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ABSTRACT: Quantitying spatiotemporal variability in snow water resources is a challenge especially relevant for regions
that rely on snowmelt for water supply. Model accuracy is often limited by uncertainties in meteorological forcings and/or
suboptimal physics representation. In this study, we evaluate the performance and sensitivity of Noah land surface model
with multiparameterization options (Noah-MP) snow simulations from ten model configurations across 199 sites in the
western United States. Nine experiments are constrained by observed meteorology to test snow-related physics options,
and the 10th experiment tests an alternative source of meteorological forcings. We find that the base case, which aligns
with the National Water Model configuration and uses observation-based forcings, overestimates observed accumulated
snow water equivalent (SWE) at 90% of stations by a median of 9.6%. The model performs better in the accumulation
season at colder, drier sites and in the melt season at wetter, warmer sites. Accumulation metrics are sensitive to model
configuration in two experiments, and melt metrics, in six experiments. Alterations to model physics cause changes to me-
dian accumulation metrics from —13% to 2.3% with the greatest change due to precipitation partitioning and to melt met-
rics from —10% to 3% with the greatest change due to surface resistance configuration. The experiment with alternative
forcings causes even greater and wider-ranging changes (medians ranging from —29% to 6%). Not all stations share the
same best-performing model configuration. At most stations, the base case is outperformed by four alternative physics op-
tions which also significantly impact snow simulation. This research provides insights into the performance and sensitivity
of snow predictions across site conditions and model configurations.

SIGNIFICANCE STATEMENT: The purpose of this work is to evaluate the performance and sensitivity of a land
surface model’s simulation of snow across site conditions and in response to different model configurations. This is im-
portant because estimating snow distribution is a challenge especially relevant for regions that rely on snowmelt for wa-
ter supply. While land surface models can provide useful large-scale estimates, they are often limited by uncertainties in
forcings and/or suboptimal physics representation. The results, which show varying model behavior across geography,
climate, vegetation types, and model configurations, highlight inadequacies in model physics representation, emphasize
the need for accurate meteorological forcings, and suggest that customizing model configurations to the unique charac-
teristics of the domain could yield more accurate and useful results.

KEYWORDS: Model evaluation/performance; Snow; Water resources; Land surface model; North America

1. Introduction Snowpack observations can come from in situ stations or re-
mote sensing platforms; however, both data sources are lim-
ited in time and/or space and are prone to substantial errors,
especially in topographically complex areas (Dozier et al.
2016).

Land surface models (LSMs) are used to generate spatially
distributed estimates of SWE, snow-derived runoff, and other
hydrologic variables over large spatial domains and at varying
spatiotemporal resolutions by simulating the physics of the

Estimating snow water equivalent (SWE) in remote moun-
tainous areas remains one of the most challenging problems
in hydrology (Lettenmaier et al. 2015; Dozier et al. 2016).
This challenge is particularly important in areas where snow-
pack plays a significant role in seasonal water supply and re-
gional hydrology, such as the western United States. To make
critical management decisions for flood control, hydropower

operations, irrigation, and other competing demands in such
regions, water managers need accurate assessments of the water and energy cycles at the land surface. The accuracy of

space—time distribution and availability of water in snowpack ~ these modeled estimates depends on the reliability of meteo-

(Vicuia et al. 2011; Tanaka et al. 2006; He et al. 2016). rological forcings as well as the fidelity of model physics (Cho
et al. 2022). Various studies (e.g., Cho et al. 2022; Kim et al.

2021; Pan et al. 2003; Barlage et al. 2010) have demonstrated

that a common weakness in LSMs is that SWE estimates are

& Supplemental information related to this paper is available ~highly uncertain and often underestimated, which can cascade

at the Journals Online website: https:/doi.org/10.1175/JHM-D-23-  into uncertainties and errors in SWE-dependent variables like

021151 runoff and evapotranspiration. Properly describing and simu-

lating snow processes in a LSM thus helps to accurately pre-
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Here, we examine the performance and sensitivity of SWE
estimates produced by the Noah LSM with multiparameteri-
zation options (Noah-MP). Noah-MP is the hydrologic core
and LSM for the operational National Water Model (NWM)
and associated climate predictions based on the Weather Re-
search and Forecasting (WRF) regional climate model. Of the
four LSMs tested by Cho et al. (2022), Noah-MP generated
the most accurate maximum SWE values, but it nonetheless
significantly underestimated observations, and several limita-
tions in current physics options were noted. Past studies have
also identified biases in the Noah-MP representation of snow
depth, timing of snow disappearance, and annual SWE (e.g.,
Q. Li et al. 2022; J. Li et al. 2022; You et al. 2020; Garousi-
Nejad and Tarboton 2022; He et al. 2021). The design of
Noah-MP allows for user-defined selection of options for
physical processes such as precipitation partitioning, snow al-
bedo, and vegetation—snow interactions. Past studies have ex-
plored how the incorporation of different schemes for some
or most of these physical processes in Noah-MP affects the
simulation of snow depth or SWE at specific sites (You et al.
2020; Zhang et al. 2016; Letcher et al. 2022; Wang et al. 2019)
and at a global scale (Q. Li et al. 2022). However, for the
purposes of understanding uncertainties in snow simula-
tion in a regional hydrologic model like the NWM, these
studies were limited in scope by the number of sites or model
resolution.

In this study, we evaluate the performance and sensitivity
of Noah-MP snow simulations across different model configu-
rations at sites spanning the western United States (WUS).
The WUS contains extensive in situ data that can force and
validate the model and represents a diversity of climate and site
conditions. For the NWM, the WUS mountains are also where
the snow model plays the largest role in runoff/streamflow
prediction. Our intent is to provide insights into model behavior
relative to user-selected physics options and promote the im-
provement of snow simulation in regional climate and hydro-
logic applications. To this end, we aim to answer the following:
1) How well can the National Water Model configuration of
Noah-MP reproduce observed SWE at sites across the western
United States? 2) How sensitive are the Noah-MP snow simu-
lations to changes in model configurations? 3) How do model
errors and sensitivities vary by region, climate, and vegetation
conditions?

2. Data
a. Study sites

The study domain is comprised of 199 stations from the
Snowpack Telemetry (SNOTEL) network across the WUS that
meet the following criteria: 1) Less than 5% of daily precipita-
tion and hourly temperature observations for November—June
over water years (WYs) 2007-19 are missing and 2) no daily
SWE observations over the study record are missing. Daily pre-
cipitation and SWE records were taken from the bias-corrected
quality-controlled product published by the Pacific Northwest
National Laboratory (PNNL; Yan et al. 2018), and hourly
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temperature data were downloaded from the National Resources
Conservation Service (NRCS) web portal.

We classified the 199 sites into groups based on geography,
climate, and vegetation type to evaluate how the model per-
forms across site conditions that are relevant to snow accu-
mulation and/or melt (Fig. 1). We assigned each station to
an ecoregion based on the Commission for Environmental
Cooperation (CEC) level III terrestrial ecoregions classification
(Wiken et al. 2011) (see Text S1 in the online supplemental
material). For illustration purposes, certain nearby ecoregions
were combined because model behavior was similar. We also
developed climate subgroups based on observed temperature
and precipitation using the classification scheme outlined in
Sun et al. (2022); stations with mean winter (November—March)
temperature less than —1°C are classified as “cold,” and stations
with winter precipitation less than the 25th percentile of all station
values are classified as “dry.” Last, each station was assigned a
vegetation type from the USGS land-use/land-cover (LULC)
classification system based on site photos posted on the NRCS
portal.

b. Meteorological forcings and observations

Forcings required by the Noah-MP model at an hourly time
step are precipitation, temperature, specific humidity, terrain-
level pressure, downward longwave and shortwave radiation,
and surface wind magnitude. For the base case and model ex-
periments in which physics options were altered (see section 3b),
we assigned hourly temperature and daily precipitation inputs
from SNOTEL observations for consistency with the SNOTEL
SWE used to evaluate model performance. To generate records
that are internally consistent, accurate, unbiased, and complete,
extensive quality control, bias correction, and gap-filling pro-
cedures were applied (see Text S2). So, to the greatest extent
possible, model errors in these experiments can be linked to
the model physics rather than forcing biases because the forc-
ings are both constrained by observations and consistent with
the validation dataset. Daily precipitation observations were
divided into even hourly values to match the model time step;
this is a common approach in large-scale hydrologic modeling
[e.g., as is used by default in the Variable Infiltration Capacity
model (VIC; Liang et al. 1994)] due to challenges in obtaining
reliable subdaily records. We completed the forcings for these
experiments with the Analysis of Record for Calibration
(AORC) version 1.1 (Kitzmiller et al. 2018) dataset, because
it was developed by NOAA’s Office of Water Prediction
(OWP) specifically for the purpose of providing gridded me-
teorological forcings to calibrate the NWM. It has both high
spatial (~800 m) and temporal (hourly for water years
1979-2019) resolutions (see Text S3 for more). We
downscaled humidity and pressure from AORC values with
SNOTEL temperature and elevation following methods out-
lined in Liston and Elder (2006) and Cosgrove et al. (2003), re-
spectively. Longwave radiation, shortwave radiation, and wind
inputs were extracted from the AORC pixel containing the
SNOTEL site. Note here that our decisions to combine
AORC hourly radiation forcings with SNOTEL temperature
and precipitation, and to divide daily precipitation into even
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FIG. 1. Map of 199 SNOTEL stations used, categorized by (left to right) geographic region, climate, and vegetation type. The number of
stations in each subgroup is noted in the legend entries.

hourly values, will invariably introduce some inconsistencies
within the meteorological forcing dataset. However, we be-
lieve this was the best approach for the purposes of this study
given data limitations and model physics.

To further evaluate model performance and sensitivity rela-
tive to changes in meteorological forcings, we set up an addi-
tional experiment using solely the gridded AORC dataset,
forcing each model point with values from the nearest AORC
pixel.

3. Model
a. Overview of the Noah-MP model

Noah-MP is a community model that solves the land surface
energy and water balances and simulates land—atmosphere
fluxes to generate a suite of hydrologic and other land sur-
face variables (Niu et al. 2011). It was developed to improve
upon the limitations of the Noah LSM (Gochis et al. 2018).
Snowpack is represented by up to three layers. Within each
layer, snow density, temperature, and liquid water fraction
are computed for each time step, and snow accumulation and
ablation processes are based on mass and energy balance.
Snow-cover fraction on the ground is a function of snowpack
depth and density and tunable parameters (Niu and Yang
2007). Vegetation is represented by a single-layer canopy
model with the capability for snow interception and unloading
on a canopy snow-cover fraction (Niu et al. 2011). A semitile
subgrid scheme evaluates the radiation balance, where short-
wave radiation is computed over the entire grid cell using a two-
stream approximation and considering canopy gap probabilities,
while radiation component fluxes and albedo are computed

separately over the vegetated and bare ground areas (Niu et al.
2011). Noah-MP uses multiple user-defined options for key
land-atmosphere interaction processes, such that over 4500 total
combinations of physics configurations can be assessed. These
configurations relate to 14 physics processes (see Table S1) such
as dynamic vegetation, precipitation partitioning, soil tempera-
ture, and snow albedo (Gochis et al. 2018). This setup allows
users to customize their modeling scheme. More details about
the model representation of these physics processes can be
found in Text S4.

b. Application of Noah-MP

We applied Noah-MP as a standalone mode of WRF-
Hydro v5.1.1, which is the core physics in NWM v2.1 (Cosgrove
et al. 2024), over the 199 SNOTEL sites for the period WYs
2007-19. This period covers average, dry, and wet years. Each
site was treated as a single Noah-MP grid cell with a resolution
of 1 km to match that of the AORC forcings and NWM v2.1.
We manually adjusted the coded vegetation type at each grid
cell to match the corresponding SNOTEL station based on site
photos from NRCS. When no photos were available, we used
the default LULC class from the WRF preprocessing system
(WPS) for the corresponding grid cell. All other surface condi-
tions and parameters, such as default snow albedo parameters,
soil classification, vegetation leaf area index (LAI), and other
static descriptors, were defined by the WPS.

We tested 10 model configurations relevant to snow pro-
cesses (Table 1), including one base case and nine alternative
experiments. The base case uses SNOTEL-based meteorologi-
cal forcings and has physics options set to match the NWM v2.1
recommended configuration. Seven physics processes were
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examined because of their relevance to snow simulation.
You et al. (2020) found that modeled snow depth was sensi-
tive to six of these processes at most sites. The seventh pro-
cess was included because it offers a specific adjustment for
snowy pixels. The tested physics processes (and named ex-
periments) are precipitation partitioning (Precip2.2 and Pre-
cip0), snow albedo (Alb), lower soil temperature boundary
condition (TempLB), snow/soil temperature time scheme
(TempSolv), surface resistance to evaporation/sublimation
(ResisEvap), surface layer drag coefficient (ResisDrag), and
dynamic vegetation (DynVeg) (Table 1). Additional details
on these physics processes and their alternative options are
provided in Text S4. The physics processes tested by the al-
ternative model configurations impact snow accumulation
and/or melt processes through various physical mechanisms
(Fig. S2). For the physics processes with multiple alternative
options, we tested only the recommended Noah-MP alter-
native (Gochis et al. 2018). Two alternatives were tested for
the precipitation partitioning process due to its relevance to
snow accumulation. The last experiment (AORC) uses the
base case model configuration but AORC forcings. For this
experiment, discrepancies between observed SWE and Noah-
MP simulations can be attributed to both meteorological in-
put and model errors.

In addition to these user-defined physics options, Noah-MP
employs parameters, some of which are designed to be tun-
able by the model user, related to vegetation and soil classes
or model processes like runoff, albedo, and radiation balan-
ces. These parameters are not the focus of this study, but it is
worth noting that particularly relevant for snow simulation
are those parameters related to snow albedo (e.g., Sun et al.
2019; Abolafia-Rosenzweig et al. 2021; He et al. 2021). The
Biosphere—Atmosphere Transfer Scheme (BATS), which is the
default snow albedo model in Noah-MP and represents both
direct and diffuse albedo over visible and near-infrared (NIR)
spectra (Dickinson et al. 1986) in a more sophisticated way
than the alternative Canadian Land Surface Scheme (CLASS)
model, has 12 tunable parameters. Abolafia-Rosenzweig et al.
(2022) demonstrate that the BATS model is significantly sen-
sitive to some of these parameters and provide parameter
values that are locally optimized to stations in the southern
Rockies. Letcher et al. (2022) further find that the default
parameterization of the BATS model yields albedo values
that underestimate the rate of observed snow aging. So, to
acknowledge the potential breadth of performance of the
BATS model and the caveats of its default parameters, we
further test two alternative values for the empirical snow age
parameter 7o, to which Abolafia-Rosenzweig et al. (2022) find
BATS is especially sensitive. The experiment hereafter called
BATSay vis uses 7 = 3.05 X 10° to match the value opti-
mized by Abolafia-Rosenzweig et al. (2022) for visible al-
bedo, and the experiment BATS,,, nir sets 7o = 5.29 X 10°,
the value optimized for NIR albedo. These two values are, respec-
tively, greater and less than the default value of 7, = 1 X 10°.
Although these values were optimized locally in the southern
Rockies, we apply them in a global fashion across all sites to
evaluate 1) the sensitivity of the BATS albedo to this para-
meter and 2) how well these parameter values perform at both
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similar and dissimilar sites. Note that all other parameter values
and physics options in these two experiments otherwise match
the base case (Table 1).

4. Methods

We computed snow metrics to assess volume, rates, and timing
of snow simulation across both the accumulation and melt
seasons. These snow metrics, illustrated in Fig. 2 and described
in more detail in section 4a, are used to evaluate both model
performance relative to SWE observations and sensitivity of
the different model experiments (Table 2).

a. Derived annual SWE metrics

For each station year, we computed four annual snow met-
rics from daily time series of observed and simulated SWEs
as illustrated in Fig. 2: accumulated SWE (mm), storm rate
(mm day™ '), peak SWE day of water year (DOWY; day),
and daily melt rate (mm day ™ ").

We calculated the accumulated SWE by summing all posi-
tive daily changes in SWE (Fig. 2a), to represent the total
snow available for melt during the water year. This integrated
metric is crucial for operational hydrologic models like the
NWM to correctly predict water supply. We chose this metric
over the traditional single-day metric of peak SWE because
peak SWE underestimates total snow availability, as it misses
winter melt events and postpeak accumulation (e.g., Fig. S3).
The day of peak SWE (Fig. 2a) is included to quantify the
timing of spring melt onset.

We computed the annual-averaged daily melt rate to inde-
pendently characterize the snowmelt process. The daily melt
rate is the average negative change in SWE over a melt win-
dow. The melt window spans from the water year’s first day
to the snow-off day (Fig. 2b). Note that this window excludes
late-season accumulation/melt events that happen after the
winter snowpack has melted out. The SNOTEL snow pillow’s
precision is 2.54 mm, so daily SWE changes below the prop-
agated error of 3.58 mm were set to zero in both simulated
and observed records to maintain consistency (see more in
Text S5). Only events exceeding a second minimum thresh-
old were included to avoid biasing the average with small
rates; this minimum threshold is set for each station as the
rate above which 90% of all observed melt occurs. When
comparing melt rates from two different time series (i.e.,
simulated vs observed for the model performance analysis
or simulated vs simulated for the model sensitivity analysis),
the average is applied over a melt window constrained by
the earliest snow-off day (Fig. 2b), because high late-season
melt rates in one time series (e.g., Fig. 2d) could bias the
comparison if the other time series has already melted out.
This way, we are comparing melt rates over the period in
which the model and measurements agree that snow is pre-
sent and melting.

The storm rate represents the average rate of snow accumu-
lation on large storm days. Large storm days are defined as
days when the daily positive change in SWE exceeds the his-
torical observed 75th percentile. Serreze et al. (2001) found
that in the western United States, this top quartile represents
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FI1G. 2. Illustration of how the four snow metrics are calculated for a sample SWE time series for 1 WY. (a) Peak
SWE DOWY and accumulated SWE. (b) Illustration of how a melt window is calculated when comparing two SWE
time series for a sample WY. Here, snow-off day is the first day after peak SWE when daily snowmelt is less than
1 mm. The 1-mm threshold discounts late-season small changes in simulated SWE. (c) Storm rate and daily melt rate
(averaged over the year), with a sample minimum melt and storm rates indicated. (d) Simulated and observed daily

melt rates within the shaded overlapping melt window.

over half of total snowfall. Because large storms contribute
significantly to snow accumulation and mountain hydrology
in general—for example, atmospheric river events generate
4 times more daily SWE than nonatmospheric river (non-AR)
storms (Guan et al. 2010), it is important to evaluate the
model’s ability to recreate those large snowfall events. Note
that because the model is run on an hourly time step but
generates daily output, the storm rate could be affected by
intraday melt events. For example, melt that occurs on a storm
day could reduce the storm rate if snowmelt leaves the snow-
pack; this could also occur in the observational time series.

b. Evaluation of model performance

We assessed model performance across both the accumula-
tion and melt seasons with six performance metrics (Table 2),
by comparing simulated to observed SWE over 2388 station
years of results. For each year at each site, we computed the

bias as a normalized percent between simulated and observed
snow metrics M:

100% X (Mg, — M )M, . 1)
We then averaged these biases across all years to derive a
mean normalized bias (MNB) for each snow metric and sta-
tion to evaluate the systematic bias in the model. Years for
which the bias magnitude was greater than 1000% (during
low to no snow years) were removed as outliers before aggre-
gating. To evaluate error magnitude, we derived a mean abso-
lute error (MAE), expressed as a normalized percentage,
by averaging yearly absolute errors for each site and snow
metric:

M., — M
100% X |fr}w7b| )

obs

TABLE 2. Summary of snow, performance, and sensitivity metrics. Annual snow metrics are computed for both observed and
modeled results at each station. Performance metrics characterize systematic bias and error magnitude by comparing modeled (base
case) to observed snow metrics at each station. Sensitivity metrics characterize bias relative to the base case and sensitivity level at
each station and for each experiment. The symbol * shows these metrics relate to the accumulation season; the symbol ** shows

these metrics relate to the melt season.

Performance metrics

Sensitivity metrics

Annual snow metrics Systematic bias

Error magnitude

Systematic bias Sensitivity

Accumulated SWE (mm)*
Storm rate (mm day')*
Daily melt rate (mm day~)**
Peak SWE DOWY (day)*

MNB (%) MAE (%)

Difference (day)
(day)

Absolute difference

MNB with respect to the base case (%)  KS statistic

Difference with respect to the base
case (day)

FNR for accumulation days (%)*

FNR for melt days (% )**
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The day of peak SWE is compared to its observed value by a
difference in days.

Two additional performance metrics measure how accu-
rately the model predicts the timing of melt and accumulation
events. The annual false-negative rate (FNR) for accumula-
tion is the percent of days when an observed accumulation
event occurs but a modeled one does not, such that

FNR, = 100% X FN/P, 3)

where FN is the number of days over the water year that
shows observed accumulation without modeled accumulation
and P is the number of days with observed accumulation. A
higher FNR,.. means that there are more days in which the
model fails to simulate an observed accumulation event. The
FNR_,,¢; similarly measures how often the model fails to pre-
dict an observed daily melt event. For both FNRs, interannual
values are averaged into a single metric for each station. Note
that, as opposed to the daily melt and storm rate metrics,
these FNRs are not constrained by minimum melt or accumu-
lation thresholds.

¢. Evaluation of model sensitivity

We assessed the sensitivity of the modeled snow metrics for
each model experiment relative to the base case in two ways
(Table 2). First, we identified where significant sensitivities ex-
ist by applying the Kolmogorov—Smirnov (KS) test (Text S6)
to each snow metric at all stations in each experiment. This
test has been utilized to assess model sensitivity in numerous
hydrologic modeling studies (e.g., He et al. 2011; Sun et al.
2019). A two-sample KS test was performed at each station to
test whether the snow metrics from the base case and the ex-
periment come from the same distribution. KS values range
from 0 to 1, with higher values indicating greater sensitivities
(changes). We used a minimum KS threshold value of 0.5 to
identify sensitivity because it yields statistically significant re-
sults at p value < 0.1. Stations with a KS statistic equal to or
greater than 0.5 were considered sensitive to that experiment
for that snow metric.

Second, we quantified the magnitude (and direction) of
changes in snow predictions by comparing each model ex-
periment’s simulated snow metrics to those from the base
case by applying Eq. (1), but with the base case as the refer-
ence. Changes in snow metrics for each experiment are thus
expressed as the percent change in metric value relative to
the base case.

5. Results
a. Model performance relative to SNOTEL observations
1) BASE CASE PERFORMANCE ACROSS METRICS

Overall, the Noah-MP base case overestimates accumu-
lated SWE observations at 90% of sites, with an overall me-
dian overestimate of 9.6% (Fig. 3a). This overestimation most
likely results from excessive snowfall input due to inaccurate
precipitation partitioning. This overestimation is consistent
with findings by Letcher et al. (2022) over New York State;
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they also identify the precipitation partitioning scheme as a
source of significant sensitivity in Noah-MP. Stations with
underestimated accumulated SWE have a median bias of only
—1.7%. The observed storm rate is underestimated by the
model in 53% of stations, which have a median bias of —3.2%
(relative to the overall median of —0.4%; Fig. 3b). The me-
dian FNR is 8% for accumulation days, meaning that the
model correctly simulates accumulation on 92% of observed
days (Fig. 3c). Peak SWE occurs later in the base case than
observations at 74% of stations, for which the median bias is
9.5 days (relative to an overall median of 5.4 days; Fig. 3d).
Stations where the model predicts earlier peak SWE have a
median bias of only —4 days. In general, model performance
during the melt season is worse than in the accumulation
season. The daily melt rate is underestimated by the model at
79% of stations, by an overall median bias of —15% (Fig. 3e).
The median FNR for melt is 38%, which is over 4 times
greater than that for accumulation (Fig. 3f). This means that
the model agreement with the timing of observed melt events
is much worse than that for accumulation.

Model performance varies across geographic regions. For
example, stations in the Cascades region exhibit a statistically
different model performance (p < 0.05) than other regions
across all snow metrics. No stations in the Cascades nor the
Sierra Nevada underestimate accumulated SWE. The Cascades
has the highest median bias in accumulated SWE (19.5%,
2.5 times greater than the median of all other stations) (Fig. 3a),
indicating lower model accuracy during the accumulation
season. Of note, the Sierra Nevada, Cascades, and Arizona/
New Mexico mountains are the only regions where the median
bias in storm rate is positive, suggesting that the model tends
to overestimate accumulation on large storm days (Fig. 3b).
Inaccurate precipitation partitioning could cause the model
to estimate more SWE accumulation than observed on large
storm days. This is notable because large storms like those
produced by atmospheric rivers dominate snowpack accumu-
lation in the Pacific mountainous regions, particularly in the
Sierra Nevada (Serreze et al. 2001). Generally, stations in the
interior ranges show a better performance in the accumula-
tion season than those in the coastal ranges: four out of the
five interior regions (Blue Mountains, Basin and Range, northern
Rockies, Wasatch and Uinta Mountains, and southern Rockies)
have a median bias below the overall median in both accumu-
lated SWE and FNR for accumulation (Figs. 3a,c). For the
melt season, the Cascades region has the lowest median bias in
timing of peak SWE (1.3 days), the smallest median bias in
daily melt (—2.4%), and the lowest FNR for melt days (30%)
(Figs. 3d-f). This means that the model performs significantly
more accurately over the melt season in the Cascades than in
other regions. The southern Rockies also have a statistically
different melt season performance, with the largest bias in tim-
ing of peak SWE (median delay of 21 days) (Fig. 3d), the most
negative median bias in simulated daily melt rate (—27%)
(Fig. 3e), and the second-highest median FNR for melt days
(51%) (Fig. 3f). This suggests that melt season model perfor-
mance is the poorest in the southern Rockies. It is worth not-
ing that the Cascades stations are the snowiest and second
warmest (average observed accumulated SWE of 796 mm and
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FIG. 3. Model performance across all stations in the base case, as compared to SNOTEL SWE observations. Six performance metrics
were used: (a) MNB in accumulated SWE; (b) MNB in storm rate; (c) FNR for accumulation days; (d) difference in timing of peak SWE;
(e) MNB in daily melt rate; and (f) FNR for melt days. (first column) A smoothed histogram of the performance metrics across stations in the
base case. A vertical dashed red line indicates the median metric value, and a horizontal dashed gray line indicates the interquartile range (IQR).
The performance metrics are separated (second column) by geographic region, (third column) by climate subgroup, and (fourth column) by vege-
tation type. Circles mark the median of the subgroup, and the width of the line marks the IQR. If the subgroup has a filled-in circle, it is consid-
ered significantly different (p value < 0.05) from the other subgroups. The number of stations in each subgroup is noted in the legend entries.
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winter temperature of —0.12°C; Table S2), and the southern
Rockies stations are the coldest (average observed winter
temperature of —5.3°C; Table S2). Also relevant here is the
role of light-absorbing particles (i.e., dust and soot) on snow:
Albedo decay and shortened snow cover duration caused by
dust on snow have been widely observed in the Rocky Moun-
tains and Wasatch and Uinta Range (e.g., Painter et al. 2012,
2007). Noah-MP does not explicitly capture radiative forcing
by dust on snow and so can be expected to underestimate the
observed melt rates in regions impacted by dust deposition.
This is consistent with the result that melt rate bias is most
negative in the Wasatch and Uinta Mountains and southern
Rockies (Fig. 3e). Note that the alternative BATS experiments
use a parameter value optimized for sites with considerable dust
on snow effects; median melt rate bias is still negative and largest
in the Wasatch and Uinta Mountains and southern Rockies in
these experiments, but the error magnitude in BATS,, nir
(BATS:.u _vis) decreases (increases) at these sites by a median
of 14% (16%) relative to the base case (Fig. S7).

Variations in model performance can also be explained by
differences in climate. Sites classified as cold (dry/cold or wet/
cold) demonstrate similar bias levels in accumulated SWE
regardless of precipitation amount, whereas warm sites (dry/
warm or wet/warm) show more bias (on median 4.7 times
higher) when they are also wet (Fig. 3a). This suggests that
precipitation at warm sites is a more distinguishing factor for
accumulated SWE bias than at cold sites. Dry sites (dry/cold
or dry/warm) have a more negative bias (—2.5%) in storm
rate than wet sites (—0.2%) (Fig. 3b), indicating that the
model better predicts the storm rate when precipitation is
higher (and storms are typically larger). Temperature instead
is the distinguishing factor for FNR: On median, warm sites
have an accumulation FNR twice as high as that for cold sites
(Fig. 3c). So, the model predicts accumulation events better
at colder stations, where precipitation partitioning thresholds
are less influential in determining snowfall. In the melt season,
dry/cold stations show the highest bias in timing of peak SWE
and wet/warm stations show the least (Fig. 3d). Temperature
distinguishes model performance in daily melt rate: Cold sites
have a median bias 50 times greater (—20%) than warm
sites (—0.4%) (Fig. 3e). FNR for melt days is instead more
distinguishable by precipitation: Dry stations have a median
bias 1.6 times higher than wet stations (Fig. 3f). Both wet/
warm sites and wet/cold sites perform statistically differently
than other climate subgroups in five of the six metrics (Fig. 3),
suggesting that precipitation amount strongly affects model
performance.

Vegetation type also plays a role in model performance, as
the amount and type of vegetation can impact both energy
and mass balance of snow. Note that vegetation type is manu-
ally set in the model to match the SNOTEL station; 50% of
stations are located in clearings and labeled as “grassland.” It
is worth mentioning that at more vegetated sites, snow simu-
lation becomes more complex. Although the Noah-MP can-
opy model correctly accounts for shadowing effects on solar
radiation, it could be introducing an inconsistency between
modeled SWE and observed SWE because it models canopy
snow interception, whereas the SNOTEL snow pillows are
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likely less affected by canopy interception because they are
not typically placed directly under trees even when the site is
forested. This could lead to an underestimation of observed
SWE at forested sites in this study by Noah-MP.

Shrubland sites show statistically different model perfor-
mance at most metrics (Figs. 3a—€), signifying a unique model
performance. These sites exhibit the lowest median bias mag-
nitude in accumulated SWE (2.4%) and storm rate (—0.2%),
but the highest bias in FNR for accumulation days (9%)
(Figs. 3a—c). This suggests that the model simulates snow vol-
ume relatively well at shrubland sites, but does so more
poorly for the timing of accumulation events, perhaps because
of vegetation interception. Deciduous broadleaf sites have a
bias in accumulated SWE less than the overall median and
are the only ones to have a negative bias in timing of peak
SWE (—3 days) indicating earlier simulated snowmelt onset
(Fig. 3d). In the melt season, the model simulates median
melt rate 1.7 times more accurately at nonforested sites than
forested sites (Fig. 3e), but FNR 1.8 times more accurately at
forested sites (Fig. 3f). This means that at forested sites, the
model simulates the daily melt rate less accurately, but those
melt events are more likely to occur on the correct (observed)
days. It should be noted that patterns in model performance
across vegetation types may be cross correlated with climate,
geography, and other factors.

2) RELATIONSHIP BETWEEN BASE CASE PERFORMANCE
AND CLIMATE VARIABLES

Studying the correlations between model error and climate-
related variables underscores climate as a crucial factor affecting
model performance. Figure 4 presents correlations R between
the observed winter temperature, winter precipitation, snow/
precipitation ratio (peak SWE/annual precipitation), and ac-
cumulated SWE, and base case model error across all sites.
Model error is defined here as mean absolute error, absolute
difference, or FNR (Table 2). By using the absolute error
rather than bias, these correlations reveal the relationship
between climate variables and error magnitude irrespective
of error direction.

Over the accumulation season, warmer winter temperatures
correspond to higher error in accumulated SWE (R = 0.39),
storm rate (R = 0.31), and FNR (R = 0.55). This supports the
finding from Fig. 3 that warm stations perform more poorly
during the accumulation season than cold stations, likely be-
cause these sites are more sensitive to inaccurate precipitation
partitioning. Winter precipitation also positively correlates
with model error in accumulated SWE (R = 0.28) (Fig. 4).
This reaffirms the finding in Fig. 3 that wet/warm sites have
the poorest model performance in accumulated SWE. Snow/
precipitation ratio strongly negatively correlates with model
error in accumulated SWE (R = —0.55), storm rate (R = —0.38),
and FNR (R = —0.59) (Fig. 4). This suggests that sites with a
lower snow/precipitation ratio (which tend to have warmer
temperatures) have higher accumulation errors. This is consis-
tent with the finding that observed accumulated SWE nega-
tively correlates with error in storm rate (R = —0.3) and FNR
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FIG. 4. Correlations R between seasonal climate variables and model error across stations in the base case as repre-
sented by six performance metrics: MAE in accumulated SWE, MAE in storm rate, FNR for accumulation days, ab-
solute difference in timing of peak SWE, MAE in daily melt rate, and FNR for melt days (Table 2). Climate-related
variables are computed for each station year from observed records over winters (November-March) of WYs 2007-19.
The gray area marks R values that are not statistically significant (p value > 0.05). Positive (negative) bars indicate
that a higher value for the climate variable correlates with higher (lower) model error.

(R = —0.27), indicating that the model is worse at predicting
accumulation events at less snowy sites.

Generally, the trends between climate-related variables and
model error are opposite and weaker for melt season metrics.
Winter temperature negatively correlates with error in timing
of peak SWE (R = —0.26) and daily melt rate (R = —0.21)
(Fig. 4), indicating that colder stations perform worse than
warm stations in the melt season. The strong negative corre-
lation between winter precipitation and FNR for melt days
(R = —0.49) (Fig. 4) reinforces the finding from Fig. 3 that
wet sites perform distinctively worse than dry sites for this
metric. This is also true, but less significant, for the relation-
ship between winter precipitation and error in timing of peak
SWE (R = —0.19) (Fig. 4). Observed accumulated SWE
has a strong negative correlation with FNR for melt days
(R = —0.56) (Fig. 4), indicating that the model more often
fails to predict observed melt events at sites with less snow.
Note that observed accumulated SWE is the only variable
which relates negatively to model error across both accu-
mulation and melt seasons; so, less snowy sites consistently
perform worse than snowier sites. The positive correlations
between snow/precipitation ratio and error in timing of
peak SWE (R = 0.22) and daily melt rate (R = 0.17) are
less significant but demonstrate poorer model performance

in the melt season at stations with a high snow/precipitation
ratio (which also tend to be colder).

b. Sensitivity of snow simulations to model
configurations

1) IDENTIFYING SENSITIVITY TO CHANGES IN MODEL
CONFIGURATION

To assess whether changes in snow metrics caused by the
model experiments amount to a significant model sensitivity,
we applied the KS test to four snow metrics (Table 2). Snow
metrics at a station are considered significantly sensitive to a
particular experiment if the KS statistic is equal to or greater
than 0.5 (p value < 0.1). Figure 5 summarizes how many sta-
tions are considered sensitive to each experiment and snow
metric.

Overall, only two experiments show significant sensitivity
in accumulation metrics at over 5% of stations: AORC and
Precip0 (Fig. 5). Precip0 lowers the temperature threshold
for snowfall to 0°C, leading to a sensitivity in accumulated
SWE and storm rate at 22% and 4% of stations, respectively
(Fig. 5). In contrast, the other precipitation partitioning ex-
periment Precip2.2, which raises the partitioning threshold to
2.2°C, has at most 1% of stations with accumulation metric
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FIG. 5. The percent of sensitive stations (KS statistic = 0.5, p value < 0.1) in each experiment
and across four snow metrics. Note that AORC is an experiment that tests forcing input rather

than model physics.
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FIG. 6. Distributions of changes in snow metrics relative to the base case across SNOTEL stations and nine experiments for four snow
metrics. (a) Accumulated SWE, (b) storm rate, (c) timing of peak SWE, and (d) daily melt rate. Bias metrics (MNBgc or difference;
Table 2) are computed for each station year with reference to the base case and then averaged for each station over the time period.
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indicates the model configuration produces a higher (lower) median value than the base case.

sensitivity (Fig. 5), indicating that the 0°C threshold yields sig-
nificantly more deviation in results from the base case (which
uses a linear increase in partitioning with temperature per
Jordan 1991) than 2.2°C. The AORC experiment, which changes
the input precipitation and air temperature, demonstrates the
highest levels of sensitivity, with 64%, 19%, and 51% of stations
sensitive to accumulated SWE, storm rate, and timing of peak
SWE, respectively (Fig. 5).

Six experiments exhibit significant sensitivity in melt met-
rics at over 5% of stations: Alb, Precip0, ResisEvap, Resis-
Drag, DynVeg, and AORC, indicating that melt metrics are
sensitive to more changes in model configuration than accu-
mulation metrics. Alb and DynVeg both impact surface al-
bedo, resulting in 17% and 21% of stations showing melt rate
sensitivity, respectively. ResisDrag, which impacts the compu-
tation of surface heat fluxes, is the physics-related experiment
with the most sensitivity in the melt season: 51% of stations
have melt rate sensitivity and 6% have sensitivity to timing
of peak SWE. ResisEvap also affects surface heat fluxes and
demonstrates melt rate sensitivity at 10% of stations. The
Precip0 experiment exhibits sensitivity to daily melt rate in
8% of stations; this is an indirect effect of changes to accu-
mulation patterns. At most 1% of stations show sensitivity
to any metric in TempLB and TempSolv, meaning that these
model configurations do not deviate greatly from the base
case. AORC shows 31% of stations with sensitivity in melt
rate (Fig. 5).

2) CHANGES IN SNOW METRICS RELATIVE TO BASE
CASE ACROSS MODEL CONFIGURATIONS

The magnitude and direction of changes to snow predic-
tions caused by alterations to model configuration or forcing
input are evaluated by comparing four snow metrics in each
experiment to base case results (Table 2). Figure 6 illustrates
the distributions of these bias metrics for each experiment.

The precipitation partitioning experiments (Precip2.2 and
Precip0) are expected to primarily impact snowfall and snow
accumulation. Precip2.2 increases the temperature threshold
for precipitation partitioning, resulting in a slightly higher ac-
cumulated SWE (median of 2.3%) (Fig. 6a), but less notable
impacts to storm rate (median of 0.2%) and timing of peak
SWE (median of 0.2 days) (Figs. 6b,c). Precip0 instead lowers
the temperature threshold, leading to less snowfall than the
base case. The storm rate and total accumulated SWE notably
reduce as a result, by a median of 4.3% and 13 %, respectively
(Figs. 6a,b). The day of peak SWE is correspondingly ad-
vanced by a median of 4.3 days (Fig. 6¢). The range of bias for
accumulated SWE in Precip0 is the widest for accumulation
metrics [interquartile range (IQR) of 12.3%], indicating that
the effect of this experiment varies greatly across stations [see
section 5b(3)] (Fig. 6a).

The subsequent five experiments relate primarily to melt
processes. Alb generates a higher daily melt rate (median of 4%)
than the base case (Fig. 6d). This is consistent with the obser-
vation that the alternative albedo option generates lower
snow albedo (Niu et al. 2011; Abolafia-Rosenzweig et al.
2022). ResisEvap, which alters surface resistance to turbulent
fluxes, generates a slightly higher melt rate (median of 1.1%)
(Fig. 6d). This implies that the change in surface resistance
was enough to reduce latent heat flux so that the additional
energy at the surface initiated higher snowmelt rates. ResisDrag,
which alters how the surface drag coefficient is estimated,
impacts melt metrics more significantly. The alternative option
(Chen et al. 1997) has been noted to produce a lower value for
the surface drag coefficient (e.g., Zhang et al. 2014), resulting
in higher heat flux values. This is consistent with the experi-
ment reducing daily melt rate, by a median of 9.9% (Fig. 6d).
This experiment has a wide range of bias values for daily melt
rate (IQR of 10%), suggesting that the impact of ResisDrag
varies notably across sites [see section 5b(3)]. TempSolv, which
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changes the solver approach for the soil temperature equation,
increases the daily melt rate by a median of 1.7% (Fig. 6d).
TempLB, which changes the temperature lower boundary con-
dition of the soil column, generates insignificant to no change
(less than 0.2%) to all metrics (Figs. 6a—d).

DynVeg and AORC are expected to impact both accumu-
lation and melt processes. The AORC experiment uses the
same physics configuration as the base case, but with different
precipitation and temperature forcings. AORC total winter
precipitation differs from SNOTEL observations heteroge-
neously across the WUS (Fig. S1a) but averages out to 10.6%
less. AORC winter temperature underestimates observations
by an average of 0.2°C (Fig. S1b). As a result of this and/or
differences in individual storm events, the storm rate in-
creases in the AORC experiment (median of 3.5%) (Fig. 6b).
Peak SWE occurs at a median of 17.5 days earlier, which,
combined with a higher melt rate (median of 6.1%; Fig. 6d)
and lower input precipitation (Fig. Sla), is consistent with
total accumulated SWE decreasing (median of —29.3%)
(Fig. 6a). The range of bias values in AORC is wider than
in any other experiment (IQRs ranging 11%-25% across
metrics), suggesting that snow simulation varies greatly
across sites in this experiment and that the experiment in-
troduces more uncertainty (Fig. 6). DynVeg turns on the
dynamic vegetation module. As a result, accumulated SWE
changes slightly (median of 1%). There is insignificant to
no change in median values (less than 0.2%) for peak SWE
timing, storm rate, and melt rates (Figs. 6a,b,d). Of note,
the IQR for the melt rate biases is 5% (Fig. 6d), indicating
that DynVeg impacts melt processes at some stations more
significantly than the median suggests.

Figure 6 also illustrates changes in snow simulation due
to indirect effects by the model experiments. For example,
Precip0, which directly reduces snowfall relative to the base
case, also exhibits a slight increase in daily melt rate (median
of 3%) (Fig. 6d). This is because a shallower snowpack pre-
sumably reaches the melt phase earlier. Although ResisDrag
primarily impacts melt rate, it also demonstrates a slight in-
crease in accumulated SWE (median of 1.9%) and a corre-
sponding delay in timing of peak SWE (median of 3.2 days)
(Figs. 6a,c). This is consistent with less winter melt occurring
due to lower melt rates. The IQR for biases in timing of peak
SWE in this experiment is the second widest (7.5%), indicat-
ing a varied impact that can result in either positive or nega-
tive biases at individual sites. ResisEvap shows effects similar
in magnitude but opposite in direction: a slight decrease in ac-
cumulated SWE (median of —1.6%) and advance in timing of
peak SWE (median of —3.4 days) (Figs. 6a,c). This is consis-
tent with more winter melt occurring due to a higher melt
rate.

3) CHANGES IN SNOW METRICS RELATIVE TO BASE
CASE ACROSS SITE CONDITIONS

Changes in snow metrics caused by different model configu-
rations relative to the base case can also be evaluated across
site conditions in order to understand how and why snow sim-
ulation responds differently to alterations in physics processes
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or forcing input. Only the metrics with the highest percent of
stations showing a significant KS statistic (Fig. 5) are evalu-
ated in this section.

Although the AORC experiment shows high levels of sen-
sitivity (Fig. 5), the changes to snow metrics caused by this
experiment relate to the localized differences between
SNOTEL and AORC temperature/precipitation rather than
model physics and so are more heterogeneous across geogra-
phy, climate, and vegetation than in other experiments.

Precip0 primarily impacts accumulated SWE as it changes
the amount of snowfall input (Fig. 5). Figure 7a illustrates
how stations closer to the Pacific coast—in the Cascades, Eastern
Cascades Slopes and Foothills, and the Sierra Nevada—show a
more negative and larger change in accumulated SWE than
stations located in the interior ranges—northern Rockies,
Blue Mountains, Basin and Range, and Wasatch and Uinta
Mountains. This is due to more temperate climate in the more
coastal areas, with warmer temperatures that hover more
closely to the precipitation partitioning threshold. In fact,
stations classified as warm (either dry/warm or wet/warm)
demonstrate a higher and more negative median bias in snow
accumulation than stations classified as cold (Fig. 7a). Precipi-
tation amount also matters: Within each temperature group-
ing (warm or cold), stations classified as wet demonstrate a
higher bias than their dry counterparts (Fig. 7a). So, Precip0
causes more change in accumulated SWE in wetter and warmer
stations because changing the precipitation partitioning thresh-
old has a bigger impact where winter temperature is closer to
that threshold.

Alb primarily impacts the daily melt rate (Fig. 5), and that
impact varies by geography and climate (Fig. 7b). The only re-
gion to show a negative change in daily melt rate in this exper-
iment is the Arizona/New Mexico mountains (Fig. 7b), which
is the least snowy region in the study (Table S2). The region
with the highest positive change in daily melt rate (and widest
IQR) is the southern Rockies (Fig. 7b). Both of these regions
are statistically different than the others. Precipitation amount
rather than temperature is a distinguishing factor for this
experiment: Stations classified as wet (either wet/cold or
wet/warm) have a higher median bias in melt rate than
stations classified as dry (Fig. 7b). Dry/warm stations have
the lowest median bias, whereas wet/cold stations have the
highest (Fig. 7b).

ResisEvap and ResisDrag also primarily impact daily melt
rate (Fig. 5). For ResisEvap, stations in the eastern Cascades
and Foothills demonstrate the most negative and highest
absolute median bias of all regions (Fig. 7c). The only
other region with an absolute median bias higher than 2%
is the southern Rockies, which has the highest positive bias
(Fig. 7c). In this experiment, the IQRs of the bias metrics
vary notably across regions—for example, the IQR for the
dry Arizona/New Mexico region is much wider than the wet
Cascades region (Fig. 7c). While the median biases for each
climate subgroup do not differ significantly, the IQRs do. Sta-
tions classified as dry (either dry/cold or dry/warm) have a
wider IQR than stations classified as wet (Fig. 7c). So, the
changes in daily melt rate caused by ResisEvap range wider
across drier stations.
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FIG. 7. Distribution of changes from the base case in key snow metrics across site conditions in (a) Precip0, (b) Alb, (c) ResisEvap,
(d) ResisDrag, and (e) DynVeg experiments. The bias metric MNB relative to base case for accumulated SWE is shown for Precip0 and
for daily melt rate for the other experiments. The first column of subpanels presents results across different geographic regions of the
WUS, and the second column separates results by climate subgroups. Results are separated by vegetation type for the DynVeg experiment.
Circles mark the median of subgroup, and the width of the line marks the IQR. If a subgroup has a filled-in circle, it is considered significantly
different (p value < 0.05) from the other subgroups. The number of stations in each subgroup is noted in the legend entries.

Precipitation amount is also a distinguishing factor for changes
to the daily melt rate in ResisDrag. Wet stations have a more
negative bias than dry stations, with wet/warm stations demon-
strating the highest absolute bias (Fig. 7d). Geographically,

the Cascades demonstrate the most negative and highest abso-
lute median bias, whereas the Arizona/New Mexico mountain
region shows the lowest median bias but with the widest IQR
(Fig. 7d).
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FI1G. 8. Fraction of stations showing better model performance, as represented by (a)-(e) the lowest MAE in accu-
mulated SWE and (f)—(j) MAE in daily melt rate, for each option under seven physics processes and one pair of forc-
ings input, for all stations, and for subsets covering four climate categories. Note that for the precipitation partitioning
process, Precip2.2 is “alternative 1” and Precip0 is “alternative 2.” There are 37 stations in the dry/cold subgroup;
13 in dry/warm; 101 in wet/cold; and 48 in wet/warm. If a station shows no difference in model performance between
the different options, it is added to the white bar. The best-performing option has the highest bar. The gray back-
ground highlights the most relevant options for that snow metric by indicating which experiment causes sensitivity
relative to the base case for that snow metric at over 5% of stations (as shown in Fig. 5).

For DynVeg, more stations show sensitivity to daily melt
rate than any other snow metric (Fig. 5). Although the me-
dian biases across geographic regions and climate subgroups
are similar and close to 0, there are notable differences in the
IQRs (Fig. 7e). For example, stations in the Cascades region
have the widest IQR, whereas stations in the southern Rock-
ies have the narrowest IQR (Fig. 7e). Across climate sub-
groups, the IQR is wider in dry stations (either dry/cold or
dry/warm) than wet stations (Fig. 7¢). These differences sug-
gest that station groups with wider IQRs have more uncer-
tainty in how DynVeg affects snow simulation. Changes to
melt rate caused by DynVeg are notably discernable by vege-
tation type. There is no change from the base case daily melt
rate at barren or sparsely vegetated stations, suggesting that
the dynamic vegetation module (see more in Text S4) does
not have any impact on snow simulation at these sites. On the
other hand, there are negative change for shrubland stations
and positive change for forested stations (either deciduous
broadleaf or evergreen needleleaf) (Fig. 7¢). Grassland sta-
tions show a median bias close to 0, with individual stations
showing slight changes (Fig. 7¢).

¢. Best-performing physics options

The variations in model performance and sensitivity across
sites speak to inadequacies in physical process representation
that manifest differently under different site conditions. This
implies that customizing model configurations to the unique
characteristics of the model domain, particularly climate type
which we have found has strong patterns with model behavior,
could yield more accurate and useful results. Figure 8 illustrates
which option—either the base case or alternative—performs
best relative to observations, as measured by the MAE in ac-
cumulated SWE and daily melt rate (Table 2).

Overall, the Precip0 alternative for precipitation partitioning
yields the best accumulation season model performance at most
stations across the WUS (Fig. 8a). This option reduces snowfall
amount relative to the base case and partly compensates for the
positive bias in accumulated SWE in the base case (Fig. 3a). At
most warm stations, which are more sensitive to changes in tem-
perature thresholds for precipitation partitioning (Fig. 7a), the
base option instead more accurately predicts accumulated SWE.

As expected, using observation-based forcings rather than
gridded AORC forcings leads to more accurate accumulated
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FIG. 9. Fraction of stations showing better model performance, as represented by the lowest MAE in daily melt
rate, for four snow albedo experiments: BATS with default parameters (base case), CLASS (Alb), BATS with tuned
parameter (BATSay vis), and BATS with tuned parameter (BATS,, nir) (Table 1), (a) for all stations and for sub-
sets covering four climate categories: (b) dry/cold, (c) dry/warm, (d) wet/cold, and (e) wet/warm. The best-performing

option has the highest bar.

SWE at most stations (Figs. 8a-d). At those few stations
where AORC instead performs better, the base case model
configuration can be considered erroneous because the AORC
forcings and validation dataset (observed SWE) are inconsistent,
and thus, the AORC experiment is not expected to yield
superior model performance than the experiment which uses
observation-based forcings.

At predicting the observed melt rate, the alternative for
Alb vastly outperforms the base option at most stations across
the WUS and especially at cold stations (Figs. 8e—g). This is
consistent with the finding that observed melt rate is generally
underestimated in the base case (Fig. 3e), and the alternative
snow albedo option yields lower albedo values and thus a
higher melt rate (Fig. 6d). At warm stations, where melt rates
are typically higher and the change relative to the base case
is less (Fig. 7b), the base option instead outperforms the alter-
native at most stations. Note that in this case, the base option
utilizes all default parameters for the BATS albedo scheme.
Figure 8 illustrates how tuning one parameter in this scheme
to a locally optimized value (Abolafia-Rosenzweig et al. 2022)
affects the results.

Similarly, the alternative for ResisEvap, which tends to in-
crease the melt rate relative to the base case (Fig. 6d), outper-
forms the base option at most stations across the WUS (and
in particular cold stations). Conversely, the base option out-
performs the alternative for ResisDrag, which reduces the
melt rate relative to the base case at shrubland and grassland
sites (Fig. 7e), at most stations across all climate groups except
for wet/warm (Figs. 8f—j). Note that the impact of the DynVeg
alternative relative to the base case is more correlated with
vegetation type than climate subgroup (Fig. 7¢). The second
alternative for precipitation partitioning (Precip0), which

indirectly impacts melt rate by reducing accumulated snow-
fall, outperforms the base option across all climate groups
(Figs. 8f—j). Also, using gridded forcings (AORC) yields more
accurate melt rates than using observation-based forcings at
most stations except for those in warm climates (Figs. 8fj),
suggesting that the base case configuration is not optimized
for melt season SWE predictions. Notably, for most stations
where AORC outperforms the base option, the alternative snow
albedo model also outperforms the base option (Figs. 8f-h)—this
suggests that a key source of error in the base case configura-
tion is the use of an inadequate snow albedo model (in the
base case, BATS with default parameter values) especially at
cold stations.

Note also that the alternative option sometimes outper-
forms the base case even among the physics processes that
do not yield significant changes relative to the base case. This
occurs in the accumulation season at most stations for TempLB
and ResisEvap and in the melt season at most cold stations for
TempLB.

The BATS snow albedo model, used in the base case and
the default within Noah-MP, has 12 tunable parameters, some
of which have been found to significantly affect the perfor-
mance of the model (e.g., Abolafia-Rosenzweig et al. 2022).
Figure 9 illustrates how tuning one of those parameters 7,
affects the model’s ability to reproduce observed melt rate.
Overall and for dry stations, the BATS,,, nir €xperiment out-
performs the other snow albedo configurations, yielding the
lowest melt rate error in 41% of all stations (Figs. 9a—c). This
demonstrates that tuning even one parameter of the BATS
model, such as to locally optimized values, can improve the
model performance such that it exceeds that of an alternative
snow albedo scheme. Specifically, decreasing the 7, parameter
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value (as in BATS;,, n1r) improves the ability of the BATS
model to reproduce observed melt rate at most stations. See
Fig. S6 for distributions of melt rate bias in BATS,,, nir and
BATS;ay_vis- Conversely, Alb (which uses the CLASS albedo
scheme) outperforms the BATS experiments at most wet
stations (Figs. 9d,e). Note that the adjusted values for the 7
parameter were optimized to local observations in the southern
Rockies (Abolafia-Rosenzweig et al. 2022). The results summa-
rized in Fig. 9 suggest that these locally optimized values can
effectively improve model performance at other sites with
similar climates (i.e., dry/cold; Fig. 9b), but less effectively at
dissimilar sites (i.e., wet/warm; Fig. 9¢).

6. Conclusions

This study examines snow water equivalent (SWE) simu-
lation by Noah-MP across 199 sites in the western United States.
The base case and eight model configuration experiments test
physics options related to precipitation partitioning (Precip2.2
and Precip0), snow albedo (Alb), lower soil temperature bound-
ary condition (TempLB), snow/soil temperature time scheme
(TempSolv), surface resistance to evaporation/sublimation
(ResisEvap), surface layer drag coefficient (ResisDrag), and
dynamic vegetation (DynVeg). These experiments are forced
by in situ meteorology in order to rigorously identify model
deficiencies. The ninth experiment (AORC) tests an alterna-
tive source of forcings to provide insight into forcing errors
and relative model uncertainties.

With respect to how well Noah-MP can reproduce SWE
at sites across the WUS, we find that the base case, which
matches the National Water Model (NWM) configuration and
uses observed temperature and precipitation forcings, overesti-
mates observed accumulated SWE at 90% of stations by a
median of 9.6%. Inaccurate precipitation partitioning by the
model could explain these errors. At most sites, it also pre-
dicts later peak SWE timing (5.4 days) and underestimates
daily melt rate (median of —14.6%). The use of globally
applied default parameters in the base case albedo model
(BATS) could explain this underestimation. The model more
successfully predicts the timing of observed accumulation events
than observed melt events.

With respect to the sensitivity of the model to alternative
configurations, we find that Precip0 and AORC demonstrate
significant sensitivity in the accumulation season, while Alb,
Precip0, ResisEvap, ResisDrag, DynVeg, and AORC exhibit
significant melt season sensitivity. Precip2.2, TempSolv, and
TempLB show little to no significant sensitivity. Of the model
configurations that test physics processes, the greatest change
to accumulation season predictions occurs in Precip0 (median
of —13%). On average, Precip0 reduces accumulated SWE,
storm rate, and timing of peak SWE, while Precip2.2 slightly
increases accumulated SWE. With regard to melt season pre-
dictions, the greatest change occurs in ResisDrag (median of
—10%). ResisDrag on average reduces melt rate, increases
accumulated SWE, and delays peak SWE timing, while Resi-
sEvap does the opposite. DynVeg demonstrates a wide range
of changes to melt rate, which are discernable by vegetation
type but average out to a near-zero effect overall. TempLB
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and TempSolv have minimal effects. AORC causes substan-
tial changes in snow performance metrics that often exceed
those caused by alterations in model physics in both magni-
tude and range (medians ranging from —29% to 6%). This
suggests that previous assessments of model performance in
Noah-MP or other land surface models (LSMs) could be
masked by forcing errors or inconsistencies with the valida-
tion dataset and emphasizes that generating accurate meteo-
rological forcings should be prioritized over adjusting model
physics representation for promoting more accurate SWE
simulation in LSMs.

We also find that the model’s performance relative to ob-
servations and sensitivity relative to the base case differs
across regions, climates, and vegetation types, with the stron-
gest trends related to climate. The model performs better rel-
ative to observations in the accumulation season at colder
sites with a higher snow/precipitation ratio (such as in the
southern Rockies) and in the melt season at warmer stations
with a lower snow/precipitation ratio (such as in the Cascades).
The model performs most uniquely in the Cascades region—
perhaps because these sites are warmer despite their deep
snowpack. We also find that not all stations share the same
best-performing model configuration, highlighting inconsis-
tencies in how the model simulates SWE and suggesting the
need for models customized to site conditions. Notably, at
most stations and especially those classified as cold, the
Precip0 alternative outperforms the base case for predicting
accumulated SWE; the Alb, ResisEvap, and DynVeg alter-
natives outperform the base case for predicting melt rate. We
find that tuning just one parameter of the BATS snow
albedo model yields lower melt rate errors at most stations.
These findings indicate that the current default NWM config-
uration is not optimized for all sites of the western United
States.

Further research should explore how the snow model re-
sponds to superposing changes in model configurations and
consider the implications of using varying configurations for
different site conditions such as climate when running large-
scale models like the National Water Model.
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