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ABSTRACT
Artificial structures deployed in marine environments as reefs are often presumed to increase fish production. However, our 
literature review found a lack of evidence, with only 12 studies empirically quantifying secondary production at artificial reefs, 
and only three studies using a control site. We propose the forthcoming large-scale construction of offshore wind (OSW) energy 
structures presents a natural experiment to examine the ecological function of artificial reefs, including their effects on fish 
production. To provide causal inferences of OSW effects, studies must obtain appropriate ‘before’ data, per before-after-control-
impact and related designs. This requirement dictates that society must begin planning and collecting data now, prior to OSW de-
ployment. We also highlight that responses beyond fish biomass measures, including life stage specific survival, site fidelity and 
trophic dynamics, must occur at appropriate spatial and temporal scales to maximise causal inference. By leveraging a timely 
opportunity and natural experiment with OSW development, the long-running ‘attraction–production debate’ about artificial 
reef ecological function may be addressed.

1   |   Artificial Structures and Fish Production

Marine artificial structures are deployed for reasons includ-
ing offshore energy extraction, habitat restoration and recre-
ation opportunities, but may incidentally affect fisheries due 

to addition of hard substrate, which may increase structural 
complexity (refuge), nutrient cycling, food availability and even-
tually secondary production (Hixon and Beets 1993; Grossman 
et al. 1997; Layman and Allgeier 2020). Artificial reefs, however, 
are deployed specifically to enhance fisheries production (Becker 
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et al. 2018). These structures are common in certain marine eco-
systems (Ramm et al. 2021) and widely supported by fishermen 
(Schuett et al. 2016). We therefore use the term ‘artificial reef’ 
broadly, as any artificial structure may function as an artificial 
reef. High catch rates and/or densities of key fishery species are 
observed at artificial reefs around the world, including red snap-
per (Lutjanus campechanus) in the U.S. Gulf of America (here-
after GoA, formerly the Gulf of Mexico) (Karnauskas et al. 2017; 
Gallaway et  al.  2021), Australasian snapper (Chrysophrys au-
ratus) in Australia (Mills et  al.  2017; Ramm et  al.  2021) and 
Atlantic cod (Gadus morhua) in the North Sea (Bergström 
et al. 2013). Recent reviews further highlight that artificial reefs 
produce higher abundances and biomasses of fish relative to 
controls (Lemasson et al. 2024; Watson et al. 2024). However, it 
is unclear whether high catch rates and abundances are due to 
increased fish production or behavioural affinities of fishes for 
more complex artificial reefs (i.e., attraction).

Changes in ecological function via artificial reefs may increase 
production; however, attraction in the absence of enhanced pro-
duction can create ecological traps, leading to reduced fitness 
and/or survival (Reubens et al. 2013; Swearer et al. 2021). Traps 
may arise when habitat is not limiting, but recruits are redirected 
to poorer quality artificial reef habitat, thereby decreasing fit-
ness (Komyakova et al. 2021). Traps may also arise when habitat 
is limiting, leading to initial recruitment and/or biomass pulses 
at artificial reefs that are eventually depleted due to high catch 
rates, yielding reduced survival (Chong et al. 2024). Ecological 
traps present management concerns, as biomass aggregation 
(rather than increased productivity) and spatially focused fish-
ing activity may cause localised depletion and increase fish-
ing mortality beyond sustainable levels (Chong et  al.  2024). 
Although not a true dichotomy, there is uncertainty whether ar-
tificial reefs create ecological traps or enhance production, that 
is, the ‘attraction–production debate’ (Bohnsack  1989; Powers 
et  al.  2003). Nevertheless, recreational fishing communities, 
particularly in the U.S., often advocate for artificial reefs due to 
perceived fisheries enhancements (Grossman et al. 1997).

Resolving the ‘attraction–production debate’ is becoming in-
creasingly important as humans continue to deploy artificial 
reefs, including structures used for offshore energy extraction. 
Recent expansions in offshore renewable energy, including off-
shore wind (OSW), particularly highlight a need to assess how 
artificial reefs affect secondary production (Reubens et al. 2013; 
Soares-Ramos et  al.  2020). Adequate assessments require em-
pirical experiments of large spatial and temporal scales, so much 
so that few attempts exist. Given these notions, we aim, via a 
literature review, to assess the scientific evidence supporting the 
idea that artificial reefs increase secondary production.

2   |   The Lack of Evidence

We used Web of Science to identify journal articles, Master's 
theses, and PhD dissertations published between 1970 and 2024 
related to artificial reefs and biological production (i.e., bio-
mass fluxes of any faunal species) in marine environments. See 
https://​github.​com/​shayn​asura/​​osw_​ghoti_​lit for further litera-
ture review details. Our search returned 915 potentially relevant 
records (Figure 1A) with 695 records reporting on primary or 

secondary production in marine environments. Of these, 276 
(39.7%) records reported on primary or secondary production re-
lated to artificial reefs (Figure 1B), and only 12 records (1.7% of 
695) provided empirical estimates of secondary production from 
observational data (Table 1). Ten additional records used simu-
lation modelling (e.g., Ecopath with Ecosim; Christensen and 
Walters  2004) to estimate secondary production. Two records 
quantified primary production and then inferred secondary pro-
duction based on the theory of primary production constrain-
ing secondary production (Layman et  al.  2016; Layman and 
Allgeier 2020).

The 12 records quantifying secondary production occurred 
in five countries: U.S. (7), Australia (2), Japan (1), Portugal (1) 
and the Bahamas (1) (Table  1). Artificial reefs with low verti-
cal relief (< 10 m) were assessed in all five countries, while high 
vertical relief (> 10 m), large-scale (> 200 m2 footprint) artificial 
reefs (specifically petroleum platforms) were only assessed in 
the U.S. and Australia (Table 1). Only three of these 12 studies 
quantified secondary production at control sites, all reporting 
greater production at artificial reefs than control sites (Table 1). 
Claisse et al.  (2014, 2015) were able to estimate production ef-
fects by leveraging extensive size-at-age time series data (up to 
15 years) and site fidelity information to estimate size-specific 
survival, somatic production, and recruitment production. 
Steimle et al. (2002) were able to estimate artificial reef effects 
on epifauna and infauna production via 2 years of sample data 
and using previously published P:B ratios. No studies quanti-
fied secondary production before artificial reef deployment. 
Estimated secondary production rates varied by five orders of 
magnitude and are not comparable across studies due to differ-
ing estimation methods and target organisms (e.g., finfishes and 
epifaunal invertebrates) (Table  1). All three studies including 
controls found higher production rates at artificial reefs, with 
control sites varying from natural reefs to benthic sand habitat 
(Table 1). While all three studies demonstrated higher produc-
tion at artificial reefs, a sample size of three does not permit the 
broad conclusion that artificial reefs enhance secondary produc-
tion. The state of artificial reef science therefore needs to evolve 
to provide valuable information to fisheries management.

3   |   The Difficulty of Assessment: Function, Causal 
Inference and Scale

Many underlying processes, including recruitment, habitat 
availability, movement and density-dependent mortality and/
or growth at different life stages determine if and how arti-
ficial reefs affect fish production (Bohnsack  1989; Osenberg 
et  al.  2002; Lorenzen and Camp  2019). For example, artificial 
reefs may enhance fish production if they increase juvenile sur-
vival and if recruitment is a key limitation for the population, 
as earlier life stages can be most affected by density-dependent 
mortality (Lorenzen and Camp 2019). This ecological complex-
ity contributes to difficulties in assessing artificial reef effects 
on fish production, and may explain our findings that only 12 
studies provide empirical estimates of secondary production on 
artificial reefs. Moreover, addressing the ‘attraction–production 
debate’ requires an assessment of the ecological function of ar-
tificial reefs whereby responses beyond measures of biomass of 
individual life stages are needed to assess secondary production. 

https://github.com/shaynasura/osw_ghoti_lit
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Alternatives include a pluralistic approach whereby multiple, in-
dividual processes (including those listed above) are evaluated, 
quantified and synthesised (Osenberg et al. 2002).

Artificial reef deployments can serve as natural experiments, 
with controls established by obtaining data before deployment 
and at similar sites lacking artificial reefs, per before-after-
control-impact (BACI) designs. BACI designs enable causal 
inference via temporal (before/after the intervention) and spa-
tial (inside/outside impact sites) controls. Causal inference is 

difficult to assess in the context of intervention effects on eco-
logical function due to uncertainty about when and where to in-
tervene (Runge et al. 2023). This difficulty, however, is removed 
with adequate planning before artificial structure deployment. 
Relatedly, before-after-gradient (BAG) designs allow for assess-
ments of the extent of artificial reef effects and enhance statis-
tical power by modelling distance as a continuous independent 
variable (Methratta 2020). BACI and BAG designs have been im-
plemented for artificial reef studies; however, only fish biomass 
or density responses are typically assessed (Vandendriessche 

FIGURE 1    |    Number of published studies per year that were relevant to biological production in marine environments (A) and that provide em-
pirical, biological data in the context of artificial reefs and marine organism production (B). The data for this literature search as presented in both 
A and B above, was conducted on February 2, 2024 using as Web of Science search string of ‘TS=(ship-wreck OR shipwreck OR (sunken NEAR/2 
ship) OR ((oil OR gas OR petrol*) NEAR/5 (platform OR rig OR structure OR infrastructure)) OR (rig NEAR/2 reef) OR (wind* NEAR/2 (farm OR 
turbine OR structure)) OR manmade structure OR man-made structure OR (artificial NEAR/2 (reef OR structure))) AND TS=(production*) AND 
TS=(fish*) NOT TS = (lake OR river OR pond)’.
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et al. 2015; Streich et al. 2017). Responses including recruitment, 
growth and survival would enable stronger conclusions regard-
ing mechanisms of fish production changes.

In addition to including controls and assessing responses be-
yond standing biomass, experiments conducted at sufficiently 
large spatial scales can differentiate local versus regional re-
sponses, which are needed to understand population- and 
ecosystem-wide changes (Carr and Hixon  1997). These could 
be accomplished with multiple-BACI (mBACI) designs of multi-
ple impact and control sites, inherently increasing spatial scale 
(Kingsford 1999). mBACI designs are particularly applicable for 
OSW, as multiple turbines and/or wind farms can serve as rep-
licate experimental units. Including multiple sites can expand 
spatial scales to tens of kilometres to account for larger-scale 
processes, including larval dispersal and steppingstone effects 
(Methratta  2021). Applying these study designs requires fore-
sight and time to collect prior data, which likely explains the 
paucity of BACI studies examining artificial reef effects on 
production. However, with planned offshore renewable energy, 
including OSW development, we know when and where these 
interventions are coming, and we have the knowledge of rel-
evant ecological theory to plan and act accordingly. OSW de-
velopment thus presents an opportunistic natural experiment 
to apply pluralistic approaches, and mBACI and BAG designs, 
to examine causal inference of the ecological function of artifi-
cial reefs.

4   |   Offshore Wind Development and Experimental 
Management

The development of OSW energy is one of the next major steps 
in humankind's transformation of Earth's oceans. In Europe, 
OSW development has rapidly expanded since the early 2000s, 
with > 25 gigawatts (GW) of energy per year (> 5000 tur-
bines) currently deployed (Soares-Ramos et  al.  2020). In the 
U.S., the first OSW farm was deployed off New England in 
2016 (Wilber et  al.  2022), with > 2.2 million acres of Atlantic 
continental shelf waters leased (Williams et  al.  2024). More 
recently, three areas were leased (142,352 acres) in GoA state 
(Louisiana) and federal waters (Baurick 2023). OSW expansion 
in the European Union is expected to reach 100 GW of energy 
per year by 2030 (Soares-Ramos et al. 2020) and is expected to 
increase as technological capacities increase and production 
costs decrease (Offshore Wind Market Report  2021). U.S. de-
velopment increased rapidly between 2021 and 2023, with total 
land and wind-based energy in 2023 accounting for 9% (43 of 477 
GW) of total U.S. electricity production (Unites States Energy 
Information Administration 2024). However, the speed at which 
U.S. OSW develops may vary due to national priorities for en-
ergy production.

Scientists have begun identifying ecological effects of OSW, 
including increased biofiltration, biodeposition and abun-
dances of commercially important finfish and shellfish (Watson 
et  al.  2024; Degraer et  al.  2020, and references therein). With 
anticipated OSW development, now is the time to consider 
further ecological questions, and valuable and novel natural 
experiments associated with OSW. We propose seizing this 
opportunity to critically examine long-standing questions in 

the ‘attraction–production debate’ (Bohnsack  1989; Powers 
et al. 2003; Cowan et al. 2011) with empirical, experimental as-
sessments of the ecological function of OSW infrastructure as 
artificial reefs.

We highlight the GoA as an opportunity to conduct these studies 
due to its potential OSW development by 2030 (Baurick 2023). 
Moreover, there are over 20,000 known artificial reefs in the 
GoA (Paxton et al. 2024) with strong connections to fisheries, in-
cluding red snapper, which is a highly valuable and contentious 
fishery in the GoA (Gallaway et al. 2009; Gardner et al. 2022). 
Red snapper fisheries management is controversial in the U.S. 
partially due to allocation disputes between recreational and 
commercial fisheries (Cowan et al. 2011), uncertainty in land-
ings and discard estimates, and challenges in balancing objec-
tives between commercial and recreational sectors (Farmer 
et  al.  2020). Artificial reefs are deliberately deployed as man-
agement tools for red snapper, and estimates of exploitation rate 
based on tag recaptures are highest in the Alabama Artificial 
Reef Zone (Sackett et al. 2018), elevating the concern about im-
plications of the ‘attraction–production debate’. U.S. Congress 
augmented monitoring surveys with the goal of assisting fish-
ery assessments, including the Congressional Supplemental 
Sampling Program (Campbell et al. 2012; Karnauskas et al. 2017) 
and the Great Red Snapper Count (Stunz et al. 2021). Even given 
specialised attention and resources, artificial reef effects on red 
snapper population dynamics remains heavily debated and un-
resolved (Karnauskas et al. 2017; Gardner et al. 2022).

A critical shortcoming for assessing how artificial reefs affect 
GoA red snapper is the lack of ‘before’ data. Many studies quanti-
fied red snapper biomass, abundance, trophic habits or site fidel-
ity after, but not before, artificial reef deployment (Karnauskas 
et al. 2017; Powers et al. 2018; Tarnecki and Patterson III 2015; 
Froehlich et  al.  2021). However, lacking population dynamic 
data before artificial reef deployment has prohibited quantita-
tive assessments of how artificial reefs affect red snapper pro-
duction. Planned GoA OSW development presents a unique 
opportunity of a ‘redo’ of past lost opportunities. This opportu-
nity is predicated upon utilising the crucial window before OSW 
structure deployment. In the GoA, functional OSW turbines 
may be expected by 2030 or later (Baurick 2023). Foresight in-
formed with knowledge of past lost opportunities should inspire 
societies to employ a cause-and-effect framework to assess the 
ecological function of artificial reefs. While we highlight the 
GoA as a case study, our proposed design considerations apply to 
any region expecting OSW deployment and containing fisheries 
linked to artificial reefs.

Many OSW farms, including but not limited to those in the 
GoA, may deploy > 100 turbines per site, with expected turbine 
spacing of one nautical mile (United States Coast Guard 2020; 
Bureau of Ocean Energy Management 2024). Although size and 
location factors, including interior vs. edge effects and wind-
ward vs. leeward turbine sides, create spatial complexity poten-
tially affecting habitat suitability, inherent replication may exist 
in constructing identical structures. More broadly, there is repli-
cation across regional and even global scales, since wind farms 
are designed in a grid pattern. These levels of replication may 
promote mBACI designs and allow for evaluation of artificial 
reef dynamics at larger spatial scales than previous artificial reef 
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deployments, which typically have low (< 10) replicates on small 
(100–1000 s of m2) spatial scales, or may be haphazardly placed 
within an area (e.g., petroleum platforms; Arney et  al.  2017; 
Babcock et al. 2020). The inherent replication and scale of OSW 
development will further improve causal inference abilities.

In the GoA, OSW farms are expected to be open to fishing, other 
than de facto fishing exclusion (due to gear fouling issues) or 
tie-up constraints (tying up to turbines) during operations and 
installation. Therefore, controlled experiments will require dif-
ferential treatments for fishing and nonfishing and cooperation 
between fishermen, scientists and stakeholders. Such fishery ex-
clusion experiments could maintain fishing opportunities while 
providing controlled scientific designs assessing how fishing 
pressure affects the ecological function of large-scale artificial 
reefs. The GoA also hosts many long-term monitoring programs 
(LTMPs) that can be leveraged for large spatial and temporal 
scale assessments (Grüss et al. 2018). Future studies assessing 
OSW impacts on fish production may consider replicating sam-
pling approaches of LTMPs but at higher spatial and temporal 
resolution/replication in and around OSW farms (discussed by 
Karnauskas et al. 2017). This may allow for easy integration of 
LTMP data with future data sets, thereby increasing the spatial 
and temporal scales of inference.

5   |   The Opportunity

The U.S. Bureau of Ocean Energy Management (BOEM) suggests 
2 years of preconstruction environmental monitoring for OSW 
leases. These efforts may provide a foundation for ‘the opportu-
nity’. However, coordination is needed among a consortium of 
stakeholders including BOEM, National Marine and Fisheries 
Service, private developers and leaseholders to expand upon these 
mandates to produce data enabling robust mBACI and BAG de-
signs. Our initial minimum recommendation is to monitor for 
one decade, including at least 6 years of ‘after’ data, to account for 
succession, as climax communities at OSW structures are often 
reached after 6 years (Degraer et  al.  2020), although this value 
pertains to the North Sea and likely varies among global regions. 
Sampling beyond a decade will likely be needed to distinguish ef-
fects caused by artificial reefs against other sources of variability 
(e.g., environmental variability and natural fluctuations in spawn-
ing stock biomass). We also recommend sampling metrics beyond 
standing biomass, specifically size-specific survival, growth and 
recruitment. Expanded monitoring should consider how different 
OSW infrastructure, including foundation type and scour protec-
tion material type and depth, affect fish production. Capitalisation 
upon these natural experiments is needed to determine immediate 
effects of OSW, but also to predict and mitigate long-term impacts, 
including those coinciding with ongoing ocean changes and fish-
eries management. This opportunity extends beyond the scientific 
community to society as a whole, including policymakers, stake-
holders and the public. By engaging in this natural experiment 
with foresight and collaboration, we can ensure OSW develop-
ment proceeds in an environmentally sustainable manner, does 
not lead to ecological traps and enhances our understanding of 
marine ecosystems. The lessons learned here can inform future 
ocean interventions to optimise how we balance human needs 
with ecological preservation.
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