 34,016  | 0       | 0       | 34,016  | 0.0048     | 0.3326                   |
| 620            | 33,961  | 0       | 0       | 33,961  | 0.0048     | 0.3374                   |
| 630            | 30,844  | 67,368  | 0       | 98,212  | 0.0139     | 0.3512                   |
| 640            | 0       | 30,707  | 0       | 30,707  | 0.0043     | 0.3556                   |
| 650            | 62,797  | 66,596  | 0       | 129,393 | 0.0183     | 0.3738                   |
| 660            | 129,169 | 34,426  | 0       | 163,595 | 0.0231     | 0.3969                   |
| 670            | 60,420  | 0       | 0       | 60,420  | 0.0085     | 0.4054                   |
| 680            | 102,382 | 34,426  | 0       | 136,808 | 0.0193     | 0.4247                   |
| 690            | 218,306 | 35,580  | 0       | 253,886 | 0.0358     | 0.4606                   |
| 700            | 256,643 | 30,951  | 0       | 287,594 | 0.0406     | 0.5011                   |
| 710            | 618,339 | 123,972 | 0       | 742,311 | 0.1047     | 0.6059                   |
| 720            | 314,423 | 185,458 | 0       | 499,881 | 0.0705     | 0.6764                   |
| 730            | 195,169 | 218,718 | 0       | 413,887 | 0.0584     | 0.7348                   |
| 740            | 277,048 | 94,577  | 0       | 371,625 | 0.0524     | 0.7873                   |
| 750            | 119,885 | 299,202 | 0       | 419,087 | 0.0591     | 0.8464                   |

| Length<br>(cm) | Males            | Females          | Unsexed  | Total            | Proportion    | Cumulative<br>proportion |
|----------------|------------------|------------------|----------|------------------|---------------|--------------------------|
| 760            | 123,837          | 176,222          | 0        | 300,059          | 0.0423        | 0.8887                   |
| 770            | 100,773          | 227,169          | 0        | 327,942          | 0.0463        | 0.9350                   |
| 780            | 91,979           | 183,604          | 0        | 275,583          | 0.0389        | 0.9739                   |
| 790            | 0                | 62,037           | 0        | 62,037           | 0.0088        | 0.9827                   |
| 800            | 30,150           | 30,150           | 0        | 60,300           | 0.0085        | 0.9912                   |
| 830            | 0                | 62,580           | 0        | 62,580           | 0.0088        | 1.0000                   |
| <b>Total</b>   | <b>4,259,965</b> | <b>2,826,816</b> | <b>0</b> | <b>7,086,781</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-112.--** Population estimates by sex and size for flathead sole (*Hippoglossoides elassodon*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Males      | Females    | Unsexed   | Total       | Proportion | Cumulative<br>proportion |
|----------------|------------|------------|-----------|-------------|------------|--------------------------|
| 70             | 0          | 0          | 679,082   | 679,082     | 0.0003     | 0.0003                   |
| 80             | 0          | 0          | 686,649   | 686,649     | 0.0003     | 0.0006                   |
| 90             | 724,937    | 0          | 4,045,138 | 4,770,075   | 0.0021     | 0.0027                   |
| 100            | 1,066,925  | 663,935    | 5,884,215 | 7,615,075   | 0.0033     | 0.0059                   |
| 110            | 1,808,678  | 761,922    | 8,049,554 | 10,620,154  | 0.0046     | 0.0105                   |
| 120            | 2,090,205  | 939,273    | 5,075,263 | 8,104,741   | 0.0035     | 0.0141                   |
| 130            | 3,271,309  | 3,033,391  | 6,401,579 | 12,706,279  | 0.0055     | 0.0196                   |
| 140            | 4,777,453  | 6,750,885  | 3,315,220 | 14,843,558  | 0.0064     | 0.0260                   |
| 150            | 7,627,767  | 6,532,200  | 4,075,845 | 18,235,812  | 0.0079     | 0.0339                   |
| 160            | 14,419,958 | 10,087,446 | 3,353,755 | 27,861,159  | 0.0121     | 0.0459                   |
| 170            | 15,041,560 | 12,481,545 | 1,166,124 | 28,689,229  | 0.0124     | 0.0583                   |
| 180            | 22,582,611 | 20,014,373 | 205,242   | 42,802,226  | 0.0185     | 0.0769                   |
| 190            | 31,125,991 | 27,006,452 | 213,976   | 58,346,419  | 0.0252     | 0.1021                   |
| 200            | 29,922,468 | 21,343,731 | 51,460    | 51,317,659  | 0.0222     | 0.1243                   |
| 210            | 29,891,791 | 26,565,449 | 181,500   | 56,638,740  | 0.0245     | 0.1488                   |
| 220            | 33,919,795 | 27,051,166 | 130,040   | 61,101,001  | 0.0264     | 0.1752                   |
| 230            | 41,912,044 | 31,732,974 | 257,302   | 73,902,320  | 0.0320     | 0.2072                   |
| 240            | 32,011,286 | 30,105,987 | 102,921   | 62,220,194  | 0.0269     | 0.2341                   |
| 250            | 42,463,540 | 25,396,934 | 0         | 67,860,474  | 0.0294     | 0.2635                   |
| 260            | 41,541,847 | 31,213,561 | 26,788    | 72,782,196  | 0.0315     | 0.2950                   |
| 270            | 54,820,256 | 33,613,149 | 338,328   | 88,771,733  | 0.0384     | 0.3334                   |
| 280            | 65,442,429 | 36,778,495 | 0         | 102,220,924 | 0.0442     | 0.3776                   |
| 290            | 70,760,102 | 39,812,950 | 375,084   | 110,948,136 | 0.0480     | 0.4257                   |
| 300            | 81,317,603 | 40,736,357 | 181,500   | 122,235,460 | 0.0529     | 0.4785                   |
| 310            | 86,367,289 | 49,283,932 | 232,961   | 135,884,182 | 0.0588     | 0.5373                   |
| 320            | 90,936,865 | 55,097,027 | 375,084   | 146,408,976 | 0.0634     | 0.6007                   |
| 330            | 77,002,192 | 49,651,571 | 323,624   | 126,977,387 | 0.0549     | 0.6556                   |
| 340            | 79,582,233 | 64,873,352 | 478,005   | 144,933,590 | 0.0627     | 0.7183                   |
| 350            | 85,068,086 | 55,617,256 | 698,708   | 141,384,050 | 0.0612     | 0.7795                   |
| 360            | 52,103,806 | 62,324,554 | 1,022,332 | 115,450,692 | 0.0500     | 0.8295                   |
| 370            | 30,026,693 | 65,889,183 | 323,624   | 96,239,500  | 0.0416     | 0.8711                   |
| 380            | 23,642,462 | 52,339,928 | 1,125,253 | 77,107,643  | 0.0334     | 0.9045                   |
| 390            | 14,169,375 | 45,086,715 | 1,355,088 | 60,611,178  | 0.0262     | 0.9307                   |
| 400            | 10,232,124 | 44,427,438 | 130,040   | 54,789,602  | 0.0237     | 0.9544                   |
| 410            | 4,800,601  | 29,105,371 | 0         | 33,905,972  | 0.0147     | 0.9691                   |
| 420            | 3,882,430  | 17,812,146 | 193,584   | 21,888,160  | 0.0095     | 0.9786                   |
| 430            | 569,305    | 9,935,553  | 0         | 10,504,858  | 0.0045     | 0.9831                   |
| 440            | 1,824,674  | 5,872,020  | 193,584   | 7,890,278   | 0.0034     | 0.9865                   |
| 450            | 609,501    | 8,398,193  | 0         | 9,007,694   | 0.0039     | 0.9904                   |
| 460            | 30,912     | 6,639,942  | 51,460    | 6,722,314   | 0.0029     | 0.9933                   |
| 470            | 62,610     | 5,080,443  | 0         | 5,143,053   | 0.0022     | 0.9956                   |
| 480            | 0          | 4,003,992  | 0         | 4,003,992   | 0.0017     | 0.9973                   |
| 490            | 0          | 2,466,314  | 0         | 2,466,314   | 0.0011     | 0.9984                   |
| 500            | 30,190     | 1,390,422  | 51,460    | 1,472,072   | 0.0006     | 0.9990                   |
| 510            | 0          | 865,992    | 0         | 865,992     | 0.0004     | 0.9994                   |
| 520            | 0          | 649,172    | 0         | 649,172     | 0.0003     | 0.9996                   |

| Length<br>(cm) | Males                | Females              | Unsexed           | Total                | Proportion    | Cumulative<br>proportion |
|----------------|----------------------|----------------------|-------------------|----------------------|---------------|--------------------------|
| 530            | 0                    | 437,578              | 0                 | 437,578              | 0.0002        | 0.9998                   |
| 540            | 0                    | 388,141              | 0                 | 388,141              | 0.0002        | 1.0000                   |
| <b>Total</b>   | <b>1,189,481,903</b> | <b>1,070,258,410</b> | <b>51,351,372</b> | <b>2,311,091,685</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-113.--** Population estimates by sex and size for Greenland turbot (*Reinhardtius hippoglossoides*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Males          | Females        | Unsexed       | Total            | Proportion    | Cumulative<br>proportion |
|----------------|----------------|----------------|---------------|------------------|---------------|--------------------------|
| 140            | 26,704         | 0              | 90,827        | 117,531          | 0.0737        | 0.0737                   |
| 150            | 32,818         | 0              | 0             | 32,818           | 0.0206        | 0.0943                   |
| 160            | 0              | 29,861         | 0             | 29,861           | 0.0187        | 0.1130                   |
| 170            | 31,500         | 63,993         | 0             | 95,493           | 0.0599        | 0.1729                   |
| 200            | 58,204         | 0              | 0             | 58,204           | 0.0365        | 0.2094                   |
| 220            | 33,169         | 0              | 0             | 33,169           | 0.0208        | 0.2302                   |
| 230            | 53,409         | 0              | 0             | 53,409           | 0.0335        | 0.2637                   |
| 240            | 29,786         | 0              | 0             | 29,786           | 0.0187        | 0.2824                   |
| 260            | 29,578         | 26,788         | 0             | 56,366           | 0.0353        | 0.3177                   |
| 270            | 31,359         | 0              | 0             | 31,359           | 0.0197        | 0.3374                   |
| 480            | 32,174         | 0              | 0             | 32,174           | 0.0202        | 0.3576                   |
| 500            | 29,578         | 0              | 0             | 29,578           | 0.0185        | 0.3761                   |
| 640            | 30,039         | 0              | 0             | 30,039           | 0.0188        | 0.3949                   |
| 650            | 0              | 30,897         | 0             | 30,897           | 0.0194        | 0.4143                   |
| 660            | 29,713         | 0              | 0             | 29,713           | 0.0186        | 0.4330                   |
| 670            | 30,450         | 0              | 0             | 30,450           | 0.0191        | 0.4521                   |
| 690            | 30,450         | 0              | 0             | 30,450           | 0.0191        | 0.4711                   |
| 710            | 30,039         | 0              | 0             | 30,039           | 0.0188        | 0.4900                   |
| 720            | 31,359         | 28,620         | 0             | 59,979           | 0.0376        | 0.5276                   |
| 730            | 0              | 26,788         | 0             | 26,788           | 0.0168        | 0.5444                   |
| 740            | 0              | 59,104         | 0             | 59,104           | 0.0371        | 0.5815                   |
| 750            | 0              | 26,788         | 0             | 26,788           | 0.0168        | 0.5983                   |
| 760            | 0              | 93,079         | 0             | 93,079           | 0.0584        | 0.6566                   |
| 770            | 0              | 29,578         | 0             | 29,578           | 0.0185        | 0.6752                   |
| 780            | 0              | 26,788         | 0             | 26,788           | 0.0168        | 0.6920                   |
| 790            | 0              | 85,363         | 0             | 85,363           | 0.0535        | 0.7455                   |
| 800            | 0              | 64,158         | 0             | 64,158           | 0.0402        | 0.7857                   |
| 810            | 0              | 30,039         | 0             | 30,039           | 0.0188        | 0.8046                   |
| 820            | 0              | 59,633         | 0             | 59,633           | 0.0374        | 0.8420                   |
| 830            | 0              | 32,818         | 0             | 32,818           | 0.0206        | 0.8626                   |
| 850            | 0              | 64,429         | 0             | 64,429           | 0.0404        | 0.9030                   |
| 860            | 0              | 92,790         | 0             | 92,790           | 0.0582        | 0.9612                   |
| 900            | 0              | 61,944         | 0             | 61,944           | 0.0388        | 1.0000                   |
| <b>Total</b>   | <b>570,329</b> | <b>933,458</b> | <b>90,827</b> | <b>1,594,614</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-114.--** Population estimates by sex and size for Kamchatka flounder (*Atheresthes evermanni*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Males     | Females   | Unsexed | Total     | Proportion | Cumulative<br>proportion |
|----------------|-----------|-----------|---------|-----------|------------|--------------------------|
| 80             | 80,659    | 0         | 0       | 80,659    | 0.0012     | 0.0012                   |
| 100            | 0         | 0         | 27,789  | 27,789    | 0.0004     | 0.0016                   |
| 110            | 0         | 0         | 157,569 | 157,569   | 0.0023     | 0.0038                   |
| 130            | 0         | 29,103    | 755,840 | 784,943   | 0.0114     | 0.0152                   |
| 140            | 63,777    | 0         | 869,190 | 932,967   | 0.0135     | 0.0287                   |
| 150            | 137,500   | 120,876   | 172,180 | 430,556   | 0.0062     | 0.0349                   |
| 160            | 125,242   | 138,801   | 63,974  | 328,017   | 0.0047     | 0.0397                   |
| 170            | 2,393,717 | 488,486   | 95,961  | 2,978,164 | 0.0431     | 0.0828                   |
| 180            | 3,986,458 | 851,560   | 31,987  | 4,870,005 | 0.0704     | 0.1532                   |
| 190            | 1,276,219 | 430,630   | 31,987  | 1,738,836 | 0.0252     | 0.1784                   |
| 200            | 163,459   | 848,295   | 128,261 | 1,140,015 | 0.0165     | 0.1948                   |
| 210            | 1,063,833 | 186,937   | 0       | 1,250,770 | 0.0181     | 0.2129                   |
| 220            | 310,973   | 434,063   | 0       | 745,036   | 0.0108     | 0.2237                   |
| 230            | 1,085,967 | 755,728   | 28,421  | 1,870,116 | 0.0271     | 0.2508                   |
| 240            | 960,810   | 1,216,859 | 56,842  | 2,234,511 | 0.0323     | 0.2831                   |
| 250            | 2,215,723 | 1,658,915 | 426,313 | 4,300,951 | 0.0622     | 0.3453                   |
| 260            | 3,434,992 | 2,229,162 | 397,893 | 6,062,047 | 0.0877     | 0.4330                   |
| 270            | 2,948,518 | 1,845,124 | 198,946 | 4,992,588 | 0.0722     | 0.5052                   |
| 280            | 1,163,632 | 2,159,693 | 313,290 | 3,636,615 | 0.0526     | 0.5578                   |
| 290            | 534,437   | 1,418,149 | 28,421  | 1,981,007 | 0.0287     | 0.5865                   |
| 300            | 335,485   | 657,438   | 28,421  | 1,021,344 | 0.0148     | 0.6013                   |
| 310            | 535,303   | 398,550   | 0       | 933,853   | 0.0135     | 0.6148                   |
| 320            | 491,082   | 476,553   | 0       | 967,635   | 0.0140     | 0.6288                   |
| 330            | 458,385   | 1,024,982 | 0       | 1,483,367 | 0.0215     | 0.6502                   |
| 340            | 682,040   | 59,282    | 28,421  | 769,743   | 0.0111     | 0.6614                   |
| 350            | 251,057   | 421,174   | 0       | 672,231   | 0.0097     | 0.6711                   |
| 360            | 711,764   | 653,936   | 0       | 1,365,700 | 0.0198     | 0.6908                   |
| 370            | 1,085,929 | 602,288   | 0       | 1,688,217 | 0.0244     | 0.7153                   |
| 380            | 1,671,459 | 647,469   | 28,421  | 2,347,349 | 0.0340     | 0.7492                   |
| 390            | 904,725   | 562,923   | 56,842  | 1,524,490 | 0.0221     | 0.7713                   |
| 400            | 1,095,568 | 956,669   | 0       | 2,052,237 | 0.0297     | 0.8010                   |
| 410            | 837,701   | 401,506   | 0       | 1,239,207 | 0.0179     | 0.8189                   |
| 420            | 567,361   | 744,722   | 0       | 1,312,083 | 0.0190     | 0.8379                   |
| 430            | 653,110   | 444,924   | 0       | 1,098,034 | 0.0159     | 0.8537                   |
| 440            | 472,017   | 215,435   | 0       | 687,452   | 0.0099     | 0.8637                   |
| 450            | 760,260   | 371,100   | 0       | 1,131,360 | 0.0164     | 0.8801                   |
| 460            | 458,606   | 464,280   | 0       | 922,886   | 0.0134     | 0.8934                   |
| 470            | 335,613   | 629,850   | 0       | 965,463   | 0.0140     | 0.9074                   |
| 480            | 229,237   | 471,781   | 0       | 701,018   | 0.0101     | 0.9175                   |
| 490            | 89,674    | 281,509   | 0       | 371,183   | 0.0054     | 0.9229                   |
| 500            | 334,500   | 368,374   | 0       | 702,874   | 0.0102     | 0.9330                   |
| 510            | 117,092   | 532,992   | 28,421  | 678,505   | 0.0098     | 0.9429                   |
| 520            | 335,760   | 441,296   | 0       | 777,056   | 0.0112     | 0.9541                   |
| 530            | 104,313   | 251,205   | 0       | 355,518   | 0.0051     | 0.9592                   |
| 540            | 170,461   | 183,124   | 0       | 353,585   | 0.0051     | 0.9644                   |
| 550            | 123,747   | 581,085   | 0       | 704,832   | 0.0102     | 0.9746                   |

| Length<br>(cm) | Males             | Females           | Unsexed          | Total             | Proportion    | Cumulative<br>proportion |
|----------------|-------------------|-------------------|------------------|-------------------|---------------|--------------------------|
| 560            | 0                 | 78,411            | 0                | 78,411            | 0.0011        | 0.9757                   |
| 570            | 0                 | 141,576           | 0                | 141,576           | 0.0020        | 0.9777                   |
| 580            | 35,001            | 59,215            | 0                | 94,216            | 0.0014        | 0.9791                   |
| 590            | 0                 | 410,785           | 0                | 410,785           | 0.0059        | 0.9850                   |
| 600            | 0                 | 115,845           | 0                | 115,845           | 0.0017        | 0.9867                   |
| 610            | 0                 | 44,901            | 0                | 44,901            | 0.0006        | 0.9874                   |
| 620            | 148,434           | 70,916            | 0                | 219,350           | 0.0032        | 0.9905                   |
| 630            | 0                 | 98,766            | 0                | 98,766            | 0.0014        | 0.9920                   |
| 640            | 150,193           | 99,031            | 0                | 249,224           | 0.0036        | 0.9956                   |
| 670            | 38,517            | 34,662            | 0                | 73,179            | 0.0011        | 0.9966                   |
| 680            | 0                 | 69,088            | 0                | 69,088            | 0.0010        | 0.9976                   |
| 690            | 0                 | 31,092            | 0                | 31,092            | 0.0004        | 0.9981                   |
| 710            | 0                 | 32,399            | 0                | 32,399            | 0.0005        | 0.9986                   |
| 720            | 0                 | 34,662            | 0                | 34,662            | 0.0005        | 0.9991                   |
| 770            | 0                 | 34,426            | 0                | 34,426            | 0.0005        | 0.9996                   |
| 800            | 0                 | 30,981            | 0                | 30,981            | 0.0004        | 1.0000                   |
| <b>Total</b>   | <b>36,130,310</b> | <b>29,043,584</b> | <b>3,955,390</b> | <b>69,129,284</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-115.--** Population estimates by sex and size for northern rock sole (*Lepidopsetta polyxystra*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Females              | Unsexed              | Males                | Total                | Proportion    | Cumulative<br>proportion |
|----------------|----------------------|----------------------|----------------------|----------------------|---------------|--------------------------|
| 50             | 0                    | 139,781              | 0                    | 139,781              | 0.0000        | 0.0000                   |
| 70             | 72,038               | 451,006              | 0                    | 523,044              | 0.0001        | 0.0001                   |
| 80             | 532,595              | 5,355,226            | 390,658              | 6,278,479            | 0.0008        | 0.0009                   |
| 90             | 2,199,240            | 23,792,772           | 844,478              | 26,836,490           | 0.0036        | 0.0046                   |
| 100            | 4,557,129            | 103,367,962          | 6,746,691            | 114,671,782          | 0.0155        | 0.0200                   |
| 110            | 19,851,724           | 210,041,506          | 22,153,849           | 252,047,079          | 0.0340        | 0.0540                   |
| 120            | 30,436,325           | 253,241,048          | 52,923,057           | 336,600,430          | 0.0454        | 0.0994                   |
| 130            | 31,004,255           | 171,345,076          | 41,874,580           | 244,223,911          | 0.0329        | 0.1323                   |
| 140            | 39,012,854           | 100,095,929          | 59,170,415           | 198,279,198          | 0.0267        | 0.1590                   |
| 150            | 96,142,353           | 59,921,995           | 91,049,194           | 247,113,542          | 0.0333        | 0.1923                   |
| 160            | 138,324,766          | 30,179,024           | 152,276,295          | 320,780,085          | 0.0432        | 0.2356                   |
| 170            | 154,744,108          | 13,225,132           | 162,093,798          | 330,063,038          | 0.0445        | 0.2801                   |
| 180            | 166,870,182          | 9,180,505            | 204,487,511          | 380,538,198          | 0.0513        | 0.3314                   |
| 190            | 132,410,789          | 7,394,404            | 170,522,881          | 310,328,074          | 0.0418        | 0.3732                   |
| 200            | 140,500,044          | 8,942,741            | 132,608,541          | 282,051,326          | 0.0380        | 0.4112                   |
| 210            | 109,568,338          | 14,802,026           | 137,473,215          | 261,843,579          | 0.0353        | 0.4465                   |
| 220            | 133,663,002          | 11,079,546           | 138,534,140          | 283,276,688          | 0.0382        | 0.4847                   |
| 230            | 103,379,951          | 8,918,621            | 143,549,250          | 255,847,822          | 0.0345        | 0.5192                   |
| 240            | 111,941,759          | 7,910,516            | 126,748,893          | 246,601,168          | 0.0332        | 0.5524                   |
| 250            | 107,672,629          | 7,441,834            | 110,217,149          | 225,331,612          | 0.0304        | 0.5828                   |
| 260            | 104,336,917          | 11,499,182           | 115,434,484          | 231,270,583          | 0.0312        | 0.6140                   |
| 270            | 114,684,253          | 5,185,241            | 150,494,274          | 270,363,768          | 0.0364        | 0.6505                   |
| 280            | 148,166,514          | 10,370,483           | 199,756,692          | 358,293,689          | 0.0483        | 0.6988                   |
| 290            | 161,409,797          | 9,950,846            | 232,277,414          | 403,638,057          | 0.0544        | 0.7532                   |
| 300            | 158,653,721          | 10,466,958           | 234,286,312          | 403,406,991          | 0.0544        | 0.8075                   |
| 310            | 147,034,228          | 8,330,152            | 207,390,005          | 362,754,385          | 0.0489        | 0.8564                   |
| 320            | 140,698,599          | 6,241,585            | 109,940,529          | 256,880,713          | 0.0346        | 0.8911                   |
| 330            | 140,072,181          | 5,725,473            | 58,928,469           | 204,726,123          | 0.0276        | 0.9187                   |
| 340            | 110,765,316          | 3,120,792            | 13,737,267           | 127,623,375          | 0.0172        | 0.9359                   |
| 350            | 94,724,626           | 3,612,786            | 8,187,172            | 106,524,584          | 0.0144        | 0.9502                   |
| 360            | 83,333,067           | 0                    | 2,097,707            | 85,430,774           | 0.0115        | 0.9618                   |
| 370            | 67,120,894           | 1,032,224            | 1,027,525            | 69,180,643           | 0.0093        | 0.9711                   |
| 380            | 59,064,630           | 1,056,343            | 1,548,438            | 61,669,411           | 0.0083        | 0.9794                   |
| 390            | 54,370,018           | 0                    | 1,014,265            | 55,384,283           | 0.0075        | 0.9869                   |
| 400            | 44,244,371           | 0                    | 0                    | 44,244,371           | 0.0060        | 0.9928                   |
| 410            | 28,546,906           | 0                    | 0                    | 28,546,906           | 0.0038        | 0.9967                   |
| 420            | 12,832,112           | 0                    | 0                    | 12,832,112           | 0.0017        | 0.9984                   |
| 430            | 6,413,731            | 0                    | 0                    | 6,413,731            | 0.0009        | 0.9993                   |
| 440            | 4,346,830            | 0                    | 0                    | 4,346,830            | 0.0006        | 0.9999                   |
| 450            | 445,293              | 0                    | 0                    | 445,293              | 0.0001        | 0.9999                   |
| 460            | 477,525              | 0                    | 0                    | 477,525              | 0.0001        | 1.0000                   |
| 480            | 120,894              | 0                    | 0                    | 120,894              | 0.0000        | 1.0000                   |
| <b>Total</b>   | <b>3,204,746,504</b> | <b>1,123,418,715</b> | <b>3,089,785,148</b> | <b>7,417,950,367</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-116.--** Population estimates by sex and size for Pacific cod (*Gadus macrocephalus*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Males     | Females   | Unsexed   | Total      | Proportion | Cumulative<br>proportion |
|----------------|-----------|-----------|-----------|------------|------------|--------------------------|
| 100            | 0         | 31,075    | 92,571    | 123,646    | 0.0003     | 0.0003                   |
| 110            | 29,743    | 0         | 569,084   | 598,827    | 0.0014     | 0.0017                   |
| 120            | 142,670   | 30,673    | 1,662,375 | 1,835,718  | 0.0042     | 0.0059                   |
| 130            | 504,039   | 216,994   | 1,732,335 | 2,453,368  | 0.0056     | 0.0115                   |
| 140            | 507,829   | 750,213   | 2,502,414 | 3,760,456  | 0.0086     | 0.0201                   |
| 150            | 984,137   | 999,426   | 1,977,214 | 3,960,777  | 0.0091     | 0.0292                   |
| 160            | 1,740,158 | 2,076,196 | 1,422,720 | 5,239,074  | 0.0120     | 0.0412                   |
| 170            | 2,210,921 | 2,576,494 | 1,151,723 | 5,939,138  | 0.0136     | 0.0548                   |
| 180            | 4,045,915 | 2,620,689 | 840,519   | 7,507,123  | 0.0172     | 0.0720                   |
| 190            | 4,499,185 | 4,120,989 | 257,551   | 8,877,725  | 0.0203     | 0.0923                   |
| 200            | 6,316,140 | 3,653,509 | 62,292    | 10,031,941 | 0.0230     | 0.1153                   |
| 210            | 5,439,476 | 4,962,117 | 0         | 10,401,593 | 0.0238     | 0.1391                   |
| 220            | 3,456,393 | 2,784,107 | 197,072   | 6,437,572  | 0.0147     | 0.1539                   |
| 230            | 3,879,247 | 2,927,259 | 31,762    | 6,838,268  | 0.0157     | 0.1695                   |
| 240            | 1,625,153 | 1,808,193 | 0         | 3,433,346  | 0.0079     | 0.1774                   |
| 250            | 1,206,147 | 944,875   | 0         | 2,151,022  | 0.0049     | 0.1823                   |
| 260            | 1,149,844 | 750,631   | 0         | 1,900,475  | 0.0044     | 0.1867                   |
| 270            | 1,391,057 | 1,380,771 | 0         | 2,771,828  | 0.0063     | 0.1930                   |
| 280            | 1,980,876 | 2,417,830 | 0         | 4,398,706  | 0.0101     | 0.2031                   |
| 290            | 2,798,970 | 2,213,807 | 0         | 5,012,777  | 0.0115     | 0.2146                   |
| 300            | 3,506,301 | 2,907,229 | 0         | 6,413,530  | 0.0147     | 0.2293                   |
| 310            | 3,411,608 | 4,064,350 | 0         | 7,475,958  | 0.0171     | 0.2464                   |
| 320            | 4,103,293 | 3,962,970 | 0         | 8,066,263  | 0.0185     | 0.2649                   |
| 330            | 3,853,617 | 4,567,510 | 0         | 8,421,127  | 0.0193     | 0.2842                   |
| 340            | 6,286,028 | 5,370,032 | 0         | 11,656,060 | 0.0267     | 0.3109                   |
| 350            | 6,358,043 | 6,053,406 | 0         | 12,411,449 | 0.0284     | 0.3393                   |
| 360            | 4,502,977 | 5,758,850 | 0         | 10,261,827 | 0.0235     | 0.3628                   |
| 370            | 6,527,742 | 5,841,890 | 0         | 12,369,632 | 0.0283     | 0.3912                   |
| 380            | 5,611,960 | 5,112,053 | 0         | 10,724,013 | 0.0246     | 0.4157                   |
| 390            | 5,427,756 | 4,660,158 | 0         | 10,087,914 | 0.0231     | 0.4388                   |
| 400            | 4,494,497 | 4,259,641 | 0         | 8,754,138  | 0.0201     | 0.4589                   |
| 410            | 4,804,083 | 3,878,099 | 0         | 8,682,182  | 0.0199     | 0.4788                   |
| 420            | 4,294,864 | 4,164,842 | 0         | 8,459,706  | 0.0194     | 0.4981                   |
| 430            | 3,908,585 | 3,421,666 | 0         | 7,330,251  | 0.0168     | 0.5149                   |
| 440            | 4,100,875 | 2,649,536 | 0         | 6,750,411  | 0.0155     | 0.5304                   |
| 450            | 5,000,312 | 3,863,565 | 0         | 8,863,877  | 0.0203     | 0.5507                   |
| 460            | 5,607,779 | 4,270,211 | 0         | 9,877,990  | 0.0226     | 0.5733                   |
| 470            | 4,864,286 | 5,082,580 | 0         | 9,946,866  | 0.0228     | 0.5961                   |
| 480            | 5,391,736 | 5,397,049 | 0         | 10,788,785 | 0.0247     | 0.6208                   |
| 490            | 5,521,319 | 5,896,302 | 0         | 11,417,621 | 0.0262     | 0.6470                   |
| 500            | 6,317,162 | 5,331,883 | 0         | 11,649,045 | 0.0267     | 0.6737                   |
| 510            | 5,250,836 | 5,216,797 | 0         | 10,467,633 | 0.0240     | 0.6977                   |
| 520            | 4,432,180 | 4,415,969 | 0         | 8,848,149  | 0.0203     | 0.7179                   |
| 530            | 3,493,459 | 4,217,643 | 0         | 7,711,102  | 0.0177     | 0.7356                   |
| 540            | 3,560,341 | 2,694,912 | 0         | 6,255,253  | 0.0143     | 0.7499                   |
| 550            | 3,774,778 | 3,013,833 | 0         | 6,788,611  | 0.0156     | 0.7655                   |

| Length<br>(cm) | Males     | Females   | Unsexed | Total     | Proportion | Cumulative<br>proportion |
|----------------|-----------|-----------|---------|-----------|------------|--------------------------|
| 560            | 2,841,692 | 2,416,353 | 0       | 5,258,045 | 0.0120     | 0.7775                   |
| 570            | 2,941,637 | 2,423,085 | 0       | 5,364,722 | 0.0123     | 0.7898                   |
| 580            | 3,069,487 | 2,584,777 | 0       | 5,654,264 | 0.0130     | 0.8028                   |
| 590            | 2,669,706 | 1,935,279 | 0       | 4,604,985 | 0.0105     | 0.8133                   |
| 600            | 3,118,316 | 2,247,990 | 0       | 5,366,306 | 0.0123     | 0.8256                   |
| 610            | 2,431,011 | 2,570,787 | 0       | 5,001,798 | 0.0115     | 0.8371                   |
| 620            | 3,028,458 | 2,217,545 | 0       | 5,246,003 | 0.0120     | 0.8491                   |
| 630            | 2,890,421 | 2,562,348 | 0       | 5,452,769 | 0.0125     | 0.8616                   |
| 640            | 2,701,669 | 2,307,439 | 0       | 5,009,108 | 0.0115     | 0.8730                   |
| 650            | 2,849,257 | 2,665,962 | 0       | 5,515,219 | 0.0126     | 0.8857                   |
| 660            | 2,075,868 | 2,434,438 | 0       | 4,510,306 | 0.0103     | 0.8960                   |
| 670            | 1,512,023 | 2,365,753 | 0       | 3,877,776 | 0.0089     | 0.9049                   |
| 680            | 1,905,991 | 2,011,125 | 0       | 3,917,116 | 0.0090     | 0.9139                   |
| 690            | 1,270,038 | 1,781,022 | 0       | 3,051,060 | 0.0070     | 0.9209                   |
| 700            | 1,047,340 | 2,188,306 | 0       | 3,235,646 | 0.0074     | 0.9283                   |
| 710            | 1,655,943 | 1,883,437 | 0       | 3,539,380 | 0.0081     | 0.9364                   |
| 720            | 885,626   | 1,742,348 | 0       | 2,627,974 | 0.0060     | 0.9424                   |
| 730            | 998,891   | 1,415,274 | 0       | 2,414,165 | 0.0055     | 0.9479                   |
| 740            | 1,219,041 | 1,168,517 | 0       | 2,387,558 | 0.0055     | 0.9534                   |
| 750            | 1,008,593 | 1,144,706 | 0       | 2,153,299 | 0.0049     | 0.9583                   |
| 760            | 889,787   | 970,450   | 0       | 1,860,237 | 0.0043     | 0.9626                   |
| 770            | 909,135   | 848,896   | 0       | 1,758,031 | 0.0040     | 0.9666                   |
| 780            | 471,944   | 682,530   | 0       | 1,154,474 | 0.0026     | 0.9693                   |
| 790            | 466,837   | 731,194   | 0       | 1,198,031 | 0.0027     | 0.9720                   |
| 800            | 641,292   | 713,097   | 0       | 1,354,389 | 0.0031     | 0.9751                   |
| 810            | 432,307   | 493,809   | 0       | 926,116   | 0.0021     | 0.9772                   |
| 820            | 476,032   | 646,736   | 0       | 1,122,768 | 0.0026     | 0.9798                   |
| 830            | 492,443   | 329,165   | 0       | 821,608   | 0.0019     | 0.9817                   |
| 840            | 216,055   | 482,058   | 0       | 698,113   | 0.0016     | 0.9833                   |
| 850            | 161,643   | 401,942   | 0       | 563,585   | 0.0013     | 0.9846                   |
| 860            | 220,449   | 278,852   | 0       | 499,301   | 0.0011     | 0.9857                   |
| 870            | 218,028   | 195,526   | 0       | 413,554   | 0.0009     | 0.9867                   |
| 880            | 368,882   | 510,066   | 0       | 878,948   | 0.0020     | 0.9887                   |
| 890            | 288,212   | 160,253   | 0       | 448,465   | 0.0010     | 0.9897                   |
| 900            | 211,056   | 168,086   | 0       | 379,142   | 0.0009     | 0.9906                   |
| 910            | 372,947   | 392,915   | 0       | 765,862   | 0.0018     | 0.9923                   |
| 920            | 172,241   | 424,403   | 0       | 596,644   | 0.0014     | 0.9937                   |
| 930            | 90,195    | 180,717   | 0       | 270,912   | 0.0006     | 0.9943                   |
| 940            | 178,973   | 317,732   | 0       | 496,705   | 0.0011     | 0.9955                   |
| 950            | 88,337    | 154,791   | 0       | 243,128   | 0.0006     | 0.9960                   |
| 960            | 0         | 87,561    | 0       | 87,561    | 0.0002     | 0.9962                   |
| 970            | 0         | 118,904   | 0       | 118,904   | 0.0003     | 0.9965                   |
| 980            | 0         | 97,637    | 0       | 97,637    | 0.0002     | 0.9967                   |
| 990            | 32,357    | 297,076   | 0       | 329,433   | 0.0008     | 0.9975                   |
| 1000           | 0         | 226,117   | 0       | 226,117   | 0.0005     | 0.9980                   |
| 1010           | 65,756    | 209,269   | 0       | 275,025   | 0.0006     | 0.9986                   |
| 1020           | 88,231    | 91,842    | 0       | 180,073   | 0.0004     | 0.9990                   |
| 1030           | 0         | 150,728   | 0       | 150,728   | 0.0003     | 0.9994                   |
| 1050           | 29,351    | 89,922    | 0       | 119,273   | 0.0003     | 0.9996                   |

| Length<br>(cm) | Males              | Females            | Unsexed           | Total              | Proportion    | Cumulative<br>proportion |
|----------------|--------------------|--------------------|-------------------|--------------------|---------------|--------------------------|
| 1060           | 29,858             | 0                  | 0                 | 29,858             | 0.0001        | 0.9997                   |
| 1070           | 0                  | 93,496             | 0                 | 93,496             | 0.0002        | 0.9999                   |
| 1100           | 0                  | 31,605             | 0                 | 31,605             | 0.0001        | 1.0000                   |
| <b>Total</b>   | <b>218,047,673</b> | <b>205,982,690</b> | <b>12,499,632</b> | <b>436,529,995</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-117.--** Population estimates by sex and size for Pacific halibut (*Hippoglossus stenolepis*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Males   | Females | Unsexed   | Total     | Proportion | Cumulative<br>proportion |
|----------------|---------|---------|-----------|-----------|------------|--------------------------|
| 80             | 0       | 0       | 75,266    | 75,266    | 0.0012     | 0.0012                   |
| 160            | 0       | 0       | 31,299    | 31,299    | 0.0005     | 0.0016                   |
| 170            | 0       | 0       | 225,726   | 225,726   | 0.0035     | 0.0051                   |
| 180            | 0       | 0       | 288,189   | 288,189   | 0.0044     | 0.0095                   |
| 190            | 62,598  | 31,299  | 353,768   | 447,665   | 0.0069     | 0.0164                   |
| 200            | 0       | 0       | 624,133   | 624,133   | 0.0096     | 0.0260                   |
| 210            | 0       | 0       | 945,674   | 945,674   | 0.0145     | 0.0405                   |
| 220            | 0       | 0       | 917,558   | 917,558   | 0.0141     | 0.0546                   |
| 230            | 0       | 31,299  | 882,198   | 913,497   | 0.0140     | 0.0686                   |
| 240            | 0       | 0       | 884,657   | 884,657   | 0.0136     | 0.0822                   |
| 250            | 0       | 0       | 700,558   | 700,558   | 0.0108     | 0.0929                   |
| 260            | 31,299  | 0       | 912,742   | 944,041   | 0.0145     | 0.1074                   |
| 270            | 0       | 0       | 371,353   | 371,353   | 0.0057     | 0.1131                   |
| 280            | 0       | 0       | 248,798   | 248,798   | 0.0038     | 0.1170                   |
| 290            | 0       | 0       | 91,203    | 91,203    | 0.0014     | 0.1184                   |
| 300            | 0       | 0       | 30,295    | 30,295    | 0.0005     | 0.1188                   |
| 310            | 0       | 0       | 94,484    | 94,484    | 0.0015     | 0.1203                   |
| 320            | 0       | 0       | 411,215   | 411,215   | 0.0063     | 0.1266                   |
| 330            | 0       | 0       | 579,815   | 579,815   | 0.0089     | 0.1355                   |
| 340            | 0       | 0       | 584,815   | 584,815   | 0.0090     | 0.1445                   |
| 350            | 28,296  | 0       | 975,725   | 1,004,021 | 0.0154     | 0.1599                   |
| 360            | 94,513  | 0       | 1,436,591 | 1,531,104 | 0.0235     | 0.1834                   |
| 370            | 0       | 0       | 1,867,791 | 1,867,791 | 0.0287     | 0.2121                   |
| 380            | 0       | 31,299  | 2,394,684 | 2,425,983 | 0.0372     | 0.2493                   |
| 390            | 0       | 31,007  | 2,677,026 | 2,708,033 | 0.0416     | 0.2909                   |
| 400            | 0       | 130,077 | 2,402,202 | 2,532,279 | 0.0389     | 0.3298                   |
| 410            | 29,508  | 0       | 1,745,766 | 1,775,274 | 0.0273     | 0.3570                   |
| 420            | 0       | 33,739  | 1,375,293 | 1,409,032 | 0.0216     | 0.3787                   |
| 430            | 0       | 33,739  | 679,945   | 713,684   | 0.0110     | 0.3896                   |
| 440            | 35,027  | 0       | 552,590   | 587,617   | 0.0090     | 0.3986                   |
| 450            | 0       | 0       | 492,163   | 492,163   | 0.0076     | 0.4062                   |
| 460            | 0       | 0       | 247,690   | 247,690   | 0.0038     | 0.4100                   |
| 470            | 88,890  | 32,942  | 467,700   | 589,532   | 0.0091     | 0.4190                   |
| 480            | 63,674  | 0       | 824,455   | 888,129   | 0.0136     | 0.4327                   |
| 490            | 158,584 | 0       | 735,827   | 894,411   | 0.0137     | 0.4464                   |
| 500            | 0       | 0       | 737,995   | 737,995   | 0.0113     | 0.4577                   |
| 510            | 40,291  | 65,066  | 1,249,299 | 1,354,656 | 0.0208     | 0.4785                   |
| 520            | 0       | 0       | 1,174,893 | 1,174,893 | 0.0180     | 0.4966                   |
| 530            | 91,952  | 28,647  | 1,181,169 | 1,301,768 | 0.0200     | 0.5166                   |
| 540            | 161,332 | 196,558 | 1,406,458 | 1,764,348 | 0.0271     | 0.5436                   |
| 550            | 33,739  | 102,995 | 2,168,015 | 2,304,749 | 0.0354     | 0.5790                   |
| 560            | 122,303 | 33,012  | 2,676,601 | 2,831,916 | 0.0435     | 0.6225                   |
| 570            | 64,539  | 100,454 | 2,326,118 | 2,491,111 | 0.0382     | 0.6607                   |
| 580            | 98,896  | 97,574  | 2,767,805 | 2,964,275 | 0.0455     | 0.7063                   |
| 590            | 65,987  | 198,503 | 1,530,963 | 1,795,453 | 0.0276     | 0.7338                   |
| 600            | 126,562 | 129,865 | 2,084,685 | 2,341,112 | 0.0359     | 0.7698                   |

| Length<br>(cm) | Males  | Females | Unsexed   | Total     | Proportion | Cumulative<br>proportion |
|----------------|--------|---------|-----------|-----------|------------|--------------------------|
| 610            | 65,116 | 33,012  | 2,050,292 | 2,148,420 | 0.0330     | 0.8027                   |
| 620            | 28,647 | 28,647  | 1,391,750 | 1,449,044 | 0.0222     | 0.8250                   |
| 630            | 0      | 97,538  | 1,219,953 | 1,317,491 | 0.0202     | 0.8452                   |
| 640            | 32,320 | 0       | 1,040,347 | 1,072,667 | 0.0165     | 0.8617                   |
| 650            | 0      | 0       | 898,115   | 898,115   | 0.0138     | 0.8755                   |
| 660            | 0      | 0       | 613,053   | 613,053   | 0.0094     | 0.8849                   |
| 670            | 33,617 | 0       | 765,918   | 799,535   | 0.0123     | 0.8972                   |
| 680            | 67,479 | 0       | 629,646   | 697,125   | 0.0107     | 0.9079                   |
| 690            | 28,296 | 81,902  | 745,683   | 855,881   | 0.0131     | 0.9210                   |
| 700            | 0      | 0       | 367,697   | 367,697   | 0.0056     | 0.9267                   |
| 710            | 0      | 0       | 315,480   | 315,480   | 0.0048     | 0.9315                   |
| 720            | 0      | 28,647  | 337,097   | 365,744   | 0.0056     | 0.9371                   |
| 730            | 61,562 | 0       | 150,502   | 212,064   | 0.0033     | 0.9404                   |
| 740            | 0      | 0       | 127,091   | 127,091   | 0.0020     | 0.9423                   |
| 750            | 28,647 | 29,557  | 251,132   | 309,336   | 0.0047     | 0.9471                   |
| 760            | 80,605 | 0       | 310,964   | 391,569   | 0.0060     | 0.9531                   |
| 770            | 0      | 0       | 158,864   | 158,864   | 0.0024     | 0.9555                   |
| 780            | 33,012 | 33,012  | 212,347   | 278,371   | 0.0043     | 0.9598                   |
| 790            | 30,981 | 0       | 61,935    | 92,916    | 0.0014     | 0.9612                   |
| 800            | 0      | 0       | 189,537   | 189,537   | 0.0029     | 0.9641                   |
| 810            | 0      | 0       | 149,709   | 149,709   | 0.0023     | 0.9664                   |
| 820            | 0      | 28,647  | 200,051   | 228,698   | 0.0035     | 0.9699                   |
| 830            | 31,007 | 0       | 58,563    | 89,570    | 0.0014     | 0.9713                   |
| 840            | 0      | 30,981  | 121,014   | 151,995   | 0.0023     | 0.9736                   |
| 850            | 0      | 0       | 91,315    | 91,315    | 0.0014     | 0.9750                   |
| 860            | 0      | 0       | 246,413   | 246,413   | 0.0038     | 0.9788                   |
| 870            | 0      | 0       | 91,580    | 91,580    | 0.0014     | 0.9802                   |
| 880            | 0      | 0       | 124,276   | 124,276   | 0.0019     | 0.9821                   |
| 890            | 0      | 0       | 131,240   | 131,240   | 0.0020     | 0.9842                   |
| 900            | 0      | 0       | 153,922   | 153,922   | 0.0024     | 0.9865                   |
| 910            | 0      | 0       | 60,280    | 60,280    | 0.0009     | 0.9874                   |
| 920            | 0      | 0       | 59,998    | 59,998    | 0.0009     | 0.9884                   |
| 930            | 29,321 | 0       | 0         | 29,321    | 0.0005     | 0.9888                   |
| 940            | 0      | 0       | 32,616    | 32,616    | 0.0005     | 0.9893                   |
| 950            | 0      | 0       | 107,123   | 107,123   | 0.0016     | 0.9910                   |
| 960            | 0      | 0       | 58,846    | 58,846    | 0.0009     | 0.9919                   |
| 970            | 0      | 0       | 88,997    | 88,997    | 0.0014     | 0.9932                   |
| 990            | 0      | 0       | 62,932    | 62,932    | 0.0010     | 0.9942                   |
| 1010           | 0      | 0       | 30,623    | 30,623    | 0.0005     | 0.9947                   |
| 1020           | 0      | 0       | 30,704    | 30,704    | 0.0005     | 0.9951                   |
| 1030           | 0      | 0       | 32,760    | 32,760    | 0.0005     | 0.9956                   |
| 1040           | 0      | 0       | 30,275    | 30,275    | 0.0005     | 0.9961                   |
| 1060           | 0      | 0       | 30,819    | 30,819    | 0.0005     | 0.9966                   |
| 1080           | 0      | 0       | 32,399    | 32,399    | 0.0005     | 0.9971                   |
| 1120           | 0      | 0       | 33,014    | 33,014    | 0.0005     | 0.9976                   |
| 1130           | 0      | 0       | 29,035    | 29,035    | 0.0004     | 0.9980                   |
| 1170           | 0      | 0       | 31,027    | 31,027    | 0.0005     | 0.9985                   |
| 1190           | 0      | 33,739  | 0         | 33,739    | 0.0005     | 0.9990                   |
| 1240           | 0      | 0       | 32,272    | 32,272    | 0.0005     | 0.9995                   |

| Length<br>(cm) | Males            | Females          | Unsexed           | Total             | Proportion    | Cumulative<br>proportion |
|----------------|------------------|------------------|-------------------|-------------------|---------------|--------------------------|
| 1350           | 0                | 0                | 31,185            | 31,185            | 0.0005        | 1.0000                   |
| <b>Total</b>   | <b>1,948,600</b> | <b>1,733,757</b> | <b>61,453,586</b> | <b>65,135,943</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-118.--** Population estimates by sex and size for walleye pollock (*Gadus chalcogrammus*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Males       | Females     | Unsexed     | Total       | Proportion | Cumulative<br>proportion |
|----------------|-------------|-------------|-------------|-------------|------------|--------------------------|
| 70             | 0           | 0           | 695,979     | 695,979     | 0.0001     | 0.0001                   |
| 80             | 0           | 0           | 4,440,298   | 4,440,298   | 0.0004     | 0.0005                   |
| 90             | 0           | 0           | 32,225,566  | 32,225,566  | 0.0031     | 0.0036                   |
| 100            | 0           | 0           | 42,262,192  | 42,262,192  | 0.0041     | 0.0077                   |
| 110            | 531,280     | 0           | 68,244,640  | 68,775,920  | 0.0067     | 0.0144                   |
| 120            | 812,695     | 406,079     | 117,974,143 | 119,192,917 | 0.0116     | 0.0260                   |
| 130            | 3,854,465   | 1,216,078   | 185,344,926 | 190,415,469 | 0.0185     | 0.0444                   |
| 140            | 2,537,229   | 2,467,536   | 199,329,172 | 204,333,937 | 0.0198     | 0.0643                   |
| 150            | 7,465,932   | 4,595,699   | 145,474,640 | 157,536,271 | 0.0153     | 0.0795                   |
| 160            | 11,762,419  | 5,360,668   | 93,898,902  | 111,021,989 | 0.0108     | 0.0903                   |
| 170            | 6,695,300   | 6,217,509   | 54,113,073  | 67,025,882  | 0.0065     | 0.0968                   |
| 180            | 6,429,314   | 4,769,648   | 23,029,521  | 34,228,483  | 0.0033     | 0.1001                   |
| 190            | 8,443,401   | 8,220,137   | 4,610,981   | 21,274,519  | 0.0021     | 0.1022                   |
| 200            | 14,004,193  | 13,229,542  | 2,461,734   | 29,695,469  | 0.0029     | 0.1051                   |
| 210            | 30,833,803  | 29,185,680  | 1,351,311   | 61,370,794  | 0.0060     | 0.1110                   |
| 220            | 39,160,780  | 49,157,746  | 1,646,758   | 89,965,284  | 0.0087     | 0.1198                   |
| 230            | 56,501,950  | 53,445,026  | 1,196,433   | 111,143,409 | 0.0108     | 0.1305                   |
| 240            | 57,623,351  | 87,202,602  | 1,331,355   | 146,157,308 | 0.0142     | 0.1447                   |
| 250            | 39,121,806  | 54,030,820  | 975,683     | 94,128,309  | 0.0091     | 0.1539                   |
| 260            | 58,597,809  | 40,440,636  | 380,575     | 99,419,020  | 0.0096     | 0.1635                   |
| 270            | 21,272,509  | 29,532,588  | 0           | 50,805,097  | 0.0049     | 0.1684                   |
| 280            | 25,933,581  | 20,029,044  | 392,342     | 46,354,967  | 0.0045     | 0.1729                   |
| 290            | 20,971,576  | 21,962,444  | 62,376      | 42,996,396  | 0.0042     | 0.1771                   |
| 300            | 30,564,926  | 30,699,758  | 300,287     | 61,564,971  | 0.0060     | 0.1831                   |
| 310            | 25,768,619  | 32,433,882  | 600,575     | 58,803,076  | 0.0057     | 0.1888                   |
| 320            | 21,100,110  | 20,825,067  | 0           | 41,925,177  | 0.0041     | 0.1928                   |
| 330            | 21,181,188  | 16,514,888  | 0           | 37,696,076  | 0.0037     | 0.1965                   |
| 340            | 18,974,872  | 13,043,718  | 0           | 32,018,590  | 0.0031     | 0.1996                   |
| 350            | 14,346,701  | 14,396,069  | 0           | 28,742,770  | 0.0028     | 0.2024                   |
| 360            | 34,062,486  | 27,129,922  | 0           | 61,192,408  | 0.0059     | 0.2083                   |
| 370            | 65,992,801  | 38,825,347  | 0           | 104,818,148 | 0.0102     | 0.2185                   |
| 380            | 84,287,168  | 26,608,655  | 0           | 110,895,823 | 0.0108     | 0.2293                   |
| 390            | 195,695,541 | 56,812,729  | 0           | 252,508,270 | 0.0245     | 0.2537                   |
| 400            | 352,388,146 | 135,386,798 | 62,376      | 487,837,320 | 0.0473     | 0.3011                   |
| 410            | 455,457,736 | 229,783,444 | 62,376      | 685,303,556 | 0.0665     | 0.3676                   |
| 420            | 570,345,453 | 304,843,147 | 0           | 875,188,600 | 0.0849     | 0.4525                   |
| 430            | 533,926,446 | 407,140,334 | 0           | 941,066,780 | 0.0913     | 0.5438                   |
| 440            | 468,261,072 | 464,017,232 | 0           | 932,278,304 | 0.0904     | 0.6342                   |
| 450            | 362,606,068 | 448,077,511 | 0           | 810,683,579 | 0.0786     | 0.7128                   |
| 460            | 248,536,488 | 364,934,175 | 30,875      | 613,501,538 | 0.0595     | 0.7724                   |
| 470            | 177,981,233 | 271,455,779 | 62,376      | 449,499,388 | 0.0436     | 0.8160                   |
| 480            | 128,446,006 | 195,629,222 | 30,875      | 324,106,103 | 0.0314     | 0.8474                   |
| 490            | 123,568,687 | 151,669,233 | 0           | 275,237,920 | 0.0267     | 0.8741                   |
| 500            | 104,977,414 | 142,277,769 | 0           | 247,255,183 | 0.0240     | 0.8981                   |
| 510            | 84,069,590  | 113,406,979 | 0           | 197,476,569 | 0.0192     | 0.9173                   |
| 520            | 66,789,332  | 85,351,180  | 0           | 152,140,512 | 0.0148     | 0.9320                   |

| Length<br>(cm) | Males                | Females              | Unsexed            | Total                 | Proportion    | Cumulative<br>proportion |
|----------------|----------------------|----------------------|--------------------|-----------------------|---------------|--------------------------|
| 530            | 60,251,644           | 100,438,777          | 0                  | 160,690,421           | 0.0156        | 0.9476                   |
| 540            | 49,445,739           | 74,592,732           | 0                  | 124,038,471           | 0.0120        | 0.9596                   |
| 550            | 31,816,759           | 67,832,517           | 30,875             | 99,680,151            | 0.0097        | 0.9693                   |
| 560            | 29,775,608           | 56,603,397           | 0                  | 86,379,005            | 0.0084        | 0.9777                   |
| 570            | 17,483,876           | 40,975,174           | 0                  | 58,459,050            | 0.0057        | 0.9834                   |
| 580            | 12,574,931           | 34,512,237           | 0                  | 47,087,168            | 0.0046        | 0.9879                   |
| 590            | 7,428,675            | 25,128,929           | 0                  | 32,557,604            | 0.0032        | 0.9911                   |
| 600            | 5,376,433            | 22,477,794           | 0                  | 27,854,227            | 0.0027        | 0.9938                   |
| 610            | 4,629,853            | 13,868,772           | 30,875             | 18,529,500            | 0.0018        | 0.9956                   |
| 620            | 3,160,663            | 9,596,409            | 0                  | 12,757,072            | 0.0012        | 0.9968                   |
| 630            | 1,280,298            | 9,596,990            | 30,875             | 10,908,163            | 0.0011        | 0.9979                   |
| 640            | 979,899              | 6,457,390            | 0                  | 7,437,289             | 0.0007        | 0.9986                   |
| 650            | 824,011              | 4,913,502            | 0                  | 5,737,513             | 0.0006        | 0.9992                   |
| 660            | 763,214              | 3,448,706            | 0                  | 4,211,920             | 0.0004        | 0.9996                   |
| 670            | 225,898              | 1,525,329            | 0                  | 1,751,227             | 0.0002        | 0.9997                   |
| 680            | 271,225              | 668,528              | 0                  | 939,753               | 0.0001        | 0.9998                   |
| 690            | 58,224               | 554,948              | 0                  | 613,172               | 0.0001        | 0.9999                   |
| 700            | 62,142               | 352,268              | 0                  | 414,410               | 0.0000        | 0.9999                   |
| 710            | 90,202               | 213,667              | 0                  | 303,869               | 0.0000        | 1.0000                   |
| 720            | 0                    | 79,217               | 0                  | 79,217                | 0.0000        | 1.0000                   |
| 730            | 0                    | 99,751               | 0                  | 99,751                | 0.0000        | 1.0000                   |
| 750            | 0                    | 29,986               | 0                  | 29,986                | 0.0000        | 1.0000                   |
| 760            | 42,761               | 92,957               | 0                  | 135,718               | 0.0000        | 1.0000                   |
| 770            | 0                    | 31,447               | 0                  | 31,447                | 0.0000        | 1.0000                   |
| <b>Total</b>   | <b>4,828,423,531</b> | <b>4,496,823,744</b> | <b>982,684,965</b> | <b>10,307,932,240</b> | <b>1.0000</b> | <b>1.0000</b>            |

**Appendix Table B-119.--** Population estimates by sex and size for yellowfin sole (*Limanda aspera*) from the 2024 eastern Bering Sea shelf survey.

| Length<br>(cm) | Males                | Females              | Unsexed            | Total                | Proportion    | Cumulative<br>proportion |
|----------------|----------------------|----------------------|--------------------|----------------------|---------------|--------------------------|
| 70             | 672,959              | 0                    | 1,526,856          | 2,199,815            | 0.0004        | 0.0004                   |
| 80             | 292,962              | 0                    | 0                  | 292,962              | 0.0001        | 0.0004                   |
| 90             | 1,345,919            | 0                    | 0                  | 1,345,919            | 0.0002        | 0.0007                   |
| 100            | 4,659,977            | 4,797,030            | 4,776,744          | 14,233,751           | 0.0025        | 0.0032                   |
| 110            | 9,792,611            | 9,204,546            | 9,504,575          | 28,501,732           | 0.0051        | 0.0083                   |
| 120            | 26,655,665           | 37,712,560           | 22,115,988         | 86,484,213           | 0.0153        | 0.0236                   |
| 130            | 50,895,583           | 54,473,996           | 51,936,773         | 157,306,352          | 0.0279        | 0.0515                   |
| 140            | 47,121,099           | 70,881,076           | 39,166,534         | 157,168,709          | 0.0279        | 0.0793                   |
| 150            | 68,674,770           | 69,912,119           | 21,954,400         | 160,541,289          | 0.0284        | 0.1078                   |
| 160            | 62,773,167           | 78,165,372           | 637,323            | 141,575,862          | 0.0251        | 0.1328                   |
| 170            | 67,726,195           | 77,331,348           | 759,699            | 145,817,242          | 0.0258        | 0.1587                   |
| 180            | 65,043,314           | 74,051,066           | 192,962            | 139,287,342          | 0.0247        | 0.1834                   |
| 190            | 62,791,094           | 71,454,437           | 759,699            | 135,005,230          | 0.0239        | 0.2073                   |
| 200            | 72,968,905           | 83,747,100           | 0                  | 156,716,005          | 0.0278        | 0.2351                   |
| 210            | 95,676,022           | 80,702,917           | 771,848            | 177,150,787          | 0.0314        | 0.2665                   |
| 220            | 84,056,948           | 83,619,787           | 578,886            | 168,255,621          | 0.0298        | 0.2963                   |
| 230            | 97,335,005           | 108,121,766          | 1,681,979          | 207,138,750          | 0.0367        | 0.3330                   |
| 240            | 103,397,903          | 105,746,788          | 1,103,093          | 210,247,784          | 0.0373        | 0.3702                   |
| 250            | 110,720,061          | 122,115,382          | 331,245            | 233,166,688          | 0.0413        | 0.4116                   |
| 260            | 152,810,432          | 134,615,448          | 662,490            | 288,088,370          | 0.0511        | 0.4626                   |
| 270            | 154,960,398          | 148,333,202          | 1,546,867          | 304,840,467          | 0.0540        | 0.5166                   |
| 280            | 186,796,039          | 205,039,404          | 1,022,660          | 392,858,103          | 0.0696        | 0.5862                   |
| 290            | 167,712,417          | 189,238,308          | 1,546,867          | 358,497,592          | 0.0635        | 0.6498                   |
| 300            | 139,249,480          | 190,664,605          | 1,408,584          | 331,322,669          | 0.0587        | 0.7085                   |
| 310            | 116,933,392          | 169,957,220          | 2,071,074          | 288,961,686          | 0.0512        | 0.7597                   |
| 320            | 122,741,046          | 156,562,182          | 1,160,943          | 280,464,171          | 0.0497        | 0.8094                   |
| 330            | 121,067,031          | 138,454,124          | 993,735            | 260,514,890          | 0.0462        | 0.8556                   |
| 340            | 106,392,233          | 150,104,892          | 2,099,999          | 258,597,124          | 0.0458        | 0.9014                   |
| 350            | 60,238,630           | 128,930,461          | 1,794,508          | 190,963,599          | 0.0338        | 0.9352                   |
| 360            | 23,318,225           | 103,125,116          | 414,849            | 126,858,190          | 0.0225        | 0.9577                   |
| 370            | 6,784,614            | 92,022,739           | 939,056            | 99,746,409           | 0.0177        | 0.9754                   |
| 380            | 3,947,089            | 53,552,160           | 385,924            | 57,885,173           | 0.0103        | 0.9856                   |
| 390            | 870,103              | 36,400,819           | 192,962            | 37,463,884           | 0.0066        | 0.9923                   |
| 400            | 932,377              | 19,310,585           | 192,962            | 20,435,924           | 0.0036        | 0.9959                   |
| 410            | 445,934              | 10,849,894           | 0                  | 11,295,828           | 0.0020        | 0.9979                   |
| 420            | 0                    | 7,292,964            | 0                  | 7,292,964            | 0.0013        | 0.9992                   |
| 430            | 272,433              | 1,949,240            | 0                  | 2,221,673            | 0.0004        | 0.9996                   |
| 440            | 0                    | 1,510,486            | 0                  | 1,510,486            | 0.0003        | 0.9998                   |
| 450            | 0                    | 219,091              | 0                  | 219,091              | 0.0000        | 0.9999                   |
| 460            | 0                    | 362,403              | 0                  | 362,403              | 0.0001        | 1.0000                   |
| 470            | 268,078              | 0                    | 0                  | 268,078              | 0.0000        | 1.0000                   |
| <b>Total</b>   | <b>2,398,340,110</b> | <b>3,070,532,633</b> | <b>174,232,084</b> | <b>5,643,104,827</b> | <b>1.0000</b> | <b>1.0000</b>            |

## Appendix C: Data Changes

The AFSC Groundfish Assessment Program (GAP) team are stewards of the haul-by-haul catch and effort data, as well as the following survey products: CPUE, biomass, abundance, age composition, and size composition data. Improvements are made to these data and products as necessary and include fixing previously missed errors from past years and incorporating new metadata. 2024 marks the second year of the team disseminating the new production data to AKFIN and other partners (see Markowitz et al. (2024)).

The 2024 survey data products are generated by the *gapindex* R package (v3.0.2; <https://github.com/afsc-gap-products/gapindex>) and distributed from tables stored in the AFSC GAP\_PRODUCTS Oracle schema. These data are accompanied by extensive documentation, metadata, and user examples ([https://afsc-gap-products.github.io/gap\\_products/](https://afsc-gap-products.github.io/gap_products/)).

The generation of survey products continues to be user-centric. GAP produced both the new and historical tables for the 2024 post-survey stock assessment season, one more year than originally planned, to help users transition their workflows and code. For the 2025 post-survey stock assessment season, GAP will deprecate the historical tables.

### Updates to individual historical records in data tables

Since the 2023 eastern Bering Sea data report was published (April 2024; Markowitz et al. (2024)), there have been several updates to the GAP\_PRODUCTS tables (see documentation<sup>20</sup>). Data used in this report were updated as of December 10, 2024.

Erroneous use of the juvenile pollock code (species code 21741; the paired code for regular pollock code 21740 that assists with length-class-based population and biomass extrapolations) when a regular code should have been used for catch processing was corrected for several hauls. This led to unexpected null-filled frequency records in length composition tables resulting from incomplete records of juvenile walleye pollock in internal length tables. Incorrect use of pollock juvenile codes were identified by determining where, in the station catch data, the presence of both regular and juvenile walleye pollock (species codes 21740 and 21741, respectively) occurred in a single haul's catch without a non-subsampled weight for either or both codes. This implies that the pollock in these hauls were 100% processed and the juvenile pollock code should not have been used. In instances where the juvenile code was also carried into the lengths for that catch, 1) juvenile lengths were reassigned to the regular walleye pollock code, 2) juvenile length counts were added to adult subsample counts, 3) the juvenile subsample weights were added to adult subsample weights, and 4) the juvenile catch record was deleted once the erroneous juvenile counts and weights were merged with the adult catch record. Note that in cases where the adult pollock non-subsampled weight was also null, given the data constraints, juvenile lengths do not get expanded thus alleviating concern about affecting size and age compositions in those cases. These errors occurred in one 2021 northern Bering Sea shelf survey haul aboard the FV *Vesteraalen*, one 2023 northern Bering Sea shelf survey haul aboard the FV *Northwest Explorer*, and one 2023 eastern Bering Sea haul aboard the FV *Northwest Explorer*.

Unintended duplicate length records were present in the length tables for eastern Bering Sea abundance hauls. These duplicate records were a result of internal data tables and improper concatenation of juvenile

---

<sup>20</sup> [https://afsc-gap-products.github.io/gap\\_products/content/intro-news.html](https://afsc-gap-products.github.io/gap_products/content/intro-news.html)

and adult records, causing multiple rows of the same species. The records were identified and corrected for all 24 instances.

Changes to the CPUE and biomass tables occurred because 1) *Scleratinia* are now grouped in the same species code as Order Scleractinia (excluding cup corals), 2) *Pteraster* species are now grouped to genus *Pteraster* (species code 81310), 3) basketstars (species code 83020) are now removed from brittle star aggregation (species code 83000), 4) *Muusoctopus leioderma* (species code 78012) and *Muusoctopus oregonensis* (species code 78455) aggregated into the *Muusoctopus* sp. (78014) genus (also affecting relevant size composition estimates), 5) Nemertean worms have become disaggregated from Phylum Nemertea (species code 92500), and 6) error threshold for comparing changes is now to the hundredth of a percent (also affecting relevant size composition estimates).

Additional changes to size composition estimates occurred in the 2010 eastern Bering Sea survey, where two Bering skate (species code 435) lengths were converted to unidentified skate (species code 400).

Aged otolith data and changes to size composition estimates have been added for eastern Bering Sea Kamchatka flounder (2015, 2022, 2023, 2024), Greenland turbot (2022, 2023, 2024), Alaska plaice (2021), flathead sole (2022, 2023), yellowfin sole (2023), northern rock sole (2023), Pacific cod (2023), and walleye pollock (2024). In the northern Bering Sea, new aged otolith data was added for Pacific cod (2023) and yellowfin sole (2023).

## Species time-series cutoffs

All species time-series cutoff changes made for the 2023 survey season data release (as described in Markowitz et al. (2024)) have now been appropriately implemented. As species identification guides improve and species taxonomy is better defined<sup>21</sup>, the survey team has established guidelines for when the time series of some species should begin. Species complexes for Kamchatka flounder and arrowtooth flounder (previously combined as species code 10111), and *Bathyraja* sp. (previously combined as species code 405), have been properly grouped in the production workflow to account for historical identification issues. More information on historical identification confidence for these and other species can be found in Stevenson and Hoff (2009) and Stevenson et al. (2016) and is further discussed in Laman et al. (2022).

## Species identification aggregations

As species identification guides improve and species taxonomy is better defined, the survey team has established guidelines for when species should be aggregated into higher taxonomic groups within the production data. GAP taxonomists have developed minimum ID guidelines for on-deck/in-field identification and production data for difficult-to-identify species (most invertebrate and some fish genera). These aggregations can be found in the newly created GAP\_PRODUCTS.TAXON\_GROUPS table, where records with the same GROUP\_CODE are now aggregated. The GROUP\_CODE in this table is then transferred to the SPECIES\_CODE field in GAP\_PRODUCTS.CPUE/BIOMASS/SIZECOMP/AGECOMP tables. The GAP\_PRODUCTS.TAXON\_GROUPS table would be used if a user wanted to know what SPECIES\_CODE values were contained in a particular taxon aggregation GROUP\_CODE, or whether a SPECIES\_CODE codes for a taxonomic aggregation. Note that the historic field "SPECIES\_CODE" is

---

<sup>21</sup> <https://www.fisheries.noaa.gov/resource/document/groundfish-survey-species-code-manual-and-data-codes-manual>

inclusive of codes that indicate levels of taxonomic hierarchy lower than the binomial species level (e.g., genera, family, order).

This guideline is different from the establishment of species time-series cutoffs (as noted [above](#) and in Markowitz et al. (2024)) where commercially important species that were previously inconsistently distinguished from congeners were later taxonomically separated into two species; those differences are now accessible and preserved in the data tables. Taxonomic groupings and other identification-level aggregations are available upon request.

## Species taxonomy

In an effort to clear a backlog in updates and improvements to the GAP species registry, scientific species names were updated from 2023 to 2024. Updates were made by comparing the 2024 GAP catalog of species taxonomy with the World Register of Marine Species (WoRMS; <https://www.marinespecies.org/>) and Integrated Taxonomic Information System (ITIS; <https://www.itis.gov/>) databases. A summary of these changes is available upon request.



U.S. Secretary of Commerce  
**Howard Lutnick**

Under Secretary of Commerce  
for Oceans and Atmosphere  
**Laura Grimm**

Assistant Administrator, National  
Marine Fisheries Service.  
**Eugenio Piñeiro Soler**

June 2025

[www.nmfs.noaa.gov](http://www.nmfs.noaa.gov)

OFFICIAL BUSINESS

**National Marine  
Fisheries Service**  
Alaska Fisheries Science Center  
7600 Sand Point Way N.E.  
Seattle, WA 98115-6349