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Abstract: As machine learning becomes more integrated into atmospheric science, XGBoost
has gained popularity for its ability to assess the relative contributions of influencing factors
in the atmospheric boundary layer height. To examine how these factors vary across seasons,
a seasonal analysis is necessary. However, dividing data by season reduces the sample
size, which can affect result reliability and complicate factor comparisons. To address
these challenges, this study replaces default parameters with grid search optimization and
incorporates cross-validation to mitigate dataset limitations. Using XGBoost with four years
of data from the atmospheric radiation measurement (ARM) (Southern Great Plains (SGP)
C1 site, cross-validation stabilizes correlation coefficient fluctuations from 0.3 to within 0.1.
With optimized parameters, the R value can reach 0.81. Analysis of the C1 site reveals that
the relative importance of different factors changes across seasons. Lower tropospheric
stability (LTS, ~0.53) is the dominant factor at C1 throughout the year. However, during
DJF, latent heat flux (LHF, 0.44) surpasses LTS (0.22). In SON, LTS (0.58) becomes more
influential than LHF (0.18). Further comparisons among the four long-term SGP sites (C1,
E32, E37, and E39) show seasonal variations in relative importance. Notably, during JJA,
the differences in the relative importance of the three factors across all sites are lower than
in other seasons. This suggests that boundary layer development in the summer is not
dominated by a single factor, reflecting a more intricate process likely influenced by seasonal
conditions such as enhanced convective activity, higher temperatures, and humidity, which
collectively contribute to a balanced distribution of parameter impacts. Furthermore, the
relative importance of LTS gradually increases from morning to noon, indicating that
LTS becomes more significant as the boundary layer approaches its maximum height.
Consequently, the LTS in the early morning in autumn exhibits greater relative importance
compared to other seasons. This reflects a faster development of the mixing layer height
(MLH) in autumn, suggesting that it is easier to retrieve the MLH from the previous day
during this period. The findings enhance understanding of boundary layer evolution and
contribute to improved boundary layer parameterization.

Keywords: machine learning; atmospheric boundary layer; XGBoost; cross-validation;
SHAP; sensible heat flux (SHF); latent heat flux (LHF); lower tropospheric stability (LTS);
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1. Introduction
With the rapid advancement of machine learning, its application in atmospheric sci-

ence has expanded significantly [1–3]. Machine learning has become a powerful tool for
analyzing and predicting complex atmospheric processes that traditional methods struggle
to model. These techniques have improved our ability to understand and forecast dynamic
atmospheric phenomena, particularly within the atmospheric boundary layer (ABL) [4–6].
The ABL plays a critical role in the Earth’s climate system through the exchange of mo-
mentum, heat, and moisture between the surface and the free atmosphere [7,8]. These
exchanges in ABL directly affect the hydrological cycle, radiation balance, weather pat-
terns, climate dynamics, and air quality. Accurate characterizing the ABL is essential for
various applications, including weather forecasting, climate modeling, and pollution con-
trol [9–11]. However, predicting ABL behavior remains challenging due to its complexity
from sensitivity to surface conditions and interactions with the broader atmosphere [8,10].

Recent advancements in machine learning have led to the development of new meth-
ods for addressing these challenges in atmospheric science studies. Models such as XGBoost
and neural networks have proven effective in analyzing the impacts of meteorological
parameters on the mixing layer height (MLH), a key indicator of ABL evolution [12–14].
These models are well-suited for handling large datasets and capturing complex, nonlinear
relationships, making them effective tools for studying ABL processes. Despite these suc-
cesses, most studies have relied on single field experiments or annual datasets from specific
sites [15–17]. While these studies provide useful insights, they often overlook significant
seasonal variations in ABL dynamics. It is well established that factors influencing the
ABL vary by season due to changes in solar radiation, surface heating, and atmospheric
stability [18–20].

To capture seasonal variations accurately, data need to be segmented by season. How-
ever, this approach reduces the dataset size, which may compromise the reliability of
results [21,22]. Atmospheric observations are costly and logistically complex, limiting the
availability of long-term, high-quality datasets. As a result, obtaining sufficient data for
detailed seasonal analysis is challenging [11,23–26]. Extending the observation period
can help increase the dataset size. However, it may introduce systematic errors due to
instrument aging, changes in detection models, or component replacements, all of which
affect data consistency [27,28]. Thus, more data do not always lead to better results. The
difficulty of long-term data collection and consistency issues further complicate the issue.
Researchers continue to explore ways to maximize the effectiveness of limited datasets.

To address these challenges, our study aims to integrate cross-validation with extreme
gradient boosting (XGBoost) to analyze the seasonal impacts. Cross-validation is a robust
statistical technique that enhances model reliability by partitioning the dataset into multiple
folds, ensuring that the model is trained and tested on different subsets. Grid search
optimization identifies the optimal parameter settings for the dataset, reducing errors
associated with default parameters. This approach maximizes the use of available data and
mitigates the risk of overfitting, thereby improving the generalizability of the results [29–32].
Building on this foundation, our study aims to provide a more refined understanding of
seasonal variations in the factors influencing MLH, offering valuable insights into future
atmospheric research and modeling.

Numerous meteorological factors influence ABL development, leading many studies
to use dozens of input parameters. Excessive data can increase measurement errors, and if
boundary layer variations can be simulated using the fewest possible parameters, these
errors can be minimized. To quantify and distinguish the varying degrees of influence
among these input parameters, we introduce the concept of ‘relative importance’, which
serves as a metric to assess their contributions to the model’s predictive performance. Based
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on the boundary layer theory, both thermodynamic forcing (through buoyancy production)
and shear production are key drivers of turbulence, with their relative contributions varying
depending on conditions [7,10]. To capture seasonal variations in key influencing factors,
this study adopts a streamlined approach by selecting sensible heat flux (SHF), latent heat
flux (LHF), and lower tropospheric stability (LTS) as input variables, with the mixed layer
height (MLH) as the output. This selection is guided by the boundary layer theory, where
thermodynamic processes and heat flux contributions provide a physical constraint for
estimating CBLH. Specifically, these parameters reflect the atmospheric heat absorption
and stability dynamics that govern boundary layer development, as opposed to relying on
numerous parameters without such constraints [7,10]. Additionally, our study applies cross-
validation to analyze multi-year lidar data from the atmospheric radiation measurement
(ARM) Southern Great Plains (SGP) site [13,33,34].

Therefore, this study focuses on heat fluxes (SHF, LHF) and LTS, utilizing the XGBoost
algorithm to predict MLH and analyze the relative contributions of these factors. The
structure of this paper is as follows: Section 2 introduces the dataset used, along with the
cross-validation and XGBoost methods. Section 3 validates the consistency of the results
obtained using the XGBoost method alone and the combined approach of cross-validation
and XGBoost. Section 4 investigates the influence of various factors on the mixed layer
height (MLH) at the four ARM Southern Great Plains (SGP) sites (C1, E32, E37, E79) across
different seasons, employing a combination of cross-validation and the XGBoost method.
Subsequently, we compare the relative influence factors and their variations at different
times of day across seasons, further informed by analyses of wind direction and SHAP
value. Finally, this paper concludes with a conclusion.

2. Materials and Methods
2.1. ARM SGP Site Datasets and MLH

The DOE Atmospheric ARM SGP supersite contains five observational sites in Okla-
homa for multiple-year ground-based observations (Table 1). Since 2016, the DOE ARM
SGP supersite has provided a comprehensive dataset covering surface fluxes, radiation,
atmospheric profiles, and detailed PBL observations [33]. This study utilizes multi-year
(2016–2019) vertical wind data from Doppler lidar, along with SHF, LHF, and LTS measure-
ments, as summarized in Table 1.

Table 1. Data provided by the ARM SGP C1 site used in this article.

Sites
Detection Instruments or

Secondary Processed
Datasets

Dataset Note

C1
Doppler lidar sgpdlfptc1.b1 Raw data

AERI sgpaerioe1turnC1.c1 Raw data
Sonde sgpsondewnpnC1.b1 Raw data

E14 ECOR sgp30qcecorE14.s1 Raw data

E32
Doppler lidar SgpdlfptE32.b1 Raw data

AERI sgpaerioe1turnE32.c1 Raw data

E37
Doppler lidar SgpdlfptE37.b1 Raw data

AERI sgpaerioe1turnE37.c1 Raw data

E39
Doppler lidar SgpdlfptE39.b1 Raw data

AERI sgpaerioe1turnE39.c1 Raw data

Other *
MLH Based on Doppler lidar data Preprocessed data
LTS Based on AERI data Preprocessed data

* The MLH and LTS data processing methods are described in the text.
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All Doppler lidars (DLs) used in this study are Halo Photonics Stream Line mod-
els that operate at a wavelength of 1.5 microns. The algorithm for determining MLH,
developed by Chu et al. [34], is applied to the multiple-year vertical wind dataset. This
algorithm effectively identifies the MHL, even with underlying challenges such as variation
of turbulent eddy scales, the influence of gravity waves on velocity variance estimates,
and the limitations of fixed variance threshold methods. The process begins with wavelet
analysis to assess whether large-scale turbulence eddies dominate on a given day. This
assessment covers all heights to construct a 2D vertical velocity variance profile by isolating
the power spectrum within a specific frequency range corresponding to turbulence eddy
size. Dynamic thresholds are then applied to this reconstructed variance profile, ensuring
accurate MLH determination.

To characterize the daily cycle, this study leverages a variety of instruments and
their respective measured quantities. For instance, the Atmospheric Emitted Radiance
Interferometer (AERI) measures downward infrared spectra to derive temperature and
water vapor profiles. The radiosonde (sonde) captures vertical profiles of temperature,
humidity, and wind speed during its ascent. The Eddy correlation flux measurement system
(ECOR) or the energy balance Bowen ratio (EBBR) system quantifies surface sensible and
latent heat fluxes. Collectively, these instruments provide comprehensive observational
data to underpin the analysis.

A typical daily cycle of MLH is shown in Figure 1 to visually illustrate the boundary
layer development process. After sunrise, the ground heats up under sunlight, which
in turn warms the atmosphere and generates turbulence. This turbulence, as seen in the
vertical wind field data in Figure 1, causes the ML to rise gradually. By the afternoon
(~15:00 UTC-6), MLH reaches its maximum altitude at approximately 1.8 km and fluctuates
near this peak. After sunset, turbulence decreases, leading to the rapid dissipation of
the ML. The bottom subplot of Figure 1 presents the variance of the vertical wind field,
calculated using the previously described algorithm. The solid red dots indicate the MLHs
determined by the method introduced in this study. Note that the data used in this study
are limited to clear or non-precipitating high-cloud scenarios and do not include rainy or
low-cloud days.

Although the C1 site lacks direct heat flux measurement instruments, the nearby
E14 site, located within 1km and equipped with ECOR, provides comparable heat flux
measurements. LTS is defined as the difference in potential temperature (θ) between the free
troposphere (700 hPa) and the surface (~1000 hPa). LTS can be calculated using sounding
data and the AERI. Previous research has demonstrated that LTS measurements obtained
from AERI and radiosonde data are equivalent [13]. To avoid drift issues associated with
sounding data, this study primarily relies on AERI data.

To compare SHF and LHF across different sites, the empirical substitution method
proposed by Chu et al. [13] is applied to convert EBBR values into ECOR-equivalent values.
Specifically, at the E32 site, where ECOR measurements are unavailable and only EBBR flux
data are provided [35], we use the relationship HF_ECOR = 0.83 × HF_EBBR + 21.77 W/m2

to ensure consistency in flux comparisons across sites. The same study’s approach is fol-
lowed to calculate LTS from AERI data at the C1, E32, E37, and E39 sites collected between
2016 and 2019. The dataset for machine learning is selected from the ARM sites C1, E32,
E37, and E39, covering the period from 2016 to 2019. This dataset includes Doppler lidar
vertical wind field data, heat flux measurements (ECOR/EBBR), and LTS values (AERI).
After preprocessing, we selected LTS at 5:30 AM (UTC-6) and the cumulative SHF and
LHF from sunrise to 11:30 AM as input features, with the MLH at 11:30 AM serving as
the true output data for this machine learning study. This selection is motivated by the
following: the heat flux at 11:30 AM represents the cumulative heat supplied by SHF and
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LHF from sunrise to that time, whereas LTS at 5:30 AM reflects the amount of heat required
to lift the boundary layer to a specific height from early morning to midday, consistent with
thermodynamic principles. For a convenient and accurate comparison, we selected days
with complete MLH data available across all four sites for the analysis.
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2.2. XGBoost Method

Among the various machine learning techniques, ensemble methods such as boosting
have proven particularly effective in atmospheric detection applications. The evolution of
the MLH is a complex process influenced by numerous factors, with many of these interac-
tions being non-linear [1,3,17]. Therefore, machine learning holds significant potential for
advancing research in the ABL field.

XGBoost integrates gradient boosting techniques with advanced optimization algo-
rithms to deliver a highly efficient model capable of capturing both linear and non-linear
relationships among variables. It employs decision trees as base learners—simple tree-like
structures that split data based on feature thresholds—to iteratively refine predictions. In
this process, XGBoost minimizes prediction errors by calculating the gradient of a loss func-
tion (e.g., mean squared error) and adjusting the model step-by-step to better fit the data,
a technique known as gradient boosting. To illustrate, each new decision tree focuses on
correcting the residuals (errors) of the previous trees, progressively improving the overall
prediction accuracy. Additionally, XGBoost incorporates regularization techniques, such as
L1 (Lasso) and L2 (Ridge) penalties, which constrain the complexity of the decision trees
to prevent overfitting, thereby maintaining model robustness even in complex scenarios
with noisy or high-dimensional data. Widely recognized for its effectiveness, XGBoost has
become a popular machine learning method, celebrated for constructing accurate and com-
putationally efficient predictive models [31,32]. For a visual representation of its workflow
and parameter impacts, readers are referred to Section 2.4.

In most existing atmospheric science literature, XGBoost is typically used with its
default parameters. The n_estimators parameter refers to the number of trees to be trained
in the XGBoost model. Each tree works to correct the errors of the previous tree, which
gradually reduces the overall error. If the n_estimators parameter is set too low, the model
may underfit because it lacks sufficient trees to capture the complex patterns in the data.
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Conversely, if set too high, the model may overfit, as it might overly capture the noise in the
training data. Typically, the n_estimators parameter is adjusted through cross-validation to
find a balance between underfitting and overfitting. A common starting point is 100–200,
which can be gradually increased to observe the effects [13,31].

The learning_rate parameter controls the contribution of each tree to the final model
prediction. It determines the step size during each boosting process, or the degree to which
each tree influences the final model. A small learning rate means that each tree has a smaller
impact on the final prediction, which requires more trees (higher n_estimators) are needed
to achieve the same level of fit. A large learning rate allows the model to converge faster
but might skip the optimal solution. A typical starting point is 0.1, with adjustments made
based on model performance. Smaller learning rates (e.g., 0.01) usually result in a more
stable model but require a higher n_estimators parameter [36].

The max_depth parameter controls the maximum depth of each tree or the number
of layers the tree can grow. Deeper trees are capable of capturing more complex patterns.
However, deeper trees are more prone to overfitting. Shallow trees might fail to capture the
complex relationships in the data, leading to underfitting. Starting with a smaller depth
(e.g., 3 or 5) and gradually increasing while observing model performance is recommended.
Typically, a depth between 3 and 10 is considered suitable [36].

In this study, we utilized the XGBoost package within Python 3.11’s machine learning
framework to conduct our analyses. The XGBoost models were designed to investigate
the relationships between MLH and key explanatory variables such as SHF, LHF, and
LTS. The model was initialized with a default setup of 100 decision trees with a learning
rate of 0.1 and a maximum depth of 3. The dataset was split into training and testing
subsets, with two-thirds used for training and one-third for testing, ensuring a robust
validation process. This setup allowed us to assess the model’s accuracy in predicting MLH.
The importance of each explanatory variable was determined by its selection frequency
during the XGBoost process, weighted by the improvement each partition contributed. At
each iteration, predictions from the current sequence of trees informed the fitting of the
subsequent tree, progressively improving model accuracy and stability.

2.3. Cross-Validation

Cross-validation is a widely used statistical technique in machine learning and data
science for evaluating the performance and generalizability of predictive models. Unlike
traditional methods that rely on a single training–testing split, cross-validation offers a
more robust and reliable assessment of a model’s ability to perform on unseen data. This
approach is particularly valuable when dealing with limited datasets, as it maximizes the
effective use of available data. The core concept of cross-validation involves dividing the
dataset into multiple subsets or “folds”, where each fold serves as a testing set while the
remaining folds are used for training. One of the main benefits of cross-validation is its
effectiveness in reducing overfitting. By training the model on various data subsets and
validating it on unseen portions, cross-validation helps prevent the model from becoming
overly specialized to a particular subset, which can otherwise result in poor performance on
new data. Additionally, this technique provides insights into the variability of the model’s
performance, contributing to a better understanding of its stability and robustness [37].

A common method for model evaluation is k-fold cross-validation, where the dataset
is divided into k equally sized folds. The model is trained on k−1 of these folds and
validated on the remaining fold. This process is repeated k times, with each fold serving
as the validation set exactly once. The model’s performance is then averaged across the
k iterations, yielding a comprehensive evaluation metric that reflects the model’s ability
to generalize to unseen data. For example, as illustrated in Figure 2, consider a dataset of
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20 subsets with the k-fold number set to 5. In the first iteration, subsets 1–4 are used as the
test group, while subsets 5–20 serve as the Train group. In the second iteration, subsets 5–8
are designated as the test group, with subsets 1–4 and 9–20 as the Train group. This process
is repeated for all 5 iterations, and the final result is obtained by averaging the performance
across these iterations.
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To assess the effectiveness of different parameter configurations, the scoring metric in
cross-validation or grid search (e.g., GridSearchCV) often uses the negative mean squared
error (neg_mean_squared_error). Mean squared error (MSE) is a common measure in
regression models that quantifies the average squared difference between the predicted
and actual values. Formula [38] is as follows:

MSE =
1
n∑n

i=1(yi − ŷi)
2 (1)

where yi represents the actual values, ŷi represents the predicted values, and n denotes the
number of samples. In GridSearchCV, a higher score indicates a better model; however,
MSE is inherently a non-negative value where lower values are preferred. To reconcile
this with the scoring requirements of GridSearchCV, MSE is converted into its negative
counterpart (neg_mean_squared_error). This transformation allows the hyperparameter
tuning process to select the parameter combination that maximizes this score, which
effectively corresponds to minimizing the MSE.

2.4. Cross-Validation Combined with XGBoost

In this study, when developing models to predict MLH or to assess the impact of SHF,
LHF, and TS on boundary layer development, cross-validation is employed to rigorously
evaluate the model’s performance across different subsets of the data. The cross-validation
and XGBoost workflow utilized in this study is illustrated in Figure 3.

1. Firstly, we collected heat flux data, DL vertical wind field data, and AERI temperature
data as described in Section 2.1.
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2. Based on the collected data and the algorithm outlined in Section 2.1, we preprocessed
the cumulative SHF and LHF at 11:30, LTS at 5:30, and MLH at 11:30 for each day.
Additionally, data from rainy and low-cloud days were excluded.

3. The cross-validation setup was executed using Python’s scikit-learn library, employing
the KFold and cross_val_score functions. The data were partitioned into several folds
(KFold with n_splits), with shuffling enabled (shuffle = True) and a fixed random seed
(random_state = 42) to ensure reproducibility. This scheme was designed to rigorously
evaluate the model’s performance across different subsets of the data.

4. Next, we initialized the machine learning model using the XGBRegressor from the
XGBoost library. The model was configured with 100 estimators (or more), a learning
rate of 0.1, and a maximum depth of 3 (or more), while the random state was also set
to 42 to maintain consistency across experiments. The model was then trained.

5. The model was evaluated using the procedure. For each fold, the training and testing
sets were derived based on the indices provided by the KFold split. The model was
trained on the training set, and predictions were made on the testing set. The model’s
performance was assessed by calculating the MSE and the coefficient of determination
(R) for each fold.

6. The overall performance of the model was determined by averaging the MSE and
R2 scores across all folds. If the results met the predefined criteria (minimum mean
absolute error, MAE) for model performance, the configuration was finalized and
saved. Otherwise, the cross-validation setup was reconfigured, and the process was
repeated to achieve optimal model performance.

Fortunately, we can use GridSearchCV to identify the optimal combination of hyper-
parameters. When utilizing GridSearchCV, the commonly used default hyperparameters in
param_grid are typically set as ‘n_estimators’: [50, 100, 200], ‘learning_rate’: [0.01, 0.1, 0.2],
and ‘max_depth’: [3, 5, 7]. GridSearchCV conducts an exhaustive search across the specified
parameter values. For each combination, it trains the model, performs cross-validation, and
evaluates performance using the selected scoring metric, such as neg_mean_squared_error.
This process iterates through all the hyperparameter combinations specified in param_grid.
In the example above, it would assess 3 × 3 × 3 = 27 different combinations. The optimal
combination is then selected based on the results from Equation (1). The selection of candi-
date hyperparameters is tailored to the characteristics of our dataset. For details, refer to
Section 3.1.
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3. Validation of the Two Methods Using the ARM Site Dataset
3.1. Impact of Different Parameter Settings on the Results of the XGBoost Algorithm

To examine the impact of different XGBoost parameters on the results, we tested
various parameter combinations, as shown in Table 2. The range of n_estimators is 50–400,
learning_rate varies from 0.01 to 0.5, and max_depth ranges from 3 to 9. In Table 2, the
leftmost column, labeled “Group”, represents comparisons where only one parameter is
adjusted while the others remain constant. Groups 1–3 compare the effects of n_estimators,
learning_rate, and max_depth, respectively. Groups 4 and 5 involve manual tuning to
identify the optimal parameter combination.

Table 2. Effect of different parameter settings using XGBoost on calculating the relative importance
of correlated parameters for MLH.

XGBoost Parameters Model Results

Group N Estimator Learning Rate Max Depth LTS SHF LHF R2

1

50 0.1 3 0.60 0.23 0.17 0.60

100 0.1 3 0.57 0.26 0.17 0.64

200 0.1 3 0.51 0.29 0.20 0.70

300 0.1 3 0.50 0.30 0.20 0.73

2

100 0.01 3 0.67 0.22 0.11 0.48

100 0.1 3 0.57 0.26 0.17 0.64

100 0.3 3 0.50 0.30 0.20 0.74

100 0.5 3 0.49 0.27 0.24 0.78

3

200 0.3 3 0.50 0.28 0.22 0.79

200 0.3 5 0.47 0.29 0.24 0.83

200 0.3 7 0.48 0.28 0.24 0.84

200 0.3 9 0.49 0.29 0.22 0.84

4

400 0.1 5 0.49 0.29 0.22 0.83

400 0.5 5 0.44 0.30 0.26 0.84

100 0.5 5 0.47 0.30 0.23 0.83

100 0.1 5 0.52 0.27 0.21 0.75

5

100 0.1 7 0.55 0.26 0.19 0.81

100 0.5 5 0.47 0.30 0.23 0.83

100 0.5 3 0.49 0.28 0.23 0.78

200 0.5 3 0.47 0.29 0.24 0.82

From Group 1, we observe that the correlation coefficient R2 increases as the number
of estimators (n_estimators) increases. In this case, learning_rate and max_depth are fixed
at 0.1 and 3, respectively. As the n_estimators parameter increases from 50 to 300, R
improves from 0.60 to 0.73. Additionally, LTS decreases while SHF and LHF increase as the
n_estimators parameter increases. Although a higher n_estimators parameter improves
R, considering that the number of sampling days in this study is under 1000, setting
n_estimators too high is not recommended. To balance performance and computational
efficiency, it should remain below 200.

Group 2 shows that the correlation coefficient R2 increases as the learning_rate rises. In
this case, n_estimators and max_depth are fixed at 100 and 3, respectively. As learning_rate
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increases from 0.01 to 0.5, R2 improves from 0.48 to 0.78. This trend is expected, as R2 is
the lowest (0.48) when learning_rate is set to 0.01. Additionally, as learning_rate increases,
the relative influence of LTS decreases, while SHF and LHF gain more importance. Since
our sample size is under 1000, we do not recommend using a very low learning_rate. To
maintain model efficiency and accuracy, it should be kept above 0.1.

Group 3 demonstrates that the correlation coefficient R2 increases as max_depth
increases. In this case, n_estimators and learning_rate are fixed at 200 and 0.3, respectively.
As max_depth increases from 3 to 9, R improves from 0.79 to 0.84. However, the change in
R becomes minimal (less than 0.05) when max_depth increases from 5 to 9. Similarly, the
relative influence of LTS, SHF, and LHF shows only slight variations. Since our sample size
is under 1000, we do not recommend setting max_depth too high. To balance performance
and computational efficiency, it should be kept below 7.

The objective of Group 4 is to evaluate the impact of varying other parameters while
keeping max_depth fixed at 5. The results show that when n_estimators is set to 400, the
difference in R2 between the learning_rate values of 0.1 and 0.5 is less than 0.01. However,
when n_estimators is set to 100, the change in R2 between the same learning_rate values is
slightly larger, at less than 0.08. Additionally, the difference in R2 between the parameter
combinations (n_estimators, learning_rate) = (400, 0.1) and (100, 0.5) is also less than 0.01.
This indicates that the relationship between R2 and these parameters is not strictly linear,
and different parameter combinations can yield similar results. However, while R values
may be comparable, slight differences remain in the relative influence of LTS, SHF, and LHF.

Group 5 builds on Group 4 by varying the max depth, further confirming that the
relationship between the correlation coefficient R2 and the parameters is not linear, and
different combinations can produce similar results. Therefore, it is necessary to carefully
select XGBoost hyperparameters rather than simply using the default settings.

3.2. Impact of Different Cross-Validation Parameter Settings on the Results of the
XGBoost Algorithm

The results in Section 3.1 indicate that different XGBoost parameters significantly affect
the outcomes. The default hyperparameters are typically set as ‘n_estimators’: [50, 100, 200],
‘learning_rate’: [0.01, 0.1, 0.2], and ‘max_depth’: [3, 5, 7]. The results obtained using these
default parameters are shown in Table 3 under ‘Default Parameters’. The results show that
although the value of R does not change significantly (less than 0.01) as N splits vary from
3 to 12, the R2 value remains around 0.6. Further analysis revealed that although we set
‘learning_rate’, i.e., [0.01, 0.1, 0.2], and ‘max_depth’, i.e., [3, 5, 7], the learning rate actually
selected was 0.01. This is because the software tends to select a smaller learning rate by
default to prevent overfitting. However, due to the limited sample size in this study, a
smaller learning rate may prevent finding the optimal solution. Additionally, to prevent
overfitting, the number of estimators (n_estimators) should not be set too high, so we need
to set a larger learning rate. Moreover, the relationship between MLH (mixing layer height)
and LTS, SHF, and LHF is a complex nonlinear relationship, so we also set the learning rate
to be above 0.3.

The results obtained using the optimized hyperparameters are presented in Table 3
under ‘Optimized Parameters’, showing improved performance. Based on the results from
Section 3.1 and the default parameters, and considering the specifics of this dataset, the
hyperparameters were set as ‘n_estimators’: [50, 100, 200], ‘learning_rate’: [0.3, 0.5, 0.7],
and ‘max_depth’: [5, 7, 9]. The results show that the R value is 0.83 when n_splits is 3, and
it remains around 0.81 within the range of 3–15. Additionally, the relative influence factors
for LTS, SHF, and LHF are 0.50, 0.28, and 0.22, respectively. This indicates that due to the
small sample size, increasing the number of splits beyond a certain point does not affect
the final averaged results.
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Table 3. Effect of different K settings using XGBoost on calculating the relative importance of
correlated parameters for MLH with default parameters.

Group N Splits LTS SHF LHF R2

Default
parameters

3 0.60 0.23 0.17 0.60

5 0.51 0.29 0.20 0.60

7 0.49 0.30 0.21 0.60

9 0.49 0.30 0.21 0.60

12 0.51 0.28 0.21 0.60

15 0.51 0.28 0.21 0.60

Optimized
parameters

3 0.53 0.34 0.13 0.83

5 0.50 0.28 0.22 0.81

7 0.50 0.28 0.22 0.81

9 0.50 0.28 0.22 0.81

12 0.50 0.28 0.22 0.81

15 0.50 0.28 0.22 0.81

The effect of different K values on the correlation coefficient R2 is minimal; however,
the impact on the relative importance of influencing factors is more pronounced. As
illustrated in Table 3, the R2 values for K = 3 and K = 5 are 0.83 and 0.81, respectively, with a
relative error of approximately ~0.02. In contrast, the variation in LHF can reach up to 0.09.
This indicates that the choice of K values significantly influences the results, highlighting
inconsistencies in performance across different datasets. Based on this evaluation, we
determined that K = 3 provided the optimal performance among the tested values (3, 5, 7,
9, 12, 15) and, thus, it was consistently adopted in subsequent analyses, including Section 4.
A possible explanation for this could be the seasonal variation in the relative importance
of influencing factors. However, a prerequisite for studying the relative importance of
seasonal variations is that the model must be sufficiently accurate, meaning the correlation
coefficient (R2) should be adequately high, typically exceeding 0.8. Only when the model
achieves such accuracy does the analysis of relative importance gain credibility.

4. Relative Influence Factors Across Different Seasons
To compare the relative influence factors of LTS, LHF, and SHF across different seasons,

we applied the optimized parameters to the SGP sites. Since the dataset becomes smaller
when divided by season, we now choose K = 3, as shown in the first row of Figure 4. And the
hyperparameters for individual seasons were set as follows: ‘n_estimators’: [50, 100, 200],
‘learning_rate’: [0.1, 0.3, 0.5], and ‘max_depth’: [3, 5, 7]. The dataset is divided into four
seasons. DJF represents December, January, and February for winter; MAM represents
March, April, and May for spring; JJA represents June, July, and August for summer;
SON represents September, October, and November for autumn. To further compare the
spatiotemporal variations across different sites and seasons, we combined and analyzed
the seasonal data from C1, E32, E37, and E39, as presented in Figure 4. The first row
corresponds to the C1 site, the second row to the E32 site, the third row to the E37 site, and
the fourth row to the E39 site. Additionally, the first column represents DJF (winter), the
second column represents MAM (spring), the third column represents JJA (summer), and
the last column represents SON (autumn).
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Figure 4. Comparison of relative influence factors across different seasons at ARM SGP sites: C1 site
(first row), E32 site (second row), E37 site (third row), and E39 site (fourth row). Seasons are denoted
as DJF (December, January, February), MAM (March, April, May), JJA (June, July, August), and SON
(September, October, November). Here, R represents the correlation coefficient, and K denotes the
number of cross-validation splits. The relative importance of each factor is derived from the XGBoost
model using a cross-validation (CV) approach, with uncertainty intervals calculated as the standard
deviation of importance scores across all CV folds.

The relative influence of key atmospheric factors varies significantly across seasons,
deviating notably from the annual trends. At the C1 site, LTS dominates in SON, reaching
a relative importance of 0.6, whereas in other seasons, SHF becomes the primary factor
(MAM: 0.5, JJA: 0.42, DJF: 0.4). Since JJA and SON contain more data points compared
to DJF, LTS appears as the dominant factor in the annual analysis with value approxi-
mately 0.5 (Table 3). Additionally, during JJA, the relative contributions of LTS, SHF, and
LHF are more balanced, with differences within 0.2, indicating a more equitable contribu-
tion of all three factors to ML development. In contrast, SON exhibits a more pronounced
variation, with differences reaching up to 0.4, reinforcing the seasonal dependence of ML
evolution. Comparing Table 3, the annual correlation coefficient at C1 is 0.83, whereas
the seasonal values in Figure 4 are 0.90 for DJF, 0.82 for MAM, 0.84 for SON, and only
0.63 for JJA, indicating substantial seasonal variations. Although JJA contains more data
points than MAM, it exhibits a lower R², suggesting that a greater proportion of boundary
layer development in summer is influenced by other meteorological factors or that the
controlling mechanisms are more complex during this season.

From the perspective of ABL evolution theory, a higher MLH generally corresponds
to a greater influence from LTS, further confirming that MLH reaches its peak during
SON. Additionally, C1 and E37 exhibit stronger LTS influences compared to E32 and E39,
particularly in SON and JJA, suggesting greater sensitivity to stability-driven mechanisms
at these locations. However, the variance in relative importance at E39 is notably larger,
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especially in SON, due to the significantly smaller dataset of only 70 samples, compared
to 125 samples at C1. This suggests that dataset size has a considerable impact on the
reliability of the results.

These results also highlight the need to consider the impact of MAE and dataset
quality. Winter (DJF) consistently shows the lowest MAE values (<0.1), largely due to
the inherently lower MLH during this season. In contrast, JJA exhibits the highest MAE
values, partially because of the stronger turbulent-driven force in summer, leading to
greater variability of MLH in model performance. SON and JJA have relatively high MAE
values, with E32 in JJA reaching up to 0.16, indicating greater model uncertainty during
these seasons. If an annual model were used, the MAE would exceed 0.15 (not explicitly
shown in this study), highlighting the site-specific variations in feature importance and
reinforcing the role of LTS in boundary layer growth, particularly in SON and JJA. The
discrepancies in MAE and R² values across sites emphasize the necessity of further research
into localized atmospheric processes affecting MLH variability. These findings suggest that
ML development is highly sensitive to seasonal and regional variations in stability, surface
fluxes, and local meteorological conditions.

5. Discussion
To interpret the results shown in Figure 4, where LTS is the dominant factor at E32

during SON, while SHF is the dominant factor at E37, we employed SHAP (SHapley
Additive exPlanations) [39,40], a widely-used tool for interpreting machine learning
model predictions. SHAP, rooted in Shapley values from game theory, explains model
outputs by attributing contributions to each feature. These SHAP values quantify
the impact of each feature on the prediction, allowing researchers to elucidate the
model’s decision-making process, identify key contributing factors, and improve model
performance. Specifically, positive SHAP values reflect a feature’s positive contribution
to the MLH, a value of 0 indicates no influence and negative SHAP values signify a
negative contribution, where an increase in the feature value reduces MLH. The results
derived from our model are illustrated in Figure 5, where (a0) and (b0) depict the
SHAP value beeswarm [39] plots for the E32 and E37 sites, respectively. And the a1–a4,
and b1–b4 are the scatter plots of SHF, LHF, and LTS with MLH for the E32 and E37
sites, respectively.

Figure 5(a0) shows a predominantly negative correlation between LTS and SHAP
values. Similarly, Figure 5(a2) also indicates a negative correlation, though it is less
pronounced than in Figure 5(a0). Additionally, Figure 5(a0) reveals a positive correla-
tion between LHF and SHAP values, a trend further supported by the scatter plot in
Figure 5(a4). In contrast, Figure 5(b0) demonstrates that the correlation between LHF
and SHAP values at the E37 site is weaker than at the E32 site, a pattern also reflected
in Figure 5(b4). Meanwhile, Figure 5(b0) highlights a positive correlation between SHF
and SHAP values, which is confirmed by the scatter plot in Figure 5(b3). However, the
relationship between SHF and SHAP values in Figure 5(a0) is less evident, as shown in
the scatter plot in Figure 5(a3). Notably, Figure 5(a1,5b1) demonstrate that the combined
SHF and LHF exhibit a positive correlation with MLH. Specifically, at the ARM SGP sites,
such as E37 and E32, which are approximately 57 km apart, these findings highlight the
influence of local parameters (SHF and LHF) over broader meteorological conditions,
as LTS remains relatively consistent across sites while SHF and LHF vary significantly.
While the total SHF + LHF remains similar, the distribution between SHF and LHF is
largely influenced by local factors.
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Figure 5. The SHAP analysis evaluates the contributions of various relative influencing factors at
the E32 and E37 sites during autumn (SON). Panels (a0,b0) depict the SHAP value beeswarm plots
for the E32 and E37 sites, respectively, illustrating the distribution and impact of each feature on
predictions. Panels (a1–a4,b1–b4) present scatter plots of sensible heat flux (SHF), latent heat flux
(LHF), and lower tropospheric stability (LTS) against mixed layer height (MLH) for the E32 and E37
sites, respectively (Units: LTS in K; SHF and LHF in W/m2).

By analyzing the SHAP values of the model, we can clearly understand how the
differences in relative influencing factors between different sites are determined. However,
further investigation is needed to identify the underlying causes of these differences. In
addition to local factors, wind direction appears to correlate with relative impact factors. To
examine this relationship, wind rose diagrams were generated for each site across different
seasons, using data over identical day counts as in Figure 5, with results presented in
Figure 6. By comparing Figures 4 and 6, we aim to clarify certain differences in relative
impact factors. By comparing Figures 4 and 6, we seek to elucidate differences in relative
influence factors across sites and seasons. As depicted in Figure 4, during the SON season,
LHF is more influential at site E32 (~0.50), whereas SHF predominates at site E37 (>0.60).
Analysis of wind direction in Figure 7 indicates that, at E32 during SON, winds primarily
originate from the south (180 ± 15◦) and southwest (210 ± 15◦), each with a probability
of approximately 27%. At E37, southwest winds (210 ± 15◦) occur with a higher probabil-
ity (>30%), significantly exceeding the 15% probability of south winds (180 ± 15◦). This
difference suggests that south winds, which are typically more humid, enhance latent heat
flux (LHF), whereas south-southwest winds, often drier, contribute less moisture. Conse-
quently, LHF remains relatively stable at approximately 0.35 during JJA, likely reflecting
the influence of prevailing humid south winds in the summer season.
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Figure 7. Comparison of relative influence factors across different seasons at different time points:
9:30 (first row), 11:30 (second row), 13:30 (third row), 15:30 (fourth row). The first column corresponds
to MAM, the second to JJA, the third to SON, and the fourth to DJF (DJF: December, January, February;
MAM: March, April, May; JJA: June, July, August; SON: September, October, November). R represents
the correlation coefficient, while MAE denotes the Mean Absolute Errors.

The discussion above demonstrates the effectiveness of machine learning in analyzing
the relative impacts of factors such as SHF, LHF, and LTS on boundary layer processes.
However, the analysis focused on wind direction as an example to explore seasonal vari-
ations in relative impact factors across different locations. ABL drivers are inherently
complex and dynamic, and thus, focusing solely on instantaneous values of SHF, LHF,
and LTS is insufficient. Future research should incorporate additional boundary layer
parameters and investigate how these factors interact dynamically to influence boundary
layer development over time.
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To further investigate the variations in relative importance across different seasons
and time points, we analyze the changes at specific hours throughout the day. As shown
in Figure 7, we evaluate four distinct time points from 9:30 AM to 3:30 PM, sampled at
two-hour intervals across all four seasons. A notable trend is observed in the relative
importance of LTS, which gradually increases from the morning to the afternoon across all
seasons. Taking JJA as an example, the relative importance of LTS starts at approximately
0.2 at 9:30, increases to 0.28 at 11:30, reaches 0.4 at 13:30, and further rises to 0.6 at 15:30.
This suggests that as the ABL develops, the role of LTS becomes increasingly significant.
Initially, the ABL is less influenced by LTS, but as it grows towards the ABL top, a higher
LTS necessitates a stronger flux-driven mechanism. This observation aligns well with ABL
evolution theories, as discussed in the published literature on ABL [7,13,18].

Moreover, the SON season exhibits distinct characteristics. At 9:30 AM, the relative
importance of LTS is close to 0.4, significantly higher than the other three seasons, where it
remains below 0.2. This indicates that during autumn, the boundary layer reaches its top
more rapidly. Conversely, in winter (DJF), the LTS at 9:30 AM is below 0.2, and despite
a steady increase throughout the day, it only reaches approximately 0.4 at 3:30 PM. This
suggests that during spring (MAM), the MLH encounters greater resistance in reaching the
previous day’s boundary layer top. Additionally, comparing JJA and SON, the LTS during
summer starts at 0.2 at 09:30 AM and increases to 0.6 at 3:30 PM, consistently lower than its
autumn counterpart at corresponding time points. While summer exhibits stronger heat
flux and a lower average LTS, the ascent rate of the ABL remains slower than in autumn.
The reason for this phenomenon is that the relative importance of LTS gradually increases
from morning to noon, indicating that LTS becomes more critical as the ABL approaches
its maximum height. This occurs because further growth beyond the boundary layer top
requires significantly more energy, and LTS represents the thermal energy needed to reach
this threshold [9]. Consequently, the LTS at 9:30 in autumn (SON) exhibits greater relative
importance compared to other seasons. This reflects a more rapid development of the
MLH in autumn, suggesting that residual layers from precipitation may facilitate easier
attainment of the ABL height from the previous day. Thus, Figure 7 provides valuable
insights into the seasonal evolution of the ABL.

An interesting observation in DJF is that the MAE values remain below 0.1, with
some as low as 0.02, while the R² values range from 0.75 to 0.99. Despite these seemingly
favorable metrics, the error bars for relative importance are larger than those of other
seasons, indicating significant fluctuations in model predictions. This instability is primarily
attributed to data limitations: despite employing K-fold cross-validation, the effective data
sample for DJF remains small, with only 60 days of observations, whereas JJA contains
156 days. Consequently, the model in DJF leads to higher variance in importance scores.

6. Conclusions
This study integrates XGBoost and cross-validation to analyze the relative importance

of ABL driving factors in atmospheric research. While XGBoost has been applied in
this field, it often relies on default parameters. Additionally, due to the challenges of
acquiring long-term, multi-parameter meteorological data, it has not been widely used to
study seasonal variations in driving factor importance. To address this, we focus on key
thermodynamic drivers of the boundary layer, selecting LTS, SHF, and LHF as primary
influencing factors. We use Doppler lidar vertical wind field data to derive MLH as
an indicator of CBL evolution. This study examines the effects of different parameter
settings and optimizes hyperparameters based on the actual research dataset. Without
cross-validation, the correlation coefficient R2 from different XGBoost models fluctuates
significantly, ranging from 0.47 to 0.83, with relative influence factors varying by more than
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0.10. When cross-validation is applied with default parameters, the R2 value remains stable
across different splits, but factor importance still varies by over 0.10, with only around 0.60.
By using optimized parameters, both R and relative influence factors remain stable within
a 0.03 range, achieving an R2 value of 0.81. Based on these results, we analyzed seasonal
variations in relative influence factors at the C1 site, providing insights for applying similar
methods in atmospheric studies.

Subsequently, the results of different seasons demonstrate significant seasonal varia-
tions in the relative influence of key atmospheric factors, deviating from the annual trends.
While LTS dominates in summer at the C1 site (0.6), SHF plays a more dominant role in
other seasons (MAM: 0.5, JJA: 0.42, DJF: 0.4). The increased number of data points in JJA
and SON causes LTS to appear as the dominant factor in the annual analysis (~0.5, Table 3).
However, seasonal differences are evident, with JJA exhibiting a lower R2 (0.63) despite
having more data points, indicating that ABL development in summer is influenced by ad-
ditional meteorological factors or more complex controlling mechanisms. Notably, during
JJA, the differences in the relative importance of the three factors across all sites are low.
This suggests that boundary layer development in summer is not dominated by a single
factor, indicating a more complex process likely influenced by seasonal conditions such as
enhanced convective activity, elevated temperatures, and increased humidity. These factors
collectively contribute to a more balanced distribution of parameter impacts. However,
these interpretations remain speculative and require further validation. MLH variations
further confirm that its peak occurs in SON, where LTS plays a stronger role, particularly
at C1 and E37. E39 shows a more balanced contribution from LTS, SHF, and LHF, but
its higher variance, especially in SON, suggests that dataset size significantly impacts
result reliability. Additionally, MAE values and dataset quality must be considered, as DJF
consistently shows the lowest MAE (<0.1) due to inherently lower MLH, while JJA exhibits
the highest MAE (~0.16 at E32), if an annual model were used, MAE would exceed 0.15,
reflecting greater model uncertainty. These findings highlight the necessity of further
research into localized atmospheric processes affecting ABL dynamics, as ABL evolution is
highly sensitive to seasonal and regional variations in stability, surface fluxes, and local
meteorological conditions.

We further analyzed the differences between E32 and E37 during autumn (SON) using
SHAP and explored potential reasons for the discrepancies between the two sites through
wind direction analysis with WIND ROSE figures. These findings highlight the intuitive
and significant role that SHAP can play in considering the seasonal variations of influencing
factors when analyzing different locations. Later, XGBoost expanded upon this by attempt-
ing to quantify the relative influence of different parameters on ABL development [13]. In
this study, we integrate XGBoost with cross-validation to explain the relative influencing
factors of various parameters on ABL development across different seasons.

Our analysis reveals significant seasonal variations in the relative importance of LTS
in ABL evolution. Across all seasons, the LTS importance increases from morning to
afternoon, with JJA rising from 0.2 at 09:30 AM to 0.6 at 3:30 PM, indicating its growing
influence as the boundary layer develops. SON exhibits the highest LTS importance at
09:30 AM (~0.4), suggesting a faster ABL growth compared to other seasons. In contrast,
DJF shows the lowest LTS values in the morning (<0.2), with a slower increase throughout
the day, implying greater difficulty in reaching the previous day’s ABL top. Additionally,
DJF exhibits potential overfitting issues, with MAE values consistently below 0.1 (as low as
0.02) and R² ranging from 0.75 to 0.99, likely due to a limited dataset (60 days vs. 156 days
in JJA). These findings highlight the role of LTS in ABL dynamics and emphasize the need
for more extensive wintertime data to improve model robustness.
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To the authors’ knowledge, this study represents the first application of machine
learning to investigate the relative importance of various meteorological parameters on
ABL development across different locations and seasons. This study not only examines
the relative importance of influencing factors at the C1 site throughout the year and across
seasons but also compares their variations across multiple ARM SGP sites. Additionally,
an attempt is made to use wind direction to distinguish differences in relative impact
factors between sites. However, a more detailed investigation is needed to understand
the specific differences in ABL evolution and the seasonal variations in influencing factors
across the four sites [13]. Since this study investigates changes in the relative importance of
parameters, it can provide valuable insights for refining machine learning frameworks in
the future and contribute to developing models that approach or exceed the performance
of traditional PBL schemes.

Despite certain limitations, such as focusing only on thermodynamic influences while
neglecting dynamical factors, and without considering the full ABL evolution process, this
study serves as an exploratory application of machine learning in atmospheric research. It
highlights the importance of incorporating domain-specific scientific principles into ma-
chine learning tools like XGBoost to optimize parameters and ensure accurate results. This
study initially focuses on thermodynamic parameters, acknowledging that the omission
of dynamical factors (e.g., wind shear, advection) limits the theoretical foundation of the
model. These dynamical factors play a critical role, particularly when the MLH nears the
boundary layer top, where their absence may amplify discrepancies between predictions
and observations. Nevertheless, the current approach can be extended to incorporate
additional boundary layer drivers, such as wind speed, wind direction, terrain, vegeta-
tion, water vapor, and cloud properties [41–46]. Future research should integrate these
dynamical factors to enhance the model’s theoretical robustness and predictive accuracy, as
suggested by recent studies on gravity waves, wind shear, and stratospheric disturbances.
Additionally, integrating machine learning with numerical models can provide a more
comprehensive understanding of boundary layer dynamics [47].
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