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ABSTRACT: Seawind is essential in studying extreme weather and climate events globally over the oceans. It has signifi-
cant impacts through air-sea interactions, upper ocean mixing, and energy flux generation. The sea surface wind is also a
critical element in blue economy strategic planning, offshore renewable energy, marine transportation, marine ecosystem,
and fisheries. As per the Intergovernmental Panel on Climate Change (IPCC) working group report, there is low confi-
dence level in wind trends due to insufficient evidence. This study uses signal decomposition, namely, the multiple
seasonal-trend decomposition using locally estimated scatterplot smoothing (MSTL) on NCEI blended seawinds, version 2.0
(NBSv2.0; 1988-2022), to derive the nonlinear dynamic trend of global blended sea surface winds showing variations of
0.3-0.8 m s~ ! and a global rate (linear approximation) of 0.022% * 20% m s ! decade '. Implementing MSTL requires
specifying periods, which is achieved using time-dependent spectral wavelet analysis to extract significant seasonalities in the
dataset. The calculated average trend rates are notably higher for the Southern Hemisphere oceans than for the Northern
Hemisphere, with peaks ~0.1-0.15 m s~ ! decade™! around the higher midlatitudes. Conversely, the tropical and near-
equatorial bands show either a decreasing trend rate or weakly increasing trends. Areas with significantly increasing trend
rates are mainly located in the west of the North Atlantic and the North Pacific, the Arctic, and the eastern tropical Pacific
Ocean (ETPO)/central Pacific oceans, and a decreasing trend is visible over the rest of the Northern Hemisphere (specifi-
cally over the North Indian and the Northern Pacific oceans). In contrast, the Southern Hemisphere has mostly increasing
trend rates except for the tropical southern Indian Ocean.

SIGNIFICANCE STATEMENT: Trends in global ocean winds are highly sensitive to the input data. Consequently,
per the IPCC working group report, the trends reported over global winds are of low confidence. This study emphasizes
that the trend of global neutral winds is a dynamic quantity that varies with time, and the globally reported trends
(~0.08-1.2m s~ ! decade ') represent a linear approximation of this dynamic behavior. Most of these studies use an or-
dinary least squares fit to estimate this linear approximation. On the contrary, this analysis uses 35 years of high-quality
and stable blended sea wind product developed from multiple satellites and estimates a more realistic long-term nonlin-
ear trend by filtering out quasi-seasonal and high-frequency signals from the input data using a time series decomposi-
tion. This study leverages decomposition-based methods to reveal and quantify global sea wind trends, with a particular
emphasis on understanding their variations across different latitude bands. This analysis provides global trend rate
maps and explores the geospatial distributions of these trends. Our findings will assist in strategizing offshore wind en-
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ergy development, understanding air—sea interactions, and disaster management.
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1. Introduction

Among the various known essential climate variables (ECVs)
over the ocean, the sea surface wind (SSW) is an important pa-
rameter that intrinsically affects the understanding of climate
and its prediction. It is also essential for studying extreme
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weather events over the global ocean, such as tropical cyclones,
extratropical storms, and high wind events (Seneviratne et al.
2012; Wang et al. 2023). Sea winds and wind stresses also sig-
nificantly impact the air-sea interface, leading to changes in
oceanic conditions through upper ocean mixing and energy
flux (Donelan et al. 1997). Furthermore, SSW holds significant
importance in the context of the blue economy strategic plan,
the offshore renewable energy sector, marine transportation,
marine ecosystems, fisheries, and other related domains. It is,
therefore, of significance to understand the long-term trend of
global ocean wind speeds to accurately forecast and appre-
hend the role of this ECV in climate change. According to a
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special report of working groups I and II of the Intergovern-
mental Panel on Climate Change (IPCC) (Seneviratne et al.
2012), confidence in wind trends is generally low due to insuffi-
cient evidence. Similarly, confidence in projections of changes
in extreme winds remains low due to relatively few studies and
existing shortcomings in these simulations, though there is me-
dium confidence that the number of midlatitude cyclones will
decrease in each hemisphere due to future anthropogenic cli-
mate change. Conversely, simulation studies using climate
models indicate that the probability of intense tropical cy-
clones (TCs), on average, doubles globally in all the ocean ba-
sins except the Gulf of Mexico and the Bay of Bengal
(Bloemendaal et al. 2022). There is limited confidence in the
specific geographical projections of midlatitude cyclone activ-
ity and moderate confidence in the anticipated poleward dis-
placement of midlatitude storm tracks owing to future
anthropogenic influences (Seneviratne et al. 2012). These fac-
tors underscore the need for accurate, long-term trend analy-
ses of wind data to address current knowledge gaps and
enhance our understanding of global sea winds.

Several studies have focused on estimating trends in ocean
surface wind speed, and their findings reveal a notable diver-
sity in the reported values. For example, the derivative of
trend (with time), hereafter referred to as trend rate, reported
in terms of linear approximation using satellite-based radio-
metric data from 1987 to 2008 ranges between 0.08 and
0.084 m s~ ! decade ! (~1.0% decade ') (Wentz et al. 2007;
Tokinaga and Xie 2011; Zheng et al. 2022). Other recent stud-
ies (using satellite altimeter measurements and blended or re-
analysis products) state these values in the range from 2.5%
(0187 m s decade ') to 5% (0.375 m s ! decade ™) decade ™!
with a maximum reported value of ~1.2 m s™* decade ™" (Sterl
and Caires 2005; Young et al. 2011a; Zheng et al. 2016). How-
ever, observations by Wentz and Ricciardulli (2011) regarding
the work of Young et al. (2011a) assert that the latter’s analysis,
based on 23 years of satellite-derived altimetry data, overlooks
the extended dataset of satellite-based microwave radiometer
information. Furthermore, they proposed that a potential
2.5%-5% decade ! increase in wind speeds will lead to a conse-
quential 5%-10% rise in evaporation and precipitation over two
decades, considering a constant relative humidity. Given the im-
plausibly substantial increase in precipitation, Wentz and
Ricciardulli (2011) concluded that the trend approximations pre-
sented by Young et al. (2011a) are overstated. Young et al.
(2011b) acknowledged the possibility of overestimating trends
derived from altimeter data compared to radiometer-based
data. However, the latter asserted that although this overestima-
tion ranged between 1.4% and 2.4% decade™!, the altimeter-
based trends are consistent with buoy data but acknowledged
that combined long-term data from altimeters, radiometers, and
scatterometers would provide more reliable answers. More re-
cently, results from Young and Ribal (2019) show that even
though the spatial distributions of the radiometer and altime-
ter wind speed trend rates appear very similar (the radiometer
being smoother, as expected due to their data abundance as
compared to the altimeter), the radiometer trends are ~25%
smaller than those of the altimeter and attributes this differ-
ence to the changes in boundary layer shape associated with
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atmospheric stability. Here, one should keep in mind the fact
that altimeters estimate wind differently than scatterometers
or radiometers. Altimeter-based wind products use the mean
square slope of surface waves, rendering them sensitive to
wave parameters (Li et al. 2013). On the other hand, scattero-
meters and radiometers measure the equivalent neutral (EN)
wind, which is sensitive to wind stress and atmospheric stratifi-
cation. This may also contribute to the unrealistic differences
between the altimeter-based and scatterometer/radiometer-
based trends.

The concept of a trend is commonly characterized as the
“general direction and tendency” (Esterby 1993), and its esti-
mation for any physical parameter, such as wind speeds, can
diverge based on the methodology employed. Researchers
have traditionally employed model fits like linear or Poisson
regression or smoothing techniques like moving average, etc.,
to derive this trend. A trend has also been defined as the time
series component representing the time variation of low-
frequency mode (Organisation for Economic Co-Operation
and Development 2007), and to identify the lower frequency
modes, one has to eliminate the prevailing higher/medium fre-
quency fluctuations. This can be achieved through signal de-
composition, which is another method of trend estimation.
Visser et al. (2015) provide a comprehensive read on defini-
tions of trend, trend increment (rate), and several methods
used to estimate the same. Following Chandler and Scott
(2011), they broadly categorized trend methods into five clas-
ses which are exploratory, parametric, nonparametric, sto-
chastic, and miscellaneous and provided a brief review on
several trend models under these categories. It is essential to
highlight that the trend values of wind speed mentioned in the
preceding paragraph represent the average rate of change
(derivative) observed over a specific time interval. However,
it is the actual pattern of the time series of this low-frequency
component that represents the trend in a physical parameter.
Several nonparametric techniques commonly used for trend
detection are recapitulated in the companion paper (Dash
et al. 2025, hereafter Part I). The paper compares ordinary
least squares (OLS) regression with three incrementally ad-
vancing decomposition methods: simple moving average
(SMA), seasonal-trend decomposition using locally estimated
scatterplot smoothing (LOESS) (STL), and multiple STL
(MSTL). The concurrent implementation of several decom-
position methods suggested that among the methods assessed,
MSTL is most suited for estimating trends in long-term data
as it enables multiple-period extraction.

This study employed MSTL to decompose long-term ocean
surface blended sea winds described in section 2 to obtain the
trend, multiple seasonal periods, and residual components. A
time-dependent spectral analysis using wavelet transform is
used to identify the dataset’s major seasonalities (periods).
MSTL then applies the STL algorithm iteratively to each of
these periodic frequencies, and the trend time series is esti-
mated using the last iteration. Like in any decomposition
method, the residuals are also calculated by detrending and
deseasoning the original signal. This study is performed both
globally and over the zonal average, which is the average
wind circulating at the same latitude band parallel to the
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equator, averaging the atmosphere longitudinally. Our findings
will assist in strategizing offshore wind energy development, un-
derstanding air-sea interactions, and disaster management. It
will also be important to understand the projection of wind
(windiness) and its effect on wave heights. In the following sec-
tions, we introduce the datasets used in this study, briefly intro-
duce the trend estimation method, and discuss the results from
our analysis.

2. Data

The U.S. National Oceanic and Atmospheric Administra-
tion (NOAA) National Centers for Environmental Informa-
tion’s (NCEI) Blended Seawinds (NBS) is an important
product in considering NOAA’s Blue Economy Strategic
Plan, supporting mission areas in offshore renewable energy
(wind farms), marine transportation, marine ecosystem, and
fisheries. The latest version of this product (NBSv2.0) (Saha
and Zhang 2022) was developed blending observations from
multiple satellites including scatterometers and radiometers/
imagers using a multisensor data fusion technique weighted
by inherent errors of each product, to resolve very high winds
associated with hurricanes and storms (Wang et al. 2023).
Most of the dataset used in this blended product derive winds
from a range of microwave observations including low and
medium frequencies (~11-37 GHz) and very low-frequency
(C-, L-, and X-band)-based radiometer winds. Winds speeds
retrieved from platforms like SMAP (in L bands ~1.4 GHz)
and a combination of C and X bands from AMSR?2 reduce
rain contamination and retrieve high wind speeds. Scatterom-
eter winds derived from both C and Ku bands are also used in
this product. Thus, NBSv2.0 is a global gap-free 10-m EN
wind dataset that goes back to 1987 and is also generated in
near-real time. The data are publicly accessible through the
NOAA CoastWatch program (https://coastwatch.noaa.gov/
cwn/products/noaa-ncei-blended-seawinds-nbs-v2.html) and are
archived at NCEI. Being a well-calibrated, uninterrupted, long-
term gap-free, and stable dataset [comparison of this product
with other existing blended global products like CMEMS pro-
vides a long-term bias of ~0.03 and rsmd ~0-5 m s~ ! (Saha
and Zhang 2022), and the results are very similar when com-
pared with in situ measurements] makes it an excellent candi-
date for investigating trends in global wind speeds. For this
study, we used the daily mean wind speeds from NBSv2.0. In
addition to daily data, 6-hourly and monthly mean periods are
also available for interested users.

3. Trend estimation of global wind speed

Trends in datasets represent fundamental patterns that pro-
vide insights into the behavior of systems and phenomena.
While the concept of a trend may seem self-evident, its rigor-
ous definition and identification pose challenges that data an-
alysts must address to extract meaningful information from
data. By understanding the nuances of trends and employing
appropriate analytical techniques, data analysts can leverage
trend analysis to gain valuable knowledge and make informed
decisions. The trend in scientific analysis encompasses a broad
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FIG. 1. (a) Global mean blended seawind time series with an
OLS linear fit line (gray) and (b) the residual value representing
the variability of the actual nonlinear data from an estimated linear
approximation of trend.

spectrum of interpretations, each serving a distinct purpose.
In some instances, a trend is perceived as an overarching ten-
dency that permeates the entire data domain, extending into
the realm of future observations. This perspective aligns with
the notion of forecasting or predicting future behavior based
on past patterns. Alternatively, a trend can be viewed as the
anomaly component of a dataset after eliminating high-
frequency fluctuations or noise. This approach emphasizes the
underlying long-term behavior of the system, filtering out
transient or short-lived variations. The choice of trend defini-
tion depends on the specific context of the analysis and the
nature of the data.

In all the previously mentioned studies involving long-term
ocean winds, the perspective of estimating an overall ten-
dency for the dataset leads toward using a linear rate of
change of trend estimation often misrepresented as the actual
trends. Generally, this trend rate is quantified by estimating
the slope using a simple linear regression based on OLS data
fit (Kahane 2007). Figure 1a shows the time series of global
mean sea surface wind speeds or observations (obs) obtained
from NBSv2.0 and an OLS linear fit line (in gray). The
slope of this line or trend rate and a margin of error (MOE)
are also estimated from the observed data. The estimated
value of the trend rate is ~0.022 m s~ ' decade ™!, with a 19%
margin of error (+0.004 m s~ '). The p value for this positive
trend is <0.01, giving strong evidence in favor of the alterna-
tive hypothesis. It is clear that the linear least squares regres-
sion fit makes little sense of describing the actual trend
(a dynamic quantity), which has interannual as well as sea-
sonal variability. If one considers the anomaly/residual value
representing the variability of the actual nonlinear data from
an estimated linear approximation of trend (Fig. 1b), it clearly
has a prevailing multidecadal time scale intact from the origi-
nal data. Also, the lapse rate of the linear trend line could en-
tirely flip the sign if the period of this analysis is changed or
selectively chosen for a particular period. Another common
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method that considers the trend as varying with time uses the
decomposition-based smoothing technique and is a better rep-
resentation of a changing trend in nonstationary and nonlin-
ear data like ocean winds, and this is discussed further.

The LOESS is a locally weighted nonparametric regression
for smoothing data in which no assumptions are made about
the underlying structure of the data (Cleveland 1979). LOESS
employs a local regression technique that combines elements
of kernel regression and the running line smoother to fit a
smooth curve through a scatterplot of data (Ryan 1997). It fits
the data Y; observed at the time ¢ in each neighborhood using
a weighted least squares fit, where the weights are developed
from the distances of each ¢; from ¢, (where predicted values
are to be obtained). Using such local regression, a linear re-
gression equation is determined for each segment (localized
neighborhood), resulting in a model or trend, possibly in poly-
nomial terms. Although robust estimates are generated using
LOESS, the background assumption is that the errors can be
specified to be either normally distributed or to have another
symmetric distribution. Two LOESS-based methodologies
are considered here.

a. STL

The STL is a nonparametric regression-based decomposi-
tion method for time series analysis (Cleveland et al. 1990). It
uses a smoother tool for describing the trend in data as a func-
tion of one or more regressors. The smoothing in STL is per-
formed using LOESS, which helps create a smooth line along
the time plot to help see relationships between variables and
foresee trends. STL is a versatile and robust method for de-
composing time series into three components: trend, seasonal,
and residual. If the data are represented as Y,, trend, which is
dynamic in nature (time varying), is represented as T, with
seasonal components as S, and residual as R,. The following
expression can be established with v as the number of
samples:

Y,=T,+S,+R, (1)

Using the STL decomposition on long-term ocean surface
blended sea winds NBSv2.0, the signal is decomposed into a
single seasonal component, and the trend is derived by
LOESS regressor, and removing both the seasonal component
and the trend from actual signal provides with the residual val-
ues. The time series data span from 1988 to 2022. Also, the
missing days (very few, <1%) were imputed by linear interpo-
lation, as STL will not work if the time series is not continuous.
In this analysis, the global daily mean ocean surface wind is
considered as the dependent variable (y axis of Fig. 2a) and
the time as the independent variable (x axis of Fig. 2a).
LOESS is used to smooth out the dependent variable (wind)
as a function of time and compute a regression curve using a
selective neighborhood weighting function (Cleveland et al.
1990) based on the proximity of the neighboring values. A
polynomial of a certain degree is then used to fit the data using
the weighting function. STL has a two-step process, the inner
loop, which includes seasonal smoothing and detrending of the
data, and the outer loop calculates the residuals by removing
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the seasonal and trend components from the data. Figure 2a
shows the global mean wind data (obs), and the three compo-
nents from Eq. (1), along with an OLS fit line (in gray) over
the trend data, are shown in Figs. 2b and 2d. As STL decom-
poses the wind data time series into three components, trend,
season, and residual, it uses the LOESS to extract smooth esti-
mates of the three components. In this process, the three in-
puts used are the length of the seasonal smoother (season),
the length of the trend smoother (trend), and the length of the
low-pass estimation window (low pass), usually the smallest
odd number larger than the periodicity of the data. The fre-
quency of the wind data is also provided in terms of the peri-
odicity of the data. The robust value was set to “True” to
make a robust estimate, as it tolerates larger errors, visible in
residuals in the lowermost panel of Fig. 2. To summarize, the
trend and trend rate estimation have four major steps. In the
first step, the process involves gap filling the missing data from
the time series and determining dominating seasonal fre-
quency, followed by step 2, where STL is used, iteratively, to
extract the seasonal component and provide the nonlinear
polynomial fit to data using LOESS (blue line in Fig. 2b), rep-
resenting a dynamic trend. In step 3, the residuals (Fig. 2d) are
estimated by subtracting the dynamic trend and seasonal com-
ponent (Fig. 2¢) from the original signal (Fig. 2a). The final step
is estimating the linear trend rate (gray line in Fig. 2b), using lin-
ear fit to the dynamic trend (blue line). Compared to the resid-
uals in OLS-based trend estimation (Fig. 1b), which contains a
dominant multidecadal time scale, STL-based trend hardly has
any noise (most of the residual values are closer to zero line—
Fig. 2d).

The dynamic trend ranges between 7.43 and 7.65 m s~ !, and
the trend rate values estimated from Fig. 2b are ~0.024 m s~
decade ™! with the margin of error of 18% (~0.0043 m s~ 1).
While implementing STL (information on packages for STL
are detailed in data availability statement), a constant annual
periodicity is used as a seasonal pattern; this can be disadvan-
tageous for high-frequency data (such as hourly and daily
data). Like any other real-world time series data, wind speed
from NBSv2.0 can exhibit multiple seasonal patterns that are
structurally unnested and interlacing together. Therefore, we
used the computationally efficient MSTL (Bandara et al. 2021)
procedure to minimize such seasonal mixing by incorporating
STL implementation iteratively at multiseasonal frequencies.

b. MSTL

The MSTL is a fully automated extended version of STL de-
composition that can handle multiple periodicities (Bandara
et al. 2021), where an iterative approach is used to determine
the multiple seasonal components in a time series. The advan-
tage of MSTL decomposition is that it allows the separation of
higher seasonal components from their corresponding lower
ones. This also helps to make the trend smoother and devoid
of any dominant seasonal components. Once the dominating
seasonal components of the time series are determined, MSTL
applies the STL algorithm iteratively to each of the identified
seasonal frequencies and computes the dynamic trend using
the last iteration of STL, which is further subtracted from the
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decomposition over the wind data; (c) this subplot shows the dominant seasonality (~annual periodicity) in this data-

set; (d) the noise or residual component in the data.

seasonally adjusted time series to obtain the residual part.
For data with no visible seasonality, MSTL uses Friedman’s
super smoother function (Friedman 1984) (https:/github.com/
jakevdp/supsmu/blob/master/README.md) to estimate the
trend directly and further derive the residuals from the
original time series. MSTL modifies Eq. (1) (from STL) to
include multiple seasonal frequencies (S, S2, ..., $") as
follows:

Y, =T, +8 + 8 +--+S"+R,, 2)

where n represents the numbers of the periods present in the
time series Y,. Following the algorithm provided by Bandara
et al. (2021), the seasonal components, especially those
smaller than half the series’ length, are first determined and
sorted in ascending order. The data are interpolated to avoid
missing data, and STL decomposition for each seasonal cycle
is implemented similar to what is mentioned in the previous
subsection. Thus, the key inputs into MSTL other than the pe-
riodicities are the length of seasonal smoother with respect to
each period (windows). Similar to step 1 in STL, it is very im-
portant to identify the relevant seasonal frequencies, which can
be obtained from spectral analyses like principal component

analysis (PCA), fast Fourier transformation (FFT), or wavelet
analysis (Wavelet).

1) DERIVING DOMINATING SEASONAL FREQUENCIES
USING WAVELETS

The wavelet transform and the windowed Fourier transform
are both valuable tools for analyzing the frequency content of
signals. However, they differ in their approach and suitability for
different applications. The wavelet transform utilizes a series of
wavelets, which are localized functions with varying scales, to de-
compose a signal into its constituent frequency components.
This multiresolution analysis allows for the simultaneous exami-
nation of both time and frequency information. On the other
hand, the windowed Fourier transform, also known as the short-
time Fourier transform (STFT), divides a signal into segments
and applies the Fourier transform to each segment. This method
provides a localized view of the frequency content but lacks the
temporal resolution of the wavelet transform. Both the methods
help identify the predominant modes of variability in a time se-
ries of data. However, only the wavelet provides a continuous
evolution of the frequency content over time. Therefore, in this
analysis, to derive the dominating frequencies accurately and to
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FIG. 3. (a) Time series of daily SSW anomaly (NBSv2—long-term global mean), which is subjected to wavelet analysis; (b) the wavelet
function (Morlet) used in this analysis; (c) the normalized wavelet power spectrum, where thick yellow contours enclose regions of greater
than 95% confidence with lag 1 autocorrelation coefficient of 0.84 and the mesh regions on either end indicate the “COI”; (d) the Fourier
(gray) and wavelet (blue) spectrum peaks with 95% confidence spectrum in dashed line.

make sure they are consistently observed throughout the time
period, we prefer a wavelet transform over a windowed Fourier
transform. Torrence and Compo (1998) provide a detailed step-
by-step wavelet analysis over El Nifio-Southern Oscillation. In
this paper, this work forms the basis for implementing the wave-
let transform in wind speed data. A Python-based wavelet li-
brary, Waipy (https:/github.com/mabelcalim/waipy), is used for
this analysis and is implemented on the time series of the aver-
age deviation of daily global mean sea surface wind data from
the long-term mean (or wind anomaly shown as amplitude in
Fig. 3a), available for 35 years. As we use a continuous wavelet
transform for this analysis, we must choose a wavelet function
[Wo(m)], of a nondimensional time parameter, to analyze the
time series and provide many different frequencies, each with
nonstationary power (Daubechies 1990). In this analysis, we used
the Morlet wavelet [Eq. (3) and Fig. 3b], which is a complex-
valued function developed by modulating a Gaussian function
(Schneider and Farge 2006):

Uy(m) = 7 Velinmel =), 3)
where w, is a nondimensional frequency with a value of 6 to sat-
isfy the admissibility condition (Torrence and Compo 1998).

This complex form of Morlet wavelet results in a wavelet trans-
form W,,(S), which is also complex in nature [Eq. (4)]:

¥

W,($) =

> &%

(ka)eimknﬁt,

4)

where W, (S) being a complex variable has both real and
imaginary parts represented by its amplitude and phase, with
the wavelet power spectrum defined as the mod square of the
wave transform term |W,(S)P. Figure 3c shows the wavelet
power spectrum normalized with the reciprocal of variance
(1/6%), representing a measure of the power relative to the
white noise. It is evident that the predominant power values
are for the period of 1 year (~365 days), followed by a second
prominent peak around 0.5 years (~183 days). The major
peaks, along with numerous other peaks, are also observed
in the Fourier spectrum (gray line) as well as the wavelet
spectrum (blue line) in Fig. 3d. However, it should be noted
here that the wavelet approximation spectrum and Fourier
spectrum though equivalent are not necessarily identical in
quantity; therefore, the 183 days peak is more prominent in
later than the former, but a clear quasi-biennial oscillation for
this 0.5-yr mode is also visible in the wavelet spectrum with
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FIG. 4. As in Fig. 2, but multiple seasonality is implemented using the MSTL-based decomposition. (a) Time series
of the global SSWs, (b) variation of the trend with time, (c)-(e) dominant seasonality (183, 365, 1162 days) compo-

nents’ time series, and (f) residual or the noise component.

reduced amplitude (Fig. 3c). The 95% confidence spectrum
(or significance at a 5% level), which is a test for power being
a true feature against the background power level in the sig-
nal, for the global seawinds is denoted by the dashed red
curve in Fig. 3d and the area inside the yellow contour in
Fig. 3c, for a lag 1 autocorrelation factor of 0.84. Such high
correlation coefficient between rth value and (¢ — 1)th value
(lag 1 condition) shows that the data are serially correlated in
time and are very stable. The cone of influence (COI) (repre-
sented by the mesh regions in Fig. 3c) is the region of the
wavelet spectrum where the edge-effect artifacts play a role
making the power coefficients unreliable (Torrence and
Compo 1998) and thus is excluded from the analysis.

2) SPECIFYING SEASONAL FREQUENCIES IN MSTL

In our MSTL implementation using a Python package (https:/
www.statsmodels.org/), we used the abovementioned wavelet
transform module to estimate the seasonal frequencies and
used the multiple dominant frequencies (or seasonalities) as
inputs for periods. Figure 4 shows the output when MSTL is
applied to the daily global mean NBSv2 winds. Moving down
from the top, each panel represents the original data (obs), the

trend, and three prominent seasonalities (of 183, 365, and 1162
days), followed by the residuals. As described in the compan-
ion paper (Part I), MSTL provides a time-period variation of
the trend which ranges from 7.42 to 7.6 m s~ ' (Fig. 4). The linear
approximation of the rate of change of this global ocean wind
speed trend is also represented by the gray line in Fig. 4b. The
trend rate shows a value of 0.022% + 20% ms ™! decadefl, ie.,
globally, the wind is increasing with a rate of 0.022 m s~ ' decade ™"
with a margin of error of 20% (~=+0.004 m s~ !). It is notice-
able from Figs. 2 and 4 that the nonlinear trend approxima-
tions are smoother when multiple levels of decomposition are
applied instead of a single seasonal mode in STL, although the
trend rates are comparable. The time series of residuals or
anomaly that represents the variability with respect to the
trends (Figs. 2d and 4f) demonstrates that this variability (or
noise) is not really distinguishable from the white noise. As
more seasonal frequency modes are added to the analysis (e.g.,
from STL to MSTL), this random noise becomes more stable
and closer to the zero line.

To demonstrate the validity of the trend values derived
from MSTL, we computed the confidence interval using the
mean, standard deviation, and sample size of the data. A con-
fidence interval is the range of values derived from the
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FIG. 5. Time series (m s~ ') of trend (blue) with the upper (red) and lower (green) bounds obtained by implementing
a 95% confidence level.

statistics of a sample, which provides upper and lower bounds
of the values between which the average mean of an ensemble
exists. Here, we provide the 95% confidence interval (Clos)
using the following formula:

(o
\/ﬁ,

where w is the mean value and o is the standard deviation for
a sample size of n. The z score calculated from the standard
deviation Z is the interval between which the mean value ex-
ists. For a 95% confidence interval, the z score can also be ob-
tained from the p value of linear regression (probability of the
given statistical model when the null hypothesis is true) using
a z-score table. From Eq. (5), with a z score of 1.96 (corre-
sponding to the p value of 0.9750 and g value of 0.025) and
mean and standard deviations obtained from the trend time
series, an upper bound [w + Z(o/4/)] and lower bound
[ — Z(o/+/n)] of values are calculated as confidence intervals
(Fig. 5). The upper bound is represented by a red line, and
the lower bound is represented by green, with the actual trend
in blue.

CI

=pnxZ (%)

95

4. Zonal variation of wind speed trends

Near-surface wind speeds over the ocean facilitate interac-
tions between the ocean and the atmosphere, serving as major
drivers for ocean circulations and influencing fluxes associated
with air-sea interactions (Zhai et al. 2012; Rodriguez et al.
2019). In the open oceans, the surface current affects the
surface heat transfer, nutrients, and gases and modulates the
atmospheric wind forcing (Rodriguez et al. 2019). The large-
scale winds are also reported to drive rapid cross-basin trans-
ports of water masses, especially at low latitudes (Spall 2022).
In the polar region, the winds and currents are responsible for
the motion of sea ice and freshwater released from melting
ice sheets (Rodriguez et al. 2019). In addition, the changing
trend of ocean surface winds can affect coastal infrastructures
and the offshore wind industry (Lyddon et al. 2019; Laurila
et al. 2021). Therefore, a single global trend of surface wind
speed is a simplified representation of the wind trends with
both latitudinal and regional influences and is not valid for

practical applications. In this analysis, we look into the zonal
average of EN wind speed trends for every 10° latitudinal
band between =80°N and +80°S (Figs. 6 and 7).

Figures 6a-h show the SSW trends and the trend rates (lin-
ear fits on the trend line) in gray for every 10° of the latitudi-
nal band starting from 80°N to the equator. The trend time
series shows that for every latitudinal band in the Northern
Hemisphere, there is a notable trend variation that ranges be-
tween 0.3 and 0.8 m s~ ! over the time period of 35 years.
However, the rate of this trend is increasing (positive) from
80° to 40°N, and then, it switches to a decreasing (negative)
rate between 40°N and the equator. These rates vary from
0.07 m's™! decade™! in the high latitudes (>70°N), peaking at
0.1 m s~ decade™! for the higher midlatitudes (between 50°
and 70°N) and then falling to 0.03 m s~ decade ™" for lower
midlatitudes. These rates become negative (decreasing rate)
for the lower latitudes (20°N—0°) with —0.045 m s~ ' decade ™"
for the extratropics (20°-30°N) and —0.07 m s~ ' decade ' for
the tropics (10°-20°N) with —0.01 m s~' decade™" for the
near-equatorial band (0°~10°N). The trend rates have similar be-
havior as we move toward the equator from 80°S (Figs. 7a-h),
with negative rates starting from the 40°S and decreasing toward
the equator and then peaking with 0.15 m s~ ! decade ™! at the
higher midlatitudes (60°-50°S). Table 1 summarizes these values.

Similar observations of uneven distribution of trend rates
are also reported in previous publications (Swart and Fyfe
2012; Zieger et al. 2014; Zheng et al. 2016, 2022), but a detailed
zonal averaged study is attempted in this paper. The regional
trends reported by both Young et al. (2011a) using altimetry
data and Zheng et al. (2016) using the cross-calibrated, multi-
platform (CCMP) wind data are approximately 1.5-2.5 times
larger than the values reported here. Our results are realistically
closer to the values reported by Wentz and Ricciardulli (2011), i.e.,
~1.0% decade ™!, which also argues that a 2.5%-5% decade ™! in-
crease in winds [as reported by Young et al. (2011a)] would re-
sult in a 5%-10% increase in evaporation and precipitation in
20 years which is significantly higher than the reported values
of global precipitation trends (Nguyen et al. 2018). However,
it is worth noting that evaporation is a complex process depen-
dent on multiple parameters, including wind speeds. The zonal
trends of the wind speed from NBSv2.0 clearly show that the
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FIG. 6. (a)—~(h) Wind speed trends along with the rate of this trend (in gray) for every 10° of the NH latitudinal bands
starting from 80°N to the 0° at the equator.

wind speeds are increasing at a higher rate over the mid- and
high latitudes and are decreasing in values in the tropics and
near equatorial regions. The wind trend rates over the equator
are either insignificant or slightly decreasing.

5. Global map of trend rates in NBSv2.0 wind speeds

Winds over the oceans drive global ocean circulation, which
can intensify surface warming, greater surface heat flux, and
ocean heat content. These wind-driven ocean circulations can
also lead to deeper mixed-layer depths, especially in the
Southern Oceans (McMonigal et al. 2023). It is one of the cru-
cial factors in the air—sea interactions and is closely related to
the Southern Oscillation indices (SOIls) like El Nifilo and
La Nifla and other significant region-specific oscillations like
North Atlantic Oscillations (NAOs) and Indian Ocean dipole
(IOD) (Stopa and Cheung 2014). The long-term trends in pa-
rameters derived from wind speeds, e.g., wind power density,

effective wind speed occurrence, and rich level occurrence of
wind energy (or frequency of wind energy levels higher than
200 W m™~?), are important to plan the spatial distribution of
offshore wind energy power plant sites and wind power utili-
zation. Therefore, it is essential to study regional variabilities
to understand the spatial variability of wind speed trends. To
illustrate these regional differences, a map (Fig. 8a) of the
trend rates is generated using 35 years for each 0.25° X 0.25°
grid cell. Data used to generate this map are the monthly mean
NBSv2.0 for the entire period. Therefore, we have 35 X 12
data points for each analysis grid cell in the time domain, with
719 X 1440 grid cells in the spatial domain. First, trends are cal-
culated for each grid cell using MSTL, where the dominant pe-
riodicities are used to deseason the data and estimating the
dynamic trend, followed by determining the trend rates using
linear regression. It is noteworthy that the dominant periodici-
ties are estimated individually at every grid point, which allows
the method to account for the spatial variability of the data;
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FI1G. 7. (a)-(h) As in Fig. 6, but for SH latitudinal bands starting from 80°S to the 0° at equator.

however, it can be computationally expensive. The left panel of
Fig. 8a also shows the latitudinal variation of longitudinally av-
eraged trend rates, with red corresponding to averaged positive
rates and blue being averaged negative rates. Figure 8b shows
the probability density function corresponding to Fig. 8a.

There is a significant positive trend over the global oceans.
Specifically, the positive values are higher over the Southern
Hemisphere (SH). Increasing trend rates of ~0.2-0.45 m s~
decade ™! are observed over oceans in both the high midlati-
tude in the Southern Hemisphere (beyond 45°S) and the re-
gion beyond 60°N in the Northern Hemisphere (NH). These
maximum values of trend rates are also visible in the zonal
variation of average wind trends. However, some areas inter-
mittently show negative trend rates from —0.1 to —03 m s !
decade™! over these extremely high latitudes. Besides these
regions, negative trends are also observed over the major NH
ocean basins, such as North Pacific and North Atlantic, with
values from —0.1 to —0.2 m s~ ' decade ' These trend rates

agree with the trends derived from multiple reanalysis data
(Deng et al. 2021). In the NH oceans, the wind trends in the
proximity of the equatorial region are predominantly nega-
tive, except for the eastern tropical Pacific Ocean (ETPO).
The ETPO stretches along the Pacific coastline of Central
America, spanning from southern Mexico to northern Peru.
The trend is increasing over the ETPO and the central Pacific
Ocean within the range of ~0.1-0.3 m s~ ! decade™!. This is
an important region where the behavior of the wind and
water are tightly intertwined during recurring El Nifio and
La Niiia effects and can directly or indirectly affect weather
patterns throughout the globe. These increasing values of
trend rates over ETPO agree with a recent study by Yang
et al. (2022) that reported a similar strengthening of Pacific
trade winds since the mid-1990s, which could possibly be
linked to the synergy of sea level pressure and sea surface
temperature. The increase in wind speed trend rate over the
North Atlantic is higher than in the North Pacific. However,
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TABLE 1. The trend rates for every 10° zonal band between
80°N and 80°S with their corresponding MOE.
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to ~0.05 m s~ ! decade ™! over the northeastern Pacific, and it
is ~04 m s~ decade ! in the western North Atlantic with

lower values of ~0.1 m s~ ' decade™ over its eastern side).

Lat Trend rate (m s~ decade™) MOE (%) . . . ’

Siemer et al. (2021), in their study over eastern North Atlantic
70:_8OZN 0.072 25 Subtropical Gyre, along Northwest Africa and Western Iberia
280:28011:11 8(1)33 gg coast, clearly show an increasing trend in the meridional
40°-50°N 0.030 105 winds which is similar to the high value of wind speed trend
30°_40°N —0.01 238 rates observed over the same region in Fig. 8a. The Indian
20°-30°N —0.045 30 Ocean, encompassing approximately 29% of Earth’s oceans
10°-20°N —0.07 18 (Wafar et al. 2011), is characterized by two significant intra-
0°-10°N —-0.011 81 continental seas in its northern region, the Arabian Sea in the
0°-10°S —0.003 350 west, and the Bay of Bengal in the east. In the former, there is a
10:_2028 —0.02 72 notably weakened trend of around —0.01 m s~ decade™!,
?80:431802 :88‘21 i; while the lziltter eXpel;iences a decreasing trend of approximately
40°-50°S 0.030 3 —02ms™ decade™ . Over the Mediterranean waters, a strong
50°-60°S 0.150 12 increasing trend ranging between ~0.1 and 0.4 m s ! decade™!
60°=70°S 0.090 21 exists. Yu (2021) also reports that over the last three decades,
70°-80°S 0.027 75 there has been an increasing trend (~0.2-0.4 m s~! decade™")

in winds over the Mediterranean, the Caspian, the Red, and the
Black Seas but decreasing trend (up to ~0.3 m s~! decade™")

in both these major ocean basins for higher northern latitudes
(>~40°N), the western side has a higher positive trend than
its eastern counterpart (e.g., trend rates over the western
North Pacific Ocean are ~0.25 m s~! decade™! as compared

90°N

Global sea winds trend rate map

over the region dominated by the Asian summer monsoon (i.e.,
the Arabian, the Bay of Bengal, and the South China Sea). The
trend in most of the southern Indian Ocean is decreasing at
~—0.15 m s~! decade™’. In the rest of the southern Indian
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Ocean, especially between 50° and 60°S, there is a very strong
increasing trend <05 m s~! decade™!. Waugh et al. (2020)
documented the trends in the Southern Hemisphere westerlies
using the reanalysis winds at 850 hPa. Their results show an in-
crease in the strength of zonal-mean winds in the Southern
Oceans (beyond the 60°S) with a peak around the southern
Pacific (trend of 0.3-0.45 m s~ ! decade ™), which is even larger
than the Atlantic-Indian basin (reported to be between 0.1 and
0.2m s~ decade™") at those high latitudes. We see similar trends
in EN winds at near sea level (10 m) with our analysis, where the
peak is near the Atlantic-Indian basin (~0.1 m s~ decade™")
compared to ~0.3 m s~ ! decade ! over the southern Pacific
Ocean region. Overall, the spatial distribution of the wind speed
trend rates ranges from —0.4 to 0.5 m s~ decade™!. However,
this least squares—based rate of trend in each and every region
can be strongly affected by its regional dynamics throughout the
time period and may misrepresent the actual long-term trend.

6. Summary

This study used a decomposition-based approach to investi-
gate long-term trends of ocean surface wind speeds. Specifi-
cally, the multiple seasonal-trend decomposition using LOESS
(MSTL) method was implemented based on the moving least
squares regression smoother. Wavelet analysis is used to de-
compose a time series of wind data into time—frequency space
for determining the dominant modes of variability required as
an input to MSTL. Using this information, the trend is ob-
tained by polynomial smoothening of the data using LOESS
regressor. The resulting trend is a time series in the same space
as the original parameter, thus making it a dynamic quantity in
place of a single curve-fitted parameter, often inaccurately
referred to as the actual trend. The trend rate is the slope of
the linear regression fit of the trend time series. Our value of
the global trend rate estimated from 35 years of global surface
sea winds is ~0.022% = 20% m s~ decade !, close to studies
that used reanalysis and/or satellite radiometric data. These find-
ings contrast with the trend rates derived from the altimeter-
only data; however, we surmise that those trend rates are
grossly overestimated. A trend analysis implemented over zon-
ally averaged data shows that the wind trend rates have zonal
variability, with higher values of ~0.09-0.1 m s~! decade ™!
over the higher midlatitudes (with peaks around 50-60° in both
hemispheres). The trend rates of seawinds are higher for the
Southern Hemisphere than for the Northern Hemisphere.
Tropical regions in both hemispheres show either a weakly
increasing or decreasing trend. These rates decline for
lower tropical latitudes with —0.04 m s~ decade ' for the ex-
tratropics and —0.05 m s~ ! decade™! for the tropics with
—0.004 m s~' decade™! for the near-equatorial band. The
areas with significantly increasing trend rates are mainly lo-
cated in the west of the North Atlantic and North Pacific
Ocean basins, the Arctic Ocean, and the ETPO/central
Pacific Ocean, and a decreasing trend is visible over the rest
of the NH (specifically over the NIO and northern Pacific
Ocean). Conversely, the SH has mostly increasing trend rates
except for the tropical southern Indian Ocean. It must be em-
phasized here that although data used in this study are well
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calibrated, the trend and trend rate estimations are also af-
fected by the uncertainty in the dataset, and further research
is required in this context. As wind trend variability adds a
valuable layer of foresight to wind energy projects, by choos-
ing regions with sustained or increasing wind power potential,
we can ensure the long-term viability of these investments and
contribute to a more stable and predictable renewable energy
landscape. Therefore, in future, it is intended to use the trend
rate variability to identify regions with high wind energy po-
tential, facilitating global offshore wind energy production.
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