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Text S1: Eco-regions

We assigned each station to an eco-region based on the Commission for Environmental
Cooperation (CEC) Terrestrial Ecoregions Level Il classification (Wilken et al. 2011). These
eco-regions are defined by both data and expert opinion using a holistic range of diagnostic
criteria including soils, physiography, water bodies, major vegetation type, land use and other
human influences, and climates. For illustration purposes in this study, certain nearby eco-
regions were combined because model behavior was similar. North Cascades, Klamath
Mountains, and Cascades were joined to become “Cascades”; Columbia Mountains/Northern
Rockies, Idaho Batholith, and Middle Rockies were joined to become “Northern Rockies”; and
Northern Basin and Range and Central Basin and Range were joined to become “Basin and
Range”. Four regions contained only a single station located close to the region boundary; these
stations were added to the most nearby region. A single station in the Colorado Plateau was
added to Wasatch and Unita Mountains region; a single station in Wyoming Basin was joined
with the Northern Rockies; a single station in the Coast Range was added to the Cascades; and a

single station in the Snake River Basin was joined with the Idaho Batholith (Northern Rockies).

Text S2: SNOTEL Meteorological Records QA/QC

Daily precipitation and SWE values were taken from the bias-corrected quality-controlled
data product published by Yan et al. (2018). These data have undergone a three-stage quality
control (QC) filter to eliminate outliers and erroneous or inconsistent observations. The quality-
controlled precipitation data is then corrected for potential under-catch of snowfall, which has
been widely observed at SNOTEL stations due to wind processes and wetting loss on collector
walls (e.g., Livneh et al. 2014; Serreze et al. 1999; Sun et al. 2019).
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While the Yan et al. (2018) data product also includes quality-controlled and bias-
corrected daily temperature records, we chose to instead use hourly temperature data for this
study because the Noah-MP model is run at an hourly time step. So, hourly temperature data was
downloaded in raw form from the NRCS web portal for over 800 SNOTEL stations. A two-stage
QC filter was applied to these records. First, outliers were removed based on global
minimum/maximum thresholds of +39 °C and -50 °C (Livneh et al. 2014). Second, following the
statistics-based approach used by Serreze et al. (1999) and Yan et al. (2018), values lying outside
of +/- three standard deviations from the daily average were removed as outliers. We chose to
compute these statistics at the daily level rather than hourly in order to include more data points
for each day of the water year.

Only stations with less than 5% missing quality-controlled hourly temperature and daily
precipitation and no missing daily SWE over the study period of record (water years 2007-2019)
were selected for further study. Data gaps were then filled in order to generate complete records
for model input. This process was applied to hourly temperature data over three steps. First,
short-term gaps (identified as 5 continuous hours or less) were completed with linear
interpolation, following the method in Sun et al. (2019). Second, long-term gaps (identified as 6
continuous hours or longer) were filled in by regressing each station data on nearby stations that
have data available during those missing time steps. For this, linear regressions were fitted
between each station data and the 10 closest stations that have greater than half of usable hourly
temperature records. The neighboring station with the highest R? value is used first to predict the
missing temperature data. Remaining missing data is filled in by using the station with the next
highest R? value, and so on. Third, if data is still missing (in this case, an average of 9 hours in
about a quarter of the stations), the remaining gaps are filled in with the station’s climatological
mean for that hour of the water year. Only one of the selected stations had gaps in daily
precipitation data — this was filled in by regressing the station’s precipitation records with the
nearest 5 stations and selecting the one with the highest R? value to predict the missing values.

A warm bias at cold temperatures has been noted at SNOTEL stations in numerous
studies; this has been attributed to erroneous conversion from voltages to degrees C (Harms et al.
2016; Currier et al. 2017; Oyler et al. 2015). So, we applied a linear equation that was developed
by Harms et al., 2017 and subsequently applied in several studies (e.g., Currier et al. 2017; Sun
et al. 2019) to correct this error:
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Text S3: AORC Forcings

Teorr = 1.03 * Tgpy — 0.9

where Ty, is the SNOTEL raw temperature observation (°C).

1)

The Analysis of Record for Calibration (AORC) forcings include: precipitation,

temperature, specific humidity, terrain-level pressure, downward longwave and shortwave

radiation, and west-east and south-north wind components (AORC version 1.1). The dataset is

constructed from over a dozen individual datasets, including: North American Regional
Reanalysis (NARR), NLDAS2, and National Centers for Environmental Prediction (NCEP)

Global Data Assimilation System (GDAS); and was bias-corrected by gauge-based
climatological datasets including PRISM, Livneh et al. (2015), Vose et al. (2014), and Hill et al.
(2015). Compared to quality-controlled bias-corrected SNOTEL observations, AORC winter

precipitation is on average 10.6% less, with most (82%) stations showing less precipitation in

AORC than in the SNOTEL record (Figure Sla,c). AORC winter temperatures are also on

average lower than SNOTEL (average of -0.2°C), but the differences are more heterogenous

across stations (Figure S1b,d).
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Figure S1. Bias between AORC and SNOTEL winter (Nov-March) precipitation (a) and winter temperature
(b) across 199 sites in WY's 2007-2019. Bias in precipitation is computed as the mean normalized bias, and
bias in air temperature is computed as the difference. These sites are classified into eco-regions, for which the
bias for winter precipitation is shown in (c), and for winter temperature in (d). Circles mark the median of the

subgroup, and the width of the line marks the interquartile range.

Text S4: Physics processes in alternative model experiments

Precip2.2 and PrecipO test alternative options for precipitation partitioning into snow and
rain, and should primarily impact snow accumulation by changing input snowfall (Figure S2).
The base case option for snow/rain partitioning defines a prescribed linear snowfall fraction
when air temperature is between 0.5 and 2.5 °C (Jordan 1991). Precip2.2 instead sets a fixed
threshold for snow at 2.2 °C, while Precip0 uses 0 °C. Note that recent studies have explored
precipitation partitioning with wet-bulb temperature rather than air temperature (Wang et al.
2019, Letcher et al. 2022) and have found that this improves model performance; the Wang et al.
2019 wet-bulb temperature-based precipitation partitioning scheme is now included in the latest
version of Noah-MP (v5, He et al. 2023).
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Alb tests the alternative option for snow surface albedo, impacting snowmelt by changing
net radiation (Figure S2). The base case uses BATS (Biosphere-Atmosphere Transfer Scheme,
Dickinson et al. 1986, Yang et al. 1997), which calculates snow albedo for direct and diffuse
radiation in visible and near-infrared broadband (Niu et al. 2011). The alternative uses CLASS
(Canadian Land Surface Scheme), which computes snow albedo from fresh snow albedo and
snow age. BATS with default parametrization has been shown to overestimate snow albedo (Niu
et al. 2011; Abolafia-Rosenzweig et al. 2022).

ResisDrag and ResisEvap test alternative options for the surface layer drag coefficient
and surface resistance to evaporation/sublimation processes, impacting snowmelt through the
computation of surface energy fluxes (Figure S2). The base case sets the surface resistance to
evaporation/sublimation as a constant parameter (rsurf,snow = 50s/m) if the surface is snowy.
The alternative used in ResisEvap instead employs the Sakaguchi and Zeng (2009) algorithm for
surface resistance for all grid cells regardless of snowiness. This algorithm, defined for NCAR’s
CLM3.5, describes a surface resistance that explicitly represents the effects of plant litter cover,
under-canopy stability, and turbulent resistance; as such, the surface resistance is often above
50s/m but varies by season, water content, and vegetation (Sakaguchi and Zeng 2009). This
surface resistance algorithm has been found to decrease modeled latent heat flux in the Western
US, but with no significant changes to snow depth (Sakaguchi and Zeng 2009).

The surface layer drag coefficient is determined either by the Monin-Obukhov similarity
theory in the base case, or by the original Noah approach (Chen 1997) in ResisDrag. The Chen
(1997) approach has been observed to produce a lower surface drag coefficient (e.g., Zhang et al.
2014), which would lead to a higher aerodynamic resistance and lower values for sensible and
latent heat fluxes in ResisDrag.

TempSolv and TempLB use alternative options for the lower boundary condition of soil
temperature and snow/soil temperature in the model’s soil heat flux calculation, respectively, and
are expected to impact melt processes via the dissipation of energy in the soil (Figure S2). The
lower soil temperature boundary condition is set by a read-from-file parameter in the base case.
TempLB instead prescribes zero heat flux from the bottom of the soil column. The snow/soil
temperature time scheme is a solver option rather than a physics option: in the base case,

fractional snow cover is considered in the semi-implicit solution to the thermal diffusion



130  equation, whereas it is not considered in the alternative (TempSolv). The thermal diffusion
131  equation affects upper soil and lower snow layer temperatures.

132 DynVeg, the experiment for the dynamic vegetation option, affects both accumulation
133 and melt processes (Figure S2). In the base case, the dynamic vegetation module is turned off;
134  instead, parameters like leaf area index (LAI) and maximum vegetation fraction are based on
135 ground- and satellite- observations. The dynamic vegetation module models prognostic

136  vegetation growth (Dickinson et al. 1998), by combining Ball-Berry photosynthesis-based

137  stomatal resistance with dynamic vegetation and allocating carbon to different parts of

138  vegetation. Vegetation can influence snow processes by: intercepting snow, changing total

139  albedo, changing heat flux with soil temperature, or re-emitting radiation downwards (Park and
140  Park 2016). Based on how the dynamic vegetation module changes the parameters that affect
141  these processes (for example, a larger LAl would intercept more snow), the difference in snow
142  simulation between DynVeg and the base case varies by vegetation type.
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145  Figure S2. Schematic of a snow model with relevant model physics processes. Experiments tested in this study

146  are boxed and placed near the relevant physics processes. Those labeled with a blue box are ones that primarily
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impact snow accumulation processes; those with a red box should impact snowmelt processes; and those with

a purple box should impact both.

resistent to evaporation/sublimation

(set in MPTABLE); AD v.3.8

NOAA NWM 2.0 options WRF-Hydro recommended options
Option Value |Definition Value |Definition
DYNAMIC_VEG_OPTION: options for dynamic 4 off (use table LAI; use maximum 4 off (use table LAI; use maximum
vegetation vegetation fraction) vegetation fraction)
CANOPY_STOMATAL_RESISTANCE_OPTION: options
. 1 Ball-Berry 1 Ball-Berry
for canopy stomatal resistance
BTR_OPTION: option f; il isture factor f
- ) option for soll molsture ractor tor 1 Noah (soil moisture) 1 Noah (soil moisture)
stomatal resistance
RUNOFF_OPTION: options for runoff and 3 Original surface and subsurface 3 Original surface and subsurface
groundwater runoff (free drainage) runoff (free drainage)
RFACE_DRA! PTION: i fi f |
SuU CE_| G_OPTION: options for surface layer 1 M-O 1 M-O
drag coeff (CH & CM)
FROZEN_SOIL_OPTION: options for frozen soil 1 Linear effects; more permeable (Niu 1 Linear effects; more permeable (Niu
permeability and Yang 2006) and Yang 2006)
SUPERCOOLED_WATER_OPTION: opti f
. - op .|ons or 1 No iteration (Niu and Yang 2006) 1 No iteration (Niu and Yang 2006)
supercooled liquid water (or ice fraction)
RADIATIVE_TRANSFER_OPTION: options for 3 Two-stream applied to vegetated 3 Two-stream applied to vegetated
radiation transfer fraction (gap = 1-FVEG) fraction (gap = 1-FVEG)
SNOW_ALBEDO_OPTION: option for ground snow
1 BATS 2 CLASS
surface albedo
PCP_PARTITION_OPTION: options for partitionin,
—PARTITIDR_DF P partitioning 1 |Jordan (1991) 1 |lordan (1991)
precipitation into rainfall & snowfall
TBOT_OPTION: options for lower boundary condition ) TBOT at ZBOT (8m) read from a file ) TBOT at ZBOT (8m) read from a file
of soil temperature (original Noah) (original Noah)
Semi-implicit; flux top boundary
TEMP_TIME_SCHEME_OPTION: options for 3 condition, but FSNO for TS 1 Semi-implicit; flux top boundary
snow/soil temperature time scheme (only layer 1) calculation (generally improves condition
snow; v 3.7)
Ice treatment like original Ice treatment like original
GLACIER_OPTION: options for glacier treatment 2 ce treatment more fike origina 2 ce treatment more fike origina
Noah (slab) Noah (slab)
Sak hi and Z 2009) f -
SURFACE_RESISTANCE_OPTION: options for surface akaguchi and Zeng (2009) for non _
4 snow; rsurf=rsurf_snow for snow 1 Sakaguchi and Zeng (2009)

Table S1. List of physics options in Noah-MP, with indicators of usage with WRF-Hydro/NWM. Summarized

from Gochis et al. (2018).
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Percent by vegetation type

Region Number of | Elevation | Winter PPT | Winter Temp | Accumulated | DOWY Peak | Barren or Sparsely | Evergreen Grassiand | Shrubland Deciduous
stations (m) (mm) (deg C) SWE (mm) SWE (day) Vegetated Needleleaf Broadleaf Forest

Cascades 39 1282 1233 -0.12 796 169 (Mar 19) 3% 34% 53% 8% 3%
Eastern Cascades Slopes and 1 1761 549 -1.04 480 157 (Mar 7) 9% 9% 55% 27% 0%
Foothills

Sierra Nevada 12 2225 886 -0.58 734 168 (Mar 18) 33% 17% 17% 33% 0%
Northern Rockies 42 1975 634 -4.15 624 183 (Apr 2) 2% 21% 50% 24% 2%
Blue Mountains 17 1669 597 -1.81 533 170 (Mar 20) 6% 24% 65% 6% 0%
Basin and Range 24 2247 461 -1.82 480 174 (Mar 24) 29% 17% 21% 29% 4%
Wasatch and Uinta Mountains 30 2563 449 -3.76 512 180 (Mar 30) 0% 10% 60% 10% 20%
Southern Rockies 17 2997 465 -5.25 562 189 (Apr 8) 6% 18% 76% 0% 0%
Arizona/New Mexico Mountains 7 2500 375 1.75 264 135 (Feb 13) 14% 29% 43% 14% 0%

Table S2. Mean characteristics of SNOTEL stations used in study, as grouped by eco-region. Climate and SWE variables are observed historical means

for WYs 2007 to 2019. Winter is defined as months Nov-March. Winter precipitation (PPT) is the sum over that period, whereas winter temperature is

the average over that period. Accumulated SWE is the sum of positive daily changes in SWE for the entire water year.
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Figure S3. lllustrations of observed SWE from SNOTEL station-years when a single-day snow metric like
peak SWE significantly underestimates the totality of SWE being produced over the course of the water year.
DOWY for peak SWE is indicated with a vertical green line, and peak SWE depth is indicated with a blue dot
on the y-axis. Cumulative accumulated snowmelt is illustrated with orange bars and yearly accumulated SWE
is marked with an orange dot on the y-axis. (a) WY 2011 at SNOTEL station 445 shows a case of pre-peak
SWE melt. (b). WY 2009 at SNOTEL station 443 shows a case of post-peak SWE accumulation.

Text S5: Removing propagated uncertainty from daily changes in SWE

The daily accumulation and melt rates are computed as the average positive or negative
changes in daily SWE over the water year. Because we are comparing modeled results to
observed measurements, we have to acknowledge differences in precision between the two. The
SNOTEL snow pillow’s precision is 0.254 mm, which we take as the detection limit. The
propagated uncertainty from this single-day detection limit into values of daily changes (i.e.,
SWE, 1 — SWE,) is computed as:

SASWE = \/ (SSWEn+1)2 + (SSWEn)Z (2)
based on the rules of propagating uncertainty when adding or subtracting measurements (i.e.,
Kirchner, J. 2001). Here, we are replacing the typical standard deviation with the daily detection
limit when describing the original measurement uncertainty. So, with a 2.54 mm uncertainty in
the original measurement, the propagated uncertainty is 3.58 mm. Daily SWE changes below this
value were set to zero in both simulated and observed records to maintain consistency, because

the in situ sensor may not be capable of deriving differences below this level.
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Text S1: Application of Kolmogorov-Smirnov (KS) test to evaluate model sensitivity

We applied the Kolmogorov-Smirnov (KS) test to evaluate model sensitivity. This test
has been utilized to assess model sensitivity for numerous hydrology model studies (e.g., He et
al. 2011; Sun et al. 2019). In general, this statistical test is used to decide if a sample comes from
a population with a specific distribution. Applied as a two-sample test, KS can be used to test
whether two underlying probability distributions differ. In this case, the KS statistic is computed

as the maximum vertical distance between the two empirical distribution functions:
KS = SuplFl,n(X) - Fz,m(X)| 3
X

where sup is the supremum function, and F, ,, and F, ,, are the empirical distribution functions of
the first and second sample (Chakravarti et al. 1997).

In this study, for each station and for each snow metric, we apply a two-sample KS test
with the yearly snow metric values from the base case and from the experiment as the two sets of
inputs. For example, Error! Reference source not found. illustrates how the KS statistic is
computed at Station 302 for the accumulated SWE metric, between the base case and Precip0.
The empirical distributions include all yearly accumulated SWE metrics for the base case at that
station in blue, and for the Precip0 experiment in orange. The maximum distance between the
curves is indicated with the black arrow, and equals the KS statistic. KS values range from 0 to
1, with higher values indicating greater sensitivities. We used a minimum KS threshold value of
0.5 to identify sensitivity because it yields statistically significant results at p-value < 0.1. So,
stations with a KS statistic equal to or greater than 0.5 were considered sensitive to that

alternative model configuration for that snow metric.

10



204
205

206

207
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

Station 302

1 K2 Stat = 0.5
— Base Run
—— Experiment
X
= 0.5+ T .
[ | =
0 ]“ | H | | | | |

400 500 600 700 800 900 1000 1100
Accumulated SWE (mm)

Figure S4. Example of computation of KS statistic, on the accumulated SWE metric and between the base

case and PrecipO experiment at Station 302. The black arrow indicates the value of the KS statistic.

Text S2: Model performance across model configurations

Noah-MP predictions tend to overestimate observed accumulated SWE across most sites
and for all model configurations except for the Precip0 and AORC experiments (Figure S5a). All
model configurations but the AORC experiment shows a model underestimation in storm rate,
and a model overestimation in timing of peak SWE (Figure S5b,d). The AORC experiment, and
to a lesser degree, the Precip0 experiment, shows a high FNR for accumulation days (median of
50% and 15%, respectively), whereas the rest of the experiments have FNRs of less than 10%
(Figure S5e). The model consistently underestimates daily average melt rate across all model
configurations (Figure S5f). AORC and PrecipO show the highest FNR for melt days, but the
FNR for melt days is higher across all experiments (between 35% and 54%) (Figure S5f),
suggesting that the model fails at simulating observed melt events more frequently than it does

for accumulation events.

11
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Figure S5. Distributions of model performance across SNOTEL stations and nine model configurations for
four snow metrics. (a) mean normalized bias (MNB) of accumulated SWE, (b) MNB of storm rate, (c) average
false negative rate (FNR) for accumulation days, (d) difference in timing of peak SWE, (¢) MNB of daily melt

rate, and (f) average FNR for melt days. Bias metrics are computed for each station-year with reference to the

observed SNOTEL records, and then averaged for each station over the time period. The color of the

distribution and dashed horizontal line corresponds to the median metric value for each model configuration. A

blue (red) color indicates the model configuration produces a lower (higher) median metric value than the

observation.
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Figure S6. (a) Distributions of model performance across SNOTEL stations and four model configurations
related to snow albedo, as described by mean normalized bias (MNB) of melt rate. BAT Sgefaul: refers to the
Base Case (Table 2 in main text) with all default parameters. CLASS refers to the Alb experiment, which
utilizes the CLASS albedo scheme. BAT Stau_vis and BATStay_nir refer to experiments with the BATS albedo
model but with the snow age parameter t,, adjusted to values optimized in Abolafia-Rosenzweig et al. (2022).
A blue (red) color indicates the model configuration produces a lower (higher) median metric value than the
observation. (b) Distributions of changes in the MNB of melt rate relative to the base case across SNOTEL
stations and the three alternative snow albedo-related experiments. Bias metrics (MNBgc, Error! Reference
source not found.) are computed for each station-year with reference to the base case, and then averaged for
each station over the time period. The distribution color and the dashed horizontal line correspond to the
median bias value for each experiment. A red (blue) color indicates the model configuration produces a higher
(lower) median value than the base case.
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258  value, and a horizontal dashed gray line indicates the interquartile range (IQR). The performance metrics are
259  separated by geographic region in the second column; by climate subgroup in the third; and by vegetation type
260 in the fourth. Circles mark the median of the subgroup, and the width of the line marks the interquartile range.
261  If the subgroup has a filled-in circle, it is considered significantly different (p-value < 0.05) from the other
262  subgroups. The number of stations in each subgroup is noted in the legend entries.
263
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