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Abstract

Objective The connectivity and genetic structuring of populations throughout a region influence a species’
resilience and probability of recovery from anthropogenic impacts. By gaining a comprehensive understanding of
population connectivity, more effective management can be prioritized. To assess the connectivity and population
genetic structure of a common cold-water coral species, Desmophyllum pertusum (Lophelia pertusa), we performed
Restriction-site Associated DNA Sequencing (RADseq) on individuals from nine sites ranging from submarine canyons
off New England to the southeastern coast of the United States (SEUS) and the Gulf of Mexico (GOM). Fifty-seven
individuals and 3,180 single-nucleotide polymorphisms (SNPs) were used to assess genetic differentiation.

Results High connectivity exists among populations along the SEUS, yet these populations were differentiated from
those to the north off New England and in Norfolk Canyon along the North Atlantic coast of the United States, as

well as those in the GOM. Interestingly, Norfolk Canyon, located just north of North Carolina, and GOM populations
exhibited low levels of genetic differentiation, corroborating previous microsatellite analyses and signifying gene flow
between these populations. Increasing sample sizes from existing populations and including additional sampling sites
over a larger geographic range would help define potential source populations and reveal fine-scale connectivity
patterns among D. pertusum populations.
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Introduction

Understanding population connectivity is vital to the
development and implementation of effective manage-
ment and conservation efforts, especially in the wake
of ongoing environmental change. Assessing popula-
tion connectivity in deep-sea environments is challeng-

*Correspondence: ; ) - : )

Alexis M. Weinnig ing, given the inherent difficulty of collecting samples
aweinnig@usgs.gov in these locations. Contemporary genomic analyses can
'US Geological Survey, Eastern Ecological Science Center, Leetown 1 patt £ lati t t depth and
Research Laboratory, Kearneysville, WV, USA revea pa. ern.s of population structure across dep an‘

“Department of Invertebrate Zoology, National Museum of Natural geographic distance at finer scales than other genetic
History, Smithsonian Institution, Washington, DC, USA approaches such as microsatellites [1]. Additionally,
3National Systematics Laboratory, Office of Science and Technology, ic-1 1 1 ¢t d
NOAA Fisheries, Washington, DC, USA genomic-level analyses can support taxonomy an

This is a US. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. Open Access This
article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http//creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-024-06977-4&domain=pdf&date_stamp=2024-10-24

Weinnig et al. BVIC Research Notes (2024) 17:326

potentially reveal cryptic species, even within well-stud-
ied groups [2].

Marine resource managers require baseline informa-
tion about an ecosystem before implementing regional
conservation measures or utilization of natural resources.
Baseline information at an ecosystem scale in the deep
sea can consist of species identifications, biodiversity
assessments, food-web dynamics, and evaluation of
genetic connectivity between surrounding areas. Histori-
cally, ecosystem-level assessments have been difficult to
conduct in the deep sea (>200 m) due to technical con-
straints. With ongoing advances in both ship- and shore-
based technologies, scientists now have more access
to deep-sea ecosystems to collect, analyze, and synthe-
size baseline information, advancing our understand-
ing of these habitats. These benthic ecosystems include
cold-water coral (CWC) habitats, which are distributed
throughout the world’s ocean, and frequently found on
continental slopes, submarine canyon walls, and sea-
mounts [3, 4]. Although the collection of CWC popula-
tion data continues to increase, large knowledge gaps still
exist, even for the well-known CWC, Desmophyllum per-
tusum (formerly Lophelia pertusa).

Scleractinian CWCs like D. pertusum form complex
reef structures that increase habitat heterogeneity and
thus contribute to an overall increase in regional biodi-
versity. These structures can be thousands to millions of
years old, underscoring the long-term contributions of
CWCs to deep-sea ecosystem health [4—10]. CWCs also
have reproductive methods and larval phases that are
conducive to long-range dispersal, resulting in complex
genetic connectivity patterns. For instance, D. pertu-
sum are gonochoric (separate sexes), periodic broadcast
spawners with larvae that migrate upwards for the first
five weeks, and then shift downward with a settlement
period that can last over 50 days [11, 12]. Thus, under-
standing the connectivity patterns among existing D.
pertusum populations is critical to effectively managing
these CWC habitats and the ecosystem they support.

Past studies in D. pertusum have revealed discrep-
ancies in long and short-range connectivity patterns.
Based on 400 samples genotyped at eight microsatellite
DNA markers, genetic discontinuity among D. pertu-
sum populations was observed on a regional scale with
four distinct genetic groupings Gulf of Mexico (GOM),
southeastern coast of the United States (SEUS), New
England Seamounts, and eastern North Atlantic Ocean,
corresponding to defined ocean regions [13]. However,
when samples from the mid-Atlantic canyons (including
Norfolk Canyon) were analyzed at fourteen microsatel-
lite loci, these populations were more closely related to
the GOM than the neighboring SEUS [14, 15]. To inves-
tigate these findings further, we sampled individuals
(68% newly sampled for this study, 32% from previous
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studies) from populations along the SEUS, GOM, New
England canyons, and Norfolk Canyon; generated a set
of genome-wide informative markers through restric-
tion-site associated DNA sequencing (RADSeq); and
used single nucleotide polymorphisms (SNPs) to provide
finer-scale resolution of the levels of genetic diversity and
gene flow among these regions.

Methods

DNA extractions and sequencing

DNA was extracted from 157 D. pertusum individu-
als collected over a 10-yr period during seven research
cruises. Age and quality of tissue varied; therefore, several
DNA extraction methods were used to obtain the quality
and quantity of samples required for RADSeq. Methods
included multiple extraction kits (Qiagen PureGene, the
Qiagen DNeasy Blood & Tissue Kit (Hilden, Germany),
and a modified CTAB method) [16] (Additional file 2).
DNA was normalized to 20 ng/ul in 50 pl and sent to for
library prep and RADSeq (Floragenex; Beaverton, OR).
DNA libraries were constructed using the 6-cutter Pstl
and Msel enzymes, followed by sequencing 100 bp SE
reads on an (Illumina HiSeq4000; University of Oregon’s
Genomics and Cell Characterization Core Facility lab).

Sequence processing and bioinformatics

Sequencing data from 157 D. pertusum samples were
demultiplexed and assembled using ipyrad v.0.9.81 in
reference mode; default parameters were used in the
assembly [17]. A recently assembled and annotated D.
pertusum (Lophelia pertusa) genome was used as refer-
ence [18]. Following the assembly, loci and SNP informa-
tion were recovered in a variant call format (vcf) file and
then filtered using vcftools v.0.1.16 [19]. After removal of
samples with >90% missing data, the remaining 57 sam-
ples were processed for further analysis (Additional file 1,
filtering details described in Additional file 2).

Genetic diversity statistics were calculated in R (v.4.1.1)
using the packages adegenet and hierfstat [20, 21]. Indi-
viduals were assigned to populations based on the col-
lection sites. Mean observed heterozygosity (Hg), mean
expected heterozygosity (H), overall gene diversity (H,),
and the inbreeding coefficient (F,), were calculated for
the entire dataset as well as for each population. Pairwise
Fgr were calculated between the assigned populations
according to Weir and Cockerham (1984) and plotted
using the ggplot2 package [22, 23]. The API: ipyrad-anal-
ysis toolkit was used to generate a principal components
analysis (PCA) and to run STRUCTURE v.2.3.4 [17, 24]
(Additional file 2).
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Results

From the 157 D. pertusum samples processed, 144,682
loci (57% of prefiltered loci) were assembled. After sub-
sequent filtering with vcftools, 57 samples and 3,180
unlinked SNPs were included in further analyses.

Genetic differentiation among D. pertusum samples
was evaluated for all sample sites except for Pea Island
Seep (off North Carolina), since a single individual was
sampled from this site. The diversity statistics suggest low
heterozygosity among the sampled individuals (Supple-
mentary Tables 1 & 2). Overall, inbreeding was relatively
high (Fig = 0.726), however, inbreeding coefficients were
generally lower at each site (F;g = 0.383-0.596) (Supple-
mentary Table 3). A Wahlund effect could be contribut-
ing to the apparent heterozygote deficiency and elevating
the Fg values [25].

Differentiation between sample sites was further ana-
lyzed using a Pairwise Fgr analysis. Pairwise F¢p values
between the eight sample sites ranged from 0 to 0.121
(Fig. 1). Genetic differentiation was detected between
many of the sites, with the highest overall F¢ values
involving comparisons with Norfolk Canyon, ranging
from 0.062 (Pea Island) to 0.121 (Cape Fear). Pairwise
Fgr values were also high for comparisons involving the
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New England canyons (e.g., Norfolk Canyon=0.098,
GOM=0.079). However, F¢; values were surprisingly
low for comparisons between the New England canyons
and several sites along the SEUS (Cape Fear, Stetson
Bank, Savannah Banks, Richardson Reef, and Canaveral).
Minimal genetic differentiation was detected between
the SEUS sites (Fgp range 0-0.004), suggesting high con-
nectivity within the region. Additionally, isolation by dis-
tance and isolation by depth analyses were conducted but
there was no evidence of isolation by either parameter
(distance: R?=0.255, p-value=0.217; depth: R?=-0.009,
p-value=0.457) (Supplementary Fig. 1).

A Principal Component Analysis (PCA) based on
genetic similarity identified a population structure of four
genetic clusters (Fig. 2). These included: (1) the SEUS
sites, (2) Norfolk Canyon and the Gulf of Mexico, (3) the
New England canyons, and (4) the Pea Island sample.
The first two PCA axes explained 6.7% and 5.8% of the
variation. The STRUCTURE analysis, however, indicated
that six genetic clusters were most likely (K=6, Fig. 3,
Additional file 2). In addition to the four populations
demarked by PCA, STRUCTURE also indicated that two
individuals from the New England canyons (R2008-09
and R2008-10) and two individuals from Richardson Reef
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Fig. 1 Pairwise Fs; values for Desmophyllum pertusum samples (n=57) collected from nine sites. For values <0, a 0 was applied. Analysis is based on 3,180

unlinked SNPs
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Fig. 2 (A) Map of sampling sites. (B) Principal Coordinate Analysis (PCA) plot of genetic differentiation among Desmophyllum pertusum samples (n=57)

collected across nine sites. Analysis based on 3,180 unlinked SNPs

(CM-00046 and CM-00058) formed separate clusters
and appear to be derived from independent unsampled
populations (orange and pink bars, respectively). At K=6,
individuals from Norfolk Canyon, Pea Island, and the
GOM shared common genetic ancestry (lime green bars,
Fig. 3), while sites along the SEUS exhibited admixture of
several unsampled populations (turquoise, purple, yellow
bars, Fig. 3.). While both the PCA and the STRUCTURE
analyses grouped Norfolk Canyon and GOM samples
and the SEUS samples as clusters, the STRUCTURE
analysis indicates that most of the New England canyons
samples appear to be a different proportion of the same
core ancestral populations as the SEUS samples.

Discussion

The ocean circulation of the western North Atlantic
Ocean impacts larval dispersal, settlement, and overall
connectivity of benthic populations [26, 27]. Utilization
of thousands of genomic SNP markers for D. pertusum
suggest regional genetic structuring concordant with
pervious microsatellite analysis, yet SNP results provide
finer detail about the likelihood that several unsampled
populations are influencing the genetic structure of these
regions, especially in the SEUS [13, 14, 16, 28]. Regional
genetic structuring in D. pertusum is in agreement with
previously documented coral-defined biogeographic
provinces [14].

Our analyses suggest high connectivity amoung the
SEUS sites (Cape Fear, Stetson Bank, Savannah Banks,
Richardson Reef, and Canaveral). The PCA, pairwise
Fgr values, and STRUCTURE analysis indicated that the
SEUS sites were genetically similar to each other and
constitute one population along the Blake Plateau. The
STRUCTURE analysis indicated that at higher levels of K
(e.g., K=5-6), populations from the SEUS appeared more

genetically admixed than was shown in previous analyses
based on microsatellites. The SEUS populations, how-
ever, were differentiated from populations to the north,
(Norfolk Canyon, Pea Island, the New England canyons)
and from the GOM.

The New England canyons and Norfolk Canyon are
north of Cape Hatteras, North Carolina, a known north-
to-south biogeographic break in many shallow water
marine taxa. Additionally, Cape Hatteras was recently
proposed as a biogeographic break for a deep-sea glass
sponge, Vazella pourtalessi, indicating that this feature
may act as a dispersal barrier for other deep-sea taxa as
well [26, 27]. The STRUCTURE analysis indicates that
the SEUS populations are more genetically similar to the
New England canyons than Norfolk Canyon. This genetic
similarity could be a result of the turbulent hydrogra-
phy caused by the meeting of several major currents
in the area (Gulf Stream, the Labrador Current, or the
Deep Western Boundary Current (DWBC) [29, 30]. The
DWBC flows southward along the western boundary of
the Gulf Stream from the Labrador Sea to the equator.
A portion of the DWBC flows westward, inshore of the
Gulf Stream before encountering the deep Gulf Stream
near Cape Hatteras. Portions of the deeper DWBC
waters flow underneath the Gulf Stream and continue
in a south-westward orientation and could be contribut-
ing to the genetic diversity in populations of D. pertusum
found along the SEUS and the relative genetic similarity
to the New England canyons.

Interestingly, D. pertusum in Norfolk Canyon was
genetically more similar to those from the GOM than
populations in closer proximity, such as those off New
England or the SEUS; a pattern also detected with mic-
rosatellite data [15]. While hydrodynamic connections
with the GOM are not obvious, intrusions of Gulf Stream
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Fig. 3 STRUCTURE results (K=4, 5, 6) for Desmophyllum pertusum samples (n=>57) from nine sites. Each bar represents one sample and analysis is based
on 3,180 unlinked SNPs. The Southeast United States (SEUS) populations are Cape Fear, Stetson Banks, Savannah Banks, Richardson Reef, and Canaveral

waters occasionally move onshore and may facilitate the
migration of marine species to the Mid-Atlantic Bight
(MAB) [27, 31]. Such onshore intrusions likely influ-
ence long-distance dispersal of several fishes, such as
bluefish (Pomatomus saltatrix) [32] and the American
eel (Anguilla rostrata) from the Sargasso Sea [33]. Simi-
larly, GOM and MAB cold-seep mussels (Gigantidas
childressi) are not genetically differentiated [34], sug-
gesting on-going connectivity between these regions.

Alternatively, additional populations of D. pertusum may
exist in the western Atlantic in closer proximity to the
MAB (e.g., Bahama Banks or the Caribbean) and may
act as steppingstones for dispersal between the GOM
and MAB. Notably, roughly half of the water trans-
ported through the Florida Current (southern portion
of the Gulf Stream) is south Atlantic water that has been
advected through the Gulf of Mexico and the Caribbean
from the North Brazil Current [29]. The integration of
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fine-scale genomic population data with high-resolution
oceanographic circulation models could yield valuable
information about the distribution of source and sink
populations of D. pertusum in the western North Atlan-
tic, providing essential information for management and
conservation of these ecosystems.

The relatively high inbreeding coefficient (Fg) values
could be caused by a Wahlund effect, which typically
occurs when the true scale of an organism’s population
structure is unknown, resulting in unequal sampling
across all populations [25]. However, significant inbreed-
ing has been detected in many populations of this species
previously [13, 14, 35]. Prevalence of asexual reproduc-
tion (fragmentation) during reef development and the
longevity of individual clones are suggested causes for
high inbreeding coefficients in this species and may influ-
ence patterns of population structuring [35, 36].

Limitations

While these are encouraging results, a note of caution
involving small sample sizes for several D. pertusum pop-
ulations is warranted. Accuracy in defining population
differentiation requires larger sample sizes (>20 individu-
als per site) [37]. Similarly, the high quality and quantity
of DNA required for RADseq can reduce the number of
useable samples, particularly if sample collection occurs
over decades, given the logistical difficulties of collecting
deep-sea taxa. Obtaining high quality DNA from older
samples was problematic, resulting in fewer samples
included in our analyses.

Inclusion of samples from other regional populations
of D. pertusum would also help to clarify the sources
and sinks of larvae within and between regions. Nota-
bly, the Caribbean, a historically under-sampled region
for D. pertusum, could be a source of larvae for popula-
tions along the SEUS. Similarly, more northerly popula-
tions (i.e., Greenland or the Laurentian Channel) could
contribute larvae as they are carried south by the Lab-
rador Current or DWBC. Nevertheless, our study pro-
vides insight into the complex population structure of
an ecologically significant coral species and suggests that
hydrography around Cape Hatteras has the potential to
impact population structure in deep-sea organisms, as
well as shallow-water taxa.
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