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Text S1: Eco-regions 8 

We assigned each station to an eco-region based on the Commission for Environmental 9 

Cooperation (CEC) Terrestrial Ecoregions Level III classification (Wilken et al. 2011). These 10 

eco-regions are defined by both data and expert opinion using a holistic range of diagnostic 11 

criteria including soils, physiography, water bodies, major vegetation type, land use and other 12 

human influences, and climates. For illustration purposes in this study, certain nearby eco-13 

regions were combined because model behavior was similar. North Cascades, Klamath 14 

Mountains, and Cascades were joined to become “Cascades”; Columbia Mountains/Northern 15 

Rockies, Idaho Batholith, and Middle Rockies were joined to become “Northern Rockies”; and 16 

Northern Basin and Range and Central Basin and Range were joined to become “Basin and 17 

Range”. Four regions contained only a single station located close to the region boundary; these 18 

stations were added to the most nearby region. A single station in the Colorado Plateau was 19 

added to Wasatch and Unita Mountains region; a single station in Wyoming Basin was joined 20 

with the Northern Rockies; a single station in the Coast Range was added to the Cascades; and a 21 

single station in the Snake River Basin was joined with the Idaho Batholith (Northern Rockies). 22 

 23 

Text S2: SNOTEL Meteorological Records QA/QC 24 

Daily precipitation and SWE values were taken from the bias-corrected quality-controlled 25 

data product published by Yan et al. (2018). These data have undergone a three-stage quality 26 

control (QC) filter to eliminate outliers and erroneous or inconsistent observations. The quality-27 

controlled precipitation data is then corrected for potential under-catch of snowfall, which has 28 

been widely observed at SNOTEL stations due to wind processes and wetting loss on collector 29 

walls (e.g., Livneh et al. 2014; Serreze et al. 1999; Sun et al. 2019).  30 
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 While the Yan et al. (2018) data product also includes quality-controlled and bias-31 

corrected daily temperature records, we chose to instead use hourly temperature data for this 32 

study because the Noah-MP model is run at an hourly time step. So, hourly temperature data was 33 

downloaded in raw form from the NRCS web portal for over 800 SNOTEL stations. A two-stage 34 

QC filter was applied to these records. First, outliers were removed based on global 35 

minimum/maximum thresholds of +39 °C and -50 °C (Livneh et al. 2014). Second, following the 36 

statistics-based approach used by Serreze et al. (1999) and Yan et al. (2018), values lying outside 37 

of +/- three standard deviations from the daily average were removed as outliers. We chose to 38 

compute these statistics at the daily level rather than hourly in order to include more data points 39 

for each day of the water year.  40 

 Only stations with less than 5% missing quality-controlled hourly temperature and daily 41 

precipitation and no missing daily SWE over the study period of record (water years 2007-2019) 42 

were selected for further study. Data gaps were then filled in order to generate complete records 43 

for model input. This process was applied to hourly temperature data over three steps. First, 44 

short-term gaps (identified as 5 continuous hours or less) were completed with linear 45 

interpolation, following the method in Sun et al. (2019). Second, long-term gaps (identified as 6 46 

continuous hours or longer) were filled in by regressing each station data on nearby stations that 47 

have data available during those missing time steps. For this, linear regressions were fitted 48 

between each station data and the 10 closest stations that have greater than half of usable hourly 49 

temperature records. The neighboring station with the highest R2 value is used first to predict the 50 

missing temperature data. Remaining missing data is filled in by using the station with the next 51 

highest R2 value, and so on. Third, if data is still missing (in this case, an average of 9 hours in 52 

about a quarter of the stations), the remaining gaps are filled in with the station’s climatological 53 

mean for that hour of the water year. Only one of the selected stations had gaps in daily 54 

precipitation data – this was filled in by regressing the station’s precipitation records with the 55 

nearest 5 stations and selecting the one with the highest R2 value to predict the missing values.  56 

 A warm bias at cold temperatures has been noted at SNOTEL stations in numerous 57 

studies; this has been attributed to erroneous conversion from voltages to degrees C (Harms et al. 58 

2016; Currier et al. 2017; Oyler et al. 2015). So, we applied a linear equation that was developed 59 

by Harms et al., 2017 and subsequently applied in several studies (e.g., Currier et al. 2017; Sun 60 

et al. 2019) to correct this error: 61 
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Tcorr = 1.03 ∗ Tsntl − 0.9 (1) 62 

where Tsntl is the SNOTEL raw temperature observation (°C). 63 

 64 

 65 

 66 

Text S3: AORC Forcings 67 

The Analysis of Record for Calibration (AORC) forcings include: precipitation, 68 

temperature, specific humidity, terrain-level pressure, downward longwave and shortwave 69 

radiation, and west-east and south-north wind components (AORC version 1.1). The dataset is 70 

constructed from over a dozen individual datasets, including: North American Regional 71 

Reanalysis (NARR), NLDAS2, and National Centers for Environmental Prediction (NCEP) 72 

Global Data Assimilation System (GDAS); and was bias-corrected by gauge-based 73 

climatological datasets including PRISM, Livneh et al. (2015), Vose et al. (2014), and Hill et al. 74 

(2015). Compared to quality-controlled bias-corrected SNOTEL observations, AORC winter 75 

precipitation is on average 10.6% less, with most (82%) stations showing less precipitation in 76 

AORC than in the SNOTEL record (Figure S1a,c). AORC winter temperatures are also on 77 

average lower than SNOTEL (average of -0.2°C), but the differences are more heterogenous 78 

across stations (Figure S1b,d). 79 

 80 

            81 

(a) (b) 
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 82 

 83 

Figure S1. Bias between AORC and SNOTEL winter (Nov-March) precipitation (a) and winter temperature 84 

(b) across 199 sites in WYs 2007-2019. Bias in precipitation is computed as the mean normalized bias, and 85 

bias in air temperature is computed as the difference. These sites are classified into eco-regions, for which the 86 

bias for winter precipitation is shown in (c), and for winter temperature in (d). Circles mark the median of the 87 

subgroup, and the width of the line marks the interquartile range.  88 

 89 

Text S4: Physics processes in alternative model experiments 90 

Precip2.2 and Precip0 test alternative options for precipitation partitioning into snow and 91 

rain, and should primarily impact snow accumulation by changing input snowfall (Figure S2). 92 

The base case option for snow/rain partitioning defines a prescribed linear snowfall fraction 93 

when air temperature is between 0.5 and 2.5 °C (Jordan 1991). Precip2.2 instead sets a fixed 94 

threshold for snow at 2.2 °C, while Precip0 uses 0 °C. Note that recent studies have explored 95 

precipitation partitioning with wet-bulb temperature rather than air temperature (Wang et al. 96 

2019, Letcher et al. 2022) and have found that this improves model performance; the Wang et al. 97 

2019 wet-bulb temperature-based precipitation partitioning scheme is now included in the latest 98 

version of Noah-MP (v5, He et al. 2023).  99 

(c) (d) 
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Alb tests the alternative option for snow surface albedo, impacting snowmelt by changing 100 

net radiation (Figure S2). The base case uses BATS (Biosphere-Atmosphere Transfer Scheme, 101 

Dickinson et al. 1986, Yang et al. 1997), which calculates snow albedo for direct and diffuse 102 

radiation in visible and near-infrared broadband (Niu et al. 2011). The alternative uses CLASS 103 

(Canadian Land Surface Scheme), which computes snow albedo from fresh snow albedo and 104 

snow age. BATS with default parametrization has been shown to overestimate snow albedo (Niu 105 

et al. 2011; Abolafia-Rosenzweig et al. 2022).  106 

ResisDrag and ResisEvap test alternative options for the surface layer drag coefficient 107 

and surface resistance to evaporation/sublimation processes, impacting snowmelt through the 108 

computation of surface energy fluxes (Figure S2). The base case sets the surface resistance to 109 

evaporation/sublimation as a constant parameter (rsurf,snow = 50s/m) if the surface is snowy. 110 

The alternative used in ResisEvap instead employs the Sakaguchi and Zeng (2009) algorithm for 111 

surface resistance for all grid cells regardless of snowiness. This algorithm, defined for NCAR’s 112 

CLM3.5, describes a surface resistance that explicitly represents the effects of plant litter cover, 113 

under-canopy stability, and turbulent resistance; as such, the surface resistance is often above 114 

50s/m but varies by season, water content, and vegetation (Sakaguchi and Zeng 2009). This 115 

surface resistance algorithm has been found to decrease modeled latent heat flux in the Western 116 

US, but with no significant changes to snow depth (Sakaguchi and Zeng 2009).  117 

The surface layer drag coefficient is determined either by the Monin-Obukhov similarity 118 

theory in the base case, or by the original Noah approach (Chen 1997) in ResisDrag. The Chen 119 

(1997) approach has been observed to produce a lower surface drag coefficient (e.g., Zhang et al. 120 

2014), which would lead to a higher aerodynamic resistance and lower values for sensible and 121 

latent heat fluxes in ResisDrag. 122 

TempSolv and TempLB use alternative options for the lower boundary condition of soil 123 

temperature and snow/soil temperature in the model’s soil heat flux calculation, respectively, and 124 

are expected to impact melt processes via the dissipation of energy in the soil (Figure S2). The 125 

lower soil temperature boundary condition is set by a read-from-file parameter in the base case. 126 

TempLB instead prescribes zero heat flux from the bottom of the soil column. The snow/soil 127 

temperature time scheme is a solver option rather than a physics option: in the base case, 128 

fractional snow cover is considered in the semi-implicit solution to the thermal diffusion 129 
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equation, whereas it is not considered in the alternative (TempSolv). The thermal diffusion 130 

equation affects upper soil and lower snow layer temperatures. 131 

DynVeg, the experiment for the dynamic vegetation option, affects both accumulation 132 

and melt processes (Figure S2). In the base case, the dynamic vegetation module is turned off; 133 

instead, parameters like leaf area index (LAI) and maximum vegetation fraction are based on 134 

ground- and satellite- observations. The dynamic vegetation module models prognostic 135 

vegetation growth (Dickinson et al. 1998), by combining Ball-Berry photosynthesis-based 136 

stomatal resistance with dynamic vegetation and allocating carbon to different parts of 137 

vegetation. Vegetation can influence snow processes by: intercepting snow, changing total 138 

albedo, changing heat flux with soil temperature, or re-emitting radiation downwards (Park and 139 

Park 2016). Based on how the dynamic vegetation module changes the parameters that affect 140 

these processes (for example, a larger LAI would intercept more snow), the difference in snow 141 

simulation between DynVeg and the base case varies by vegetation type.  142 

 143 

 144 

Figure S2. Schematic of a snow model with relevant model physics processes. Experiments tested in this study 145 

are boxed and placed near the relevant physics processes. Those labeled with a blue box are ones that primarily 146 
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impact snow accumulation processes; those with a red box should impact snowmelt processes; and those with 147 

a purple box should impact both.  148 

 149 

 150 

 151 

Table S1. List of physics options in Noah-MP, with indicators of usage with WRF-Hydro/NWM. Summarized 152 

from Gochis et al. (2018). 153 

 154 

Option Value Definition Value Definition

DYNAMIC_VEG_OPTION: options for dynamic 

vegetation
4

off (use table LAI; use maximum 

vegetation fraction)
4

off (use table LAI; use maximum 

vegetation fraction)

CANOPY_STOMATAL_RESISTANCE_OPTION: options 

for canopy stomatal resistance
1 Ball-Berry 1 Ball-Berry

BTR_OPTION: option for soil moisture factor for 

stomatal resistance
1 Noah (soil moisture) 1 Noah (soil moisture)

RUNOFF_OPTION: options for runoff and 

groundwater
3

Original surface and subsurface 

runoff (free drainage)
3

Original surface and subsurface 

runoff (free drainage)

SURFACE_DRAG_OPTION: options for surface layer 

drag coeff (CH & CM)
1 M-O 1 M-O

FROZEN_SOIL_OPTION: options for frozen soil 

permeability
1

Linear effects; more permeable (Niu 

and Yang 2006)
1

Linear effects; more permeable (Niu 

and Yang 2006)

SUPERCOOLED_WATER_OPTION: options for 

supercooled liquid water (or ice fraction)
1 No iteration (Niu and Yang 2006) 1 No iteration (Niu and Yang 2006)

RADIATIVE_TRANSFER_OPTION: options for 

radiation transfer
3

Two-stream applied to vegetated 

fraction (gap = 1-FVEG)
3

Two-stream applied to vegetated 

fraction (gap = 1-FVEG)

SNOW_ALBEDO_OPTION: option for ground snow 

surface albedo
1 BATS 2 CLASS

PCP_PARTITION_OPTION: options for partitioning 

precipitation into rainfall & snowfall
1 Jordan (1991) 1 Jordan (1991)

TBOT_OPTION: options for lower boundary condition 

of soil temperature
2

TBOT at ZBOT (8m) read from a file 

(original Noah)
2

TBOT at ZBOT (8m) read from a file 

(original Noah)

TEMP_TIME_SCHEME_OPTION: options for 

snow/soil temperature time scheme (only layer 1)
3

Semi-implicit; flux top boundary 

condition, but FSNO for TS 

calculation (generally improves 

snow; v 3.7)

1
Semi-implicit; flux top boundary 

condition

GLACIER_OPTION: options for glacier treatment 2
Ice treatment more like original 

Noah (slab)
2

Ice treatment more like original 

Noah (slab)

SURFACE_RESISTANCE_OPTION: options for surface 

resistent to evaporation/sublimation
4

Sakaguchi and Zeng (2009) for non-

snow; rsurf=rsurf_snow for snow 

(set in MPTABLE); AD v.3.8

1 Sakaguchi and Zeng (2009)

NOAA NWM 2.0 options WRF-Hydro recommended options
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 155 

Table S2. Mean characteristics of SNOTEL stations used in study, as grouped by eco-region. Climate and SWE variables are observed historical means 156 

for WYs 2007 to 2019. Winter is defined as months Nov-March. Winter precipitation (PPT) is the sum over that period, whereas winter temperature is 157 

the average over that period. Accumulated SWE is the sum of positive daily changes in SWE for the entire water year.158 

Region
Number of 

stations

Elevation 

(m)

Winter PPT 

(mm)

 Winter Temp  

(deg C)

 Accumulated 

SWE (mm)

 DOWY Peak 

SWE (day)

Barren or Sparsely 

Vegetated

Evergreen 

Needleleaf
Grassland Shrubland

Deciduous 

Broadleaf Forest

Cascades 39 1282 1233 -0.12 796 169 (Mar 19) 3% 34% 53% 8% 3%

Eastern Cascades Slopes and 

Foothills
11 1761 549 -1.04 480 157 (Mar 7) 9% 9% 55% 27% 0%

Sierra Nevada 12 2225 886 -0.58 734 168 (Mar 18) 33% 17% 17% 33% 0%

Northern Rockies 42 1975 634 -4.15 624 183 (Apr 2) 2% 21% 50% 24% 2%

Blue Mountains 17 1669 597 -1.81 533 170 (Mar 20) 6% 24% 65% 6% 0%

Basin and Range 24 2247 461 -1.82 480 174 (Mar 24) 29% 17% 21% 29% 4%

Wasatch and Uinta Mountains 30 2563 449 -3.76 512 180 (Mar 30) 0% 10% 60% 10% 20%

Southern Rockies 17 2997 465 -5.25 562 189 (Apr 8) 6% 18% 76% 0% 0%

Arizona/New Mexico Mountains 7 2500 375 1.75 264 135 (Feb 13) 14% 29% 43% 14% 0%

Percent by vegetation type
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 159 

 160 

Figure S3. Illustrations of observed SWE from SNOTEL station-years when a single-day snow metric like 161 

peak SWE significantly underestimates the totality of SWE being produced over the course of the water year. 162 

DOWY for peak SWE is indicated with a vertical green line, and peak SWE depth is indicated with a blue dot 163 

on the y-axis. Cumulative accumulated snowmelt is illustrated with orange bars and yearly accumulated SWE 164 

is marked with an orange dot on the y-axis. (a) WY 2011 at SNOTEL station 445 shows a case of pre-peak 165 

SWE melt. (b). WY 2009 at SNOTEL station 443 shows a case of post-peak SWE accumulation. 166 

 167 

Text S5: Removing propagated uncertainty from daily changes in SWE 168 

The daily accumulation and melt rates are computed as the average positive or negative 169 

changes in daily SWE over the water year. Because we are comparing modeled results to 170 

observed measurements, we have to acknowledge differences in precision between the two. The 171 

SNOTEL snow pillow’s precision is 0.254 mm, which we take as the detection limit. The 172 

propagated uncertainty from this single-day detection limit into values of daily changes (i.e., 173 

𝑆𝑊𝐸𝑛+1 − 𝑆𝑊𝐸𝑛) is computed as:  174 

𝑠∆𝑆𝑊𝐸 = √(𝑠𝑆𝑊𝐸𝑛+1)
2

+ (𝑠𝑆𝑊𝐸𝑛
)

2
    (2) 175 

based on the rules of propagating uncertainty when adding or subtracting measurements (i.e., 176 

Kirchner, J. 2001). Here, we are replacing the typical standard deviation with the daily detection 177 

limit when describing the original measurement uncertainty. So, with a 2.54 mm uncertainty in 178 

the original measurement, the propagated uncertainty is 3.58 mm. Daily SWE changes below this 179 

value were set to zero in both simulated and observed records to maintain consistency, because 180 

the in situ sensor may not be capable of deriving differences below this level.  181 

(a) (b) 
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Text S1: Application of Kolmogorov-Smirnov (KS) test to evaluate model sensitivity 182 

We applied the Kolmogorov-Smirnov (KS) test to evaluate model sensitivity. This test 183 

has been utilized to assess model sensitivity for numerous hydrology model studies (e.g., He et 184 

al. 2011; Sun et al. 2019). In general, this statistical test is used to decide if a sample comes from 185 

a population with a specific distribution. Applied as a two-sample test, KS can be used to test 186 

whether two underlying probability distributions differ. In this case, the KS statistic is computed 187 

as the maximum vertical distance between the two empirical distribution functions: 188 

KS = sup
x

|F1,n(x) − F2,m(x)|  (3) 189 

where sup is the supremum function, and F1,n and F2,m are the empirical distribution functions of 190 

the first and second sample (Chakravarti et al. 1997).  191 

In this study, for each station and for each snow metric, we apply a two-sample KS test 192 

with the yearly snow metric values from the base case and from the experiment as the two sets of 193 

inputs. For example, Error! Reference source not found. illustrates how the KS statistic is 194 

computed at Station 302 for the accumulated SWE metric, between the base case and Precip0. 195 

The empirical distributions include all yearly accumulated SWE metrics for the base case at that 196 

station in blue, and for the Precip0 experiment in orange. The maximum distance between the 197 

curves is indicated with the black arrow, and equals the KS statistic. KS values range from 0 to 198 

1, with higher values indicating greater sensitivities. We used a minimum KS threshold value of 199 

0.5 to identify sensitivity because it yields statistically significant results at p-value < 0.1. So, 200 

stations with a KS statistic equal to or greater than 0.5 were considered sensitive to that 201 

alternative model configuration for that snow metric.  202 

 203 
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 204 

Figure S4. Example of computation of KS statistic, on the accumulated SWE metric and between the base 205 

case and Precip0 experiment at Station 302. The black arrow indicates the value of the KS statistic.  206 

 207 

Text S2: Model performance across model configurations 208 

Noah-MP predictions tend to overestimate observed accumulated SWE across most sites 209 

and for all model configurations except for the Precip0 and AORC experiments (Figure S5a). All 210 

model configurations but the AORC experiment shows a model underestimation in storm rate, 211 

and a model overestimation in timing of peak SWE (Figure S5b,d). The AORC experiment, and 212 

to a lesser degree, the Precip0 experiment, shows a high FNR for accumulation days (median of 213 

50% and 15%, respectively), whereas the rest of the experiments have FNRs of less than 10% 214 

(Figure S5e). The model consistently underestimates daily average melt rate across all model 215 

configurations (Figure S5f). AORC and Precip0 show the highest FNR for melt days, but the 216 

FNR for melt days is higher across all experiments (between 35% and 54%) (Figure S5f), 217 

suggesting that the model fails at simulating observed melt events more frequently than it does 218 

for accumulation events. 219 

 220 

 221 

 222 

 223 

 224 
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 225 

  226 

(c) (d) 

(a) (b) 
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 227 

Figure S5. Distributions of model performance across SNOTEL stations and nine model configurations for 228 

four snow metrics. (a) mean normalized bias (MNB) of accumulated SWE, (b) MNB of storm rate, (c) average 229 

false negative rate (FNR) for accumulation days, (d) difference in timing of peak SWE, (e) MNB of daily melt 230 

rate, and (f) average FNR for melt days. Bias metrics are computed for each station-year with reference to the 231 

observed SNOTEL records, and then averaged for each station over the time period. The color of the 232 

distribution and dashed horizontal line corresponds to the median metric value for each model configuration. A 233 

blue (red) color indicates the model configuration produces a lower (higher) median metric value than the 234 

observation.235 

(e) (f) 
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   236 

Figure S6. (a) Distributions of model performance across SNOTEL stations and four model configurations 237 

related to snow albedo, as described by mean normalized bias (MNB) of melt rate. BATSdefault refers to the 238 

Base Case (Table 2 in main text) with all default parameters. CLASS refers to the Alb experiment, which 239 

utilizes the CLASS albedo scheme. BATStau_vis and BATStau_NIR refer to experiments with the BATS albedo 240 

model but with the snow age parameter τ0 adjusted to values optimized in Abolafia-Rosenzweig et al. (2022). 241 

A blue (red) color indicates the model configuration produces a lower (higher) median metric value than the 242 

observation. (b) Distributions of changes in the MNB of melt rate relative to the base case across SNOTEL 243 

stations and the three alternative snow albedo-related experiments. Bias metrics (MNBBC, Error! Reference 244 

source not found.) are computed for each station-year with reference to the base case, and then averaged for 245 

each station over the time period. The distribution color and the dashed horizontal line correspond to the 246 

median bias value for each experiment. A red (blue) color indicates the model configuration produces a higher 247 

(lower) median value than the base case.  248 

  249 

 250 

 251 

(a)  (b) 
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252 

 253 

 254 
Figure S7. Model performance (MNB in daily melt rate) across all stations in (a) BATStau_vis and (b) 255 

BATStau_NIR, as compared to SNOTEL SWE observations. The leftmost column of panels shows a smoothed 256 

histogram of the performance metrics across stations. A vertical dashed red line indicates the median metric 257 

value, and a horizontal dashed gray line indicates the interquartile range (IQR). The performance metrics are 258 

separated by geographic region in the second column; by climate subgroup in the third; and by vegetation type 259 

in the fourth. Circles mark the median of the subgroup, and the width of the line marks the interquartile range. 260 

If the subgroup has a filled-in circle, it is considered significantly different (p-value < 0.05) from the other 261 

subgroups. The number of stations in each subgroup is noted in the legend entries. 262 

 263 

 264 

 265 
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