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ABSTRACT

Ocean acidification has been identified in the Planetary Boundary Framework as a planetary process approaching a bound-
ary that could lead to unacceptable environmental change. Using revised estimates of pre-industrial aragonite saturation state,
state-of-the-art data-model products, including uncertainties and assessing impact on ecological indicators, we improve upon
the ocean acidification planetary boundary assessment and demonstrate that by 2020, the average global ocean conditions had
already crossed into the uncertainty range of the ocean acidification boundary. This analysis was further extended to the subsur-
face ocean, revealing that up to 60% of the global subsurface ocean (down to 200m) had crossed that boundary, compared to over
40% of the global surface ocean. These changes result in significant declines in suitable habitats for important calcifying species,
including 43% reduction in habitat for tropical and subtropical coral reefs, up to 61% for polar pteropods, and 13% for coastal
bivalves. By including these additional considerations, we suggest a revised boundary of 10% reduction from pre-industrial con-
ditions more adequately prevents risk to marine ecosystems and their services; a benchmark which was surpassed by year 2000
across the entire surface ocean.

1 | Introduction

First proposed in 2009 (Rockstrom et al. 2009), the planetary
boundaries assessment defines nine large scale Earth-system
processes and associated boundaries that, if crossed, could
generate unacceptable environmental change. These nine pro-
cesses are: climate change, rate of biodiversity loss (terrestrial
and marine), interference with the nitrogen and phosphorus
cycles, stratospheric ozone depletion, ocean acidification, global
freshwater use, change in land use, chemical pollution and at-
mospheric aerosol loading. Three boundaries had been crossed
in 2009 (Rockstrom et al. 2009), increasing to four in 2015

(Steffen et al. 2015) and six in 2023 (Richardson et al. 2023).
Ocean acidification (OA) was assessed as not yet having crossed
the boundary, but lies at the margin of the safe operating space
(Richardson et al. 2023). This remained the same conclusion in
the Planetary Health Check published in 2024 (https://www.
planetaryhealthcheck.org/).

OA is the term given to the long-term shift of marine carbonate
chemistry resulting primarily from the uptake of carbon dioxide
(CO,) by the oceans (Caldiera and Wickett 2003; Orr et al. 2005),
leading to an increase in ocean acidity and a decrease in carbon-
ate ion (CO32*) concentration. This reduction in CO32* influences
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calcium carbonate (CaCO,) mineral formation and dissolution (R.
A. Feely et al. 2004, 2008; Gangsto et al. 2008). As CO,*~ concen-
tration decreases, seawater CaCO, saturation state () decreases,
which can lead to dissolution. Conversely, when CO32‘ is plenti-
ful, seawater is supersaturated and CaCo, mineral formation is
facilitated. Abiotic precipitation of CaCO, minerals only occurs
atvery high Q levels (Chave and Suess 1970), with the majority of
CaCO, in the oceans formed through biogenic processes. CaCO,
exists in several mineral phases, most often including aragonite
and calcite, with aragonite being approximately 50% more solu-
ble than calcite (Mucci 1983).

OA can severely affect marine organisms through its direct im-
pact on physiology, growth, survival and reproduction (Doney
et al. 2020; Findlay and Turley 2021). Furthermore, marine cal-
cifiers that produce CaCO, shells or skeletons, including some
corals, crustaceans, molluscs, phytoplankton, zooplankton
and algae, are at additional indirect risk from OA as decreasing
Q makes it more energetically costly to build or maintain their
CaCO, structures, which, when exposed to low Q (usually under-
saturated) conditions, can be subjected to enhanced dissolution
(R. A. Feely et al. 2016; Findlay et al. 2011; Leung et al. 2020).

Ocean Q conditions vary significantly across the globe, with lev-
els in tropical regions being more than twice as high as those in
polar regions (Feely et al. 2023; Jiang et al. 2015). These regional
and seasonal gradients exists due to temperature-driven CO,
solubility, enabling colder high-latitude waters to store more
CO,, along with other factors including circulation of carbon
away from the surface into deeper waters, mineral inputs from
land and freshwater dilution (Jiang et al. 2019; Orr et al. 2005).
Marine life is exposed to such regionally varying gradients to
which it has evolutionarily adapted (Vargas et al. 2022), result-
ing in a wide variability of observed responses to OA found in
laboratory experiments. However, the envelope of the overall
conditions experienced by organisms is also changing due to
OA, which can make scaling up from single-species experi-
ments to ecosystem predictions more complicated. This is par-
ticularly true when we consider the other challenges of scaling,
including incubation effects, lack of natural variability and lack
of adaptation and/or acclimation.

Understanding the status, trends and biological impacts (or im-
plications) of OA at global and regional levels is therefore para-
mount to determining a safe operating space at a planetary scale
in which fully operational ecosystems and habitats are retained.
Determining this safe space requires more than just considering
chemical change. Crossing a boundary means increasing risk
that marine ecosystems will be impacted by unfavourable con-
ditions, resulting in altered ecosystem function, and ultimately
cause severe implications for the societies that vitally depend on
these ecosystems for a variety of provisional, cultural and cli-
mate related goods and services (Portner et al. 2019).

Aragonite saturation state (Q Arag) has emerged as a key indi-
cator for OA, reflecting the precipitation/dissolution tenden-
cies of CaCO,, as well as its association with marine calcifiers.
Consequently, the global mean surface Q Arag WAS chosen as the
OA indicator in the planetary boundary assessments (Rockstrom
et al. 2009). The boundary was set at 80% of the pre-industrial

Q Arag value, that is, a 20% reduction from the pre-industrial

surface ocean average. This level was chosen based on two crite-
ria: first to keep high-latitude surface waters above Q , . under-
saturation; and second, to ensure adequate conditions for most
warm-water coral reef systems (Rockstrom et al. 2009).

In the planetary boundaries framework (Richardson et al. 2023;
Rockstrom et al. 2009; Steffen et al. 2015), the OA boundary
is relatively unrefined compared to other planetary processes,
which often incorporate elements of uncertainty and/or re-
gional complexity that influences the planetary functioning.
Indeed five of the nine boundaries were developed in this way
during the second assessment (Steffen et al. 2015) in recogni-
tion that ‘changes in control variables at the subglobal level
can influence functioning at the Earth system level, which in-
dicates the need to define subglobal boundaries that are com-
patible with the global-level boundary definition’. For example,
the ‘freshwater change process’ uses the upper limit of the pre-
industrial variability as a precautionary approach, acknowledg-
ing the uncertainties related to both data and exact boundary
position. While the ‘biogeochemical flows process’ has both a
global and regional boundary, and the ‘land system change pro-
cess’ has a global boundary as well as specific biomes bound-
aries (Richardson et al. 2023). In contrast, the OA boundary
uses a single pre-industrial value for Q, . with no associated
uncertainties, nor any consideration of the regional differences
in manifestation of OA and the regional contribution to global
ocean health and planetary functioning. This is despite Steffen
et al. (2015) acknowledging that Q Arag 18 Spatially heteroge-
neous, and that the criteria for defining the boundary are related
to regions of the global ocean (i.e., polar waters and sub-tropical
corals), which are changing at different rates (Feely et al. 2023;
Feely et al. 2024; Ma et al. 2023).

In additional to regional changes at the surface, recent research
indicates that large carbonate system changes have been oc-
curring in the subsurface (i.e., below the top 10m routinely
measured using moorings, ships-of-opportunities and remote
sensing), where combined anthropogenic CO, uptake and local
respiration of organic matter interact to reduce Q Arag and pH
and combine with subsurface OA-related change (Fassbender
et al. 2023; Feely et al. 2024; Harris et al. 2023; Miiller and
Gruber 2024). Furthermore, there is also higher frequency oc-
currence of subsurface compound events (marine heatwaves,
decreasing DO, pH and Q) that synergistically impact ocean
health (Gruber et al. 2021; Hauri et al. 2024).

Establishing an OA boundary that reduces the risks of signif-
icant impact and protects or sustains key marine species and
ecosystems improves on a boundary that is simply defined by
a chemical threshold (i.e., Q Arag = 1). The planetary boundaries
framework initially addressed this for OA by considering the
threshold of Q, ., for marginal growth of warm-water coral
reefs (Rockstrom et al. 2009). However, over the past few years,
research into thresholds and indicators has developed and ex-
panded, whereby biological impairment against changing car-
bonate chemistry (OA) for multiple key functional groups has
been assessed through the threshold implementation (e.g.,
Bednarsek et al. 2019). Including additional biological indica-
tors in the boundary assessment is especially valid given some
species are found to be impacted under OA conditions in the
ocean today (e.g., pteropods (Bednarsek et al. 2021; Bednarsek
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et al. 2012b), decapod crab larvae (Bednarsek et al. 2020), gas-
tropods (Leodn et al. 2020) and corals (Manzello 2010)).

Using the latest observations, modelling results and biological
assessments, we explore whether setting the boundary at 20%
reduction from pre-industrial conditions provides an adequately
safe limit with respect to the consequences of OA. First, we ex-
amine the latest global surface conditions in comparison to the
assessment by Richardson et al. (2023), specifically using the
state-of-art model-data products, and importantly including un-
certainties in both the boundary and the present-day value. We
also evaluate regional changes to better assess the two criteria
(polar oceans and tropical corals) originally used to define the
OA boundary. Next, we use new subsurface data-model prod-
ucts to consider how the subsurface ocean has changed to date
to acknowledge the vertical spatial heterogeneity found in the
oceans. Finally, we assess these changing conditions against ad-
ditional examples of OA sensitive species that serve as biological
indicators, to determine what level could ultimately be consid-
ered safe for marine ecosystems and planetary functioning, in-
cluding food security and carbon sequestration.

2 | Materials and Methods
2.1 | Models for Global and Regional Assessment
2.1.1 | Surface Model Data

Model simulations for the surface ocean are described by Jiang
etal. (2023). They are available from (Jiang et al. 2022) as gridded
products in NetCDF at the National Oceanic and Atmospheric
Administration (NOAA) National Centers for Environmental
Information. Data used in this analysis were the multi-model
ensemble medians and their associated standard deviations
(Tables S1 and S2; [Jiang et al. 2022]).

2.1.2 | Subsurface Model Data

A new model-data fusion product covering 10 global subsurface
OA indicators at the standardised depth levels of 50m, 100m
and 200m were produced (Jiang 2024) by following the same ap-
proach asJiang et al. (2023). These indicators include: fugacity of
carbon dioxide, pH on total scale, total hydrogen ion concentra-
tion, free hydrogen ion concentration, carbonate ion concentra-
tion, aragonite saturation state, calcite saturation state, Revelle
Factor, total dissolved inorganic carbon content and total alka-
linity content. This product presents the evolution of these OA
indicators on global surface and subsurface ocean grids with a
resolution of 1°x 1°. It is presented as decadal averages for each
10-year period, starting from pre-industrial conditions in 1750,
through historical conditions from 1850 to 2010, and extend-
ing to four future scenarios based on Shared Socioeconomic
Pathways (SSPs) from 2020 to 2100. The SSPs considered are
SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Results for this prod-
uct were extracted from 14 Earth System Models (ESMs) from
the Coupled Model Intercomparison Project Phase 6 (CMIP6)
and a gridded data product created by Lauvset et al. (2016). Data
used in this analysis were the multi-model ensemble medians

and their associated standard deviations (Tables S1 and S2;
[Jiang 2024]).

2.1.3 | Choice of Pre-Industrial Value
and Consideration of Uncertainties

The original OA planetary boundary used a pre-industrial Q, ..
value of 3.44, with no associated reference, however we believe
this value originates from CMIP3 models, as referenced in the
Royal Society report in 2005 (Raven et al. 2005), using a pre-
industrial atmospheric CO, concentration of 280 ppm, which
can be traced back to Caldiera and Wickett (2003). Given that
atmospheric CO, is used to force the ocean carbon dynamics in
most ESMs, and most ESMs start their historical simulations at
model year 1850, the choice of CO, concentration is important.

Pre-industrial CO, concentration is derived from ice-core re-
cords, which date back from present day to about 1000AD.
Etheridge et al. (1996) suggest that the pre-industrial CO, mix-
ing ratio over that period is in the range of 275-284 ppm, with
an uncertainty in the mixing ratios of 1.2 ppm. They also high-
light “..Natural CO, variations of this magnitude make it inap-
propriate to refer to a single preindustrial CO, level’ (Etheridge
et al. 1996). More recently the IPCC provided values for pre-
industrial CO, within a range of 278.3+2.9ppm in 1750 and
285.5+2.1ppm in 1850 (Intergovernmental Panel on Climate
Change (IPCC) 2023). For this reason, we take this range of CO,
concentrations as the pre-industrial conditions, together with
the CO, uncertainties (1.2ppm) to add an uncertainty range to
the boundary rather than using one single value.

Here we use Jiang et al. (2023)'s approximation of OA indica-
tors from 1750 and 1850, given that they are based on ice core
derived atmospheric CO, data from 1752 (276.39ppm) and
1852 (288.57ppm) (Etheridge et al. 1996; MacFarling Meure
et al. 2006), and therefore represent the observed pre-industrial
CO, range. Consequently, the range for pre-industrial Q Arag is
3.44 to 3.57. Using average pre-industrial conditions of ocean
temperature, salinity and alkalinity for those dates (Table S4),
we propagate the 1.2ppm uncertainty in CO, measurements
to get an additional uncertainty term for Q Arag for the pre-
industrial boundary, which is 0.18 for the average global ocean,
but ranges from 0.09 to 0.21 across the ocean regions. The per-
centage change between present day and pre-industrial con-
ditions and the associated uncertainty can then be calculated
(section 2.1.4.). Where one single boundary value is required,
for example, to calculate the change in areal extent that has
crossed a specific level, the upper pre-industrial Q Arag value
(Q,.,=3.57)is used as a precautionary level that acknowledges

Arag ™
these uncertainties.

2.1.4 | Calculating Percentage Change
and Propagated Errors

The percentage change in Q, . was calculated between pre-
industrial and present-day (2020 decade) from the multi-model
medians (x and y) and their associated standard deviations (o,
and o)) using the following equations:
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Percentage change = (1 - %) X 100 (@)

The formula for error propagation of the ratio R =

GV =(20+(3)

Yis:
X

Rearranged to:

v Go\2 o, )\ 2
or =21/ (Z) +(Ty) ©)
X X y
The error in the percentage change is then: 6 X 100.

The boundary errors were calculated using the same equations,
assuming y = 0.8x and, using the propagated pre-industrial ara-
gonite standard deviations for the boundary, o,.

2.2 | Biological Indicator Assessment of OA
Sensitive Species

Biological thresholds are defined as the inflection points
beyond which detrimental biological effects are expected to
begin to occur and can indicate either acute or chronic im-
plication for the species health once the conditions have been
exceeded (IOC-UNESCO 2022). Thresholds are indispensable
tools for assessing environmental conditions that may exac-
erbate risks for sensitive marine species and their habitats.
Thresholds are not solely about achieving statistical signifi-
cance, they are also about capturing ecologically meaningful
responses. Such thresholds can successfully inform manage-
ment and policy decisions, serving as critical communication
tools for stakeholders. The drawback of such thresholds is that
they do not encompass all the complexity of local adaptation
and modulation introduced by simultaneous change in multi-
ple environmental conditions (Boyd et al. 2018).

Here we combine the use of thresholds that have been determined
either by strong scientific evidence from laboratory or field impacts
studies, or from studies using metanalysis and expert assessment
(section 2.2.1), with an environmental envelope assessment for
each species (section 2.2.3) to determine a level that once crossed
represents marginal conditions for that organism.

2.2.1 | Selection of Existing Thresholds

For the selection of thresholds it is important to understand the
certainty around them. Where possible, thresholds are charac-
terised by confidence scores, with metrics taken from the IPCC
confidence model (Mastrandrea et al. 2010), and determined
based on fact agreement and evidence. The confidence score ul-
timately delineates the level of (un)certainty around the thresh-
old implementation, with high confidence thresholds having
high certainty of the interpretation of species sensitivity and as
such, a recommendation that only thresholds with medium or
high certainty are to be implemented. However, in many cases
when the thresholds did not undergo expert consensus, such

threshold studies have not necessarily (yet) assigned confidence
scores nor have a level of uncertainty associated with them. In
these cases, thresholds are considered where they have been
used more widely in the scientific and policy-management com-
munities (e.g., Barton et al. 2015; Ward et al. 2022).

Evaluating and using threshold exceedance in this study, the
thresholds are taken as guidance of potential impact or vul-
nerability rather than absolute limit of a biological process
across the global scale, reflecting a precautionary principle
and recognising that nuances at the population level may alter
the sensitivity of species under certain conditions. We focus on
three groups that have known sensitivity to OA, are socially
and economically important, and have global importance
for planetary functioning: warm-water corals, pteropods, bi-
valves (oysters and mussels).

We recognise that the specific driver of impacts between car-
bonate chemistry (OA) and the biological condition and/or bio-
geochemical processes are often not known, are co-related, or
a result of an indirect response. For instance, it could be pH or
CO,, rather than Q Arag that is the main driver of impact. Due
to the complexity involved in disentangling the primary driv-
ers of the response, as well as converting between carbonate
chemistry parameters (especially when not all necessary data is
available within publications to do this), we present thresholds
here as a function of Q. (Waldbusser et al. 2015) to align the
chemical indicator and past planetary boundary assessments
(Richardson et al. 2023).

Warm-water coral reefs are a key indicator as they represent an
invaluable ocean ecosystem. They provide habitat for a huge
amount of biodiversity, hosting an estimated excess of 3 million
species; they support livelihoods through tourism and fishing,
providing food for over 1 billion people and a source of about
25% of the worlds fish catch; and they provide coastal protection
against storms, flooding and land erosion for more than 275 mil-
lion people that live near them (Spalding and Brown 2015). The
threshold for warm-water coral reefs that was already included in
the OA planetary boundary assessment (Rockstrom et al. 2009) is
used here as well. The threshold of Q Arag=3-5 is based on the
definition of the onset of marginal conditions for warm-water
coral reefs defined by Guinotte et al. (2003), derived from an en-
vironmental envelope style analysis (Kleypas et al. 1999).

Pteropods are considered key species in the polar regions
with important ecosystem (Bernard and Froneman 2009) and
biogeochemical significance, including making up a large
component of the carbon pump (Anglada-Ortiz et al. 2021;
Manno et al. 2010), and are recognised as important OA in-
dicators (BednarSek et al. 2014). Present-day levels of QAmg
in high latitudes are already causing severe pteropod shell
dissolution (Bednarsek et al. 2023). The threshold for ptero-
pods represent mild and severe shell dissolution, which serves
as an early warning (mild: QAragzl.S) and an indicator of
additional physiological impairments (severe: Q, . =1.2).
These shell dissolution thresholds both have high confidence
scores placed on them (Bednarsek et al. 2019), and values are
supported by multiple field and experimental studies both
in the polar regions and the California Current Ecosystem
(Bednarsek et al. 2014, 2012b).
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Bivalves are included here as key indicator organisms that are
critical components of coastal ecosystems. They provide a food
and protein source, with bivalve production worth 20.6 billion
dollars per year worldwide; they improve water quality by fil-
tering particles, helping to balance nutrients and phytoplank-
ton growth; they create habitats that are important nursery
grounds, but also help to stabilise shorelines; finally bivalves
are also important for a number of other key industries such
as use in building materials, medicinal use and pearl produc-
tion (Filipa Mesquita et al. 2024). OA impacts on various bi-
valve species have been investigated although no one specific
threshold has yet been determined. A large fraction of bivalve
impact studies have been conducted on larval life stages, with
the onset of impacts occurring at QArag levels between 1.3 and
1.9. The most applied and validated impact is on the Pacific
oyster (Magallana gigas), which has been well studied because
of the impact of OA on larval production off the west coast of
North America. Larval production was shown to have a neg-
ative relationship to QArag (Barton et al. 2012, 2015). Using
this relationship, we determined the Qg value at which
there is zero relative production and used this as a threshold
(QArag =1.75) beyond which relative production is minimal or
does not occur. Other bivalve species, from laboratory studies,
have possible sublethal thresholds related to growth and cal-
cification (e.g., the Olympia oyster (Ostrea lurida) has onset
of impacts at Q, ., of 1.4 (Hettinger et al. 2012); the Eastern
oyster (Crassostrea virginica) has onset of impacts at Q Arag of
1.83 (Gobler and Talmage 2014); and the blue mussel (Mytilus
californianus) has onset of impacts at Q of 1.8 (Gaylord
et al. 2011)).

Arag

2.2.2 | Geographic Distribution and Associated
Environmental Envelopes

The IPBES secretariat defines an environmental envelope
of a species as the set of environments within which it is be-
lieved that the species can persist. These envelopes are used
in environmental niche modelling by matching habitat usage
of species against local environmental conditions to deter-
mine the relative suitability of specific geographic areas for
a given species (e.g., AquaMaps, (Ready et al. 2010)). The
Ocean Biodiversity Information System (OBIS) database was
used to gather occurrence data for each of the chosen spe-
cies: Magallana gigas ((OBIS 2023b) and Table S5); Mytilus
californianicus ((OBIS 2023c) and Table S6) and Limacina he-
licina ((OBIS 2023a) and Table S7). The warm-water coral reef
occurrence data was from UN Environment Programme World
Conservation Monitoring Centre (UNEP-WCMC, WorldFish
Centre, WRI, TNC 2021). Data were downloaded and then
sorted. Importantly noting that these datasets do not imply
absence of a given species at other locations but simply rep-
resent where species have actually been observed and can be
used for quantitative purposes. A secondary screening was
then conducted to sanity check the data and remove duplicate
records based on latitude, longitude and date of each observa-
tion. The location values were then used to extract environ-
mental data (temperature, salinity and carbonate chemistry
parameters) from the OceanSODA-ETHZv1 dataset (Gregor
and Gruber 2020). The OceanSODA-ETHZv1.2023 dataset is
a product that provides data on a 1° x 1° spatial and monthly

temporal resolution between 1982 and 2022 (Gregor and
Gruber 2021). Noting that only surface values are available
from this dataset. Overall global environmental envelopes were
generated using the nearest location match between the occur-
rence dataset and the OceanSODA-ETHZv1.2023 dataset for
each species. Statistics were generated from the extracted data
(Tables S14-S17) and histograms (Figure S7) were generated.
Analysis was conducted in R v4.1.3.

2.2.3 | Cross Validation of Thresholds
and Environmental Envelopes

The aim of using a combined assessment is to cross-validate
these values to derive the most comprehensive interpreta-
tion of response, and hence indicator, to OA as possible. The
combination of the environmental niche modelling with the
threshold approach can support how information on physio-
logical responses, derived primarily from laboratory experi-
ments, can relate to the occurrence distribution of a species.
This can give insights into when the conditions below the
physiological thresholds carry over into the population ab-
sences. Such an approach is relatively novel but has important
implications to detect early warning responses beyond which
we would expect population level impacts to occur (i.e., when
physiological thresholds overlap with the higher absence val-
ues from niche modelling).

Using the full datasets available for both occurrence and en-
vironmental data, we propose to use the 10th percentile of the
environmental envelope distribution as the corresponding
validation of the laboratory-based thresholds. We use the 10th
percentile to provide a standardised assessment of what can be
considered extreme exposure, building on the definitions used
in atmospheric and marine heatwaves and OA extremes (which
use the 90th percentile for heatwaves and 10th percentile of OA
(Gruber et al. 2021; Hobday et al. 2016)). The 10th percentile oc-
curs at Q, ., =3.5 for warm-water corals, Q Arag = 11 for ptero-
pods and Q Arag= 18 and Q Arag =19 for the two bivalve species
investigated here (Magallana gigas and Mytilus californicus, re-
spectively) (Tables S14-S17, Figure S7).

This 10th percentile value, combined with the assessment of
the thresholds in the literature, increases the confidence in
the validity of these values as representing the vital biologi-
cal thresholds beyond which detrimental biological effects are
expected to begin to occur (IOC-UNESCO 2022). Hereon, we
use the combined assessment (considered to be the median
of all the values (threshold and environmental envelopes) de-

rived for each group) to give indicator values as: QArag=3.5
as marginal conditions for warm-water corals, QArag: 1.2 as
marginal conditions for pteropods (but also include Q, = =1.5

Arag

as the mild level), and Q =1.8 as marginal conditions for

bivalves.

Arag

2.2.4 | Application of Marginal Conditions to
Biogeochemical Observational Data

Several diagnostics were then calculated using the biological as-

sessment of the marginal conditions related to Q Arag'
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« The percentage of ocean area that has marginal conditions:
o In the pre-industrial era (using upper level as precau-
tionary value)
o In the present day (2020 AD)

o When applying a 20% reduction in Q Arag from pre-
industrial values
o When applying a 10% reduction in Q from pre-

Arag
industrial values

+ Thechange in proportion of area that is under marginal con-
ditions between pre-industrial and present day (2020 AD)

« The percentage reduction required from pre-industrial be-
fore the threshold of marginal conditions was reached on
average

These diagnostics were applied to each of the indicator groups
using the model results for global surface waters and then the
region and depth specific data using the subsurface model
outputs.

From assessment of the literature and maps of each species
occurrence, the regions in which the chosen indicator groups
are most abundant and/or has a relevant role in the ecosys-
tem were chosen. For warm-water corals, they are found in
the low latitudes between 40°S to 40°N at depths of 0-25m.
For pteropods, we chose two geographic regions, the polar
regions (Arctic defined by the area north of 65°N, Southern
Ocean defined by the area south of 45°S) and the California
Current Ecosystem (defined by the geographic box of 47.5°N
to 21.5°N, 108.5°W to 132.3°W (https://www.marineregi
ons.org/gazetteer.php?p=details&id=8549), and restricting
to within 300km from the shore), at depths of 0 to 200m
(Akiha et al. 2017; Bednarsek et al. 2012a; Hunt et al. 2008;
Kobayashi 1974; Zamelczyk et al. 2021). For bivalves, we chose
to use the global coastal oceans (defined as within 300km
from the shore), at depths of 0-25m (Gabaev 2015; Knights
et al. 2006; Weinstock et al. 2018).

The area-weighted mean and standard deviations of Q Arag
across model grid cells within each region of interest at each
depth layer (Om, 25m, 50m, 100m and 200m) were calculated
with MATLAB. The Q Arag At the 25m depth layer was esti-
mated as the arithmetic mean of the Om and 50m layers. The
area-weighted covariance of Q, . between layers was calcu-
lated with MATLAB using weightedcorrs (Pozzi et al. 2012).
Uncertainties in depth-integrated Q Arag accounting for covari-
ance between layers were propagated using the delta method as
implemented in the Python uncertainties library. The percent-
age of ocean surface area that crossed each biological threshold
was calculated as the sum of the areas of all 1°x1° model grid
cells crossing the threshold divided by the total surface area in
each region using MATLAB. Observed distributions of each in-
dicator group were overlaid using data from OBIS for all species
except warm-water corals, which we took from UNEP-WCMC
(section 2.2.2). Figures S3-S6 show maps of the threshold ap-
plication of pre-industrial conditions, year 2020 conditions, 10%
and 20% reductions from pre-industrial conditions, for each of
the indicator groups described above, and detailed in Tables S8
and S9. Outputs for the pteropod threshold results at each in-
dividual depth layer (0, 50, 100 and 200m) are also shown in
Tables S10-S13.

3 | Results
3.1 | Global Surface Q Arag 35 @ Planetary Boundary

Richardson et al. (2023) estimated year 2022 global average
Q g (=2.8) from the climatological average value of 3.03 in
year 2000 and the corresponding global decrease of 0.1 per
decade given by Jiang et al. (2015). This calculation resulted
in the conclusion that there had been a 19% decrease from pre-
industrial conditions (using the single pre-industrial [1850 AD]
value of 3.44) and hence, that the boundary (of 20% reduction)
had not been crossed. The most recent synthesis of the global
surface ocean in situ and model data suggests that present day
global mean Q, ., is 2.90 +0.06. These updated values would
suggest that OA is slightly further from crossing the boundary
than Richardson et al. (2023) proposed (2.8 [19% reduction]
vs. 2.90 [16% reduction]). However, incorporating uncertainty
around the pre-industrial value, and hence the boundary,
gives a pre-industrial Q) rag value of 3.51+£0.065 [range 3.44
to 3.57], resulting in a boundary of QArag value of 2.80+0.05
(Table S3). These uncertainties can be propagated through
to calculate the error in the percentage change over time.
Including this uncertainty puts the current global average
surface OA level at 17.3% + 5.0%, which is below the boundary
average, but falls well within the new boundary uncertainties
(20% £ 5.3%) (Table 1, Figure 1a).

In addition to model ensemble differences, regional differ-
ences in absolute Q Arag 35 well as the rate of Q Arag decline can
contribute to variability around the average and should be ac-
counted for. To further delineate these regional differences, we
conducted a regional scale evaluation which transforms and
improves global boundary estimations. Using regional data,
we evaluated whether the major oceanic basins have, respec-
tively, crossed the 20% boundary (Table 1, Figure 1a). Average
surface values show that four out of seven ocean basins have
crossed the boundary: The Arctic (26.0%+15.2% reduction),
the north Pacific (22.1% + 6.4% reduction), the Southern Ocean
(21.8% + 4.6% reduction) and the north Atlantic (20.1% + 6.5% re-
duction). However, all basins have crossed the lower limit of the
boundary uncertainties (Table 1, Figure 1a).

Using the upper pre-industrial value as a precautionary value,
the percentage (multi-model median +SD) of surface area that
has crossed the 20% boundary in 2020 (compared to 1750)
was over 40%+9.7% of the global ocean (Figure 1b), and was
86.8% +15.1% of the Southern Ocean, 83.6% + 18.6% of the north
Pacific, 78.2% +11.1% of the Arctic, 63.1% +22.1% of the north
Atlantic, 22.9%+12.4% of the central Pacific, 19.7% +10.7%
of the Indian ocean and 15.1% +11.5% of the central Atlantic
(Figure 1b).

3.1.1 | Preventing Polar Oceans From Reaching
Undersaturation

The first criterion used for setting the OA planetary bound-
ary (Rockstrom et al. 2009) was that global average conditions
would be sufficient to keep polar waters from becoming un-
dersaturated. While nearly all of the surface polar oceans have

seen an Q, ., reduction of more than 20% compared to their
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TABLE 1 | The percentage change between pre-industrial era (1750) and present day (2020) compared to the 20% boundary for each region,
showing + errors in the percentage change as calculated by propagating the standard deviations (see methods).

% change between 1750 and

2020 = propagated error Boundary + propagated error
0Om 50m 100m 200m 0Om 50m 100m 200m
Arctic 26+15.2 25+11.3 25+10.0 20x+9.5 20+13.0 20+10.0 20+9.4 20x+8.5
Pacific-N 22+6.4 24+6.4 26+7.8 24+14.1 20+6.9 2073 20+9.0 20x+12.9
Atlantic-N 20+6.5 20+£6.8 21+6.6 20+6.1 20+6.7 20+7.1 20+£7.2 20+7.2
Pacific-C 17+4.1 17+4.5 18+£5.7 21+11.9 20+5.8 20+6.0 20+6.8 20+9.0
Atlantic-C 16+3.3 17+3.6 18+5.3 19+9.9 20£5.6 20+5.7 20+6.7 20+8.7
Indian 17+3.2 17+3.8 20£5.6 21+10.3 20+5.5 20+5.8 20+7.1 20+8.8
Southern 22+4.6 21+4.7 22+5.2 20£5.6 20£6.0 20+5.9 20+6.5 20+7.4
Global 17+5.0 18+4.5 19+£59 20+10.7 20£5.3 20+5.2 20+6.1 20+7.6

pre-industrial conditions, in terms of the annual average surface
Q Arag value, the chemical threshold of 1 has not yet been crossed,
that is, year 2020 QArag (multi-model median +SD) is 1.49+0.14
and 1.77 £0.04 for the Arctic and Southern Ocean, respectively.
Therefore, considering only the annual average surface value,
the 20% boundary does indeed prevent the polar oceans from
reaching undersaturation. However, observations and models
show that some regions of both polar oceans experience peri-
ods of undersaturation seasonally, and in some cases, annually
in their surface waters today (Cross et al. 2018; Qi et al. 2022;
Terhaar et al. 2021).

The percentage of Arctic Ocean surface waters that are un-
dersaturated with respect to Q, . increased between pre-
industrial conditions and 2020 AD by four-fold (Figure 2). The
model-data product suggests about 5% + 0.2% of the Arctic sur-
face waters were undersaturated in pre-industrial times, with
this value remaining relatively stable until the 1980s when it
started to increase. In 1990s it was ~7% % 0.2% and in 2020s it
is about 21% =+ 0.2% (Figure 2). To better account for regional
variability, which represents the conditions local marine or-
ganisms are exposed to, a boundary for the Arctic might be
better defined by the proportion of surface ocean that is under-
saturated, rather than using the absolute average surface value.
For example, to keep 10% or less of the surface waters from
undersaturation, the equivalent average global surface Q Arag
value was passed in the late early 2000s, equating to an overall
decrease of 14% + 3.3% from the global average pre-industrial
Qprag value. However, defining what proportion of undersatu-
ration is within a safe margin for ecological consequences (i.e.,
5%, 10%) is still subjective. Where possible, biological indica-
tors should be included to help define safe boundaries, thus
preventing biological impairment and ultimately protecting
vulnerable marine ecosystems and their services.

3.1.2 | Preventing Tropical Coral Systems From
Exposure to Marginal Conditions

The second criterion for setting the OA planetary boundary
(Rockstrom et al. 2009), was that the global average conditions

would be sufficient to prevent warm-water coral systems from
exposure to marginal conditions (QA]rag <3.5). Average sur-
face Q,,,, is now below 3.5 in all three low latitude (40°S to
40°N) regions which contain the highest abundance and di-
versity of the world’s coral reefs: Year 2020 Q,, ., (multi-model
median +SD) is 3.36 +£0.07, 3.49 +0.04 and 3.45 +0.05, for the
central Pacific, central Atlantic and Indian Ocean, respec-
tively. Hence, although the reduction in average Q Arag for each
of these regions has not surpassed the 20% boundary when
compared to pre-industrial conditions, the decline in Q Arag
has reached levels that represent marginal conditions for coral
reef growth. To prevent these low latitude regions (taken to-
gether) from falling below 3.5, global average Q 5 1o Should not
decline more than 15%+9% from pre-industrial conditions
(Table 2, Tables S8 and S9). Between 1750 and 2020, the per-
centage area with Qprag <35 increased by 30% for the global
surface ocean or 43% with respect to only the low latitude re-
gions (Figure 3). Hence, although a large proportion of coral
reefs remain in areas above 3.5 (Figure 3), the availability of
suitable habitat is rapidly diminishing.

3.2 | Assessing the Subsurface Ocean as Part
of the OA Boundary

To compare with the surface ocean, we assess the Q Arag 1€
duction between pre-industrial and present day (2020AD) at
three depth layers (50m, 100m and 200m), including propa-
gated errors and then calculate the proportion of area that has
crossed the 20% boundary for each layer (Figure 4, Figure S1).
By 2020, global average Q Arag has decreased by 17.9% +4.5%,
19.3% +5.9% and 19.7% + 10.7% at 50 m, 100 m and 200 m, respec-
tively. Assuming the upper pre-industrial value as a precaution-
ary limit, this results in 40%+9.7% (multi-model median + SD)
of the surface ocean having crossed the 20% boundary by year
2020, which is about the same at 50m (44% +10.8% area), but
increased to 58.3% +10.7% area at 100m, and 61% +10.6% area
at 200m (Figure 4, Figure SI).

Regionally, while the largest change at the surface has been in
the polar regions, the largest change at 100 m and 200 m has been
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FIGURE1 | Ocean Acidification planetary boundary. (a) Percentage (%) reduction between present day and pre-industrial aragonite saturation
state for the surface global ocean and the seven ocean regions, also comparing to the Richardson et al. (2023) planetary boundary assessment (blue
circle and blue line). The red circles represent the multi-model ensemble median with the associated propagated errors for the multi-model ensemble
standard deviation and the pre-industrial uncertainties. The 20% boundary value is presented as the dark grey lines with their associated uncertain-
ties shown by the light grey banding. Regions are defined as: Arctic Ocean (Arctic) region north of 65°N; north Pacific Ocean (Pacific-N) between
40°N and 65°N; north Atlantic Ocean (Atlantic-N) between 40°N and 65°N; central Pacific Ocean (Pacific-C) between 40°S and 40°N; central
Atlantic Ocean (Atlantic-C) between 40°S and 40°N; Indian Ocean (Indian) between 40°S and 25°N; and the Southern Ocean (Southern) ocean
south of 40°S. (b) Regional assessment of ocean acidification in year 2020, relative to the boundary of 20% reduction from pre-industrial aragonite
saturation state, as in (a), with grey bars representing the boundary uncertainties, and colours depicting whether that boundary has been crossed
(red) or not (green). (c) Map showing the percentage difference in surface Q between pre-industrial (1750) and year 2020. The black contour line
on the map represents a 20% reduction from pre-industrial values.

Arag

in the sub-polar and low latitude regions (Figure 4, Figure S1). 3.3.1 | Exceeding Marginal Conditions That Support

Subsurface oceans host highly diverse and biodiversity-rich
ecosystems, with few species living solely at the ocean surface.
These significant subsurface changes indicate a much larger po-
tential impact on marine ecosystems and the services they pro-
vide, including deep-water corals, (e.g., Miiller and Gruber 2024;
Perez et al. 2018), pelagic fisheries and marine carbon sequestra-
tion, which need to be considered when defining the safe oper-
ating space.

3.3 | Application of Biological Indicators
Here, we newly apply biological thresholds for the key indicator

groups defined previously, that have known sensitivity to OA
and are of global relevance (Table 2 & Table S8).

Polar Food Webs

The percentage of ocean area in the polar regions, averaged
across the pteropod depth habitat (0-200 m), that has crossed
the thresholds for mild (QAmg: 1.5) and severe (QAmg: 1.2)
shell dissolution, has increased by 61% and 16%, respectively,
between pre-industrial and present day (2020AD) (Table 2,
Tables S8 and S9). Furthermore, a larger percentage area of
the polar oceans has exceeded the mild dissolution threshold
of 1.5 by year 2020 compared to when considering the OA
boundary of 20% reduction from pre-industrial Q Arag condi-
tions (80% vs. 76%, respectively; Table 2, Tables S8 and S9). To
remain above the mild and severe dissolution thresholds, av-
erage polar ocean QAmg (0-200m) conditions cannot decline
more than 13%+16% and 31% =+ 12%, respectively, from the
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FIGURE 2 | Surface water aragonite saturation state (Q

Arag;
respective decade (marked at the top of each map). Numbers given at the bottom of each map shows the percentage (multi-model median + propagat-

ed error using multi-model SD) of the area between 60° and 90° N that has Q

et al. (Jiang et al. 2022).

pre-industrial value, and even at this level there will still be
some areas where the threshold is crossed (Table 2, Tables S8
and S9).

3.3.2 | Exceeding Marginal Conditions That Support
Aquaculture and Shellfisheries

The bivalve threshold of marginal conditions was taken to be
Qg <1.8. Using this value together with their distribution
along the global coastal regions (set to <300km offshore and a
depth range of 0-25m), the area that has crossed into marginal
conditions has increased by 12% between year 1750 and year 2020
(Table 2, Tables S8 and S9). A boundary set to 20% reduction from
pre-industrial conditions results in 16% of the global coastal hab-
itats being marginal for bivalves. To avoid moving into marginal
conditions for bivalves, average coastal Q Arag (0-25m) conditions
cannot decline more than 51% =+ 14% from pre-industrial values.

3.4 | Halting the Trend and Maintaining a Safe
Operating Space

The unequivocal driver of OA is the rapid uptake of anthro-
pogenic CO, by the oceans. Model projections show that only
by following the low emissions scenario (SSP1-2.6) can some
parts of the global surface ocean be kept within the 20% bound-
ary, and by the end of the century those areas begin to expand

) in the Arctic Ocean between 1750 and 2020. Maps show average conditions for the

Arag <1- Maps are created using the hindcast data product from Jiang

again (Figure S2). This is in sharp contrast with the intermedi-
ate (SSP2-4.5) and high emissions scenarios (SSP3-7.0), which
both lead to 100% of the global surface ocean crossing the 20%
boundary. Indeed, by year 2100, nearly 25% of the global sur-
face ocean will have Q Arag levels that are >40% lower than
pre-industrial conditions under emissions scenario SSP2-4.5,
whereas nearly 95% of the surface ocean will have Q,,, con-
ditions that are >40% lower than pre-industrial levels under
SSP3-7.0 (Figure S2).

4 | Discussion

This study significantly advances the work of Richardson
et al. (2023) by conducting a more in-depth and refined analysis
of the OA planetary boundary. It addresses limitations of pre-
vious assessments, incorporates updated scientific information,
utilises additional biological indicators, and formally accounts
for uncertainties. This leads to a revised and more accurate,
ecologically sound definition of the OA planetary boundary.
The main advancement lies in shifting from an assessment
based primarily on the changing chemistry to a more holistic
approach that considers uncertainties, regional variations, sub-
surface impacts and the biological consequences of exceeding
the boundary.

Taking into consideration the uncertainties from global model
ensembles, regional variability and uncertainties associated
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(C) QArag

changes in the coastal regions are likely to be much larger and
underestimated in this work. Our analysis of the global coasts
suggests that the OA signal still results in a reduction in suitable
habitat for economically important calcifying species (i.e., Feely
et al. 2024). The analysis here does not consider extreme events
or abrupt shifts in conditions, which could be more damaging
to local populations than the longer-term chronic changes. This
is known to be the case for temperature, where population die-
offs have been observed as a result of marine heatwaves (Smale
et al. 2019). However, the only example, to date, of population
die-offs due to periodic OA events is the Pacific oyster larvae
on the west coast of North America, where natural upwelling
combined with OA has resulted in increased frequency and in-
tensity of OA events impacting hatcheries in the region (Barton
et al. 2012, 2015). Although some variability is inherently in-
cluded in the work here through the model-data uncertainty
propagation, these events would add even more variability and
ultimately could result in earlier exceedance of critical condi-
tions and enhanced biological implications. Future work should
include improved coordination between chemical and biological
studies, as well as assessing higher resolution temporal environ-
mental data to properly capture the environment that organisms
are exposed to, including the frequency and extent of extreme
conditions.

Large portions of the subsurface have already changed sig-
nificantly from pre-industrial conditions. This was recently
highlighted in a paper that reconstructed ocean interior

Arag
marginal conditions for coral systems, with coral reefs distribution overlaid on each map in purple dots. (a) Pre-industrial Q

conditions at 10% reduction from pre-industrial levels, and (d) Q,, .. .

90°E 180°W

20% reducti

180°W 90°W

4.38 5.25 6.13 7
)

Arag

), highlighting the 3.5 contour to show the regions that can be considered

Arag’ (b) year 2020 Q
conditions at 20% reduction from pre-industrial levels.

Arag’

acidification over the industrial era, confirming that signifi-
cant changes are occurring in the interior ocean due to the up-
take of anthropogenic CO, (Miiller and Gruber 2024). Indeed,
in addition to the horizontal spatial squeeze at specific depth
ranges that is highlighted here, Miiller and Gruber (2024)
emphasise that shoaling of the aragonite saturation horizon
«Q Arag = 1) has occurred in some places by more than 200 m,
which is therefore causing a vertical squeeze on ‘safe’ habitat
for many species. For example, the proportion of habitat that
has passed marginal conditions at each individual depth layer
for pteropods (1.2 threshold) is 16.4% by year 2020 at the sur-
face, 13.6% at 50m, 23.4% at 100m and 42.7% at 200 m (full re-
sults in Tables S10-S13). Such vertically stratified information
is especially useful for comparative purposes of species that
occupy various depth layers to establish the extent of the ver-
tical habitat squeeze and determine their relative sensitivity.
The regional variability in shoaling (largest amount of shoal-
ing in the Southern Ocean and North Atlantic, least amount of
shoaling in the North Pacific) highlights again the complexity
of OA in the 3-dimensional space of the ocean compared to the
2-dimensional surface. This vertical and horizontal squeeze
in the chemistry needs to be recognised in assessing planetary
biogeochemical functioning, feedbacks to the carbon cycle,
habitat suitability and ecosystem stability.

Loss of ecosystem function or suitable habitats can lead to
fragmentation, the breaking up the continuous distribution
of a species into smaller, isolated patches. This fragmentation
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FIGURE4 |

Regional assessment of ocean acidification in year 2020, relative to the boundary of 20% reduction from pre-industrial aragonite sat-

uration state for each depth layer. (a) surface, 0m, (b) 50m, (c) 100m and (d) 200 m. The grey bands represent the boundary, the extent of each wedge
represents how far each region has changed. Data is multi-model medians from Jiang et al. (2022) and Jiang (2024) and includes + propagated errors

both on the 2020 value (black lines on each wedge) and the boundary (grey band). Regions are defined as in Figure 1.

directly reduces population connectivity, as individuals
within the fragmented habitats have reduced opportunities
for interaction, mating and dispersal. Reduced connectivity
limits gene flow between populations, which are essential
for maintaining genetic diversity and sustaining adaptation
potential, whereby isolated populations with restricted gene
flow are more susceptible to inbreeding and reduced evolu-
tionary potential (Bertness and Gaines 1993). Fragmentation
can also limit larval dispersal, reducing the ability to seed
populations, with isolated populations become increasingly
vulnerable to local extinction. As such, maintaining popula-
tion connectivity is crucial for ensuring the long-term survival
of marine species. More accurate OA boundary assessment
as demonstrated in this study not only supports decisions
on climate mitigation but can help in devising conservation
strategies (e.g., Nissen et al. 2024), for example, by provid-
ing a stronger scientific foundation for setting targets within
policy agreements, such as the Biodiversity Beyond National
Jurisdiction (BBNJ) agreement, as well as Kunming-Montreal
Global Biodiversity Framework (CBD 2022).

Based on our new analysis of uncertainties, surface and sub-
surface changes and crossing into marginal conditions for key
biological indicators, we propose that if a single value is to
be used as an OA planetary boundary, it should be set at a
more conservative value of 10% decline from pre-industrial
average global surface Q Arag conditions, rather than 20%. A
boundary set to 10% pre-industrial conditions will: (1) Limit
the area of Arctic surface ocean that is undersaturated to less
than 10%; (2) Sustain polar habitats and protect sensitive spe-
cies such as pteropods from shell dissolution, that is, using
this lower boundary, 57% of the upper 200 m of polar ptero-
pod habitat will be at or below conditions that result in mild
shell dissolution, with only 3% of the habitat space at or below
conditions that result in severe dissolution; (3) Preserve condi-
tions in tropical regions above the level required for adequate
coral growth: limiting the areal loss of suitable coral habitat
to 28% of the low latitude regions (Figure 3); and (4) Sustain
economically and ecologically relevant bivalves in the coastal
regions, not just protecting them against OA but also increas-
ing their resilience to other stressors, including warming
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and deoxygenation. The percentage of global coastal habitat
being unsuitable for oyster production falls to just 10% if a 10%
boundary is used.

The 10% boundary is a more stringent and ecologically meaning-
ful target, reflecting the findings of this study that 20% reduction
provides insufficient protection of many crucial ocean habitats
beyond the surface waters. This boundary of 10% should be con-
sidered as the lower end of an uncertainty range of increasing risk,
especially important as OA should be considered in combination
with other stressor and extreme events that can cause critical hab-
itat and biodiversity loss, and restructure ecosystems. However,
redefining the OA boundary to 10% means that the boundary
was first crossed during the 1980s, with the entire surface ocean
having passed this boundary by the 2000s. Preventing further OA
increase and minimising risks to ocean ecosystems on a global
level can only be done by reducing CO, emissions along with rapid
atmospheric greenhouse gas removal (Lee et al. 2023).

It is important to recognise the limitations of an OA boundary
that only uses aragonite, as mentioned by previous critiques of
the planetary boundary assessment (Biermann and Kim 2020;
Brewer 2009; Nash et al. 2017). Q Arag is just one parameter of
several that represent how ocean chemistry is changing in re-
lation to OA. For instance, some biological and biogeochemical
processes (e.g., primary production, carbon fixation, nitrogen
cycling) have been shown to be influenced by shifts in pCO,
or pH (Findlay and Turley 2021). Considering how these pro-
cesses, and importantly their interactions, relate to maintaining
a safe operating space is a complex task, especially given many
of the results come from studies that only look at response to
present day and future conditions, with little information about
response to pre-industrial levels, natural variability or through
recent history. As more field studies and monitoring data be-
come available some of these gaps could be filled, and a future
assessment of the OA boundary may be able to bring in these as-
pects as well as improve on our uncertainty assessment. In fact,
it may be more pertinent to focus on the CO, level that drives
OA-related change rather than pick one specific OA chemical
indicator (Q Arag). Indeed, as recognised by others (e.g., Rose
et al. 2024), OA should not be the only marine process con-
sidered in the context of planetary boundary framework. For
example, ocean warming, including marine heatwaves, and
deoxygenation have wide-scale repercussions for ocean health
and planetary system functioning. The complex interactions
between these drivers also needs to be considered as they man-
ifest on different time-frames, to varying degrees in different
locations, and can result in different responses in the ecosystem
when considered together, in contrast to when considered in iso-
lation (Alter et al. 2024).

To complement the assessment of which parameter to use,
further fundamental work is required to better character-
ise biological indicators and quantify their uncertainties,
where possible taking into account life-stage specific sensi-
tivities, pre-exposure conditions and adaptation strategies,
recognising additional conditions that could impact the
thresholds and their durations. While the thresholds used
here do not cover these issues specifically, they represent the
level at which potential harm may occur, in keeping with the

planetary boundary framework of remaining within a safe
space. Further developments of the environmental envelope
assessment, to complement the threshold assessment, could
include using higher resolution data that can improve the rep-
resentation of exposure conditions both in space (horizontally
and vertically) and in time (sub-monthly). Indeed the environ-
mental envelopes defined here may underestimate the range
of Q.- An underestimate will result in a more precautionary
‘limit’, but is more representative of large-scale averages rele-
vant for the planetary boundary framework.

We conclude that this study provides a more robust and nuanced
scientific basis for the OA planetary boundary framework, al-
though further developments, as outlined above, should be
considered. This framework is being used in policy decisions
related to OA, which provide the scientific basis for national
and international collaboration and action, including informed
prioritisation of marine conservation efforts. Regions and spe-
cies most vulnerable to OA can be targeted for specific conser-
vation measures. The subsurface impacts, in particular, require
a shift in focus to protect mesopelagic and deep-sea habitats
and the species dependent on them. The incorporation of un-
certainty in the study highlights the need for adaptive manage-
ment strategies to deal with OA, the potential benefits of which
are improved resource management and increased resilience.
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