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Abstract
Deploying desktop hydrographic software in the cloud as virtual PCs has been suggested as a 
bridging technology to fully cloud-aware processing solutions. We investigate the processing 
performance of such a system, examining different compute resources and storage options in 
a variety of operations, with an on-premises server as control. Our results demonstrate that all 
“desktop in the cloud” (DitC) deployments are slower than the control. A software requirement 
for a tightly integrated GPU can also significantly increase costs. These observations suggest 
that while feasible, this form of DitC is a sub-optimal model for implementing a cloud-based 
hydrographic data processing system. 

Resumé
Le déploiement de logiciels hydrographiques de bureau dans le cloud sous forme de PC virtuels a été 
suggéré comme une technologie de transition vers des solutions de traitement entièrement compatibles 
avec le cloud. Nous étudions les performances de traitement d'un tel système, en examinant différentes 
ressources de calcul et options de stockage dans diverses opérations, avec un serveur sur site comme 
contrôle. Nos résultats démontrent que tous les déploiements de « bureau dans le cloud » (DitC) sont plus 
lents que le contrôle. L’exigence logicielle d’un GPU parfaitement intégré peut également augmenter con-
sidérablement les coûts. Ces observations suggèrent que, bien que réalisable, cette forme de DitC n’est 
pas un modèle optimal pour la mise en œuvre d'un système de traitement de données hydrographiques 
basé sur le cloud.
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Resumen
Se ha sugerido el despliegue de software hidrográfico de escritorio en la nube como PC virtuales como 
tecnología puente hacia soluciones de procesamiento totalmente en la nube. Investigamos el rendimiento 
de procesamiento de un sistema de este tipo, examinando diferentes recursos informáticos y opciones de 
almacenamiento en una variedad de operaciones, con un servidor local como control. Nuestros resultados 
demuestran que todos los despliegues de “escritorio en la nube” (DitC) son más lentas que el control. El 
requisito de software para una GPU estrechamente integrada también puede aumentar significativamente 
los costes. Estas observaciones sugieren que, aunque es factible, esta forma de DitC es un modelo sub-
óptimo para implementar un sistema de procesamiento de datos hidrográficos basado en la nube.
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1 Introduction
There are, potentially, significant benefits to staging 
and processing hydrographic data using cloud com-
puting resources (defined as: computation, storage, 
networking, and related compute infrastructure lo-
cated in many geographic locations and owned and 
operated by a third party that sells access to this in-
frastructure for a particular period of time). Assuming 
that the data can be delivered to the cloud efficiently 
(a process that is becoming increasingly possible 
at reasonable cost with the advent of services such 
as Starlink1  and OneWeb2  with marine support), 
the cloud offers essentially infinite storage and pro-
cessing capacity (limited primarily by ability to pay), 
and especially scalability of compute, with appro-
priately adapted algorithms. Applied appropriately, 
these characteristics could provide an alternative pro-
cessing modality for high-density hydrographic data 
with potential benefits such as better data discovery, 
easier data management, and faster processing due 
to the inherently distributed and networked nature 
of cloud-based systems. Performance of data pro-
cessing is still a fundamental problem for modern 
hydrography, and is limited by current desktop-fo-
cused software, especially in assuming a fixed 
hardware model, in contrast to the cloud.

The cloud is, however, a very different environment 
from traditional desktop computing, and has both dif-
ferent economics and attendant design trade-offs. 
For example, data ingress is typically free, but data 
egress is usually not, and therefore there is a signif-
icant driver for processing to follow the data into the 
cloud; the processing must then adapt to the dis-
tinctly different compute environment within the cloud 
if it is to be successful, efficient, or (ideally) both. (The 
cloud, for example, provides fine-tuned compute re-
sources from a very wide palette of options, sepa-
ration of compute from graphics and storage, virtual 
networks, and the option for resilience by design 
and massively parallel compute.) It is therefore not 
obvious that current generation non-distributed (i.e., 
running on a single workstation or server) desktop hy-
drographic data processing software is well adapted 
to the cloud, having been designed for a more con-
ventional desktop computing environment with fast 
locally attached storage, integrated high-performance 
graphics resources, and exclusive control over data.

Getting data into the cloud is relatively simple, and 
well understood, and is therefore not treated here. 
One proposed means to process those data in the 

cloud is to take current generation hydrographic soft-
ware and simply set up a “virtual PC” in the cloud 
(“Desktop in the Cloud”, DitC). Most cloud providers 
allow for either a managed virtual PC (e.g., in Amazon 
Web Services3 (AWS), WorkSpaces4) or a bare server 
which can be configured to the user’s preference 
(e.g., in AWS, an Elastic Cloud Compute5 (EC2) in-
stance). A variety of storage systems can also be 
configured from object storage (e.g., AWS Simple 
Storage Service6, S3), to file-level storage (e.g., 
AWS Elastic File Store7 (EFS) or FSx for Windows), or 
block-level storage (e.g., AWS Elastic Block Store8, 
EBS), along with a variety of more specialized sys-
tems such as Lustre (Schwan, 2003), a scalable, dis-
tributed, high performance file system, typically used 
for high-performance computing. There are therefore 
many different combinations of storage and compute 
that can be used to configure a DitC system, and the 
trade-offs can be distinctly different in the cloud than 
on the desktop, primarily because the resources are 
usually shared so that someone else’s use patterns 
can affect the performance that can be achieved.

We therefore propose here an experiment to gather 
real-world data for the performance of DitC systems 
using current generation hydrographic data pro-
cessing software and cloud services. This focuses 
on the early-stage compute required for data pro-
cessing, including data conversion, time-series pro-
cessing (e.g., motion compensation, TPU estimation), 
and grid construction. Using AWS as a test base for 
convenience (all major cloud vendors have analo-
gous compute, storage, and networking offerings), 
we detail two separate configurations of compute 
(one managed, one bare), and four different types 
of storage, using a real-world dataset from NOAA’s 
Ocean Exploration program for test. In addition, we 
consider an on-premises compute solution as a con-
trol, except that we use a rack-mount server and 
remote storage (in three different configurations) to 
match as well as possible the conditions in the cloud, 
and therefore attempt to illustrate the difference that 
control over resource contention (locally) provides to 
performance. In addition, these experiments allowed 
us to estimate total costs to process the test data, 
and therefore gain some insight into the economics 
of DitC processing.

2 Methods
Although many cloud providers exist, to reduce the 
complexity of comparison and without prejudice 

1 	 https://www.starlink.com (accessed 24 February 2025).
2 	 https://oneweb.net (accessed 24 February 2025).
3 	 https://aws.amazon.com/ (accessed 24 February 2025).
4 	 https://aws.amazon.com/workspaces-family/ (accessed 24 February 2025).
5 	 https://aws.amazon.com/ec2/ (accessed 24 February 2025).
6 	 https:/aws.amazon.com/s3/ (accessed 24 February 2025).
7 	 https://aws.amazon.com/efs/ (accessed 24 February 2025).
8	 https://aws.amazon.com/ebs/ (accessed 24 February 2025).
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we select here Amazon Web Services (AWS) as the 
host platform for the experiments. In the following, all 
resources, compute and storage, were deployed in 
AWS Availability Zone9  us-east-2c to avoid cross-
zone transfers (which can incur performance penalties 
and increase costs). The experiment conducted here 
consists of multiple replicates of a given set of computing 
tasks (Section 2.4) associated with hydrographic data pro-
cessing, applied to a series of combinations of different 
compute resources (Section 2.1) and storage technol-
ogies (Section 2.2). The same dataset (Section 2.3) and 
processing software (Section 2.5) were used throughout. 
To mitigate caching effects, and for consistency, a standard 
procedure (Section 2.6) was used in each instance.

2.1 Compute resources
The broad classes of computation available are a 
hosted workstation (AWS WorkSpaces), and a fully 
configurable server (AWS EC2). In each case, a 
system with configuration typical for desktop pro-
cessing workstations was selected, including a 
dedicated GPU, which was found to be required for 
the software used for processing. AWS accounts did 
not, at the time of the experiment, generally provide 
the ability to turn on GPU instances due to limited 
availability. A special request was made to allow 
for a single 8 vCPU instance with attached GPU to 
be turned on for these experiments. An on-prem-
ises control was established using a rack-mounted 
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Category AWS Workspaces AWS EC2 On premises control

Instance name Graphics Instance G4ad.2xlarge N/A

CPU 8 vCPUs 8 vCPU AMD EPYC 7R32 24 core2 AMD Threadripper 3960x

GPU Unspecified1 AMD Radeon Pro V520 MxGPU 2x NVidia RTX 3080

Main memory 16 GB 32 GB 128 GB

GPU memory 4 GB 8 GB 8 GB

Local storage 100 GB3 300 GB NVMe 1 TB PCIe NVMe

Network 10 Gb/s 10 Gb/s 2x10 Gb/s4

Table 1 Configuration for compute resources used in the experiment.

Notes to the table:

1.	 The GPU being used is not specified in the AWS documentation, and may not be consistent.

2.	 Each core supports two thread execution units.

3.	 The WorkSpaces instance provides a 100 GB disc partition for the operating system, and a second 100 GB partition for data. The 

connection technology is not specified but is likely EBS.

4.	 The two network interfaces are bonded for performance and are connected directly to the Storage Area Network (a NetApp 

FAS2650) in the same server room as the computer.

Category AWS Workspaces AWS EC2 On premises Control

File storage FSx for Windows1/SSD FSx for Windows/SSD SMB2

File storage FSx for Windows/HDD FSx for Windows/HDD N/A3

Block storage N/A4 EBS GP35 SSD iSCSI SSD

Block storage N/A EBS IO26 SSD iSCSI HDD

Block storage N/A EBS ST17 HDD N/A

Local Unknown (prob. EBS)8 N/A NVMe

Table 2 Storage configurations by compute resource used during the experiment.

Notes to the table:

1.	 FSx for Windows is a Windows-based file server providing file-level services for Windows clients using Microsoft-specific drivers and ser-

vices (i.e., SMB). This is recommended by AWS for Windows clients over the EFS service (which uses NFS4 to serve the data).

2.	 Server Message Block, a Microsoft protocol used for a number of purposes, including file sharing and data transport. This is supported natively 

by the SAN filer heads.

3.	 	The on-premises control environment does not use spinning hard disc drives for file-level storage.

4.	 The two network interfaces are bonded for performance and are connected directly to the Storage Area Network (a NetApp 

FAS2650) in the same server room as the computer.

5.	 	EBS GP3 is a storage technology that is balanced between I/O performance and bandwidth.

6.	 	EBS IO2 is a storage technology that is biased towards I/O performance (i.e., a guaranteed number of operations per second).

7.	 	EBS ST1 is a legacy technology using spinning hard discs rather than solid-state discs; it is dramatically less expensive than SSD-based options.

8.	 The connection technology is not clear; note (see 4 above) that user-supplied EBS volumes cannot be mounted in WorkSpaces.

9	 https://aws.amazon.com/about-aws/global-infrastructure/regions_az/ (accessed 24 February 2025).
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physical server. This provides a proxy to the cloud 
environment so that the comparison is closer than 
would be obtained through a true desktop machine. 
The details of the configurations are given in Table 1.

2.2 Storage resources
Cloud storage is available in at least four basic 
classes: object store (S3), file-level store (EFS, or FSx 
for Windows), block-level store (EBS), and locally at-
tached storage (typically NVMe discs). Within these 
broad classes, there are often different service guar-
antees (e.g., guaranteed number of I/O operations 
per second, bandwidth, latency, etc.). For the exper-
iment here, five cloud technologies were selected, 
and three on-premises configurations. Default pa-
rameters, where options were available, were used. 
On-premises storage was provided through a net-
work connection to the Storage Area Network (SAN) 
controller10  in the same server room as the computer, 
on a dedicated network. Table 2 provides the details 
for the options by compute resource (not all storage 
types are available on each compute resource).

2.3 Dataset
A dataset was provided by NOAA’s Ocean Exploration 
program, collected by the NOAA Ship Okeanos 
Explorer. EX2203 (Hoy et al., 2022), Fig. 1, was 
an early expedition in 2022 that contains data from 
shoreline to the Puerto Rico trench (approx. 6,500 m 
depth). For simplicity, 228 of the total 577 files were 
used to focus on the area around Puerto Rico, rather 
than the very long transit to the area. The total da-
taset is approximately 75 GB of Kongsberg Discovery 
KMALL files (Kongsberg, 2024). This data is pub-
licly available through the NOAA National Centers for 
Environmental Information11 bathymetric data portal.

2.4 Computational tasks
Three primary compute tasks were used, simu-
lating the early-stage non-interactive processing of 
multibeam echosounder (MBES) data. First, data in 
manufacturer’s format was converted into the pro-
cessing software’s internal data format. To assess 
network and storage contention, three models of 
data layout were considered:
1.	 “Read”. The source data is held on the indicated 

external storage media and written to the internal 
disc on the compute resource.

2.	 “Write”. The source data is held on the internal 
disc on the compute resource and written to 
the indicated external storage media.

3.	 “Roundtrip”. The source data is held on, and 
written to, the indicated external storage media.

Second, first-stage data processing was conducted. 
This typically includes all time-series adjustments 
and computations for the data, for example applying 

motion effects and static offsets (if not done by the 
sonar in real-time), adding corrected positioning infor-
mation, computing uncertainties, etc. In each case, 
the manufacturer’s data was converted onto the in-
dicated external storage, and the software’s project 
directory was placed alongside.

Finally, grid construction was conducted. To test the 
differences in data access patterns and computation 
load, two methods were used: a simple weighted av-
erage grid, and the CUBE data processing algorithm 
(Calder & Mayer, 2003). In all instances, the source 
data and product files were stored on the indicated 
external media. For the CUBE algorithm, the default 
configuration (“Deep”) in the processing software was 
used, except that the hypothesis resolution method 
was set to “Number of Soundings”, which should 
minimize computational load and storage access.

2.5 Software
Given availability and experience, but without prej-
udice, QPS Qimera12 was selected for processing 
(version 2.4.9). Although Qimera has a Linux version, 
the Windows binary was used since this is more 
typical in the desktop environment (Linux-based 
cloud resources are cheaper and might otherwise 
be preferred, see Section 4). The software was in-
stalled separately on each compute resource used 
and licensed through a stand-alone (virtual machine) 
license for the cloud resources, and via a license 

Fig. 1 Example dataset, EX2203, from NOAA’s Ocean 

Exploration program. The last 228 files around the Puerto Rico 

trench were used for performance testing. Figure courtesy of 

Shannon Hoy, NOAA Ocean Exploration.

1 0 	 A NetApp FAS2650 high-availability SAN system (i.e., two cross-connected filer heads for redundancy) was used with 7,200 rpm SAS-attached SATA hard discs for bulk 

storage with NetApp FlashCache (SSD) front-end cache; 12 GB SAS-attached SSDs were used for pure SSD storage.
1 1 	 https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc:G01034 (accessed 24 February 2025).
1 2 	 https://qps.nl/qimera/ (accessed 24 February 2025).
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server in the on-premises environment. Care was 
taken throughout to ensure that the license was 
activated immediately before and deactivated imme-
diately after each computation event, since shutting 
down a cloud compute resource and restarting it 
results in a different hardware configuration and in-
validates the license (this difficulty is addressed in 
Section 4).

2.6 Experimental procedure
The Cartesian outer product of the compute re-
sources, storage resources, and experiments in 
Sections 2.1, 2.2, and 2.3 result in a total of 68 
configurations. Each configuration was tested ten 
times to provide some statistical basis for compar-
ison. In each test, the processing log timestamps 
from Qimera were used to assess elapsed “wall 
clock” time for the process and were recorded to the 
nearest millisecond.

For each compute resource, a new installation of 
Qimera was used. For conversion, the test data were 
staged on the appropriate storage resource, and 
then converted into ten separate projects, to mini-
mize cache effects.

For processing, the test data were copied to 
the storage resource to be used for processing 
and converted once into a blank Qimera project. 
Qimera was completely stopped to ensure that the 
project was closed, after which it was renamed 
“EX2203_Unprocessed”. This was subsequently 
copied ten times with distinct names (“EX2203_01” 
to “EX2203_10”). Each project was then processed 
in turn.

Finally, for grid construction, each of the ten pro-
cessed projects was opened in Qimera, and all 228 
source files were selected before creating a 150 m 
resolution Dynamic Grid using the weighted average 
algorithm with default parameters. A 150 m Dynamic 
Grid was then constructed using the CUBE algorithm 
as outlined in Section 2.3.

For each configuration, the arithmetic mean, 
standard deviation, median, and 95 % confidence in-
terval (based on a Student’s t-statistic (Kendal et al., 
1994, sec. 16.10) with υ = 9 degrees of freedom) 
were computed from the times recorded.

3 Results
The results of the data conversion experiment are 
shown in Fig. 2, color-coded by computational re-
source, and organized by storage resource on the 
horizontal axis. The results of the “read”, “write”, and 
“round-trip” experiments are shown to the left, center, 
and right of the storage resource marking on the hori-
zontal axis. Vertical boxes around the mean indicate 
the 95 % CI (note that this reflects the variability of the 
timings only, since timings cannot be negative).

The results demonstrate that there are significant 
differences in performance between the computa-
tional technologies, with the EC2 instances generally 
faster than the WorkSpaces instances, with local per-
formance better than either. The storage technology 
also has a statistically significant role in overall perfor-
mance for a given computational resource with sol-
id-state drives generally being better, often by a factor 
of 2–3. The “write” performance (i.e., reading the 
raw file from local store and writing to the indicated 
storage technology) is generally better than either 
“read” or “round-trip” performance, perhaps indicating 
a more aggressive caching policy on write within the 

https://doi.org/10.58440/ihr-31-1-a03
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Fig. 2 Data conversion performance (from manufacturer’s format to internal processing format) 

for WorkSpaces managed virtual PC (blue), EC2 server (green), and on-premises control (black), 

for each of the 12 compute/storage combinations, and read/write/roundtrip data management 

plans. Ten replicates of each experiment were run to generate 95 % CI limits, which are shown at 

rectangles (of arbitrary width) about the mean.

Fig. 3 Data processing performance (time series processing) for WorkSpaces managed virtual PC 

(blue), EC2 server (green), and on-premises control (black) for each of the 12 compute/storage 

combinations. Ten replicates of each experiment were run to generate 95 % CI limits, which are 

shown at rectangles (of arbitrary width) about the mean.
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cloud. Somewhat surprisingly, the “round-trip” perfor-
mance (i.e., reading and writing to the same external 
storage technology) is not heavily penalized in these 
tests. Standard advice from the software manufac-
turer is not to write and read from the same disc due 
to bandwidth limitations; in the cloud, this appears not 
to be a significant concern. Finally, the on-premises 
storage performance seems to suggest some form 
of read caching, since there is a significantly longer 
run on the first experiment, which then resolves more 
quickly for subsequent runs. This is not observed in 
the cloud-based experiments, most likely because 
the shared nature of the resources means that cache 
contents are not preserved between runs. 

The results of the data processing experiment are 
shown in Fig. 3, color-coded by computational re-
source, and organized by storage resource on the 
horizontal axis. Vertical boxes around the mean indi-
cate 95 % CI.

The general performance results are consistent with 
those of the data conversion step (Fig. 2), with the 
EC2 instance generally faster than the WorkSpaces 
instance, and the on-premises control faster than 
either. There is a performance penalty for spinning 
hard-disc storage for cloud-based systems (although 
not as much as for the data conversion task), but not 
for the on-premises system, and surprisingly the per-
formance of all variants of EBS storage for EC2 show 
no consistent difference, suggesting that the usage 
pattern here does not match the “performance op-
timized” (IO2) EBS instance type, which is more ex-
pensive than the “general purpose” GP3 store; the 
similar performance of the “internal” (NVMe) disc on 
the EC2 instance suggests that it might also be im-
plemented through an EBS mount. The on-premises 
performance, apart from when using SMB as the 
data transport, is much more consistent than cloud-
based equivalents, most likely due to lower conten-
tion for the bandwidth and storage compute available 
on the local SAN. The SMB transport for on-prem-
ises compute is backed by the same SAN arrays and 
storage processors but is anomalous in performance. 
This is most likely due to poor interactions between 
the data access patterns from Qimera for this opera-
tion and the transport fabric (e.g., many small files are 
being accessed, so the overhead in negotiation for 
initial access overwhelms the protocol). This behavior 
also likely explains the relatively poorer performance 
in FSx storage in the cloud, which uses the same 
transport.

The results of the gridding comparison are shown 
in Fig. 4, color-coded by computational resource, 
and organized by storage resource on the horizontal 
axis. The results of the weighted average and CUBE 
processing are arranged to the left and right, respec-
tively of the vertical mark for each storage resource. 
Vertical boxes around the mean indicate 95 % CI.

The results clearly indicate the performance penalty 
for mechanical (i.e., spinning hard-disc) storage, with 
performance approximately 4–5 times slower than 

for the solid-state storage on the same transport, 
dominating the compute costs. Since grid compu-
tation is something that is done frequently in many 
modern hydrographic data processing workflows, 
this is a significant concern for practical performance 
of the overall system. There is also a small perfor-
mance effect by cloud compute resource, with the 
EC2 instance generally faster than the WorkSpaces; 
the on-premises performance is, however, signifi-
cantly better (in the statistical sense), and much more 
consistent, likely due to lower resource contention. 
Finally, there is a clear performance penalty for use 
of SMB network filesystem both on-premises and in 
the cloud (i.e., using FSx-mounted storage). There is 
a trade-off between performance and ease of data 
management (e.g., to allow data to be shared be-
tween multiple simultaneous users) when considering 
the difference between SMB and EBS resources, to 
which we return in Section 4.

4 Discussion
The results here clearly demonstrate that there is a 
statistically significant difference in performance for 
desktop processing systems deployed in the cloud 
as a function of the compute resource used and the 
storage technology attached. In some cases, the 
difference can be of order 4–5 times slower. There 
are clear winners and losers. Spinning-disc storage, 
for example, generally induces a performance pen-
alty, while EC2 compute instances have generally 
better performance for most compute tasks, poten-
tially because it is possible to attached better (EBS) 
storage compared to the SMB-based storage used 
by WorkSpaces virtual desktop environments. The 
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Fig. 4 Spatial processing performance (grid construction using simple weighted mean, or CUBE 

processing) for WorkSpaces managed virtual PC (blue), EC2 server (green), and on-premises 

control (black) for each of the 12 compute/storage combinations, and two different algorithms. 

Ten replicates of each experiment were run to generate 95% CI limits, which are shown at rectan-

gles (of arbitrary width) about the mean.
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choice between solid-state storage technologies 
is less clear and may be due more to the transport 
fabric than the technology. For example, the different 
types of optimizations applied to EBS storage (e.g., 
general purpose GP3 relative to I/O optimized IO2) 
appear to have little influence on performance, but 
there is a statistically significant performance differ-
ence between the use of EBS storage (typically using 
something like iSCSI transport) and a managed ser-
vice such as FSx for Windows (a Windows-based file 
server using SMB as transport).

There is a practical benefit to a file-based store 
(e.g., EFS or FSx for Windows), however, in that it 
can be simultaneously shared between users, while 
block-based store (e.g., EBS) can only be mounted 
to a single compute resource at any one time (al-
though it can be moved between uses). For data 
management purposes, then, it might be beneficial 
to use FSx as primary storage, although the ques-
tion of whether the continual performance penalty is 
an acceptable trade-off will be implementation de-
pendent. (Note that the use of FSx here is nominally 
equivalent to a Windows file server holding data in a 
local network and sharing it to desktop workstations, 
a common hydrographic data processing practice. 
Although not covered by these results, it is likely that 
similar levels of performance penalty would be ob-
served in this configuration.)

Although the results here argue against DitC as 
a cloud implementation strategy for hydrographic 
data processing on the basis of performance, they 
do allow for recommendations for technology se-
lection if DitC is required. The best overall perfor-
mance was observed with an EC2 instance (at least 
a g4ad.2xlarge in AWS terms, with a dedicated GPU) 
using GP3 EBS storage. If a managed solution is re-
quired, a WorkSpaces instance with graphics and 
FSx for Windows using SSD backing store would be 
recommended. Note, however, that there are addi-
tional requirements to use FSx, since the underlying 
managed Windows file server needs to have an 
Active Directory (AD) domain controller available to 
provide authentication services. This can be an ex-
isting domain controller if one exists, or a managed 
domain controller provided by AWS. This adds an 
IT management burden, and potentially significant 
additional costs.

Using cloud services changes the cost structure for 
data processing: instead of buying physical hardware 
(or provisioning virtual hardware), a one-time fixed/
capital cost, the compute resources and storage are 
effectively rented, making them a variable/operational 
cost. Most cloud providers charge for compute by 
time, with some premium structure for performance 
of a given compute resource, and for storage by 
the byte with additional costs for provisioned band-
width, input-output operations per second (IOPS), 
etc. It can, therefore, be difficult to estimate the actual 
costs for cloud services except post facto and even 
then, the costs will rapidly go out of date. We have 

therefore opted to consider only relative costs here, 
rather than absolute. Although we have not con-
ducted a full accounting, we note that EC2 instances 
were less expensive than WorkSpaces (which incur 
a management cost and require an AD controller to 
be present), and FSx storage was more expensive 
than EBS due to both management overheads and 
licenses for Microsoft products, which is built into 
the pricing structure. For comparison, however, 
the estimated cost to hold data for a survey in the 
cloud for a nominal 90-day processing effort and 
provision processing resources for it is about the 
same as buying a new desktop PC, monitors, and 
storage for each survey, and archiving it at 90 days. 
Cloud services are not, necessarily, cheaper than 
desktop alternatives.

A component in this cost is the licensing model 
employed by current desktop software. Motivated 
by the model of licensing per seat on physical ma-
chines, the license is typically either tied to specific 
hardware, or is checked out from a separate server 
on the local network as required. In the cloud, neither 
model is ideal. Each time an instance is restarted it 
has equivalent but potentially physically distinct hard-
ware associated, and therefore will invalidate any 
active license previously installed. The user is there-
fore left with two options: leave the instance running 
even when not in use, which incurs significant costs, 
or actively manage the licenses by deactivating and 
activating over each restart, which incurs significant 
management overhead and is inherently fragile. The 
alternative of running a license server continuously as 
part of the deployment also incurs computing costs 
(even though the license server can be very low pow-
ered), increases complexity, and is expensive unless 
amortized over many processing resources. Although 
the challenges of deploying hydrographic data pro-
cessing software to the cloud are predominantly 
technical, the issue of a cloud-friendly licensing (and 
revenue) model should not be underestimated.

Similarly, the necessity for a tightly coupled CPU 
and GPU in the compute resource, a norm for 
desktop systems, in not ideal in the cloud. In the 
desktop environment, each computer can be ex-
pected to have a fast CPU, a dedicated GPU, and 
locally attached high-speed storage (e.g., a NVMe 
SSD); processing software can assume this will al-
ways be the case and therefore casually require GPU 
resources, even to boot. None of the processing 
done here requires GPU support, however, and 
therefore the assumption that a GPU will always be 
attached results in a requirement for very expensive 
and limited availability cloud compute resources with 
an attached GPU that is never actually used. In the 
cloud, it would be significantly better to separate 
out the GUI portion of the software from the com-
putational portion and deploy these separately. This 
would allow optimization of resources, and therefore 
cost reduction.

One of the major advantages of the cloud 
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environment is flexibility (of compute, storage, net-
working, etc.) which is not a feature of the desktop 
environment, and therefore is generally not well uti-
lized by desktop software. Modern processing soft-
ware might be able to take advantage of multiple 
cores within a single processor, for example, or hy-
per-threading on a single core, but because the hard-
ware is assumed static it cannot scale beyond the 
number of cores available (which is often quite lim-
ited in cloud systems, the expectation being that the 
system should scale to multiple communicating com-
pute resources instead). Desktop software cannot, 
therefore, scale in the way allowed and encouraged 
by a cloud environment, and consequently achieves 
limited benefit from cloud deployment; hydrographic 
data processing tools must be recast as distributed 
systems (i.e., using algorithms and data structures 
designed to enable computation to be run on many 
dozens if not thousands of computation nodes in 
parallel) to take full advantage of the scalability po-
tential of cloud computing infrastructure. Similarly, the 
pricing structure of cloud systems depends strongly 
on details of the hardware and software environment 
chosen. It is more expensive to use Intel or AMD 
hardware and Microsoft software, for example, than 
ARM hardware and Linux software. Unless software 
vendors allow for architectural and operating system 
flexibility, they are passing on unnecessary costs to 
end users that might be significant, making such lim-
ited solutions less competitive.

Supporting multiple operating systems and CPU 
architectures is not trivial, of course, but can be 
simplified by separating computation engines from 
user-facing GUIs as well as through the use of 
containerization technologies such as Docker13 to 
package and distribute computation engines. In 
containerized deployments the entire computational 
environment required for a deployment is packaged 
into an image that can be launched on multiple com-
pute resources as required (e.g., using a container 
orchestration system such as AWS Elastic Container 
Service14, Elastic Kubernetes Service15, or stand-
alone Kubernetes16) to scale well and maintain guar-
antees of availability. For software vendors there 
might even be a benefit to providing a containerized 
deployment of their system in that it would avoid 
many configuration variabilities that cause difficul-
ties with installation and operation of complex soft-
ware systems.

Finally, we note that the cloud is a moving target in the 
sense that old compute resources are retired regularly 
with newer, more powerful services being brought on-
line to replace them. Services are also regularly retired 
or replaced. This makes it a challenging environment 
in which to operate and means that the results pro-
vided here may only be a snapshot of the performance 

capabilities of DitC. It is expected, however, that there 
will always be limitations to the benefits possible, and 
that truly benefiting from the advantages of the cloud will 
require development of a cloud-native processing chain 
that takes advantage of modern techniques such as 
containerization, microservices, and dynamic scaling of 
compute and storage resources.

5 Conclusions
These experiments examine the concept of “Desktop 
in the Cloud”, meaning the deployment of current 
generation non-distributed hydrographic processing 
software into a cloud environment, in this example 
Amazon Web Services, to provide remotely acces-
sible computation for ocean mapping data. The 
evidence is that while this can work, it may not be 
either cost or time efficient compared to a desktop 
deployment and therefore, assuming a cloud 
data processing strategy is desired, it is likely not 
a good choice. There are also statistically and 
practically significant performance variations de-
pending on the compute resources and storage 
technologies selected.

This work quantified the differences for three 
common tasks (converting data to processing format, 
initial time-series processing, and grid construction) 
and showed that computation time can be 4-5 times 
longer with inappropriate storage technology selec-
tion, and that some basic assumptions of desktop 
deployment (e.g., that you should not read source 
data, and write processed data, to the same disc) do 
not necessarily apply in the cloud.

The work also demonstrated limitations for DitC 
due to assumptions that are valid for the desktop 
but not for the cloud. Particularly, desktop licensing 
models are difficult, expensive, or both to support in 
the cloud, and an assumption of fixed hardware with 
tightly coupled GPU and storage require cloud-based 
resources that are poorly utilized by the software. The 
assumption of fixed hardware (valid for desktop but 
not for cloud) also intrinsically limits the scalability of 
computation with DitC, a key benefit of cloud-based 
deployment.

These results strongly suggest that while DitC 
is possible, the real benefit to cloud-based hydro-
graphic data processing will only be achieved with 
specifically designed, cloud-native distributed algo-
rithms and processing software.
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