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Abstract

Deploying desktop hydrographic software in the cloud as virtual PCs has been suggested as a Keywords

bridging technology to fully cloud-aware processing solutions. We investigate the processing bathymetry - processing
performance of such a system, examining different compute resources and storage options in performance - cloud-based

a variety of operations, with an on-premises server as control. Our results demonstrate that all bathymetric processing - CUBE -
“desktop in the cloud” (DitC) deployments are slower than the control. A software requirement Desktop in the Cloud

for a tightly integrated GPU can also significantly increase costs. These observations suggest
that while feasible, this form of DitC is a sub-optimal model for implementing a cloud-based
hydrographic data processing system.

Resumé

Le déploiement de logiciels hydrographiques de bureau dans le cloud sous forme de PC virtuels a été
suggéré comme une technologie de transition vers des solutions de traitement entierement compatibles
avec le cloud. Nous étudions les performances de traitement d'un tel systeme, en examinant différentes
ressources de calcul et options de stockage dans diverses opérations, avec un serveur sur site comme
contréle. Nos résultats démontrent que tous les déploiements de « bureau dans le cloud » (DitC) sont plus
lents que le contréle. L’exigence logicielle d’'un GPU parfaitement intégré peut également augmenter con-
sidérablement les colts. Ces observations suggerent que, bien que réalisable, cette forme de DitC n’est
pas un modele optimal pour la mise en ceuvre d'un systeme de traitement de données hydrographiques
basé sur le cloud.

Resumen

Se ha sugerido el despliegue de software hidrografico de escritorio en la nube como PC virtuales como
tecnologia puente hacia soluciones de procesamiento totalmente en la nube. Investigamos el rendimiento
de procesamiento de un sistema de este tipo, examinando diferentes recursos informaticos y opciones de
almacenamiento en una variedad de operaciones, con un servidor local como control. Nuestros resultados
demuestran que todos los despliegues de “escritorio en la nube” (DitC) son mas lentas que el control. El
requisito de software para una GPU estrechamente integrada también puede aumentar significativamente
los costes. Estas observaciones sugieren que, aunque es factible, esta forma de DitC es un modelo sub-
optimo para implementar un sistema de procesamiento de datos hidrograficos basado en la nube.
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1 Introduction

There are, potentially, significant benefits to staging
and processing hydrographic data using cloud com-
puting resources (defined as: computation, storage,
networking, and related compute infrastructure lo-
cated in many geographic locations and owned and
operated by a third party that sells access to this in-
frastructure for a particular period of time). Assuming
that the data can be delivered to the cloud efficiently
(a process that is becoming increasingly possible
at reasonable cost with the advent of services such
as Starlink” and OneWeb? with marine support),
the cloud offers essentially infinite storage and pro-
cessing capacity (limited primarily by ability to pay),
and especially scalability of compute, with appro-
priately adapted algorithms. Applied appropriately,
these characteristics could provide an alternative pro-
cessing modality for high-density hydrographic data
with potential benefits such as better data discovery,
easier data management, and faster processing due
to the inherently distributed and networked nature
of cloud-based systems. Performance of data pro-
cessing is still a fundamental problem for modemn
hydrography, and is limited by current desktop-fo-
cused software, especially in assuming a fixed
hardware model, in contrast to the cloud.

The cloud is, however, a very different environment
from traditional desktop computing, and has both dif-
ferent economics and attendant design trade-offs.
For example, data ingress is typically free, but data
egress is usually not, and therefore there is a signif-
icant driver for processing to follow the data into the
cloud; the processing must then adapt to the dis-
tinctly different compute environment within the cloud
if it is to be successful, efficient, or (ideally) both. (The
cloud, for example, provides fine-tuned compute re-
sources from a very wide palette of options, sepa-
ration of compute from graphics and storage, virtual
networks, and the option for resilience by design
and massively parallel compute.) It is therefore not
obvious that current generation non-distributed (i.e.,
running on a single workstation or server) desktop hy-
drographic data processing software is well adapted
to the cloud, having been designed for a more con-
ventional desktop computing environment with fast
locally attached storage, integrated high-performance
graphics resources, and exclusive control over data.

Getting data into the cloud is relatively simple, and
well understood, and is therefore not treated here.
One proposed means to process those data in the

cloud is to take current generation hydrographic soft-
ware and simply set up a “virtual PC” in the cloud
("Desktop in the Cloud”, DitC). Most cloud providers
allow for either a managed virtual PC (e.g., in Amazon
Web Services® (AWS), WorkSpaces®) or a bare server
which can be configured to the user's preference
(e.g., in AWS, an Elastic Cloud Compute® (EC2) in-
stance). A variety of storage systems can also be
configured from object storage (e.g., AWS Simple
Storage Service®, S3), to file-level storage (e.g.,
AWS Elastic File Store” (EFS) or FSx for Windows), or
block-level storage (e.g., AWS Elastic Block Store®,
EBS), along with a variety of more specialized sys-
tems such as Lustre (Schwan, 2003), a scalable, dis-
tributed, high performance file system, typically used
for high-performance computing. There are therefore
many different combinations of storage and compute
that can be used to configure a DitC system, and the
trade-offs can be distinctly different in the cloud than
on the desktop, primarily because the resources are
usually shared so that someone else’s use patterns
can affect the performance that can be achieved.

We therefore propose here an experiment to gather
real-world data for the performance of DitC systems
using current generation hydrographic data pro-
cessing software and cloud services. This focuses
on the early-stage compute required for data pro-
cessing, including data conversion, time-series pro-
cessing (e.g., motion compensation, TPU estimation),
and grid construction. Using AWS as a test base for
convenience (all major cloud vendors have analo-
gous compute, storage, and networking offerings),
we detall two separate configurations of compute
(one managed, one bare), and four different types
of storage, using a real-world dataset from NOAA's
Ocean Exploration program for test. In addition, we
consider an on-premises compute solution as a con-
trol, except that we use a rack-mount server and
remote storage (in three different configurations) to
match as well as possible the conditions in the cloud,
and therefore attempt to illustrate the difference that
control over resource contention (locally) provides to
performance. In addition, these experiments allowed
us to estimate total costs to process the test data,
and therefore gain some insight into the economics
of DitC processing.

2 Methods
Although many cloud providers exist, to reduce the
complexity of comparison and without prejudice
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" https://www.starlink.com (accessed 24 February 2025).
2 https://oneweb.net (accessed 24 February 2025).
8 https://aws.amazon.com/ (accessed 24 February 2025).

4 https://aws.amazon.com/workspaces-family/ (accessed 24 February 2025).

5 https://aws.amazon.com/ec2/ (accessed 24 February 2025).
8 https:/aws.amazon.com/s3/ (accessed 24 February 2025).

7 https://aws.amazon.com/efs/ (accessed 24 February 2025).
8 https://aws.amazon.com/ebs/ (accessed 24 February 2025).
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Table 1 Configuration for compute resources used in the experiment.

PERFORMANCE OF “DESKTOP IN THE CLOUD” PROCESSING SOFTWARE DEPLOYMENT

Category AWS Workspaces AWS EC2 On premises control
Instance name Graphics Instance G4ad.2xlarge N/A
CPU 8 vCPUs 8 vCPU AMD EPYC 7R32 24 core® AMD Threadripper 3960x
GPU Unspecified’ AMD Radeon Pro V520 MxGPU 2x NVidia RTX 3080
Main memory 16 GB 32 GB 128 GB
GPU memory 4 GB 8 GB 8 GB
Local storage 100 GB® 300 GB NVMe 1 1B PCle NVMe
Network 10 Gb/s 10 Gb/s 2x10 Gb/s*
Notes to the table:

1. The GPU being used is not specified in the AWS documentation, and may not be consistent.

2. Each core supports two thread execution units.

3.  The WorkSpaces instance provides a 100 GB disc partition for the operating system, and a second 100 GB partition for data. The

connection technology is not specified but is likely EBS.

4. The two network interfaces are bonded for performance and are connected directly to the Storage Area Network (a NetApp

FAS2650) in the same server room as the computer.

we select here Amazon Web Services (AWS) as the
host platform for the experiments. In the following, all
resources, compute and storage, were deployed in
AWS Availability Zone® us-east-2¢ to avoid cross-
zone transfers (which can incur performance penalties
and increase costs). The experiment conducted here
consists of multiple replicates of a given set of computing
tasks (Section 2.4) associated with hydrographic data pro-
cessing, applied o a series of combinations of different
compute resources (Section 2.1) and storage technol-
ogies (Section 2.2). The same dataset (Section 2.3) and
processing software (Section 2.5) were used throughout.
To mitigate caching effects, and for consistency, a standard
procedure (Section 2.6) was used in each instance.

Table 2 Storage configurations by compute resource used during the experiment.

2.1 Compute resources

The broad classes of computation available are a
hosted workstation (AWS WorkSpaces), and a fully
configurable server (AWS EC2). In each case, a
system with configuration typical for desktop pro-
cessing workstations was selected, including a
dedicated GPU, which was found to be required for
the software used for processing. AWS accounts did
not, at the time of the experiment, generally provide
the ability to turn on GPU instances due to limited
availability. A special request was made to allow
for a single 8 vCPU instance with attached GPU to
be tuned on for these experiments. An on-prem-
ises control was established using a rack-mounted

Category AWS Workspaces AWS EC2 On premises Control
File storage FSx for Windows'/SSD FSx for Windows/SSD SMB?

File storage FSx for Windows/HDD FSx for Windows/HDD N/A®

Block storage N/A* EBS GP3° SSD iSCSI SSD

Block storage N/A EBS 102° SSD ISCSI HDD

Block storage N/A EBS ST17 HDD N/A

Local Unknown (prob. EBS)® N/A NVMe

Notes to the table:

1.

&

® N oo

FSx for Windows is a Windows-based file server providing file-level services for Windows clients using Microsoft-specific drivers and ser-
vices (i.e., SMB). This is recommended by AWS for Windows clients over the EFS service (which uses NFS4 to serve the data).

Server Message Block, a Microsoft protocol used for a number of purposes, including file sharing and data transport. This is supported natively
by the SAN filer heads.

The on-premises control environment does not use spinning hard disc drives for file-level storage.

The two network interfaces are bonded for performance and are connected directly to the Storage Area Network (a NetApp
FAS2650) in the same server room as the computer.

EBS GPS is a storage technology that is balanced between I/O performance and bandwidth.

EBS 102 is a storage technology that is biased towards 1/O performance (i.e., a guaranteed number of operations per second).
EBS ST1 is a legacy technology using spinning hard discs rather than solid-state discs; it is dramatically less expensive than SSD-based options.
The connection technology is not clear; note (see 4 above) that user-supplied EBS volumes cannot be mounted in WorkSpaces.

¢ https://aws.amazon.com/about-aws/global-infrastructure/regions_az/ (accessed 24 February 2025).
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physical server. This provides a proxy to the cloud
environment so that the comparison is closer than
would be obtained through a true desktop machine.
The details of the configurations are given in Table 1.

2.2 Storage resources

Cloud storage is available in at least four basic
classes: object store (S3), file-level store (EFS, or FSx
for Windows), block-level store (EBS), and locally at-
tached storage (typically NVMe discs). Within these
broad classes, there are often different service guar-
antees (e.g., guaranteed number of I/O operations
per second, bandwidth, latency, etc.). For the exper-
iment here, five cloud technologies were selected,
and three on-premises configurations. Default pa-
rameters, where options were available, were used.
On-premises storage was provided through a net-
work connection to the Storage Area Network (SAN)
controller™® in the same server room as the computer,
on a dedicated network. Table 2 provides the details
for the options by compute resource (not all storage
types are available on each compute resource).

2.3 Dataset

A dataset was provided by NOAA's Ocean Exploration
program, collected by the NOAA Ship Okeanos
Explorer. EX2203 (Hoy et al.,, 2022), Fig. 1, was
an early expedition in 2022 that contains data from
shoreline to the Puerto Rico trench (approx. 6,500 m
depth). For simplicity, 228 of the total 577 files were
used to focus on the area around Puerto Rico, rather
than the very long transit to the area. The total da-
taset is approximately 75 GB of Kongsberg Discovery
KMALL files (Kongsberg, 2024). This data is pub-
licly available through the NOAA National Centers for
Environmental Information' bathymetric data portal.

2.4 Computational tasks
Three primary compute tasks were used, simu-
lating the early-stage non-interactive processing of
multibeam echosounder (MBES) data. First, data in
manufacturer's format was converted into the pro-
cessing software's intemal data format. To assess
network and storage contention, three models of
data layout were considered:

1. “Read”. The source data is held on the indicated
external storage media and written to the internal
disc on the compute resource.

2. "Write". The source data is held on the internal
disc on the compute resource and written to
the indicated external storage media.

3. “Roundtrip”. The source data is held on, and
written to, the indicated external storage media.

Second, first-stage data processing was conducted.

This typically includes all time-series adjustments

and computations for the data, for example applying

OCEAN

EXPLORATION

Depth (m)
-200

-1500
-2500

Fig. 1 EX2203, from NOAAs Ocean
Exploration program. The last 228 files around the Puerto Rico

Example dataset,

trench were used for performance testing. Figure courtesy of
Shannon Hoy, NOAA Ocean Exploration.

motion effects and static offsets (if not done by the
sonar in real-time), adding corrected positioning infor-
mation, computing uncertainties, etc. In each case,
the manufacturer's data was converted onto the in-
dicated external storage, and the software’s project
directory was placed alongside.

Finally, grid construction was conducted. To test the
differences in data access patterns and computation
load, two methods were used: a simple weighted av-
erage grid, and the CUBE data processing algorithm
(Calder & Mayer, 2003). In all instances, the source
data and product files were stored on the indicated
external media. For the CUBE algorithm, the default
configuration (“Deep’) in the processing software was
used, except that the hypothesis resolution method
was set to “Number of Soundings”, which should
minimize computational load and storage access.

2.5 Software

Given avalilability and experience, but without prej-
udice, QPS Qimera'® was selected for processing
(version 2.4.9). Although Qimera has a Linux version,
the Windows binary was used since this is more
typical in the desktop environment (Linux-based
cloud resources are cheaper and might otherwise
be preferred, see Section 4). The software was in-
stalled separately on each compute resource used
and licensed through a stand-alone (virtual machine)
license for the cloud resources, and via a license

19 A NetApp FAS2650 high-availability SAN system (i.e., two cross-connected filer heads for redundancy) was used with 7,200 rpm SAS-attached SATA hard discs for bulk

storage with NetApp FlashCache (SSD) front-end cache; 12 GB SAS-attached SSDs were used for pure SSD storage.

1 https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc:G01034 (accessed 24 February 2025).

2 https://qps.nl/gimera/ (accessed 24 February 2025).
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server in the on-premises environment. Care was
taken throughout to ensure that the license was
activated immediately before and deactivated imme-
diately after each computation event, since shutting
down a cloud compute resource and restarting it
results in a different hardware configuration and in-
validates the license (this difficulty is addressed in
Section 4).

Mean Conversion Time by Disc Type
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Fig. 2 Data conversion performance (from manufacturer’s format to internal processing format)
for WorkSpaces managed virtual PC (blue), EC2 server (green), and on-premises control (black),
for each of the 12 compute/storage combinations, and read/write/roundtrip data management
plans. Ten replicates of each experiment were run to generate 95 % ClI limits, which are shown at
rectangles (of arbitrary width) about the mean.
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Fig. 3 Data processing performance (time series processing) for WorkSpaces managed virtual PC
(blue), EC2 server (green), and on-premises control (black) for each of the 12 compute/storage
combinations. Ten replicates of each experiment were run to generate 95 % CI limits, which are
shown at rectangles (of arbitrary width) about the mean.
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2.6 Experimental procedure

The Cartesian outer product of the compute re-
sources, storage resources, and experiments in
Sections 2.1, 2.2, and 2.3 result in a total of 68
configurations. Each configuration was tested ten
times to provide some statistical basis for compar-
ison. In each test, the processing log timestamps
from Qimera were used to assess elapsed “wall
clock” time for the process and were recorded to the
nearest millisecond.

For each compute resource, a new installation of
Qimera was used. For conversion, the test data were
staged on the appropriate storage resource, and
then converted into ten separate projects, to mini-
mize cache effects.

For processing, the test data were copied to
the storage resource to be used for processing
and converted once into a blank Qimera project.
Qimera was completely stopped to ensure that the
project was closed, after which it was renamed
‘EX2203_Unprocessed”.  This was subsequently
copied ten times with distinct names ("“EX2203_01"
to "EX2203_10"). Each project was then processed
in turn.

Finally, for grid construction, each of the ten pro-
cessed projects was opened in Qimera, and all 228
source files were selected before creating a 150 m
resolution Dynamic Grid using the weighted average
algorithm with default parameters. A 1560 m Dynamic
Grid was then constructed using the CUBE algorithm
as outlined in Section 2.3.

For each configuration, the arithmetic mean,
standard deviation, median, and 95 % confidence in-
terval (based on a Student’s t-statistic (Kendal et al.,
1994, sec. 16.10) with v = 9 degrees of freedom)
were computed from the times recorded.

3 Results

The results of the data conversion experiment are
shown in Fig. 2, color-coded by computational re-
source, and organized by storage resource on the
horizontal axis. The results of the “read”, “write”, and
“round-trip” experiments are shown to the left, center,
and right of the storage resource marking on the hori-
zontal axis. Vertical boxes around the mean indicate
the 95 % CI (note that this reflects the variability of the
timings only, since timings cannot be negative).

The results demonstrate that there are significant
differences in performance between the computa-
tional technologies, with the EC2 instances generally
faster than the WorkSpaces instances, with local per-
formance better than either. The storage technology
also has a statistically significant role in overall perfor-
mance for a given computational resource with sol-
id-state drives generally being better, often by a factor
of 2-3. The “write” performance (i.e., reading the
raw file from local store and writing to the indicated
storage technology) is generally better than either
‘read” or “round-trip” performance, perhaps indicating
a more aggressive caching policy on write within the

https://doi.org/10.68440/ihr-31-1-a03
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Gridding Time by Disc Type

cloud. Somewnhat surprisingly, the “round-trip” perfor- 1800
- -

mance (i.e., reading and writing to the same external
storage technology) is not heavily penalized in these 1600 B
tests. Standard advice from the software manufac- ®
turer is not to write and read from the same disc due
to bandwidth limitations; in the cloud, this appears not
to be a significant concem. Finally, the on-premises
storage performance seems to suggest some form
of read caching, since there is a significantly longer
run on the first experiment, which then resolves more
quickly for subsequent runs. This is not observed in
the cloud-based experiments, most likely because
the shared nature of the resources means that cache
contents are not preserved between runs.

The results of the data processing experiment are 200 he - -
shown in Fig. 3, color-coded by computational re- w EE . . . .
source, and organized by storage resource on the 0 ! , - - -
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cate 6 Cl.

The general performance results are consistent with
those of the data conversion step (Fig. 2), with the
EC2 instance generally faster than the WorkSpaces
instance, and the on-premises control faster than

WorkSpaces Weighted Grid Mean
WorkSpaces CUBE Mean

EC2 Weighted Grid Mean

EC2 CUBE Mean

On-Premises Weighted Grid Mean
On-Premises CUBE Mean i

1400

1200

1000

800

Mean Gridding Duration (s)

600

<1
[}

Fig. 4 Spatial processing performance (grid construction using simple weighted mean, or CUBE
processing) for WorkSpaces managed virtual PC (blue), EC2 server (green), and on-premises
control (black) for each of the 12 compute/storage combinations, and two different algorithms.
Ten replicates of each experiment were run to generate 95% Cl limits, which are shown at rectan-

either. There is a performance penalty for spinning
hard-disc storage for cloud-based systems (although
not as much as for the data conversion task), but not
for the on-premises system, and surprisingly the per-
formance of all variants of EBS storage for EC2 show
no consistent difference, suggesting that the usage
pattern here does not match the “performance op-
timized” (I02) EBS instance type, which is more ex-
pensive than the “general purpose” GP3 store; the
similar performance of the “internal” (NVMe) disc on
the EC2 instance suggests that it might also be im-
plemented through an EBS mount. The on-premises
performance, apart from when using SMB as the
data transport, is much more consistent than cloud-
based equivalents, most likely due to lower conten-
tion for the bandwidth and storage compute available
on the local SAN. The SMB transport for on-prem-
ises compute is backed by the same SAN arrays and
storage processors but is anomalous in performance.
This is most likely due to poor interactions between
the data access patterns from Qimera for this opera-
tion and the transport fabric (e.g., many small files are
being accessed, so the overhead in negotiation for
initial access overwhelms the protocol). This behavior
also likely explains the relatively poorer performance
in FSx storage in the cloud, which uses the same
transport.

The results of the gridding comparison are shown
in Fig. 4, color-coded by computational resource,
and organized by storage resource on the horizontal
axis. The results of the weighted average and CUBE
processing are arranged to the left and right, respec-
tively of the vertical mark for each storage resource.
Vertical boxes around the mean indicate 95 % ClI.

The results clearly indicate the performance penalty
for mechanical (i.e., spinning hard-disc) storage, with
performance approximately 4-5 times slower than

https://doi.org/10.58440/ihr-31-1-a03

gles (of arbitrary width) about the mean.

for the solid-state storage on the same transport,
dominating the compute costs. Since grid compu-
tation is something that is done frequently in many
modern hydrographic data processing workflows,
this is a significant concemn for practical performance
of the overall system. There is also a small perfor-
mance effect by cloud compute resource, with the
EC2 instance generally faster than the WorkSpaces;
the on-premises performance is, however, signifi-
cantly better (in the statistical sense), and much more
consistent, likely due to lower resource contention.
Finally, there is a clear performance penalty for use
of SMB network filesystem both on-premises and in
the cloud (i.e., using FSx-mounted storage). There is
a trade-off between performance and ease of data
management (e.g., to allow data to be shared be-
tween multiple simultaneous users) when considering
the difference between SMB and EBS resources, to
which we retumn in Section 4.

4 Discussion

The results here clearly demonstrate that there is a
statistically significant difference in performance for
desktop processing systems deployed in the cloud
as a function of the compute resource used and the
storage technology attached. In some cases, the
difference can be of order 4-5 times slower. There
are clear winners and losers. Spinning-disc storage,
for example, generally induces a performance pen-
alty, while EC2 compute instances have generally
better performance for most compute tasks, poten-
tially because it is possible to attached better (EBS)
storage compared to the SMB-based storage used
by WorkSpaces virtual desktop environments. The
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choice between solid-state storage technologies
is less clear and may be due more to the transport
fabric than the technology. For example, the different
types of optimizations applied to EBS storage (e.g.,
general purpose GP3 relative to /O optimized 102)
appear to have little influence on performance, but
there is a statistically significant performance differ-
ence between the use of EBS storage (typically using
something like iISCSI transport) and a managed ser-
vice such as FSx for Windows (a Windows-based file
server using SMB as transport).

There is a practical benefit to a file-based store
(e.g., EFS or FSx for Windows), however, in that it
can be simultaneously shared between users, while
block-based store (e.g., EBS) can only be mounted
to a single compute resource at any one time (al-
though it can be moved between uses). For data
management purposes, then, it might be beneficial
to use FSx as primary storage, although the ques-
tion of whether the continual performance penalty is
an acceptable trade-off will be implementation de-
pendent. (Note that the use of FSx here is nominally
equivalent to a Windows file server holding data in a
local network and sharing it to desktop workstations,
a common hydrographic data processing practice.
Although not covered by these results, it is likely that
similar levels of performance penalty would be ob-
served in this configuration.)

Although the results here argue against DitC as
a cloud implementation strategy for hydrographic
data processing on the basis of performance, they
do allow for recommendations for technology se-
lection if DitC is required. The best overall perfor-
mance was observed with an EC2 instance (at least
a g4ad.2xlarge in AWS terms, with a dedicated GPU)
using GP3 EBS storage. If a managed solution is re-
quired, a WorkSpaces instance with graphics and
FSx for Windows using SSD backing store would be
recommended. Note, however, that there are addi-
tional requirements to use FSx, since the underlying
managed Windows file server needs to have an
Active Directory (AD) domain controller available to
provide authentication services. This can be an ex-
isting domain controller if one exists, or a managed
domain controller provided by AWS. This adds an
IT management burden, and potentially significant
additional costs.

Using cloud services changes the cost structure for
data processing: instead of buying physical hardware
(or provisioning virtual hardware), a one-time fixed/
capital cost, the compute resources and storage are
effectively rented, making them a variable/operational
cost. Most cloud providers charge for compute by
time, with some premium structure for performance
of a given compute resource, and for storage by
the byte with additional costs for provisioned band-
width, input-output operations per second (IOPS),
etc. It can, therefore, be difficult to estimate the actual
costs for cloud services except post facto and even
then, the costs will rapidly go out of date. We have
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therefore opted to consider only relative costs here,
rather than absolute. Although we have not con-
ducted a full accounting, we note that EC2 instances
were less expensive than WorkSpaces (which incur
a management cost and require an AD controller to
pe present), and FSx storage was more expensive
than EBS due to both management overheads and
licenses for Microsoft products, which is built into
the pricing structure. For comparison, however,
the estimated cost to hold data for a survey in the
cloud for a nominal 90-day processing effort and
provision processing resources for it is about the
same as buying a new desktop PC, monitors, and
storage for each survey, and archiving it at 90 days.
Cloud services are not, necessarily, cheaper than
desktop alternatives.

A component in this cost is the licensing model
employed by current desktop software. Motivated
by the model of licensing per seat on physical ma-
chines, the license is typically either tied to specific
hardware, or is checked out from a separate server
on the local network as required. In the cloud, neither
model is ideal. Each time an instance is restarted it
has equivalent but potentially physically distinct hard-
ware associated, and therefore will invalidate any
active license previously installed. The user is there-
fore left with two options: leave the instance running
even when not in use, which incurs significant costs,
or actively manage the licenses by deactivating and
activating over each restart, which incurs significant
management overnead and is inherently fragile. The
alternative of running a license server continuously as
part of the deployment also incurs computing costs
(even though the license server can be very low pow-
ered), increases complexity, and is expensive unless
amortized over many processing resources. Although
the challenges of deploying hydrographic data pro-
cessing software to the cloud are predominantly
technical, the issue of a cloud-friendly licensing (and
revenue) model should not be underestimated.

Similarly, the necessity for a tightly coupled CPU
and GPU in the compute resource, a norm for
desktop systems, in not ideal in the cloud. In the
desktop environment, each computer can be ex-
pected to have a fast CPU, a dedicated GPU, and
locally attached high-speed storage (e.g., a NVMe
SSD); processing software can assume this will al-
ways be the case and therefore casually require GPU
resources, even to boot. None of the processing
done here requires GPU support, however, and
therefore the assumption that a GPU will always be
attached results in a requirement for very expensive
and limited availability cloud compute resources with
an attached GPU that is never actually used. In the
cloud, it would be significantly better to separate
out the GUI portion of the software from the com-
putational portion and deploy these separately. This
would allow optimization of resources, and therefore
cost reduction.

One of the major advantages of the cloud
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environment is flexibility (of compute, storage, net-
working, etc.) which is not a feature of the desktop
environment, and therefore is generally not well uti-
lized by desktop software. Modern processing soft-
ware might be able to take advantage of multiple
cores within a single processor, for example, or hy-
per-threading on a single core, but because the hard-
ware is assumed static it cannot scale beyond the
number of cores available (which is often quite lim-
ited in cloud systems, the expectation being that the
system should scale to multiple communicating com-
pute resources instead). Desktop software cannot,
therefore, scale in the way allowed and encouraged
by a cloud environment, and consequently achieves
limited benefit from cloud deployment; hydrographic
data processing tools must be recast as distributed
systems (i.e., using algorithms and data structures
designed to enable computation to be run on many
dozens if not thousands of computation nodes in
parallel) to take full advantage of the scalability po-
tential of cloud computing infrastructure. Similarly, the
pricing structure of cloud systems depends strongly
on details of the hardware and software environment
chosen. It is more expensive to use Intel or AMD
hardware and Microsoft software, for example, than
ARM hardware and Linux software. Unless software
vendors allow for architectural and operating system
flexibility, they are passing on unnecessary costs to
end users that might be significant, making such lim-
ited solutions less competitive.

Supporting multiple operating systems and CPU
architectures is not trivial, of course, but can be
simplified by separating computation engines from
user-facing GUIs as well as through the use of
containerization technologies such as Docker'® to
package and distribute computation engines. In
containerized deployments the entire computational
environment required for a deployment is packaged
into an image that can be launched on multiple com-
pute resources as required (e.g., using a container
orchestration system such as AWS Elastic Container
Service', Elastic Kubemetes Service', or stand-
alone Kubernetes'®) to scale well and maintain guar-
antees of availability. For software vendors there
might even be a benefit to providing a containerized
deployment of their system in that it would avoid
many configuration variabilities that cause difficul-
ties with installation and operation of complex soft-
ware systems.

Finally, we note that the cloud is a moving target in the
sense that old compute resources are retired regularly
with newer, more powerful services being brought on-
line to replace them. Services are also regularly retired
or replaced. This makes it a challenging environment
in which to operate and means that the results pro-
vided here may only be a snapshot of the performance

capabilities of DitC. It is expected, however, that there
will always be limitations to the benefits possible, and
that truly benefiting from the advantages of the cloud will
require development of a cloud-native processing chain
that takes advantage of modem techniques such as
containerization, microservices, and dynamic scaling of
compute and storage resources.

5 Conclusions

These experiments examine the concept of “Desktop
in the Cloud”, meaning the deployment of current
generation non-distributed hydrographic processing
software into a cloud environment, in this example
Amazon Web Services, to provide remotely acces-
sible computation for ocean mapping data. The
evidence is that while this can work, it may not be
either cost or time efficient compared to a desktop
deployment and therefore, assuming a cloud
data processing strategy is desired, it is likely not
a good choice. There are also statistically and
practically significant performance variations de-
pending on the compute resources and storage
technologies selected.

This work quantified the differences for three
common tasks (converting data to processing format,
initial time-series processing, and grid construction)
and showed that computation time can be 4-5 times
longer with inappropriate storage technology selec-
tion, and that some basic assumptions of desktop
deployment (e.g., that you should not read source
data, and write processed data, to the same disc) do
not necessarily apply in the cloud.

The work also demonstrated limitations for DitC
due to assumptions that are valid for the desktop
but not for the cloud. Particularly, desktop licensing
models are difficult, expensive, or both to support in
the cloud, and an assumption of fixed hardware with
tightly coupled GPU and storage require cloud-based
resources that are poorly utilized by the software. The
assumption of fixed hardware (valid for desktop but
not for cloud) also intrinsically limits the scalability of
computation with DitC, a key benefit of cloud-based
deployment.

These results strongly suggest that while DitC
is possible, the real benefit to cloud-based hydro-
graphic data processing will only be achieved with
specifically designed, cloud-native distributed algo-
rithms and processing software.
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