remote sensing

Article

Detection of Individual Corn Crop and Canopy Delineation from
Unmanned Aerial Vehicle Imagery

Freda Dorbu ! and Leila Hashemi-Beni %*

check for
updates

Citation: Dorbu, F.; Hashemi-Beni, L.
Detection of Individual Corn Crop
and Canopy Delineation from
Unmanned Aerial Vehicle Imagery.
Remote Sens. 2024, 16, 2679.

https:/ /doi.org/10.3390/

rs16142679

Academic Editors: Leonardo Conti,
Diego Bedin Marin, Giuseppe Rossi

and Gabriel Aratjo e Silva Ferraz

Received: 15 June 2024
Revised: 6 July 2024

Accepted: 17 July 2024
Published: 22 July 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computational Data Science and Engineering, North Carolina A&T State University,
Greensboro, NC 27411, USA; fedorbu@aggies.ncat.edu

Geomatics Program, College of Science and Technology, North Carolina A&T State University,
Greensboro, NC 27411, USA

Correspondence: lhashemibeni@ncat.edu

Abstract: Precise monitoring of individual crop growth and health status is crucial for precision
agriculture practices. However, traditional inspection methods are time-consuming, labor-intensive,
prone to human error, and may not provide the comprehensive coverage required for the detailed
analysis of crop variability across an entire field. This research addresses the need for efficient
and high-resolution crop monitoring by leveraging Unmanned Aerial Vehicle (UAV) imagery and
advanced computational techniques. The primary goal was to develop a methodology for the precise
identification, extraction, and monitoring of individual corn crops throughout their growth cycle.
This involved integrating UAV-derived data with image processing, computational geometry, and
machine learning techniques. Bi-weekly UAV imagery was captured at altitudes of 40 m and 70 m
from 30 April to 11 August, covering the entire growth cycle of the corn crop from planting to harvest.
A time-series Canopy Height Model (CHM) was generated by analyzing the differences between the
Digital Terrain Model (DTM) and the Digital Surface Model (DSM) derived from the UAV data. To
ensure the accuracy of the elevation data, the DSM was validated against Ground Control Points
(GCPs), adhering to standard practices in remote sensing data verification. Local spatial analysis and
image processing techniques were employed to determine the local maximum height of each crop.
Subsequently, a Voronoi data model was developed to delineate individual crop canopies, successfully
identifying 13,000 out of 13,050 corn crops in the study area. To enhance accuracy in canopy size
delineation, vegetation indices were incorporated into the Voronoi model segmentation, refining
the initial canopy area estimates by eliminating interference from soil and shadows. The proposed
methodology enables the precise estimation and monitoring of crop canopy size, height, biomass
reduction, lodging, and stunted growth over time by incorporating advanced image processing
techniques and integrating metrics for quantitative assessment of fields. Additionally, machine
learning models were employed to determine relationships between the canopy sizes, crop height,
and normalized difference vegetation index, with Polynomial Regression recording an R-squared of
11% compared to other models. This work contributes to the scientific community by demonstrating
the potential of integrating UAV technology, computational geometry, and machine learning for
accurate and efficient crop monitoring at the individual plant level.

Keywords: precision agriculture; computational geometry; canopy height model; Voronoi; local
maximum,; segmentation

1. Introduction

The integration of precision agriculture (PA) stands to significantly enhance agricul-
tural efficiency, especially considering the expected global population rise and increasing
demands for food security. Focusing on economically crucial crops like corn, PA employs
advanced tools such as remote sensing (RS), Geographic Information Systems (GISs), and
Global Positioning System (GPS) to optimize field management. This approach aims to
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maximize resource efficiency and minimize waste, thereby increasing crop yields and pro-
moting environmental sustainability. Despite its potential, the adoption of PA is hindered by
financial constraints and technical complexities, which deter stakeholder engagement [1-3].

Remote sensing has emerged as a dependable method for monitoring fields, utiliz-
ing UAVs, piloted aircraft, and satellites for data collection [4,5]. UAVs are becoming
increasingly vital in agriculture, thanks to their ability to carry diverse sensors and provide
high-resolution, cost-effective images [6]. Even with their limited flight time, for localized,
short-term missions requiring rapid deployment, UAVs offer more flexibility than satellites
and piloted aircraft [7]. UAVs play a critical role in crop monitoring, offering detailed
insights into individual crop characteristics, biomass, and overall field uniformity [8-10].

However, there is a significant gap in applying existing remote sensing technologies
for precisely monitoring and managing individual crop characteristics, especially in un-
derstanding and optimizing the complex canopy structures of crops like corn. This gap
underscores the need for more sophisticated, efficient, and widely applicable methodolo-
gies in crop management. This study proposes a novel methodology that harnesses the
power of UAV imagery and computational geometry for individual corn plant monitoring.
The approach utilizes the Canopy Height Model (CHM) [5,11-15] derived from the differ-
ence between the Digital Terrain Model (DTM), the Digital Surface Model (DSM) [5,16-21],
and the modified Voronoi diagram. Some research work [22-24] enable efficient corn
canopy detection and delineation. This modified Voronoi diagram incorporates domain-
specific knowledge about corn plant spacing and spectral data such as Excess Green (ExG)
and normalized difference vegetation index (NDVI) to filter out noise elements like soil,
background, and shadows, leading to enhanced accuracy and efficiency in agricultural
monitoring and management [25-27].

2. Materials and Methods

This research employed a workflow leveraging Python 3.12.3 scripting for automation,
Agisoft Photoscan 2.1.2 for detailed 3D reconstruction (photogrammetry), and ArcGIS Pro 3.0
for comprehensive spatial analysis and compelling visualization of the generated crop models.
This integrated approach streamlined the complex data processing and analysis workflows,
ultimately facilitating precise crop modeling (Figure 1).
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Figure 1. Automated framework for crop mapping and canopy characterization.
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2.1. UAV Data Collection

This research employed a comprehensive approach to data acquisition, leveraging
high-resolution RGB time-series imagery throughout the entire crop cultivation phase.
The data collection spanned from the initial planting on 30 April to the final harvest on
11 August, ensuring a complete temporal record of the crop’s growth and development
specific to our region of study. The primary imaging platform utilized in this study was
a DJI Phantom 4 Pro Unmanned Aerial Vehicle (UAV) equipped with a 4K UHD 2160p
RGB camera (DJI, Shenzhen, China). This state-of-the-art UAV system was chosen for its
ability to capture exceptionally high-resolution RGB imagery, which is crucial for accu-
rate crop modeling and analysis. To further explore the potential benefits of additional
spectral information, this research also acquired imagery using a separate UAV equipped
with a near-infrared (NIR) sensor. NIR imagery has proven valuable in various agricul-
tural applications, as it can provide insights into crop health, stress levels, and biomass
estimation [28]. To determine the optimal flight altitude for accurate crop modeling, the
research conducted flights at two different elevations: 40 m and 70 m above ground level.
This approach allowed for a comprehensive evaluation of the trade-offs between spatial
resolution and field coverage, ensuring that the final methodology would strike the right
balance between these factors. By employing a multi-sensor approach and capturing data
at various altitudes, this research aimed to develop a robust and adaptable methodology
for individual corn plant monitoring. The high-resolution RGB imagery provided detailed
spatial information for plant identification and segmentation, while the NIR data offered
complementary spectral information for understanding plant health and physiological
characteristics. Images acquired from the NIR sensor were resampled for further analysis
with RGB sensor images. Moreover, the time-series nature of the data collection allowed
us to track the growth and development of individual plants throughout the entire crop
cycle. This longitudinal approach enabled the research team to investigate the dynamic
changes in plant characteristics over time, providing valuable insights into the impact of
environmental factors, management practices, and phenological stages on crop growth and
yield.

2.2. Canopy Height Model (CHM) Generation and Individual Plant Identification

The imagery captured at varying flight altitudes underwent Structure from Motion
(SFM) processing, which is a powerful technique for constructing orthophotos and three-
dimensional crop models from overlapping two-dimensional images. SEM incorporates
feature matching and camera alignment algorithms [29] to generate accurate Digital Surface
Models (DSMs) and Digital Terrain Models (DTMs). Generating an accurate Digital Surface
Model (DSM) and Digital Terrain Model (DTM) was pivotal in this endeavor. The DSM,
depicting crop elevation, and the DTM, representing bare ground elevation, were derived
from Unmanned Aerial Vehicle (UAV) images acquired before planting, when the field was
bare, and from subsequent time-series imagery. The accuracy of crop height estimation and
crop detection heavily relied on the quality of the DSM, which accurately represents the
crop surface and ensures precise characterization of the study field. The accuracy of our
generated DSM was calculated by comparing it with Ground Control Points (GCPs) from
our field of study, which indicated that the DSM was representative of the field.

While this research utilized time-series data, imagery captured at a single flight altitude
on 11 August, coinciding with mature crops, was employed for this specific analysis. This
decision was made to isolate the impact of canopy structure on a specific growth stage, in
this case, the mature stage of the crop cycle. By focusing on a single time point, the analysis
could effectively investigate the influence of the intricate canopy structure on individual
crop identification and monitor without the confounding effects of temporal variations in
growth stages.

In our study, we developed a Canopy Height Model (CHM) to aid in the identification
of individual crops by calculating the difference between the DSM, which captures the crop
elevation, and the DTM, which represents the elevation of the bare earth. This calculation
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effectively highlights the height of the crops, discounting the elevation of the terrain [23,30].
This calculation is represented by the following equation:

Canopy height model = DSM — DTM (1)

To further enhance the CHM'’s accuracy, a user-defined threshold based on the typical
mature corn height, often exceeding 3 m, was applied. This filtering step removed irrelevant
noise such as soil and shadows and retained essential features related to vegetation. By
leveraging the known characteristic height of mature corn, the methodology effectively
isolated the relevant height information, increasing the reliability of the subsequent analyses.
This preprocessing step, encompassing height-based filtering, not only improved analytical
accuracy but also optimized computational efficiency. By reducing the amount of irrelevant
data and noise, the preprocessing stage streamlined the subsequent analyses, minimizing
the computational resources required and enabling more efficient processing pipelines.
Overlaying the refined CHM onto orthophotos allowed for a visual evaluation of crop
heights via their spectral characteristics, facilitating a detailed and effective analysis of
the crop data. This integration of height information with high-resolution orthoimagery
provided a comprehensive representation of the field, enabling researchers to visually
inspect and validate the crop height estimates in the context of the spectral signatures and
spatial patterns observed in the imagery.

A unique methodology was utilized for the detection of individual crops within this
study by pinpointing each crop’s local peak height through the CHM. This was accom-
plished by deploying a local maxima function on the CHM, designating a pixel as a local
maximum when its value is greater than or equal to the values of its surrounding pixels,
marking the apex of crops. This approach leveraged the fact that individual crop plants
would exhibit localized height maxima within the CHM, representing the highest point
of their canopy structure. Various sizes of moving windows were tested on the CHM to
determine the most suitable window size for this analysis, with a 10 x 10 window size
proving most effective in accurately identifying local peak heights and discerning corn
crops. The choice of window size is crucial, as it determines the spatial extent over which
the local maxima are evaluated, affecting the ability to distinguish individual crop elements
accurately. The validity of this approach was confirmed through a comparison of the
produced local maxima map with the original CHM, ensuring accurate crop identification.
This validation step provided confidence in the methodology’s ability to reliably detect
and locate individual crops within the study area. The local maximum map was then trans-
formed into point data to detail the specific heights of individual crops, enabling further
quantitative analyses and modeling of crop characteristics. The equation representing the
local maxima function is as follows:

MaxValue(c;;) = max;j%max]yg_g{x,y 2)
where the MaxValue (ci,j) is the maximum value assigned to the cell at position (i,y) in the
output raster map. Ry, represents the value of the cell in the input CHM and the ranges
x=i—5tox =i+4andy = j—5toy = j+ 4 define the 10 x 10 window around
cell Ci,j, considering a zero-based index. If the CHM is 1-based, the indices would adjust
accordingly.

To validate the effectiveness of the developed methodology for individual crop detec-
tion, the number of 13,000 crops identified using the local maxima approach was compared
to manual crop estimations of 13,050 performed by human observers in the field. This com-
parison served as a crucial step in assessing the accuracy and reliability of the automated
crop detection process. Manual crop estimation is a labor-intensive and time-consuming
process that involves human observers physically counting and recording the number
of individual crop plants within designated areas of the field. This process is typically
considered the ground truth reference, as it relies on direct visual observation and human
judgment, albeit subject to potential errors and biases. By comparing the number of crops
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identified by the automated methodology to the manual estimates, we aimed to evaluate
the performance of the developed approach in terms of its ability to accurately detect and
count individual crop plants. This comparison provided insights into the potential under-
or overestimation of crop numbers by the automated method, as well as its consistency
across different field conditions and crop growth stages.

The validation process used in this study involved calculating the Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) to measure the average magnitude
of errors between the aerial counts and the manual counts, as well as the accuracy per-
centage to quantify the discrepancies between the automated and manual crop counts.
Additionally, visualizations, such as scatter plots and bar plots, were employed to assess
the correlation and agreement between the two methods of crop identification. Our auto-
mated crop detection methodology consistently produced crop counts that were in close
agreement with the manual estimates, providing confidence in the reliability and robust-
ness of the developed approach. This validation step is crucial in the context of precision
agriculture practices, as accurate crop counts and spatial distributions are essential for
informed decision-making processes, such as yield estimation, resource allocation, and
targeted interventions. By comparing the automated methodology with ground truth
data, researchers can assess the suitability and applicability of the developed approach in
real-world agricultural settings, ultimately contributing to the advancement of sustainable
and efficient crop management practices.

2.3. Canopy Size Delineation and Refinement

Building upon the previously generated Canopy Height Model (CHM) and individual
crop identification, our methodology for delineating canopy sizes leverages a synergistic
integration of remote sensing data, computational geometry algorithms, and a vegetation
index (e.g., NDVI) to achieve accurate delineation and quantification of individual crop
canopies. This approach centers around a local peak height map derived from the CHM,
effectively pinpointing the apical regions of each crop within the study area. Leveraging the
principles of computational geometry, we employ a Voronoi tessellation algorithm [31,32]
on the local peak height map. This technique partitions the field into a set of polygonal
regions, where each region encloses the area closest to a specific local maximum point,
effectively representing the apex of an individual crop plant. This approach is particularly
advantageous for delineating individual canopies as it respects the spatial distribution of
the crops, ensuring that each canopy is represented by a distinct polygon that accurately
captures its boundaries. This spatially aware segmentation enables precise and detailed
analysis of individual crop plants, facilitating the monitoring of their growth, health, and
development over time. Mathematically, the Voronoi diagram (Figure 2) can be defined
as follows:

V(p)={q€Rdrlq*pl<!q*p’,vp’el’*p} 3)

where V(p) denotes the Voronoi region associated with the local maximum point p, and P
represents the set of all local maximum points within the field. The equation essentially
defines the Voronoi region V(p) as the set of points q in d-dimensional Euclidean space
that are closer to p than to any other local maximum point p’ in P, excluding p itself. The
Euclidean distance metric, given by the following equation:

1/2

(Z?:l (p; — qi)z) 4)

serves as the basis for determining the proximity of points within the Voronoi tessella-
tion, ensuring an accurate and unbiased partitioning of the field into individual crop
canopy regions.
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Figure 2. A Voronoi diagram delineating points acquired from [31].

While effective for delineating individual canopies, Voronoi diagrams may include
both vegetation and soil, particularly at different growth stages. This can lead to overesti-
mation of canopy size. To address this and ensure more precise estimates, we developed a
refinement method that utilizes vegetation indices (VIs). These VIs leverage specific spec-
tral characteristics of vegetation in multispectral imagery to effectively separate vegetation
from non-vegetative elements. The orthophotos generated during the preprocessing phase
play a crucial role in creating VIs. We evaluated various Vs, including the normalized
difference vegetation index (NDVI) (Equation (5)), Green Chromatic Coordinate (GCC)
(Equation (6)), and Excess Green (ExG) (Equation (7)), to determine the most suitable option
for refining canopy size estimates in our study [33].

(NIR — Red)

NDVI= (iR + Red)

(&)
where NIR is the near-infrared reflectance band with higher reflectance in healthy veg-
etation compared to soil, and red band reflectance has lower reflectance in vegetation

compared to soil [34].
GCC=G/(R+G+B) (6)

ExG=(2xG)—R—B @)

where G, R, and B represent the green, red, and blue bands of the orthophoto, respectively.
The ExG index was selected for the refinement process because of its effectiveness in
vegetation segmentation [35] and its ability to distinguish vegetation from soil and other
features within our specific project context. The excess green index exploits the unique
spectral characteristics of vegetation, specifically the higher reflectance in the green region
compared to the red and blue regions, enabling a precise separation of vegetation from soil
and other non-vegetative elements. Figure 3 is an example of the indices created by us for
the refinement of the canopy sizes.

I 0.001-0.2 I 0.001 - 0.369 I 0.001-37

0.201 - 0.388 0.37 - 0.408 37.001 - 69
0.389 - 0.616 0.409 - 0.463 69.001 - 99
I 0.617-1 I 0.464 - 0.588 I 99.001 - 224

Figure 3. A map of the estimated NDVI, GCC and ExG indices.
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The validation of the proposed refinement method for individual crop canopy size
estimation was conducted through a multi-faceted approach, leveraging expert knowledge,
visual inspection, and statistical analysis. The primary objective was to assess the accuracy
and effectiveness of the refinement process in accurately delineating crop canopies and
separating vegetation from non-vegetative components. The locations of individually
detected crops, identified through the Canopy Height Model (CHM) and local maxima
detection, were compared with the pre-existing planting schema. The planting schema
provides knowledge about the specific crop species, including the expected mature canopy
size range, planting arrangement (e.g., row spacing), and spatial distribution patterns. This
comparison leveraged expert knowledge to validate the accuracy of crop identification and
location, ensuring that the detected crops align with the expected planting layout.

The top crop point, representing the apex of each identified crop, and the refined
canopy size delineation were overlaid on the original high-resolution RGB imagery. This
visual overlay enabled a qualitative assessment of the delineated canopy boundaries, ensur-
ing they accurately corresponded to the visible crop canopies in the imagery. Additionally,
a non-parametric statistical test, the Mann—-Whitney U test, was conducted to assess the
statistical significance of the difference in canopy sizes before and after the refinement
process. The Mann-Whitney U test is a robust non-parametric alternative to the t-test,
appropriate for comparing two independent samples without making assumptions about
the underlying distribution of the data. The test was conducted with a significance level
of 0.05, which is a commonly accepted threshold for statistical significance in scientific
research. The null hypothesis of the test was that there is no significant difference between
the means of the original canopy sizes (before refinement) and the refined canopy sizes
(after the vegetation index-based refinement process). The p-value obtained from the test
indicates the probability of observing such a difference in means if the null hypothesis
is true. A p-value less than 0.05 suggests that there is a statistically significant difference
between the means, indicating that the refinement process had a significant impact on the
accuracy of the estimated canopy sizes. This multi-pronged validation approach ensured a
comprehensive assessment of the refinement method’s effectiveness.

2.4. Machine Learning Integration

To explore the influence of NDVI and crop height on canopy size, and subsequently
analyze their impact on crop yield by leveraging NDVI’s established correlation with yield,
we employed several machine learning models, utilizing canopy size as the dependent vari-
able and crop height and NDVI as independent variables; the models included Polynomial
Regression (Degree 2), which fits a quadratic polynomial equation to capture non-linear
relationships; Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel that
maps input data into a higher-dimensional feature space to identify non-linear relationships;
Gradient Boosting Machine, which is an ensemble technique that combines multiple weak
learners (decision trees) in an iterative process to correct errors of previous learners; Ridge
Regression, which introduces L2 regularization to mitigate multicollinearity and prevent
overfitting; Linear Regression aiming to find the best-fitting straight-line relationship; Lasso
Regression, which employs L1 regularization for feature selection and sparse modeling;
K-Nearest Neighbors (KNN), which predicts canopy size based on the weighted average of
the k closest training data points using a distance metric; Random Forest, which constructs
multiple decision trees on random subsets of data and features with the final prediction
being the average; and decision tree, which recursively partitions the input space based on
independent variables to predict the dependent variable. An Ordinary Least Squares (OLS)
analysis further investigated the relationship between canopy size and its predictors, with
the OLS estimator equation being the following:

B= (xTx) _1xyT (8)
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where y is the dependent variable (canopy size), X is the matrix of independent variables
(crop height and NDVI), {3 is the vector of coefficients, and ¢ is the error term. Leveraging
NDVI, crop height, and estimated canopy sizes for the 13,000 aerially counted crops, we
employed machine learning models to predict canopy sizes. The models” performance
was evaluated using R-squared, indicating the proportion of variance in canopy size
explained by the models, and Mean Absolute Error (MAE) to assess the average magnitude
of prediction errors [36-38].

2.5. Evaluation Metrics

To evaluate the performance of the quantitative analysis conducted in this study,
three key metrics were employed: Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and R-squared (R?). These metrics provide valuable insights into the accuracy,
precision, and explanatory power of the models and analyses employed, enabling a com-
prehensive assessment of the methodology’s effectiveness.

Mean Absolute Error (MAE) is a widely used metric that measures the average magni-
tude of the errors in a set of predictions, without considering their direction. It is calculated
as the average over the test sample of the absolute differences between the predicted and
actual values, as represented by the following equation:

1 A
MAE = -} 1L lyi = 9il ©)

where y; is the actual value, 7; is the predicted value, and 7 is the number of observations.
MAE is particularly useful because it provides a straightforward interpretation in terms
of error magnitude, offering an intuitive understanding of the average deviation between
predicted and observed values.

Root Mean Squared Error (RMSE) is another commonly employed metric that quanti-
fies the average magnitude of the errors, considering the direction of the errors. RMSE is
calculated as the square root of the average of the squares of the errors, as represented by
the following equation:

RMSE = \/ %Z;ﬂzl (yi — ;) (10)

RMSE is sensitive to outliers and gives a higher weight to larger errors due to the
squaring of the errors. This characteristic can be beneficial in certain contexts where large
errors are particularly undesirable, as it effectively penalizes models or analyses that
produce significant outliers.

R-squared (R?), also known as the coefficient of determination, is a statistical measure
that represents the proportion of the variance for a dependent variable that is explained by
an independent variable or variables in a regression model. It provides an indication of
the goodness of fit and, therefore, a measure of how well unseen samples are likely to be
predicted by the model, relative to the mean of the observed data. R? is calculated using
the following equation:

R2—1_— Y1 (i — 91)22 (11)
Yit(vi =)
where y; is the actual value, §; is the predicted value, and ¥ is the mean of the actual values.
R? ranges from 0 to 1, with higher values indicating a better fit of the model to the data and
a greater ability to explain the variance in the dependent variable.

In the context of this study, these metrics played a crucial role in evaluating the perfor-
mance of the various machine learning models and statistical analyses employed. The MAE
and RMSE values provided insights into the magnitude of errors and the overall accuracy
of the predictions, enabling comparisons between different models and methodologies.
Lower values of MAE and RMSE generally indicate higher accuracy and precision in the
analysis. Furthermore, the R? values were instrumental in assessing the explanatory power
of the models, particularly in the context of exploring the influence of NDVI and crop height
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on canopy size and yield. Higher R? values suggest that the models effectively capture
a larger proportion of the variance in the dependent variable (canopy size), indicating a
stronger explanatory power and better predictive capabilities.

By integrating these metrics into the evaluation process, we were able to compre-
hensively assess the performance of our quantitative analyses, identify areas for potential
improvement, and ensure the reliability and robustness of the developed methodologies.
This rigorous approach to performance evaluation is essential in scientific research, as it pro-
vides a quantitative basis for validating the results, identifying limitations, and informing
future refinements or alternative approaches.

3. Implementations and Results
3.1. Study Area and Data Collection

Our research site was a corn crop field situated at the North Carolina Agricultural and
Technical State University’s research farm in Greensboro (36.07260°N, 79.79200°W). The
field measures 415 ft x 210 ft and benefits from Greensboro’s favorable humid subtropical
climate, with an average July temperature of 78.5°F and annual rainfall of 45 inches, ideal
for corn growth (Figure 4). The Cecil soil type and an average elevation of 243 m above sea
level further characterize the field. Standard agricultural practices were followed for corn
planting, with winter crops strategically retained to assess their impact on subsequent corn
growth. Spectral profiling of select field areas was conducted (Figure 5). This technique
proved to be a valuable tool for understanding variability within the field. Spectral profiles
capture the reflectance properties of different materials across various wavelengths of
light. By analyzing these profiles, we can gain insights into the health, growth stage, and
composition of the crops across the field. Our spectral data revealed subtle differences in
nutrient uptake or water stress, allowing for targeted interventions to optimize crop health
and yield.

0 20 40 80 120 160
WA

Figure 4. Orthophoto of study area.
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Spectral Profile of Study Area
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Figure 5. (a) Randomly selected areas of the study site. (b) Spectral profile of randomly selected areas
of the study area.

3.2. CHM Development and Crop Detection

Our investigation generated a Canopy Height Model (CHM) for the cornfield (Figure 6a).
To ensure a precise representation of the mature corn canopy, the CHM underwent meticulous
refinement. This refinement involved applying a height threshold specifically chosen based
on the typical height range of fully grown corn at its peak growth stage. This meticulous
approach effectively excluded extraneous noise from ground features or young crop variations.
The resulting refined CHM provides a clear picture of the mature corn canopy distribution
across the field (Figure 6b). The refined CHM served two key purposes. First, it offered a
more precise representation of the mature corn canopy, ensuring that only relevant vegetation
was considered in subsequent analyses. Consequently, the resulting canopy height map
accurately reflects the spatial variability of the mature corn canopy, allowing us to detect
patterns such as dense growth clusters, gaps in coverage, and overall canopy health across the
field. Furthermore, the refined CHM facilitated a more detailed assessment of crop uniformity.
This detailed assessment enabled the identification of areas with stunted growth or variations
in canopy height that might indicate potential issues like pest infestation, disease outbreaks,
or crop lodging. Such insights are crucial for precision agriculture, where timely intervention
and targeted management practices can significantly improve yields and reduce resource
waste. A 10 x 10 m focal statistical analysis was applied to the refined CHM, converting it
to a point cloud representing the heights of individual corn plants. This analysis identified
approximately 13,000 local peak heights, closely matching the 13,050 plants counted manually.
Examining these peak height variations provided a detailed picture of crop density across the
field (Figure 6¢). Areas with higher concentrations of peaks indicated denser crop growth,
while areas with sparse peaks suggested lower density.
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I 0.001-3 {
4 I 3.001 - 4.905 4
P 4.906 - 6.177 2 4.906
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Figure 6. (a) Initially generated CHM. (b) Filtered CHM. (c) Local peak height. The unit of measure-
ment for the CHM, filtered CHM, and generated local peak height maps is feet.
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To evaluate the accuracy of the automated plant detection, we compared it to the
manual count. This analysis revealed a Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) of 50 feet each, with an overall crop detection accuracy of 99.6%.
This analytical step was visually corroborated by overlaying the resulting data points onto
the orthophoto of the study area. The comparative analysis also revealed a high degree of
accuracy in the representation of crop peaks within the study area, as evidenced in Figure 7.

Figure 7. Local maximal results showing the peak height of each crop.

3.3. Canopy Size Estimation and Refinement

Our investigation employed an innovative approach to analyze individual corn plants
and estimate canopy sizes. A Voronoi diagram, constructed based on the previously iden-
tified local peak heights from the CHM (Figure 7), facilitated the spatial partitioning of
the field. This diagram essentially created a unique polygonal region surrounding each
identified corn plant, providing a practical framework for further analysis. Initial esti-
mates of canopy size using the Voronoi diagram alone revealed limitations due to the
inclusion of soil and shadows within the polygonal regions (Figure 8). To address this
and achieve more precise estimations, a refinement process was implemented using the
Excess Green vegetation index. This index effectively distinguished between vegetative
and non-vegetative elements by capitalizing on the heightened green reflectance of healthy
vegetation compared to other wavelengths. By incorporating the Excess Green index cre-
ated in Section 2.3, the analysis significantly improved the precision of canopy delineation.
This successfully excluded soil patches, shadows, and other background elements from
the calculations, resulting in a more accurate representation of individual canopy sizes
(Figure 9). This combined approach, utilizing both Voronoi diagrams and the Excess Green
index, allowed for a more accurate estimation of individual canopy sizes and overall crop
density across the field (Figure 10). Each polygonal region was assessed, providing a clearer
understanding of the spatial distribution of corn plants and the variability in canopy size.

To validate the effectiveness of the refinement process in improving canopy size
estimations, a statistical analysis was conducted on the canopies generated before and
after refinement. The Mann-Whitney U test, a non-parametric test suitable for comparing
distributions, was employed. This test specifically compared the distributions of canopy
sizes before and after the refinement process using the Excess Green vegetation index.
The Mann-Whitney U test yielded a significant result, with a p-value of 0. This p-value
essentially indicates that the observed difference in canopy sizes between the two groups
is highly unlikely (essentially zero probability) to be due to random chance. In other
words, the refinement process significantly altered the data distribution, suggesting it
effectively addressed the limitations of the initial estimates. This statistically significant
difference underscores the importance of the refinement process. Removing non-vegetative
elements like soil and shadows significantly reduced noise in the data, leading to a more
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accurate representation of the true canopy sizes. This enhanced precision is crucial for

understanding the spatial variability of corn growth across the field.

A Voronoi map showing the canopy sizes and the individual crop peak heights with noise.

8

Figure

Figure 9. Refined crop canopy sizes.
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Figure 10. The refinement process of each crop canopy size from (a) ExG to (b) segmented ExG.
(c) Reclassified segmented ExG. (d) Conversion of segmented ExG raster to polygon. (e) Soil feature
selection. (f) Overlay of modified Voronoi on the RGB image.

Table 1 provides descriptive statistics that offer insights into the changes in canopy
size delineation after refinement. The number of observations (13,000) remained constant,
indicating no change in the analyzed objects. However, the mean canopy size decreased
from 8.93 to 5.78 after refinement, suggesting a reduction in estimated size on average.
Additionally, the standard deviation decreased from 13.86 to 12.34, indicating that the
refined estimates are more tightly clustered around the mean, with less variability. Interest-
ingly, the minimum canopy size decreased from 0.90 to 0.004, implying that the refinement
process identified and retained some very small canopy sizes potentially missed initially.
However, the maximum canopy size also decreased slightly, suggesting that some of the
largest estimates might have been trimmed. All three quartile values (25th, 50th, and 75th
percentiles) also decreased, further supporting the overall trend of a reduction in estimated
canopy sizes across the distribution. In summary, the descriptive statistics suggest that
the refinement process led to a general decrease in canopy size estimates, with a lower
mean, reduced variability, and a shift towards smaller values. Notably, the process also
retained some very small canopies potentially missed earlier. These findings indicate that
the refinement process effectively addressed overestimation issues, potentially leading
to more accurate and conservative estimates. However, further analysis and validation
are necessary to fully assess the practical implications and accuracy of the refined canopy
size estimates.

To complement the statistical analysis, a visual inspection of the canopy size distri-
bution before and after refinement was conducted using histograms (Figure 11). These
revealed a clear skew towards larger canopy sizes in the “Before” distribution, indicating
a prevalence of objects with extensive canopy cover before refinement. Conversely, the
“After” distribution displayed a shift towards lower canopy sizes, suggesting a potential
decrease in overall size for some objects. Importantly, an overlap existed between the
“Before” and “After” distributions, signifying that some objects likely maintained similar
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canopy size values throughout the process. The visual analysis supports the conclusion that
the refinement process may have led to a slight reduction in canopy size for a portion of
the objects. Overall, this study demonstrates that the implemented refinement process sig-
nificantly impacted canopy size estimations. The process likely reduced noise by removing
non-vegetative elements, resulting in more accurate and conservative estimates.

Table 1. Descriptive statistics of canopy size delineation.

Initial Canopy Size (ft) Refined Canopy Size (ft)
Count 13,000 13,000
Mean 8.927187 5.781796
Standard deviation 13.858262 12.339383
Minimum value 0.901887 0.004016
Maximum value 348.572489 348.021710
25% 4.666112 2.715247
50% 6.177899 3.914694
75% 8.341895 5.359943

Comparison of Canopy Size Before and After
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Figure 11. Influence of canopy refinement.

3.4. Statistical Analysis

This section analyzes the performance of various machine learning models trained on
a dataset of 13,000 NDVI, crop height, and canopy size measurements (80% for training,
20% for testing—see Table 2) to predict canopy size. Polynomial Regression and SVM with
RBF kernel exhibited the best performance, evident from their higher R-squared values
and lower Mean Absolute Error (MAE). However, the relatively low R-squared values for
all models suggest that NDVI and crop height alone provide limited explanatory power
for canopy size variations (Figure 12). The lower MAE values for SVM and Polynomial
Regression highlight their marginally better prediction accuracy. Future exploration could
involve incorporating more data, feature engineering (e.g., including weather data), or
alternative modeling techniques (e.g., Random Forests) to improve model performance. The
Polynomial Regression model yielded an equation (Equation (8)) that captures the predicted
relationship between canopy size, NDVI, and crop height. This equation incorporates linear
terms for direct effects, interaction terms for combined effects, and squared terms for
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non-linear effects, providing a comprehensive view of their influences on canopy size
prediction.

y=15.8114 — 2.2716X; + 0.1542X; + 0.1293X;2 + 0.0190X; X, — 0.3584X,> (12)
where the y is the canopy size, the X is the crop height, and Xj is the NDVI values.

Table 2. Performance of machine learning models.

Model R-Squared (%) Mean Absolute Error (MAE)
Polynomial Regression (Degree 2) 11 2.036
SVM (with RBF kernel) 7 2.033
Gradient Boosting Machine 10 2.044
Ridge 9.6 2.058
Linear Regression 9.6 2.058
OLS 7.5 2.058
Lasso 0.7 2.133
K-Nearest Neighbors —4.0 2.197
Random Forest -9.0 2.232
Decision tree —78 2.940

Actual vs Predicted Canopy Size: Comparison of Best Models

Polynomial Regression (Degree 2)
SVM (with RBF kernel) %
Gradient Boosting Machine s

- Perfect Prediction Line L

x

16F *

14 ot

12 X //

10

Predicted Canopy Size

2 21 é 8 10 12 1‘4 1%

Actual Canopy Size
Figure 12. Predictive ability of SVM with RBF kernel, Polynomial Regression with Degree 2 models,
and Gradient Boosting Machine. The red line represents perfect predictions. The closer the points are
to this line, the more accurate the model’s predictions.

4. Discussion

Our investigation into individual crop identification and canopy delineation, leverag-
ing computational geometry via high-resolution UAV imagery, demonstrated exceptional
effectiveness for precise crop boundary delineation and canopy structure characterization.
By utilizing two distinct flight altitudes for data collection, we captured high-resolution,
continuous RGB imagery that was critical for generating accurate 3D orthoimages essential
for individual crop detection. While the RGB sensors delivered quality data, the integration
of a hyperspectral sensor, as recommended by [29], could provide a richer geometrical
representation, vital for enhancing crop detection capabilities.

The process of filtering the Canopy Height Model (CHM) was pivotal in eliminating
noise during preprocessing, significantly bolstering the accuracy of our canopy size delin-
eation. This aligns with improvements highlighted by [25,26], showcasing the evolution
of methodologies in remote sensing. The careful selection of a plant height threshold
was crucial, necessitating precision to ensure that vital features were not omitted while
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achieving optimal results. Our geospatial analytical approach was successful in pinpointing
individual crop peak heights, drawing parallels to CNNs’ feature extraction capabilities
in plant detection and classification as utilized by [23]. However, despite the strengths of
CNNs, they encountered challenges in achieving precise crop delineation, underscoring the
ongoing need to integrate domain-specific knowledge for enhanced accuracy. Our method-
ology facilitated necessary adjustments to address any data misrepresentations effectively.
Employing the maximum functionality of our analytical tools enabled the discernment
of individual crop tops through a detailed pixel-to-pixel comparison. Determining an
optimal kernel size for the moving window, informed by domain knowledge regarding
crop row spacing, was crucial in refining our analysis. The derived local peak heights
were instrumental in creating Voronoi polygons for canopy delineation. This technique
accurately demarcated crop boundaries and highlighted advancements in remote sensing
and precision agriculture. Moreover, the resultant Voronoi diagrams not only facilitated a
visual understanding of crop spatial organization but also enhanced the efficiency of subse-
quent agricultural interventions. This study has significantly enhanced crop monitoring
and management practices and underscores the potential of the Voronoi diagram method
in characterizing crop canopy structures. The effectiveness of this method, while proven in
the context of this study, suggests a potential for broader applications, necessitating further
research to evaluate its efficacy across diverse regions and cropping systems. Such research
could explore the scalability of the Voronoi approach in larger, more heterogeneous land-
scapes and its integration with other technological advancements in precision agriculture.
This could include the fusion of hyperspectral imaging and machine learning algorithms
to create a more dynamic, responsive approach to crop management that adjusts to the
varying conditions of different agricultural environments.

5. Conclusions

Our findings support the superiority of UAVs in acquiring plant information due to
their high accuracy and their ability to overcome the limitations associated with traditional
methods. UAVs provide high-resolution imagery that captures the field at various angles
and times, offering a more comprehensive understanding of crop health and development.
By leveraging the flexibility of UAV imagery, we were able to create accurate CHMs that
provided a clear distinction between crop vegetation and soil, which facilitated automated
discrimination between the two. The flexibility and effectiveness of the proposed method
are evident in its ability to generate precise Canopy Height Models (CHMs), discrimi-
nate between vegetation and soil automatically, and select optimal moving window sizes
based on the specific layout and structure of each field. The mean shift segmentation
technique used for vegetation—soil discrimination significantly enhances this approach by
reducing noise and refining the analysis, representing a substantial advancement in remote
sensing-based crop analysis. Furthermore, the integration of computational geometry for
canopy delineation, coupled with UAV imagery and advanced data processing, ensures a
comprehensive assessment of the crop canopy structure. The accurate characterization of
individual crop heights and boundaries offers a valuable tool for agronomists and farmers,
enabling better resource management and tailored interventions that can ultimately im-
prove crop yields. The use of the Voronoi diagram method illustrates how computational
geometry can effectively enhance precision agriculture by providing high-resolution spatial
analysis of crop structures. By combining this with advanced data processing techniques,
such as mean shift segmentation and CHM filtering, this methodology is poised to deliver
even more precise agricultural insights as it continues to evolve and adapt. Further research
is necessary to assess its adaptability in varying geographical regions and cropping systems,
potentially incorporating machine learning algorithms and hyperspectral imaging for even
greater precision in crop detection and management.
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