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ABSTRACT: This study describes a novel combination of methods to remove spurious spectral peaks, or “spurs,” from
Doppler spectra produced by a vertically pointing, S-band radar. The University of Massachusetts S-band frequency-modulated,
continuous-wave radar (UMass FMCW) was deployed to monitor the growth of the CBL over northern Alabama during the
VORTEX–Southeast field campaign in 2016. The Doppler spectra contained spurs caused by high-voltage switching power sup-
plies in the traveling wave tube amplifier. In the original data-processing scheme for this radar, a median filtering method was
used to eliminate most of the spurs, but the largest ones persisted, which significantly degraded the quality of derived radar mo-
ments (e.g., reflectivity, Doppler velocity, and spectrum width) and hindered further analysis of these data (e.g., hydrometeor
classification and boundary layer height tracking). Our technique for removing the spurs consists of three steps: (i) a Laplacian
filter identifies and masks peaks in the spectra that are characteristic of the spurs in shape and amplitude, (ii) an in-painting
method then fills in the masked area based on surrounding data, and (iii) the moments data (e.g., reflectivity, Doppler velocity,
and spectrum width) are then recomputed using a coherent power technique. This combination of techniques was more
effective than the median filter at removing the largest spurs from the Doppler spectra and preserved more of the under-
lying Doppler spectral structure of the scatterers. Performance of both the median-filter and the in-painting methods is
assessed through statistical analysis of the spectral power differences. Downstream products, such as boundary layer
height detection, are more easily derived from the recomputed moments.

SIGNIFICANCE STATEMENT: This manuscript describes a novel combination of image and signal processing tech-
niques used to recover meteorological observations from corrupted Doppler radar spectra. This successful recovery of
meteorologically significant information illustrates the importance of retaining Doppler spectra when practical. In seek-
ing solutions to data quality issues, the atmospheric science community should remain cognizant of promising techni-
ques offered by other disciplines. We present this data rescue study as an example to the meteorological community.

KEYWORDS: Data quality control; Quality assurance/control; Radars/Radar observations; Weather radar signal processing;
Kalman filters; Pattern detection

1. Introduction

Radars have been used to study the atmospheric boundary
layer (ABL) since at least the 1960s (Atlas et al. 1966; Hardy
et al. 1966; Kropfli et al. 1968; Hardy and Katz 1969; Lane
1969; Gossard 1990; Tanamachi et al. 2019; Kotthaus et al.
2023) using backscatter from inhomogeneities in the refractive
index. Radars have the ability to detect wind and turbulence
and can be used to gauge the relative stability of atmospheric
layers (Gage and Balsley 1978). Studies have demonstrated

that radars with 10-cm (i.e., S band) or longer wavelengths are
superior for the detection of Bragg scattering (Knight and
Miller 1998; Ottersten 1969; Ralph 1995). Bragg scattering oc-
curs when “electromagnetic waves impinge on regularly spaced
objects or regions of air with different indices of refraction
leading to constructive interference between the scattered
waves” (Rauber and Nesbitt 2018). Therefore, Bragg scattering
signifies turbulent mixing of air with different temperature and
moisture characteristics, which cause variation in indices of re-
fraction (Rauber and Nesbitt 2018). Constructive interference
of radar signals also occurs when scatterers are located at dis-
tances equal to half the radar wavelength (Wolff 1998; Rauber
and Nesbitt 2018). Ralph (1995) determined the typical reflec-
tivity thresholds between Bragg scattering and Rayleigh
scattering at various radar wavelengths, affirming that Bragg
scatter is more frequently detected by S-band radars than by
C- and X-band radars.

One type of S-band radar used to monitor the growth of
the boundary layer is a frequency-modulated, continuous-
wave (FMCW) radar. The phrase “continuous wave” means
the radar uses a high duty cycle, transmitting at or near
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100% of the time (Richter 1969; İnce et al. 2003; Waldinger
2018). As a result, more energy is incident on scatterers than
with a conventional pulsed radar, yielding high radar sensitivity
(Richter 1969; İnce et al. 2003; Waldinger 2018). FMCW systems
transmit a varying linear frequency-modulated waveform with
a long pulse repetition period (Richter 1969; İnce et al. 2003;
Waldinger et al. 2017). The received echoes are a delayed version
of the transmitted waveform, and when the two signals are com-
bined, the resulting beat frequency is proportional to the range
of the target (Richter 1969; İnce et al. 2003; Waldinger et al.
2017). The beat frequency signals are recorded and transformed
into pulsed radar-like echoes using a Fourier transform (Eaton
et al. 1995; İnce et al. 2003; Waldinger et al. 2017).

S-band FMCW radars have been used to monitor the
boundary layer for more than four decades (Gossard 1990
and references therein; İnce et al. 2003). These radars are
used to study boundary layer morphology and evolution and
to measure the refractive index structure with high spatial and
temporal resolution (Chadwick et al. 1976; Waldinger et al.
2017). S-band radars can be used to determine the heights of
the convective thermals in the boundary layer (Melnikov and
Zrnić 2017), which aids in the detection of the boundary layer
height. The use of these types of Doppler radars in field cam-
paigns can aid in understanding the vertical mesoscale struc-
ture of the atmosphere (Gage and Balsley 1978).

The radar used in this study is the University of Massachusetts
(UMass) FMCW radar (UMass FMCW; İnce et al. 2003).
UMass FMCW (Fig. 1), developed at the Microwave Remote
Sensing Laboratory (MIRSL; Eaton et al. 1995; İnce et al. 2000,
2003), is an S-band, vertically pointing, single-polarized, pulse
compression radar with a 3-dB beam width of 3.58. This radar is
mounted on a truck for mobility and is designed to be deployed
at a fixed location continuously collecting observations for long
periods of time (Tanamachi et al. 2019). UMass FMCW uses a
pair of 2.4-m-diameter parabolic dish antennas, one for transmis-
sion and one for reception, each with 34-dB gain (İnce et al.
2003). UMass FMCW has high temporal (;16 s) and vertical
(;5 m) resolution (Tanamachi et al. 2019).

UMass FMCW was deployed to monitor the growth of the
CBL over northern Alabama during VORTEX–Southeast
(VORTEX-SE; Rasmussen 2015; Tanamachi et al. 2019). The
purpose of VORTEX-SE was to investigate Southeast U.S.
tornadoes, their environments, and their societal impacts
(Koch 2016; Rasmussen and Koch 2016). Differences between
the Southeast and Great Plains environments have implica-
tions for the growth and evolution of the CBL, which in turn
affects the atmosphere’s ability to generate and sustain severe
thunderstorms. During the 2016 VORTEX-SE field cam-
paign, UMass FMCW was deployed at the Tennessee Valley
Research and Extension Center near Belle Mina, Alabama
(34.69048N, 86.88158W), and operated almost continuously
from 7 March to 30 April 2016. This site was selected because
it is relatively free from clutter and collocated with other me-
teorological instruments.

The objective of this deployment was to collect high tempo-
ral resolutions of the boundary layer structure over northern
Alabama and predict the timing of destabilization and convective
initiation. The radar was configured to collect 256 frequency-
modulated sweeps over a 1.34-s interval to generate a Doppler
spectrum. Twelve spectra were then averaged every 16.1 s. From
these averaged spectra, the moments (reflectivity Z, radial veloc-
ity Vr, and spectrum width sy) were calculated. Each spectral
profile in the 2016 dataset comprises 1024 spectra at 5-m height
intervals from 0 to 5.1 km above radar level (ARL). In total,
approximately 14000 spectral profiles were collected over the
2016 field campaign (Frasier et al. 2016). UMass FMCW data
from VORTEX-SE 2016 are openly available through the Earth
Observing Laboratory (EOL) archive (https://data.eol.ucar.edu/
dataset/527.016).

Unfortunately, the Doppler spectra collected in 2016 were
contaminated by “spurs,” or spurious spectral peaks, caused
by high-voltage switching power supplies in the traveling
wave tube amplifier (Waldinger 2018). An example of such a
contaminated spectral profile is shown in Fig. 2a. The spurs
appear as small, bright, horizontally elongated double peaks.
Electronic spurs can be distinguished from naturally occurring
peaks in the spectra (e.g., a bird or bug) because they are time
continuous and occur at nearly constant heights and ampli-
tudes owing to their electronic origin, whereas echoes from
birds and bugs vary widely in height and spectral power. How-
ever, spurs vary in frequency from sweep to sweep, defying
fixed notch filtering. Spectral peaks at 0 m s21 Doppler
velocity are caused by ground clutter and antenna leakage
(Waldinger 2018). Tanamachi et al. (2019) employed a me-
dian filtering technique (Fig. 2b) to eliminate most of the
spurs, but the largest ones were still present, which degraded
the quality of radar moments (e.g., Z, Vr, and sy) and hin-
dered further analysis of these data (e.g., hydrometeor classifi-
cation and boundary layer height tracking). (The traveling
wave tube amplifier was replaced with a solid-state amplifier
in 2017, which eliminated the spurs.) This paper describes a
unique data quality issue affecting 2016 UMass FMCWDopp-
ler spectra and a novel image processing–based solution that
allowed much of the underlying information to be recovered.
In this study, we introduce the data rescue method to the

FIG. 1. UMass FMCW at its 2016 VORTEX-SE deployment location
near Belle Mina. Photo by the second author.
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meteorological community, in the hopes our solution may be
applicable to other similarly afflicted datasets.

2. Methodology

a. Description of in-painting algorithm

The method selected to remove and interpolate across the
spurs was the Chan et al. (2017) “in-painting” image restora-
tion method, which was developed to remove noise in 2D im-
ages. The in-painting method is a denoising algorithm that
converges to a fixed point. This technique is performed over
an entire image, simultaneously masking all outliers and filling
them in according to surrounding data. The version adapted
for the UMass FMCW radar data can be found at https://
github.com/sbeverid/inpainting.

The in-painting method takes a corrupt image (y 2 R
n) and

uses a maximum a posteriori estimation, with the goal of maxi-
mizing the posterior probability, to generate a denoised image x:

x̂ 5 argmax
x

p(x|y)
5 argmin

x
{2logp(y|x) 2 logp(x)}, (1)

where x̂ is an estimate of what x (denoised image) is supposed
to be based on y (corrupt image), p(y|x) is some conditional

probability defining the forward imaging problem (see next),
and p(x) is a prior distribution of the entire image defining
the probability distribution function of the denoised latent im-
age. In this case, the prior information is the algorithm’s idea
of how the denoised latent image should look. The objective
is to find a denoised image that maximizes the conditional
probability and is the best approximation of the real image.

Equation (1) can be written as an optimization problem:

x̂ � argmin
x

f (x) + lg(x) (2)

where x̂ is the entire spectra-height image, f (x̂)5def 2logp(y|x)
is the forward model of the image formation process, which
tries to minimize the noise and other corruption (Rocadenbosch
et al. 2020), g(x) 5def 2(1/l)logp(x) is the regularization function
that controls how natural the reconstructed image appears, and
l . 0 is the regularization parameter. The l controls how much
prior information should be used to do the image reconstruc-
tion [i.e., how much f(x) and g(x) are needed]. Using a l that is
too large can result in a loss of detail from the original image
because too much weight will be given to the prior. A very
small l can result in an image that still has a lot of corrupt pix-
els. The l should ideally be chosen such that it is a good combi-
nation of both the prior and y. The solution is determined for
the entire image in one iteration process.

FIG. 2. Spectral profile for a clear-air case at 0001 UTC 31 Mar 2016, shortly after local sunset: (a) raw spectral power (dBZ); (b) as in
(a), but after application of the median filter; and (c) as in (a), but after application of the in-painting method. In (a), two particularly prob-
lematic large spurs at 3.9 and 1.3 km AGL are labeled (yellow arrows), as are several examples of smaller spurs (white arrows) and bio-
scatterers (orange brace). The reader is invited to inspect the corresponding features in (b) and (c).
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It is difficult to solve the forward model and the prior at the
same time because we want a solution that will work for any
prior x. Therefore, a standard technique called alternating di-
rection method of multipliers (ADMM; Boyd et al. 2011;
Chan et al. 2017) is used, where we introduce a new variable v
and add a constraint. The optimization problem is now

(x̂, v̂) � argmin
x,v

f (x) + lg(v), subject to x � v: (3)

One of the common ways to solve for a constrained optimiza-
tion problem is to find the saddle point of the Lagrangian
(Boyd et al. 2011). Since the Lagrangian itself is not usually
stable, an augmented Lagrangian is used here:

L (x, v, u) 5 f (x) 1 lg(v) 1 uT(x 2 v) 1 r

2
‖x 2 v‖2, (4)

where u is the Lagrangian multiplier and r determines how
much x and v are at each iteration. Equation (4) introduces a
fourth term, which is added to prevent x from moving too far
away from v, thus making the Lagrangian more stable.

The reader is referred to Chan et al. (2017) for a complete
derivation of the traditional ADMM algorithm. The remain-
der of the derivation discussed below is a modified version of
the ADMM. A continuation scheme is applied where r is in-
creased by rk11 5 gkrk for gk $ 1. An approximate saddle
point of (4) can be obtained by iteratively solving the follow-
ing set of subproblems until the algorithm converges:

x(k+1) � argmin
x

f (x) + (rk/2)‖x 2 (v(k) 2 u(k))‖2, (5)

v(k11) 5 D sk
(x(k11) 1 u(k)), (6)

u(k11) 5 u(k) 1 (x(k11) 2 v(k11)), and (7)

rk11 5 gkrk: (8)

In Eqs. (5)–(7), D sk
is a Gaussian image denoiser and

sk 5
def

������
l/rk

√
is the “noise level” the denoiser takes to control

the strength of denoising. A larger sk results in a smoother im-
age, whereas a smaller sk retains more details from the origi-
nal image. Equation (5) is an inversion step and (6) is a
denoiser step, involving the prior.

For the in-painting method, the problem takes the following
form:

x̂ � argmin
x

1
2
‖Sx 2 y‖2 + lg(x), (9)

where S is a diagonal matrix of size (N 3 N), which contains
a list of pixels. The N is the total number of pixels in the im-
age. Each location corresponds to a pixel in the image; if the
pixel is corrupted, then that entry is zero. Once you apply the
matrix S to the original, corrupt image (Fig. 3a), you will get
an image with the corresponding missing pixels. Implementa-
tion of S is done using a mask (Fig. 3b).

The inversion step (5) for in-painting becomes

x̂ � argmin
x

1
2
‖Sx 2 y‖2 + r

2
‖x 2 x̃‖2, (10)

and the solution becomes

x̂ 5 (STS 1 rI)21(STy 1 rx̃) (11)

(Fig. 3c). The STS is a diagonal matrix with binary entries:
pixel present 5 1 or pixel not present 5 0. The closed-form
solution can be executed using elementwise division or, in this
case, “pixelwise” division for all pixels.

In essence, each UMass FMCW spectral profile (e.g., Figs. 2a
and 5a) was treated as a 2563 1024 pixel image, that is, the cor-
rupt image y. The in-painting code requires a first guess for the
locations of spurs in an image, which were provided by labeling
local extrema in the Laplacian of the spectral profile. After
these extrema were masked, the range of values in the image
(from 250.5 to 147.6 dBZ) was scaled to (0, 1), as required by
the in-painting code (Fig. 5b). The in-painting code then filled

FIG. 3. Simplified example of the in-painting process using a 5 3 5 image with (a) a peak in the center pixel, (b) implementation of a
mask around the peak, and (c) the output image with the peak filled in according to surrounding data. In this example, (a) corresponds to
y, a corrupt image, and (c) is x̂, the estimate of the denoised image x.
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in the masked area according to surrounding data. In cases in
which the holes created by the masking procedure were too
large for the in-painting method to fill, the masked 256 3 1024
spectral profile was downsampled to a 128 3 512 pixel image,
to which the in-painting code was then applied. The resulting
spectral profile was then scaled back up to the original size and
dynamic range. Last, regardless of whether the downscaling
substep occurred or not, those portions of the spectral profiles
that were not masked in the Laplacian filtering step were re-
stored. The resulting spectral profiles are hereafter referred to
as the “in-painted” spectral profiles (e.g., Figs. 2c, 4, and 5c).

The in-painting method is superior to simplistic methods,
such as linear interpolation, because the denoiser is more
powerful. Denoisers have an image prior, either implicitly or
explicitly defined, that ensures the reconstructed image is
close to the distribution of images, whereas simple linear in-
terpolation does not. A limitation regarding the in-painting
method is that completely saturated pixels, such as in instan-
ces where aircraft pass over the radar, cannot be fixed by the
in-painting method because the noise floor is raised. In the
2016 dataset, this was not a common issue and cases were eas-
ily eliminated by inspection.

FIG. 4. A flow diagram of the data rescue processes used in this study.

FIG. 5. Example of the in-painting process for a clear-air Doppler spectral profile at 0000 UTC 31 Mar 2016 with (a) the raw spectral
profile containing the peaks, (b) implementation of a mask around the peaks with the normalized dynamic range, and (c) the output in-
painted image with the peaks filled in according to surrounding data.
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b. Spectral power differences

To qualitatively evaluate the performance of the in-painting
method relative to the median filter, spectral power differ-
ences were calculated and plotted. Multiple three-panel plots
were produced containing spectral power differences for time
indices 0, 100, and 200, coinciding with approximately the be-
ginning, middle, and end of a given hour. The authors believe
that these time indices were sufficient to give an overview of
how well the in-painting method performed compared to the
median filter. To visualize the spectral power differences,
histograms were produced of spectral profile pixels for each
5-dB spectral power difference bin. The bins (25, 0 dB) and
(0, 5 dB) were masked because their frequencies dominated
the histograms by several orders of magnitude.

c. Regenerating UMass FMCW moments using the
coherent power (CP) technique

The moments of Doppler spectra are the basis of three pri-
mary weather radar variables: Z, Vr, and sy. When the quality
of the Doppler spectra is compromised, it impacts the quality
of these derived spectral moments. Once the quality of the
Doppler spectra was improved, we generated a new version
of UMass FMCW spectral moments from the in-painted
spectra.

The velocities of targets within a radar sample volume vary
due to azimuthal shear of radial velocity, variations in target
fall speeds, small-scale turbulent motions (Rauber and Nesbitt
2018 and references therein), and other factors (Doviak and
Zrnić 1993). The radial velocity assigned to that sample vol-
ume is a representation of the power-weighted average target
motion over all targets within the sample volume. When the
different phase shifts for all of the different pulse pairs taken
within a given sample volume are aggregated, a power-
weighted spectrum of velocities, that is, a Doppler spectrum,
is produced.

Traditionally, radar reflectivity is calculated using noise-
subtracted power measurements (Ulaby et al. 1982; Doviak
and Zrnić 1993; Pazmany and Haimov 2018). In the original
UMass FMCW moments data, the noise floor was assumed to
be the median power of the spectrum in clear-air conditions,
or in the case of precipitation, the noise floor was estimated
from laboratory measurements. In the 2016 data, the traveling
wave tube (TWT) amplifier introduced the large spurs in the
Doppler spectra, and their spectral leakage artificially ele-
vated the noise floor. This phenomenon can be seen in the
Doppler spectra (Figs. 2a and 6a) as a spectrumwide enhance-
ment of received power, or stripes extending horizontally
from the large spurs. Unwanted striping was present in the re-
flectivity and signal-to-noise ratio (SNR) fields, even after ap-
plication of in-painting, because the elevated noise floor
associated with the largest spurs was not removed by the in-
painting method (Figs. 2c and 6c).

To mitigate the unwanted striping in reflectivity and SNR
caused by the spur-induced fluctuations in the noise floor, we
applied the CP technique (Pazmany and Haimov 2018) to re-
generate these and other moments data. Coherent power Pcp is
estimated directly from the pulse-pair correlation. Its principal

advantage over noise-subtracted power is that it does not re-
quire an a priori estimate of the noise. The estimate of coher-
ent signal power P̂ cp for N samples is given by Eq. (26) of
Pazmany and Haimov (2018) as

P̂ cp 5

∣∣∣∣∣
1
N
∑
N

k51
V*(k)V(k 1 m)

∣∣∣∣∣ 5 |e juD (Icp 1 jQcp)|, (12)

where m is the integer lag, V(k) is the complex voltage of the
kth pulse, and fD is the Doppler phase shift. [The term inside
the summation operator of Eq. (12) is the single-lag correla-
tion m1.] Pazmany and Haimov (2018) showed that in the
limit of large N, hIcpi 5 rmPs, where rm is the signal correla-
tion for meteorological targets (Doviak and Zrnić 1993), and
hQcpi 5 0 because the noise is assumed to be uncorrelated
from pulse to pulse. This assumption is valid for pulsed radars
in which the pulse interval is much less than the inverse of the
signal bandwidth. This condition that is satisfied for UMass
FMCW, which has a signal bandwidth of 30 MHz and, in
2016, used a pulse (sweep) interval of 50 ms (Waldinger et al.
2017). In the presence of meteorological targets, that is, as
SNR increases and rm approaches unity, P̂ cp approaches the
signal power. From P̂ cp, coherent signal-to-noise ratio (SNC)
and coherent reflectivity factor Zc were derived (Fig. 4).

The CP technique has been shown to be particularly useful in
low-SNR scenarios with a large number of samples, such as the
UMass FMCW detections of Bragg scatter, based on N 5 256
samples per profile. The reader is referred to Pazmany and
Haimov (2018) for a comprehensive explanation of this tech-
nique and proof of convergence.

d. Boundary layer height detection algorithm

Since one of the objectives of VORTEX-SE was to quanti-
tatively assess boundary layer growth, an objective method to
measure the boundary layer height in reflectivity observations
was needed. Deriving boundary layer height from the UMass
FMCW served as a metric to evaluate the improvement of the
in-painted Doppler spectra on downstream products.

The method selected to estimate the CBL depth was the
boundary layer height detection algorithm of Lange et al.
(2015), employing an extended Kalman filter (EKF). The
EKF is a recursive adaptive filter that parameterizes the time-
changing shape of the CBL-to-free-atmosphere (FT) transi-
tion reflectivity profile [hence, the CBL height (CBLH) as
well as the CBL accessory parameters] via a state vector and
statistical parameters that are updated at each succeeding dis-
crete-time observation tk. The EKF relies on two stochastic
models that assimilate the statistics of the estimation problem:
1) the state-vector model and 2) the measurement model.

The first item models the state-vector time transition from
tk to tk11 upon the assumption of a state-vector noise covari-
ance matrix input by the user. In other words, the state-vector
model describes the assumed time-changing behavior of the
CBL atmospheric parameters described by the state vector.

The second model relates the state vector to the observation
vector (i.e., the radar reflectivity measurements). Because of
the relatively abrupt CBL-to-FT transition, an error-function-
like shape is roughly assumed as the measurement model.
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FIG. 6. (a)–(c) Spectral profiles as in Fig. 2 and (d)–(f) spectral power differences, but for a clear-air case on 0058 UTC 14 Mar 2016,
shortly after local sunset. In (a), two large spurs at 3.9 and 1.3 km AGL are labeled, as are several exemplary smaller spurs, bioscatterers,
and spread-spectrum turbulence marking the top of the inversion layer at 0.8 km AGL.
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Additionally, observation noise is also assimilated into the
measurement model via the noise covariance matrix. Measure-
ment noise is essentially related to the SNR.

Similar EKF approaches have also been used for CBLH
estimation in lidar (laser radar) and to estimate the CBLH in
synergy with, for example, microwave radiometers (Lange
et al. 2015; Banks et al. 2015; Da Silva et al. 2022). The proc-
essing steps are as follows [the reader is directed to Lange
et al. (2015) for additional information regarding the bound-
ary layer height detection algorithm beyond what is discussed
below].

The first step in the boundary layer height detection algo-
rithm is a preprocessing step to generate a “clean” time–
height reflectivity profile where Bragg scattering dominates:
A median filter is used to remove noise caused by Rayleigh
scatterers, such as bioscatterers, and instrumentation effects.
The resulting reflectivity image is an approximation of what
the radar would see if only Bragg scattering was present, from
which the CBL depth can then be estimated.

The next step is to run the EKF. The EKF requires initial
guesses for the a priori state vector (i.e., the previous time
step’s reflectivity profile), a priori state-vector error covari-
ance matrix factor (which models the user’s uncertainty of the
state-vector initial guess), atmospheric state-noise covariance
matrix factor, and the bounds of the filter, which delineate the
estimated start and end ranges of the CBL and the FT inter-
vals at each discrete time tk. Last, the measurement noise co-
variance matrix is computed over uniformly spaced height
intervals from the estimated SNR at each tk under the as-
sumption of ergodicity. With each iteration of the EKF, the
filter minimizes the mean-square error over time between the
measured and the predicted reflectivity so that a new, a poste-
riori estimate of the CBL height is generated.

One limitation to the boundary layer height detection algo-
rithm is that}for enhanced convergence}the user assumes
relatively slowly varying quantities. For the same reason, the
search space of the EKF is limited by error covariances, so
there are no large jumps in the boundary layer height. Track-
ing the stable boundary layer and elevated residual layer
(Saeed et al. 2016) was beyond the scope of this study because
the focus of VORTEX-SE was on the CBL.

To quantify the improvement of the algorithm with the in-
painted moments, histograms were produced of the frequency
of CBL height values. These are discussed in the next section.

3. Results

a. Spectral power differences

When examining the spectral power difference plots (Figs. 6d–f),
areas that are brighter and have higher spectral power differ-
ence values indicate an improvement in the removal of the
spurs (i.e., the spurs were more effectively flattened by the in-
painting method than the median filter method). Regions that
are darker with negative spectral power indicate spurs that
were more effectively removed by the median filter than by
the in-painting method. Additionally, for the in-painting
method to perform better than the median filter method, we

expect a right-tailed distribution in the spectral power differ-
ence histograms.

1) CLEAR AIR

For clear-air (i.e., nonprecipitation containing) spectra, the
median filter method did a good job at removing the spurs,
particularly the smaller peaks, as can be seen from the raw mi-
nus median-filtered panels of the spectral power difference
plots (Fig. 6d). However, the in-painting method better re-
moved the larger peaks (Fig. 6e), as indicated by the greater
spectral power differences in those areas. There were negative
spectral power difference values when the in-painted spectra
were subtracted from the median-filtered spectra, indicating
the in-painting method did not remove the small peaks as well
as the median filter method (Fig. 6f).

Exemplary spectral power difference histograms for the
clear-air spectral profile shown in Fig. 6 are presented in Fig. 7.
Both the median-filtered and in-painting methods reduce the
magnitudes of raw spectral peaks, as evidenced by the right-
tailed distributions of spectral power differences (Fig. 7). Both
methods change similar numbers of spectral gates (pixels)
by .k5 dBk (;2%). However, the distributions of those
changes are slightly different. The median filter removes
smaller spectral peaks (i.e., those with maximum differences
of ;,20 dB) more effectively than the in-painting method,
whereas the in-painting method more effectively removes
larger spectral peaks, including the problematic large spurs
(i.e., those with maximum differences . 35 dB) (Fig. 6). This
notably different behavior between the two filtering methods
is evidenced in Fig. 7 by the fact that the blue bars are taller
than the red bars for spectral power differences up to ap-
proximately 20 dB. Above this 20-dB threshold, the trend
reverses. Negative spectral power differences (,0 dB) indicate
that the in-painting method restores some small spurs that
would otherwise be smoothed out by the median filter. While
the median filter smooths out small spurs, which is desirable,

FIG. 7. Spectral power difference histograms for the Doppler
spectra shown in Fig. 6, for a clear-air case. Histogram bins are
each 5 dB wide, but the bars have been plotted with different
widths to aid readability. The (25, 0 dB] and (0, 15 dB] bins have
been omitted because they dominate the distribution by two orders
of magnitude.
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FIG. 8. As in Fig. 6, but for precipitation on 14 Mar 2016. Note that the Doppler velocity has not been dealiased.
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it also smooths out low-amplitude spectral features that we may
wish to retain. Examples of such features include monodisperse
precipitation spectral peaks as might be encountered in the
presence of size sorting, or bioscatterer activity (e.g., Fig. 6a).
In contrast, the in-painting method restores some of these
features in unmasked regions.

2) PRECIPITATION

In precipitation cases, an example of which is shown in Fig. 8,
the spurs have a smaller impact because power associated with
most of the spurs does not exceed that of the rain. As in the
clear-air case, the in-painting method better removes the large
spurs than the median filtering method, particularly in regions
of the spectral profiles unaffected by rain (Fig. 8). Small peaks
are not as well removed with the in-painting method because
they evade detection during the initial Lagrangian peak-finding
step (Fig. 4) and therefore go unmasked.

The spectral difference histograms for precipitation cases
also have right-tailed distributions (e.g., Fig. 9). However, when
compared to the corresponding histograms for clear-air cases,
fewer spectral gates (0.5%–1.0%) are changed by .k5 dBk.
This is because, in many instances, the spurs have lower power
than, and are therefore obscured by, the rain signal (e.g.,
Fig. 8). Negative spectral differences arise mainly from differ-
ences along the zero line and the edges of the peaks (Fig. 9).
This provides further evidence that the in-painting performs
well on large spurs but does not handle smaller spurs as well.
However, since the smaller spurs have less detrimental impact
on our subsequent analysis than the large spurs, we consider
this result acceptable. A comparison of the relative effects of

the median filter to those of the in-painting method is summa-
rized in Table 1.

b. Moments

The moments generated from the median-filtered Doppler
spectra have spurious reflectivity and SNR peaks at constant
altitudes caused by the largest spurs (bold horizontal lines at
approximately 1.3, 2.6, and 3.9 km in Figs. 10a–d). The in-
painting method removed some of the unwanted horizontal
striping, resulting in cleaner derived moments (Figs. 10e–h
and 11e–h). Removal of the 1.3-km spur is particularly impor-
tant for correct estimation of the CBL height (see next sec-
tion). In addition, the use of coherent reflectivity and SNC,
which are not noise floor-dependent, helped reduce the effect
of receiver saturation between 0 and 400 m AGL that we
dubbed “horizon glow” (Figs. 10a,e). The abovementioned ef-
fects are also evident when comparing reflectivity (Fig. 12)
and coherent reflectivity (Fig. 13) fields for the entire 2016
VORTEX-SE campaign.

c. Boundary layer height detection

Tanamachi et al. (2019) noted that the Lange et al. (2015)
automated boundary layer height detection algorithm strug-
gled to identify the top of the boundary layer in the presence
of the spurious reflectivity peaks caused by the spurs in the
Doppler spectra, even after median filtering was applied.
Because the EKF step of the algorithm relies on the sharp
CBL-to-FT transition and operates purely on the reflectivity
field (section 2d), the algorithm misidentified the spurious re-
flectivity peaks, particularly the one at 1.3 km AGL, as the
top of the CBL (e.g., Fig. 14a). This feature so confounded
the detection algorithm that attempts to apply it to the entire
2016 dataset (Tanamachi et al. 2019) were abandoned. The
CBL tracking algorithm tended to “latch on” to the spurious
1.3 km AGL reflectivity peak any time that the top of the
Bragg scatter layer approached it (e.g., Fig. 14), requiring
manual restart of the filter after the two features diverged and
defeating the purpose of automation.

The combined application of the in-painting and CP tech-
nique methods reduced the amplitudes of the large spurs,
leaving the Bragg scatter at the top of the CBL as the domi-
nant signal in clear air. A consistent diurnal CBL growth and
decay cycle can be seen in the coherent reflectivity time–
height series (Fig. 13). The boundary layer height detection
algorithm was applied to the coherent reflectivity field. A
small modification was made to skip the EKF step of the algo-
rithm if rain was present (i.e., mean reflectivity in the column
was.5 dBZ) and instead simply propagate the previous value

FIG. 9. As in Fig. 7, but for the Doppler spectra shown in Fig. 8,
during precipitation. Note that the y-axis limits differ from those of
Fig. 7.

TABLE 1. Summary of the two spectral processing methods’ effects on Doppler spectra.

Effect on Doppler spectra Median filtering In-painting

Large spurs Peaks reduced; foothills persist Peaks removed; foothills partially removed
Small spurs Peaks reduced; foothills removed Peaks reduced; foothills partially removed
Peak at 0 m s21 Smoothed out Smoothed out
Spectrumwide turbulence Persists Smoothed out
Bioscatterers Smoothed out Retained
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of boundary layer height to the next time step. Boundary
layer heights were flagged if this rain criterion was met, or if
the identification occurred after sunset (when, under quies-
cent conditions, the CBL typically collapses and is replaced
by an inversion).

Qualitatively, the results were superior to those obtained
using the median-filtered reflectivity on account of the larger
Bragg-to-spur reflectivity contrast ratio featured by the in-

painting/CP combination: Retrieval of the CBL height was
consistently successful on 50 out of 54 days of the 2016 field
campaign. Under clear-sky conditions (not cloudy and not
rainy), the CBL grew at an average rate of 1.6 m min21 between
1 and 9 h after sunrise (Fig. 15), leveled off between 9 and 10 h
after sunrise, and then decayed at a rate of 21.3 m min21 until
15 h after sunrise (Fig. 15). For context, the day length varied
from 11 h 40 min on 7 March 2016 (the first day of the

FIG. 10. Clear-air moments from 14 Mar 2016 that were calculated from the (a)–(d) median-filtered Doppler spec-
tra and (e)–(h) in-painted Doppler spectra. In (a), the spurious echoes at 1.3 and 3.9 km AGL are annotated, as are
horizon glow, a layer of bioscatterers, and the decaying residual layer. Note the almost complete removal of the spuri-
ous echo at 1.3 km AGL in all fields in (e)–(h).
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experiment) to 13 h 33 min on 30 April 2016 (the last day of the
experiment).

There were instances where the boundary layer height detec-
tion algorithm failed to accurately detect the decaying CBL and
instead began tracking the residual layer. It may be possible to
tag boundary layer retrievals in the algorithm with a quality flag
based on factors such as time of day, net radiative flux sign, or
presence of clouds and precipitation. However, such a data
quality flag is beyond scope of this study. Synergistic remote
sensing CBLH retrievals involving an EKF detection algorithm

and avoidance of the residual layer have recently been devel-
oped (Da Silva et al. 2022).

To validate the retrieved CBL heights, we compared these
data to those derived from radiosonde data using the parcel
method (Holzworth 1964; Seibert et al. 2000). The NOAA
Atmospheric Turbulence and Diffusion Division (ATDD)
group launched Graw DFM-09 radiosondes from Belle Mina
during VORTEX–Southeast intensive observation periods
(IOPs) (Lee et al. 2016). Of 26 available NOAA ATDD
soundings, only 9 were available within 30 min of a valid

FIG. 11. As in Fig. 10, but for precipitation on 14 Mar 2016. Note the mean radial (vertical) velocity field has not been
dealiased in (b) and (f).
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FMCW-derived boundary layer height during daylight hours
(roughly 1200–2359 UTC at Belle Mina). The dearth of avail-
able soundings on IOP days is due primarily to rain, whose re-
flectivity greatly exceeds that of Bragg scatter and thereby
prevents EKF-based boundary layer height retrieval from
UMass FMCW observations. Radiosondes, on the other
hand, can be launched in almost any conditions.

These nine soundings originated on three different IOP
days (one on 13 March, three on 31 March, and five on
27 April) (Fig. 16). To account for the presence of turbulent
plumes in the CBL and the horizontal drift of the radiosonde
away from Belle Mina as it ascended through the boundary
layer, we computed a 30-min average of the FMCW-derived
boundary layer height, centered around the time of the radio-
sonde launch. The resulting Pearson correlation coefficient
score for these two datasets was r 5 0.38. While this correla-
tion is admittedly weak, it is comparable with results from
other experiments comparing boundary layer heights derived
from remote sensing methods to those from radiosoundings
(Seibert et al. 2000). Augmented methods using, for example,
fuzzy logic (Bianco and Wilczak 2002) or synergistic combina-
tions of input from multiple sensors (e.g., Seibert et al. 2000)
can produce superior correlation coefficients, but these were
not incorporated in this study. Separately, a synergistic method

incorporating UMass FMCW, EKF-retrieved CBL heights as
one of several estimates (Da Silva et al. 2022) resulted in supe-
rior CBL tracking across a wider range of conditions and cli-
mate regimes.

d. Scatterer classification

As reported in Tanamachi et al. (2019), a rudimentary scat-
terer classification algorithm, decomposing the radar moments
fields into “water-based scatterers” (WBS; i.e., precipitation
and bioscatterers) and “clear air” categories, was applied to
the original, median-filtered 2016 moments. [Note that
Tanamachi et al. (2019) used categories “precipitation” and
“nonprecipitation”; in this study, we have renamed these cate-
gories “WBS” and “clear air,” respectively, to more accurately
reflect the scatterer types present in those gates.] It was found
that the horizontal stripes confounded the scatterer classifica-
tion algorithm, resulting in overclassification of gates as WBS.
While only 7.6% of 2017 UMass FMCW observations (which
were collected after the TWT amplifier was replaced with a
solid-state amplifier, eliminating the spurs) (Waldinger 2018;
Villalonga et al. 2020) were classified as WBS, 23.6% of 2016
UMass FMCW observations were classified as WBS. Because

FIG. 12. Reflectivity (dBZ) from UMass FMCW observations
taken during the 2016 VORTEX-SE field campaign (from Tanamachi
et al. 2019).

FIG. 13. As in Fig. 12 but for coherent reflectivity (dBZ). Note
the nearly complete removal of the persistent, spurious reflectivity
maximum at 1.3 km AGL and reduction of horizon glow at and be-
low about 400 m AGL, relative to Fig. 12.
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the two datasets were collected by the same instrument, in
comparable climatic conditions and similar seasonal periods
(March–April), we expected the two datasets to exhibit similar
percentages of WBS-classified gates. The weights used in the
fuzzy logic algorithm were generated from 2017 FMCW data
only, after UMass FMCW’s TWT amplifier was replaced with
a solid-state amplifier. Overall, the reflectivity associated with
precipitation and bioscatterers in the 2017 UMass FMCW data
was lower than that in the 2016 data (Waldinger 2018), which
partially explains the difference. Applying this same scatterer

classification algorithm to the 2016 UMass FMCW observa-
tions that were reprocessed as described in this manuscript
(i.e., using in-painting on the Doppler spectra and coherent
signal processing to calculate the moments), the percentage
of gates classified as WBS decreased from 23.6% to 20.4%
(Fig. 17). While this reduction in misclassified gates is modest
relative to our expectations, it still represents an improvement
over Tanamachi et al.’s (2019) original results. Additionally,
gates that were reclassified from WBS to clear air (orange re-
gions in Fig. 17) were predominantly in the regions affected by
spurs or horizon glow. This result is highly desirable because

FIG. 14. Boundary layer height detection algorithm for a clear-air CBL on 31 Mar 2016 for (a) median-filtered
reflectivity factor and (b) in-painted coherent reflectivity factor. Note how the estimated boundary layer height
(pink dots) “latches on” to the spurious reflectivity maximum at 1.3 km AGL in the median-filtered case (a) but not
the in-painted case (b).

FIG. 15. Composite of clear-sky CBL evolution at Belle Mina for
7 Mar–30 Apr 2016, during the VORTEX-SE 2016 field campaign.
Gray lines represent the CBL growth on individual days; the mean
CBL height (heavy black line) along with the 25th (dark red line)
and 75th (dark blue line) percentiles is plotted. The CBL heights
were retrieved from UMass FMCW coherent reflectivity data using
the Lange et al. (2015) EKF-based method.

FIG. 16. Scatterplot of UMass FMCW-derived boundary layer
heights vs those derived from NOAA ATDD soundings at Belle
Mina.
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reducing the impacts of these artifacts was one of our primary
motivations for this study.

4. Conclusions

We used a combination of two novel techniques, the Chan
et al. (2017) in-painting method from image processing and
the Pazmany and Haimov (2018) coherent power technique
from signal processing, to rectify a data quality issue in UMass
FMCW spectra collected during the 2016 VORTEX-SE field
campaign. The in-painting method shows promising results
when applied to Doppler spectra contaminated by sharp spec-
tral peaks. Specifically, the in-painting method does better
than the previously applied median filter at removing the
power spurs from the Doppler spectra in both clear-air and
precipitation events (Figs. 6 and 8). Owing to the restoration
of the raw spectral structure in regions that are not in-painted,

our method preserves more of the underlying Doppler spectral
structure of the scatterers being sampled (Figs. 2c and 5c). These
scatterers are mainly precipitation and bioscatterers, which tend
to be smeared out in the median filter (Figs. 2b and 5b).

The radar moments were regenerated from the in-painted
spectral profiles using coherent signal processing (Pazmany
and Haimov 2018). In combination with the in-painting
method, this type of signal processing removes most of the
spurious reflectivity and SNR peaks resulting from the spec-
tral peaks in both clear-air and precipitation cases (Figs. 10
and 11). Improvements in products further derived from these
moments [automated CBL height detection (Figs. 14 and 15)
and scatterer classification (Fig. 17)] were demonstrated.

We share this data rescue study as an example to the com-
munity. Our results underscore the importance of retaining
“Level I” Doppler spectra and even “Level 0” time series
data. Though voluminous, low-level data should be retained
whenever possible. Newer research radars and profilers are
now routinely archiving their Level 0 and Level I observa-
tions. Retention of these low-level data, in addition to mo-
ments (Level II) data, allows future researchers to test new
data analysis and signal processing techniques. This practice,
in turn, enables new knowledge generation. We also empha-
size our incorporation of the in-painting technique, borrowed
from another discipline (image processing), that enabled the
data rescue. We have demonstrated that such interdisciplinary
collaborations can yield fruitful scientific results.

We offer this new version (2.0) of the dataset through the 2016
VORTEX-SE data catalog at NCAREOL (Frasier et al. 2016).

Acknowledgments. S.B. conducted formal analysis, investi-
gation, methodology, visualization, and writing}original draft.
R.T. was responsible for conceptualization, data curation, super-
vision, funding acquisition, project administration, resources,
validation, visualization, writing}original draft, and writing}
review and editing. M.A. conducted formal analysis and
visualization. A.G. was responsible for methodology and super-
vision, and S.F. was responsible for data curation and super-
vision. S.B., M.A., G.D., A.G., S.F., and F.R. were responsible
for software. This work was funded by NOAA Grants
NA18OAR4590313 and NA19OAR4590209. Dr. Stanley H.
Chan and Dr. Andrew Pazmany advised us on the in-painting
and CP techniques, respectively. The statements, findings, con-
clusions, and recommendations are those of the authors and do
not necessarily reflect the views of NOAA or the U.S. Depart-
ment of Commerce. Dr. Rocadenbosch contributed the CBL de-
tection algorithm via project PID2021-126436OB-C21 funded by
Ministerio de Ciencia e Investigación (MCIN)/Agencia Estatal
de Investigación (AEI) (https://doi.org/10.13039/501100011033)
and EU project H2020 ATMO-ACCESS (GA-101008004).

Data availability statement. UMass FMCW data from
VORTEX-SE 2016 are openly available through the Earth
Observing Laboratory archive (https://data.eol.ucar.edu/dataset/
527.016). The Chan et al. (2017) in-painting code adapted for
UMass FMCW data can be found at https://github.com/sbeverid/
in_painting.
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