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ABSTRACT: Tornado outbreaks are high-impact events, often causing significant loss of life and property. This study
evaluated the forecast skill of U.S. tornado outbreak activity using the Global Ensemble Forecast System (GEFS), version 12,
at lead times up to 2 weeks. Tornado outbreak activity is represented in GEFS using an outbreak index, which relates the
likelihood of outbreak-level tornadoes to GEFS forecasts of convective precipitation (CP), storm-relative helicity (SRH),
and convective available potential energy (CAPE). GEFS forecasts of the outbreak index are verified against smoothed
Storm Prediction Center report data. Since the performance of the outbreak index depends on how well GEFS predicts
the index constituents, we also evaluated the climatology and forecast skill of CP, SRH, and CAPE, as well as their cova-
riability. We found that GEFS has a systematic low-CAPE bias and that the forecast skill of the outbreak index is most
limited by GEFS forecast skill of CP. We corrected the low-CAPE bias and index seasonality errors via a seasonally and
regionally dependent scaling of CAPE and the index, which improved the seasonal cycle and forecast skill of CAPE and
tornado outbreak activity in GEFS. Overall, on average, GEFS has its highest forecast skill of tornado outbreak activity during
winter and spring—in some cases, positive skill extends beyond week 1 forecast leads—and has its lowest forecast skill during
summer.

SIGNIFICANCE STATEMENT: Tornado outbreaks—when multiple tornadoes occur over a short time span—are
one of the most extreme forms of severe convective storms. Individual tornadoes are typically regarded as unpredict-
able except at very short lead times, but broad tornado activity or likelihood might be predictable past the weather
time scale (a week or more in advance). We evaluated the forecast skill of U.S. tornado outbreak activity as well as the
forecast skill of environmental conditions relevant to the favorability of tornado outbreaks in a state-of-the-art forecast
model. We found that one environmental condition that describes storm instability or “fuel”’—convective available po-
tential energy—is often too low in the forecast model. We also found that tornado outbreak activity as represented by
model environmental conditions has seasonal cycle errors. After correcting for these issues, we determined that the
forecast skill of tornado outbreak activity is highest in winter—spring and is lowest in summer. Overall, winter, spring,
and fall forecasts of U.S.-wide tornado outbreak activity are skillful past the weather time scale.
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1. Introduction

The National Oceanic and Atmospheric Administration
(NOAA) Storm Prediction Center (SPC) issues areal outlooks
for severe convective storm (SCS) activity up to 8 days in ad-
vance. These outlooks include probability maps of damaging
winds, hail, and tornadoes on days 1 and 2, and severe weather
on days 3-8. Short-lead (days 1-3) forecasts of SCS have been
steadily improving (Hitchens and Brooks 2012, 2014; Herman
et al. 2018), likely due to increases in numerical weather model
resolution. Long-lead forecasts (i.e., past day 8 leads) of SCS are
much less skillful, though there have been increasing efforts to
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document and understand the predictability limits of SCS haz-
ards (Gensini and Tippett 2019; Wang et al. 2021). A particular
challenge facing tornado forecasters is that numerical weather
prediction models do not resolve tornadoes. Storm-scale param-
eters from high-resolution regional convection-allowing models
inform the forecasting process at the relatively short lead times
at which they are available (Gallo et al. 2016).

At longer leads, an “ingredients”-based approach based on
the output of relatively coarse global models has been effective
in providing forecast guidance. The idea is that the likelihood of
severe thunderstorm occurrence, especially supercells—the type
of strong thunderstorm that most commonly produces impactful
hail and tornadoes—is related to the favorability of local envi-
ronmental conditions (Brooks et al. 1994, 2003). For instance,
Tsonevsky et al. (2018) showed that models could predict the
environments associated with SCS, especially extremes, out to
7 days on average. In particular, composite parameters, such as
the supercell composite parameter (SCP) and the significant tor-
nado parameter (STP), combine information from dynamic and
thermodynamic environmental ingredients to measure how sup-
portive atmospheric conditions are for supercell production
(Thompson et al. 2003). SCP is the product of convective
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available potential energy (CAPE), 0-3-km storm-relative helic-
ity (SRH), and 0-6-km bulk wind shear, normalized so that an
SCP value greater than 1 indicates severe hazards are expected.
Carbin et al. (2016) and Gensini and Tippett (2019) used SCP to
understand long-lead prediction skill of thunderstorm extent.
Using SCP, Global Forecast Ensemble System (GEFS) forecasts
for tornado events during spring 201617 were found to be skill-
ful for up to 9 days in advance (Gensini and Tippett 2019).
Wang et al. (2021) used a dynamical-statistical approach for
week 2 prediction of tornado and hail activity with SCP as a
predictor, and they considered the empirical relationship be-
tween GEFS hindcast SCP and observed report frequencies
to “calibrate” the prediction. Though SCP is a practical proxy
for tornado activity, its units do not directly correspond to
probabilities like those in SPC outlooks, and many studies in-
troduce a somewhat arbitrary SCP threshold in order to indi-
cate events and nonevents and evaluate forecast skill. Hill et al.
(2020, 2023) used random forests to develop probabilistic fore-
casts of severe weather hazards, analogous to SPC outlooks,
and showed that their model is skillful up to 5-day lead times.
Similarly, Battaglioli et al. (2023) used an Additive Regressive
Convective Hazard Model (AR-CHaMo; Rédler et al. 2018) to
develop probabilistic forecasts of hail and lightning and assessed
its forecast skill. These studies did not consider forecasts past
day 8, which would correspond to long-range prediction skill,
nor delineate between tornadoes and other SCS hazards.
Tornado outbreaks—when multiple tornadoes occur over a short
time span—represent the most extreme impact from SCS and ac-
count for ~80% of tornado-related fatalities (Fuhrmann et al.
2014). It would be valuable to know the extent to which tornado
outbreak events specifically can be predicted, in addition to gen-
eral SCS or tornado activity. We aim to address this question.

The tornado outbreak index from Malloy and Tippett (2024)
provides a spatially resolved probability of outbreak-level tor-
nado occurrence given reanalysis environments of convective
precipitation, 0-3-km SRH, and CAPE. The index has been
useful for understanding the climate modulation of tornado and
tornado outbreak activity, such as from ENSO and weather re-
gimes (Tippett et al. 2024), and in detecting upward trends in
U.S. tornado outbreak activity (Malloy and Tippett 2024). In
addition, the units of the index (probability) correspond well
with SPC outlooks (%), and the index matches the general be-
havior of observed reports. Although the index probabilities
are reliable on average, they have systematic regional and sea-
sonal biases, such as being generally too low in winter and gen-
erally too high in summer. The effectiveness of the outbreak
index as a proxy for tornado outbreak occurrence in forecast
applications largely depends on whether its constituents—
convective precipitation, SRH, and CAPE—can be skillfully
predicted (Murugavel et al. 2012; Rédler et al. 2018, 2019;
Koch et al. 2021; Malloy and Tippett 2024). A comprehensive
evaluation of the long-lead prediction skill of environments
and their covariability and how that relates to the prediction
limits of tornado (outbreak) activity is still needed.

The main objective of this study is to document the extent
to which tornado outbreak activity can be forecast using the
tornado outbreak index from Malloy and Tippett (2024) ap-
plied to GEFS output. In addition, we aim to correct the
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systematic biases in the index climatology to make it more
useful in forecast applications. Since the ability to predict the
index depends on the ability to predict the environments used
to calculate the index, a secondary objective of the study is to
document the prediction skill of the environments and their
covariability in GEFS. The remainder of the paper is outlined
as follows: section 2 describes the data and methods used in
the study. Section 3 presents the results in regard to GEFS clima-
tology and calibration, GEFS skill evaluation of tornado outbreak
activity, GEFS skill evaluation of relevant environments and co-
variability of environments, and a GEFS example use case for
the spring 2013 season. Section 4 gives a summary of the work
and discusses its main conclusions and future work needed.

2. Data and methods
a. Data

Observations of environmental variables of convective pre-
cipitation (CP), 0-3-km SRH, and mixed-layer CAPE for the
period 2000-19 are taken from the North American Regional
Reanalysis (NARR), which provides 3-hourly data on a 32-km
native grid. We resample the NARR data as a 6-hourly sum for
CP and a 6-hourly average for SRH and CAPE, and we perform
a bilinear interpolation of variables to a 1° X 1° spatial resolution.

Tornado reports for the 2000-19 period are taken from the
NOAA SPC Severe Weather Database. A tornado outbreak
is defined as a sequence of six or more tornadoes that occurs
with no more than 6 h between consecutive tornadoes, follow-
ing the definition used in Fuhrmann et al. (2014) and Malloy
and Tippett (2024). We exclude tornadoes rated 0 on the
Fujita/enhanced Fujita scale. When labeling outbreak-level
tornadoes, we include only the tornado start location and do
not impose a geographic constraint (Doswell et al. 2006). Tor-
nadoes are classified as being part of an outbreak or not. The
SPC report data are then aggregated to a 6-hourly and 1° X 1°
resolution; and at this point, the data are zeros and ones. A one
means that an outbreak tornado occurred in a given grid cell and
6-hourly period. For this study, we consider spatially smoothed
occurrence data. We apply a 2D Gaussian kernel smoother with
o = 120 km. This calculation is similar to that used for practically
perfect hindcasts (Hitchens et al. 2013; Gensini et al. 2020; Sobash
et al. 2020). Smoothing results in values between 0 and 1, consis-
tent with the index. However, the smoothed reports have limita-
tions; for instance, the contribution of adjacent grid points could
mean that the grid point of maximum probability might not corre-
spond to where an outbreak tornado occurred.

Model data are taken from the GEFS, version 12, refore-
casts (Guan et al. 2022). GEFS reforecasts were initialized
once per day at 0000 UTC over the 2000-19 period. GEFS re-
forecasts have one control member and four perturbed mem-
bers, equaling five ensemble members in total, that are run
out to 16 days with forecast outputs every 6 h. The forecasts
initialized on Wednesdays have an additional six ensemble
members (11 total members) and run out to 35 days. GEFS
data are provided at a 1° X 1° spatial resolution, consistent
with observations.
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The tornado outbreak index of Malloy and Tippett (2024)
has two parts. The first part provides a map of the probability
of outbreak tornado occurrence based on

log( : P p) = —20.2 + 0.76 log(CP) + 1.82 log(SRH)
+ 0.51 log(CAPE), 1)

where the left-hand side is the log odds and p is the probabil-
ity. The NARR-based index inputs the 6-hourly values of CP,
SRH, and CAPE from NARR into the right-hand side,
whereas the GEFS-based index inputs the 6-hourly values of
CP, SRH, and CAPE from individual GEFS ensemble mem-
bers. We resample this to a daily resolution by taking the
maximum over the convective day (1200-1200 UTC). For
GEFS, this means skipping the +6-h time step and taking the
maximum over the +12-, +18-, +24-, and +30-h time steps as
the day 1 forecast, taking the maximum over the +36-, +42-,
+48-, and +54-h time steps as the day 2 forecast, and so on.
Finally, we take the ensemble mean of the index, which is
used for evaluating performance.

The second part of the index from Malloy and Tippett
(2024) calculates the total number of U.S. outbreak tornadoes
using the probability maps from above:

u = exp{—0.82 + 2.08 log[sum(Pqys)]

— 0.57 log[max(Peonus)1) (2)

where sum(Pconus) is the index map sum and max(Pconus)
is the index map maximum. We compare the index sum, index
maximum, and total number of outbreak tornadoes between
reports and GEFS forecasts to assess the skill of CONUS-
wide tornado outbreak activity.

The seasonal cycle of the environments and index is evalu-
ated. If observed and GEFS seasonal cycles do not match
well, we perform a bias correction of the environments and a
postcalibration of the index. The procedure consists of multi-
plying the environments or index by a scaling factor that is the
ratio of the seasonally averaged (December—February, March—
May, June-August, September-November) observed value to
the seasonally averaged GEFS value at every grid point and
forecast lead time. This method only corrects for climatological
biases and has no dependence on skill. The bias correction of
the environments uses NARR data, and the postcalibration of
the index uses smoothed reports. We use the term postcalibra-
tion since it corrects the GEFS index after its calculation. The
index postcalibration is cross validated with 1 year left out, i.e.,
the postcalibration factor for the 2000 GEFS index is based on
2001-19 data, the postcalibration factor for the 2001 GEFS in-
dex is based on 2000 and 2002-19 data, and so on.

b. Performance metrics

The mean-square error skill score (MSESS) is used to eval-
uate how well the GEFS ensemble mean forecast index
matches the spatially smoothed report data. The MSESS is
the ratio of the mean-square error (MSE) of a forecast to the
MSE of a reference forecast:
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MSESS = 1 — MOF 2o 3)
MSErcf Z(Oi - 5)2 ’
1

where f; is the forecast GEFS ensemble mean probability at
time i; o; is the probability calculated from the spatially
smoothed report data; and the reference forecast here is the
climatological forecast, where o is the time-smoothed (15-day
window) daily climatological frequency from the reports. A
positive MSESS indicates a forecast skill better than a clima-
tological forecast. As in Wang et al. (2021), we spatially coarsen
the GEFS index (f;) by averaging the data over a 5° X 5° area
for the MSESS calculation.

The Spearman rank correlation is also used to measure the
strength of the relationship between GEFS forecasts and ob-
served smoothed reports. Both the MSESS and rank correla-
tions are grouped by season, and gridpoint scores are averaged
over U.S. regions of interest.

Last, we show reliability diagrams, which measure the condi-
tional bias of GEFS or the extent to which the GEFS ensemble
mean index probability matches the observed frequency from
the smoothed report data. This usage is slightly different than
traditional reliability diagrams in that the observational oc-
currence data are smoothed and have values between zero
and one.

c. Statistical significance

We perform 10-day block bootstrap resampling with re-
placement for 100 iterations to calculate the statistical signifi-
cance of the seasonal, regionally averaged MSESS and rank
correlations. First, the initialization dates are split into 10-day
blocks (no overlap); the 10-day blocks account for temporal
autocorrelation of the data. For 100 iterations, we resample
10-day blocks (within the corresponding season), select the
observed and GEFS forecast data for the resampled dates,
and recalculate the regionally averaged MSESS or rank corre-
lation. This procedure constructs a confidence interval for the
skill score estimate. If the 5th percentile of bootstrap resam-
ples of MSESS or rank correlation is greater than zero, the
positive skill score is considered statistically significant at the
5% level (one-sided). In other words, we consider a positive
skill score estimate statistically significant if 95% of the skill
scores from the block bootstrap iterations are also positive.

3. Results
a. Seasonal cycle and index calibration

We compare the seasonal cycles from GEFS forecasts to ob-
servations (reports as well as NARR reanalysis) to determine if
there are systematic biases in GEFS. In Fig. 1, the regional sea-
sonal cycles of tornado outbreak probability, environments, and
covariability of environments are shown for the northern plains
and Midwest, southern plains, Southeast United States, and
Northeast United States (see regional domains in Fig. 2). These
regional domains are consistent with Hill et al. (2020, 2023) but
further subdivide the central plains and eastern United States
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Seasonal Cycle by Region
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FIG. 1. Seasonal cycle of (a)—(d) tornado outbreak probability, (e)-(h) CP, (i)~(1) SRH, (m)~(p) CAPE, and (q)—(t) covariability (i.e., the
gridpoint product) of CP, SRH, and CAPE, for different regions of the United States: (first column) northern plains and Midwest, (second
column) southern plains, (third column) Southeast United States, and (fourth column) Northeast United States. Line colors indicate from
smoothed reports (black), NARR (light blue), GEFS day 1 forecast (red), GEFS day 1 forecast with bias-corrected CAPE (orange), and GEFS
day 1 forecast with bias-corrected CAPE and postcalibration (dark blue). See text for details about CAPE bias correction and postcalibration.

to better qualitatively describe regional patterns in tornado out-  outbreak index (light blue line) in Figs. 1a-d. The compari-
break activity. son between the NARR-based index and smoothed reports

First, we evaluate the outbreak index seasonal cycle by identifies fundamental limitations of the index, which is to
comparing the smoothed reports (black line) to the NARR  say, the ability of environments to predict tornado outbreak
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Scaling Factor: GEFS Day 1 Forecast
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FI1G. 2. Scaling factor for GEFS outbreak index day 1 forecasts fit to smoothed reports for (a) DJF, (b) MAM,
(c) JJA, and (d) SON. Domain boxes in (a) describe regions used for regionally averaged calculations. Grid points are
masked where the tornado outbreak climatological frequency is <0.01%.

occurrence. The NARR-based index is expected to be an up-
per bound of the performance of the GEFS-based forecast
index. As discussed in Malloy and Tippett (2024), the index
represents many aspects of the observed seasonal cycle, such
as the increase in outbreak-level tornado probability from
winter into spring for all four regions. However, the index is
too high in the summer months, and the slight peak in activ-
ity observed in November is generally not well represented
except perhaps over the southern plains. This highlights defi-
ciencies in the index that are expected to also manifest in the
GEFS outbreak index forecasts.

Next, we compare the GEFS outbreak index day 1 forecasts
(red line) to the NARR outbreak index (light blue line) to
identify deficiencies in the GEFS environments that are in-
puts to the index. The seasonal cycle follows the same pattern
in the GEFS index versus NARR index. Yet, overall, the GEFS
index is lower—about half the magnitude of the NARR index—
in almost all seasons and regions. This suggests that a system-
atic bias might be present in one or more environments in
GEFS.

Turning to the GEFS environments, we compare the seasonal
cycles of CP (Figs. le-h), SRH (Figs. 1i-1), CAPE (Figs. Im-p),
and the covariability (i.e., gridpoint product) of these variables
(Figs. 1g—t) to assess any biases in the environmental conditions.
GEFS shows a low-CAPE bias over all regions, especially over
the Southeast United States in the summer months (red vs light
blue lines). Therefore, we test whether correcting the systematic
CAPE biases in GEFS improves its seasonal cycle and, as a re-
sult, the GEFS index.

To bias correct the GEFS CAPE, we multiply by a scaling
factor that is the ratio of seasonally averaged NARR CAPE
to seasonally averaged GEFS CAPE at every grid point and
6-h forecast lead time. This multiplicative bias correction, as
opposed to an additive one, has the advantage of allowing
low-CAPE values (i.e., zero or near-zero values). Importantly,
this correction is based only on climatological values; there
is no dependence on skill. The scaling factor for the GEFS
CAPE 6-12-h forecast is shown in Fig. S1 in the online
supplemental material. CAPE was corrected over regions
where tornado outbreaks occur frequently; generally, the
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multiplication factors range between 4 and 16, depending
on the region and season.

After bias correction, the seasonal cycle of GEFS CAPE
matches that of NARR well (orange lines in Figs. Im-p). In
addition, the covariability of the environments is improved in
GEFS by fixing the systematic biases in CAPE (Figs. 1q-t, or-
ange line), especially over the Southeast U.S. and Northeast
U.S. regions. We recalculate the GEFS outbreak index with
the bias-corrected CAPE (orange lines in Figs. 1a—d). We find
that correcting the systematic biases in CAPE moves the GEFS
index closer to the NARR index, especially over the Southeast
U.S. and Northeast U.S. regions, but the CAPE bias correction
has minimal impact on the GEFS index for the northern plains
and Midwest as well as the southern plains.

Comparing the smoothed reports (black line) and GEFS
outbreak index day 1 forecasts, raw/without any calibration
(red line) or with bias-corrected CAPE (orange line) shows
that there are still deficiencies in the seasonal cycle similar to
those of the NARR outbreak index.

We address the deficiencies in the index climatology by
cross-validated postcalibration, as introduced in the data and
methods: applying a scaling factor that is the ratio of the sea-
sonally averaged smoothed reports and the seasonally aver-
aged GEFS index (with bias-corrected CAPE) at every grid
point and daily forecast lead time. We also smooth the scaling
factor spatially (5° X 5° window) and in terms of lead time
(10-day window); this limits the impact from specific reported
events in this relatively short 20-yr period. In Fig. 2, we show
the maps of the scaling factor for GEFS day 1 forecasts for
December-February (DJF), March-May (MAM), June-
August (JJA), and September—November (SON). During
DJF, the GEFS index for day 1 forecasts is generally too low
over most regions east of the Rockies, as indicated by the scal-
ing factors greater than one. For instance, over the Ohio River
Valley, the GEFS index values need to be multiplied by a
factor of ~8-10 to better fit the smoothed report data clima-
tology. In contrast, during JJA, the GEFS index for day 1
forecasts is generally too high, especially over the plains. For
instance, over Texas, the GEFS index values need to be mul-
tiplied by ~0-0.25 to better fit the smoothed report data
climatology.

We find that postcalibration of the GEFS index addresses
the issues with its seasonal cycle (Figs. 1a—d, dark blue line),
including representing the lower activity during summer and a
small secondary peak in activity during autumn. For the re-
mainder of the skill analysis, we will compare the skill of
the raw GEFS outbreak index, the GEFS outbreak index
with bias-corrected CAPE, and the GEFS outbreak index
with bias-corrected CAPE and postcalibration.

b. Outbreak index skill evaluation

Figure 3 shows the MSESS of the three GEFS-based tor-
nado outbreak indices. On average, the raw GEFS index (red
line) generally has very modest but positive skill for forecast
leads out to 6-7 days during DJF, 7-9 days during MAM,
5-7 days during JJA (except no skill over the southern plains),
and 6-9 days during SON, with variations depending on the
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region. There is minimal difference between the MSESS for
the raw GEFS index (red line) and the GEFS index with bias-
corrected CAPE (orange line). Therefore, correcting the low
bias in CAPE has little to no impact on the skill in represent-
ing index probability values. The MSESS is generally higher
for the postcalibrated GEFS index (blue line) than for the raw
GEFS index or the GEFS index with bias-corrected CAPE.
This shows that correcting the GEFS index seasonal cycle via
postcalibration greatly benefits its skill in representing index
probability values. This is likely due to the fact that MSESS,
unlike correlation, is sensitive to mean and amplitude errors.
On average, the postcalibrated GEFS index generally has posi-
tive skill for forecast leads of 8-10 days during DJF, 8-9 days
during MAM, 1-5 days during JJA, and 5-8 days during SON.
These MSESS values are statistically significant (via the boo-
strap resampling procedure) for 4-9 days during DJF and
MAM. Over the southern plains during JJA (Fig. 3j), the post-
calibrated GEFS index has positive skill for forecast leads up
to 13 days, which is much improved over the negative skill
from the raw GEFS index (not shown for being too negative
for this y scale) or the GEFS index with bias-corrected CAPE.
However, overall, the MSESS values during JJA are very low
compared to other seasons. The largest difference between the
raw GEFS index and the postcalibrated GEFS index is during
DJF over the northern plains, southern plains, and Northeast
United States as well as during MAM over Southeast United
States, with the postcalibrated GEFS index providing 1-3 more
lead days with positive skill.

Next, we consider the rank correlation between observed
and GEFS tornado outbreak activity, seen in Fig. 4. Unlike
MSESS, rank correlation is unaffected by the CAPE bias cor-
rection and postcalibration because multiplication by a scaling
factor does not change the ranking (order) of the data. There-
fore, we only show the rank correlation for the postcalibrated
GEFS outbreak index here. During JJA, the GEFS index
generally does not have robust rank correlations > 0.1 for any
forecast leads. In addition, the GEFS index generally does
not have robust positive rank correlations for any forecast
leads during SON and DJF over the northern plains and the
Northeast United States, though the lack of robustness in cor-
relations could partly be explained by the smaller sample sizes
from masking grid points with tornado outbreak frequencies
< 0.01% (see masked grid points in Fig. 2). On average, the
forecast postcalibrated GEFS index has robust rank correla-
tions > 0.1 for forecast leads of 12-13 days during DJF over the
southern plains and the Southeast United States, 10-12 days
during MAM, and 8-10 days during SON over the southern
plains and the Southeast United States. The rank correlation re-
sults generally match the MSESS results, showing that the
highest skill is during DJF and MAM over all regions and the
lowest skill is during JJA for all regions.

Reliability diagrams for the GEFS day 1-7 forecasts of the
outbreak index are shown in Fig. 5. Figure 5a shows the reli-
ability for the full year of forecast data, and Figs. Sb—e show
the reliability for forecast data separated by season. A well-
calibrated model will have reliability curves on the 1:1 line
(labeled “perfect”), and skillful forecasts will have reliability
curves that fall within the gray shaded region.
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FI1G. 3. MSESS for the GEFS outbreak index grouped by (a)-(d) DJF, (e)-(h) MAM, (i)-(1) JJA, and (m)-(p) SON seasons and aver-
aged over (first column) northern plains and Midwest, (second column) southern plains, (third column) Southeast United States, and
(fourth column) Northeast U.S. regions. Regionally averaged data exclude grid points where the tornado outbreak climatological fre-
quency is <0.01%. Blue circle markers represent MSESS values from GEFS with bias-corrected CAPE and postcalibration that are

greater than 0 and statistically significant at the 5% level.

For the full-year data, the raw GEFS index (red line) is
underconfident on average for index probabilities less than
3% (e.g., a GEFS forecast of 2% verifies at 3%), and it is
greatly overconfident for index probabilities greater than 6%.
The reliability diagrams separated by season reveal that
underconfidence for relatively low forecast index probabilities
and overconfidence for relatively high forecast index probabil-
ities are found in DJF, MAM, and SON. In addition, JJA
forecasts are generally overconfident and unskillful for index
probabilities greater than 3%.

The reliability of the postcalibrated GEFS index (blue line)
is generally improved over that of the raw GEFS index. For
the full year of data, on average, the postcalibrated GEFS

index has virtually perfect reliability, i.e., it closely verifies
with observed frequency, for index probabilities less than 5%.
The postcalibrated GEFS index remains skillful—i.e., it out-
performs climatological forecasts—but is overconfident between
index probabilities of 5% and 20%. The seasonal reliability dia-
grams reveal details about the conditional bias of the postcali-
brated GEFS index. DJF forecasts have virtually perfect
reliability for index probabilities less than 10% and, like with
the full year of data, are skillful but overconfident until index
probabilities of ~24%. MAM and SON forecasts have virtu-
ally perfect reliability for index probabilities less than 5%
and, similar to the full year of data, are skillful but overcon-
fident until index probabilities of ~16%; the forecasts are
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FIG. 4. Rank correlation between reports and the postcalibrated GEFS outbreak index grouped by (a)-(d) DIJF, (e)-(h) MAM,
(i)~(1) JJA, and (m)—(p) SON seasons and averaged over (first column) northern plains and Midwest, (second column) southern plains, (third
column) Southeast United States, and (last column) Northeast U.S. regions. Regionally averaged data ignore grid points where the tornado
outbreak climatological frequency is <0.01%. Circle markers represent correlations > 0.1 and statistically significant at the 5% level.

unskillful (do not outperform climatological forecasts) for
probabilities greater than 16%. JJA forecasts for the postcali-
brated GEFS index do not show improvement over the raw
GEEFS index for index probabilities greater than 3%; the index
is generally overconfident and unskillful for relatively high
forecast index probabilities. This behavior is consistent with
results from Malloy and Tippett (2024), which found that the
outbreak index overforecasts outbreak events during JJA. In-
terestingly, the postcalibration—which fixes the seasonal cycle
of the index—does not appear to improve the reliability (con-
ditional bias) during JJA, perhaps due to the generally low
skill noted before.

We also constructed reliability diagrams for GEFS day 8-14
forecasts of the index, which show that the reliability of the

index decreases sharply after the first week; forecasts are
generally overconfident and cannot outperform climatologi-
cal forecasts for forecast index probabilities greater than 2%
(Fig. S2).

Finally, to understand GEFS forecast skill of CONUS-wide
tornado outbreak activity, we examine the skill with which
the gridpoint sum and maximum of the daily maps of the
smoothed reports, as well as the total number of outbreak tor-
nadoes, can be forecast. Malloy and Tippett (2024) found that
the sum and gridpoint maximum value of the index are effective
predictors for the total number of U.S. outbreak tornadoes and,
therefore, can be used to represent total U.S. tornado outbreak
activity. In addition, this removes the requirement that GEFS
outbreak activity spatially matches observed outbreak activity.
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Reliability Diagrams for GEFS Outbreak Index Day 1-7 Forecasts
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FIG. 5. Reliability diagrams for the raw GEFS outbreak index (red lines) and postcalibrated GEFS outbreak index (blue lines) for
(a) the full year of data, as well as data grouped by (b) DJF, (c¢) MAM, (d) JJA, and (e) SON seasons. The subpanel in (a) shows the
sample sizes for each index probability bin for the full year of data. The “perfect” reliability line and “no skill” lines are displayed as
dashed lines and are labeled in (a). Light gray shading indicates where forecasts positively contribute to skill scores. Error bars are the

95% confidence interval of the estimate.

Figure 6 shows that the GEFS forecasts of the map sum, maxi-
mum, and total number of tornadoes have robust correlations
> (.1 with those of the smoothed reports for lead times out
to 13 days in DJF, 11-13 days in MAM, 5-8 days in JJA, and
11 days in SON. Therefore, while there are noted limits in
forecasting gridpoint activity on a regional basis, such as for
JJA, GEFS forecast skill for CONUS-wide tornado outbreak
activity can be skillful for longer forecast leads.

In brief, the GEFS outbreak index has systematic biases re-
lated to a low bias of CAPE in GEFS as well as fundamental
limitations of the index that result in misrepresentation of the
seasonal cycle. We improve the GEFS outbreak index by
bias-correcting CAPE and performing a postcalibration of the
index, fixing some of these systematic biases in the GEFS out-
break index. Overall, GEFS index skill is highest during DJF
and MAM for all regions, perhaps having skill up to days 8-13
on average, and is lowest (with no skill in some cases) during
JJA. In addition, GEFS forecast skill in CONUS-wide tornado
outbreak activity as represented by the aggregated outbreak
index and total number of tornadoes is higher for longer fore-
cast leads. GEFS skill in terms of the regionally averaged out-
break index—i.e., the index is averaged over a region before
MSESS and rank correlation are computed—is also assessed
(Figs. S3 and S4). Results are similar but generally the region-
ally averaged outbreak index has 1-2 more forecast lead days
of positive, robust skill compared to the regionally averaged
skill from the index at each grid point.

¢. Environment skill evaluation

We hypothesize that the limitations in forecast skill for the
raw and bias-corrected GEFS outbreak index might be partly
explained by the forecast skill of the environments that are
used for the calculation of the index—CP, SRH, and CAPE—
as well as the forecast skill of their covariability, i.e., the prod-
uct of convective (CP and CAPE) and kinematic (SRH) vari-
ables. Therefore, in the next set of results, we evaluate the skill
via rank correlation for CP, SRH, and CAPE as well as the
rank correlation of the products CP X SRH, CAPE X SRH,
and CP X SRH X CAPE.

The rank correlation for the GEFS environments is shown
in Fig. 7. The variable with the lowest skill is CP (blue lines)
for almost all seasons and regions. CP forecasts have no robust
positive correlation with observed CP for any forecast leads
over the northern plains and Midwest during DJF. Otherwise,
on average, CP forecasts have robust positive rank correla-
tions with observed CP for forecast leads of 4 days over the
Northeast United States and 10-11 days over the southern
plains and the Southeast Unites States during DJF, 11-13 days
during MAM, 8-9 days during JJA, and 9-11 days during
SON. Both forecast SRH (gold lines) and forecast CAPE
(green lines) have robust positive correlations with observa-
tions for longer forecast leads. On average, SRH forecasts are
skillful for forecast leads of 10-12 days during DJF, 11-13 days
during MAM, 9-11 days during JJA, and 11-13 days during
SON. CAPE forecasts are skillful for forecast leads of 9-13 days
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FIG. 6. Rank correlation between the CONUS map sum (red), gridpoint maximum (blue), and number of total
tornadoes (gray) from observed smoothed reports and the map sum, gridpoint maximum, and total number of outbreak
tornadoes from the postcalibrated GEFS outbreak index grouped by (a) DJF, (b) MAM, (c) JJA, and (d) SON seasons.
Circle markers represent correlations that are >0.1 and statistically significant at the 5% level.

during DJF and 12-13 days during MAM, JJA, and SON. This
suggests that CP is the convective variable that limits forecast
skill for the GEFS index. However, it is also important to under-
stand how well GEFS forecasts the covariability of the environ-
ments since tornado outbreak activity is generally conditional on
the presence of both convective and kinematic variables.

The rank correlations of the covariability of the environ-
ments are shown in Fig. 8. Overall, the correlations for the co-
variability of the environments are similar to or lower than
the correlations for the individual environmental variables.
Forecast CP-SRH (orange-red lines) has robust positive cor-
relations with observed CP-SRH for similar lead times as seen
with CP forecasts, supporting the idea that the limited ability
to forecast CP limits the forecast skill of its covariability. For
instance, as with CP forecasts, CP-SRH forecasts have no or
modest robust positive correlations over the northern plains
and Midwest and Northeast United States. On the other hand,

forecast CAPE-SRH (turquoise lines) has the highest correla-
tions with observed CAPE-SRH and are statistically significant
and >0.2 for the longest lead times on average. Therefore,
GEFS’s ability to forecast SRH and CAPE as well as their
covariability positively contributes to forecast skill for tornado
outbreak activity past the weather time scale. The forecast
CP-SRH-CAPE (pink lines) has correlations that fall some-
where between the other correlations in covariability, likely
due to competing influences from the relatively poorly fore-
cast CP and the relatively well-forecast SRH and CAPE.

d. Example case

We illustrate the behavior of the index by considering GEFS
forecasts of the outbreak index during spring 2013, including
how the GEFS outbreak index forecasts evolved for a historical
tornado outbreak event, shown in Fig. 9. A chiclet plot is used

Brought to you by NOAA Library | Unauthenticated | Downloaded 05/29/25 04:51 PM UTC



APRIL 2025

MALLOY AND TIPPETT

603

Rank Correlation of GEFS Environments
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FIG. 7. Rank correlation between NARR and GEFS CP (blue), SRH (gold), and CAPE (green) grouped by (a)-(d) DJF, (e)-(h) MAM,
(i)-(1) JJA, and (m)—(p) SON seasons and averaged over (first column) northern plains and Midwest, (second column) southern plains,
(third column) Southeast United States, and (fourth column) Northeast U.S. regions. Regionally averaged data ignore grid points where
the tornado outbreak climatological frequency is <0.01%. Circle markers represent correlations that are >0.2 and statistically significant at

the 5% level.

to visualize the progression of forecasts depending on their valid
date (x axis) and lead time (y axis) (Fig. 9a, top half). Here, we
are showing forecasts of the anomalous (i.e., deviations from cli-
matology) index sum over CONUS (shaded). Single forecast
runs are found on the forward diagonals. When considering a
fixed valid date, which corresponds to a single column in the
chiclet plot, vertical features indicate consistently forecast
(across initializations) episodes of enhanced tornado activity,
and their height shows how far in advance they were pre-
dicted. For instance, for 10 April 2013, GEFS signals high
U.S. tornado activity 11 days in advance; for 17 April, GEFS
signals high activity 6 days in advance; for 20 May, GEFS sig-
nals high activity 10 days in advance; and for 31 May, GEFS
signals high activity 9 days in advance. We can compare this

to the total number of outbreak-level reports over CONUS
for each date (bottom half). In general, the (valid) dates
when GEFS has relatively large positive index sum values for
multiple forecast leads correspond to days when outbreak
tornadoes were reported. In fact, many outbreak days during
this season had a positive index sum in GEFS for forecast
leads considered past the weather time scale (>7-day fore-
cast lead). We also note the anomalously low index sum val-
ues between late April and mid-May that correspond to an
observed “quiet” period in terms of U.S. outbreak activity.
We further analyze GEFS forecasts on a high-impact out-
break event, 20 May 2013, seen in Figs. 9b—f. On 20 May 2013,
an upper-level trough moved over the central United States.
In the afternoon, moisture, shear, and instability increased
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FIG. 8. As in Fig. 7, but for the rank correlation between NARR and GEFS covariability of environments: CP-SRH (orange-red),
CAPE-SRH (turquoise), and CP-SRH-CAPE (pink).

rapidly over the central and southern plains, favoring the de-
velopment of supercells (also see Figs. S5a—d). Many violent
tornadoes occurred, including one rated five on the enhanced
Fujita (EF) scale, which is the highest level in terms of dam-
age. Twenty-five people were killed, over 300 people were in-
jured, and the event caused $2 billion in damage. In Fig. 9b,
the SPC day 1 outlook is shown (contours) as well as the ob-
served May 20 tornado locations and numbers (blue shaded
dots). The SPC issued a maximum of 10% probability for tor-
nadoes across the plains. Tornadoes occurred across Texas,
Oklahoma, Kansas, Arkansas, Missouri, and Illinois.

Figures 9c and 9d present the GEFS day 1 forecast, and
Figs. 9e and 9f present the GEFS day 10 forecast. The GEFS
day 1 forecast shows an ensemble mean index with relatively
high outbreak tornado probabilities over the general region
outlined by the SPC and where most tornadoes were reported,

including the highest probabilities over the central plains
(Fig. 9¢). The ensemble mean index also shows relatively high
outbreak tornado probabilities over parts of the Appalachian
region, different from the SPC outlook and a region that did
not have reports. There is general agreement in the location of
high outbreak tornado probabilities, seen by the 100% of en-
semble members that agree on these locations experiencing
index values greater than the 50th percentile (Fig. 9d). The
GEFS 10-day forecast shows an ensemble mean index with
high outbreak tornado probabilities over the Tennessee River
Valley, slightly more east than the observed event (Fig. 9e).
About 60%-80% of ensemble members agree with this gen-
eral region of outbreak tornado probabilities being greater
than the 50th percentile (Fig. 9f). Overall, GEFS indicates
general regions of high tornado outbreak activity for forecast
leads past the weather time scale. The longer lead times for
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FIG. 9. Example use case for the GEFS outbreak index: (a) April-June 2013 tornado outbreak activity from (top) GEFS forecasts of
(shaded) anomalous tornado outbreak index summed over CONUS as a function of valid date and forecast lead, and (bottom) corre-
sponding number of U.S. reports for the valid date; 20 May 2013 is marked with pink asterisks, and day 1 and day 10 forecasts are outlined
in solid pink; (b) observed (blue shaded circles) number of tornadoes at grid point and the SPC day 1 outlook at 1200 UTC 20 May 2013—
1200 UTC 21 May 2013; GEFS day 1 forecast (initialized at 0000 UTC 20 May) of (c) outbreak index from the ensemble mean and
(d) percentage of ensemble members with an above-median (>50th percentile) index; and (e),(f) as in (c) and (d), but for the day 10

forecast (initialized at 0000 UTC 11 May).

this event are likely due to the influence from large-scale, syn-
optic activity, which can often provide signals in long-lead
forecasts. For instance, the GEFS day 10 ensemble mean fore-
cast of 500-hPa geopotential height still indicated a weak trough
in the region and associated favorable environments of CP,
SRH, and CAPE, which would contribute to an overall above-
normal likelihood of tornado outbreak activity (Figs. S5i-1). In
contrast, many severe weather events are triggered from meso-
scale systems that are considered less predictable for long leads
(Carbin et al. 2016; Sobash et al. 2016).

4. Summary and discussion

The purpose of this study is to document the GEFS, version
12, forecast skill of U.S. tornado outbreak activity and rele-
vant environmental factors. To represent tornado activity in
GEEFS, we calculated a tornado outbreak index from Malloy
and Tippett (2024), which models outbreak-level tornado

probabilities at every grid point along with an associated num-
ber of tornadoes based on collocated values of CP, SRH, and
CAPE.

By examining the seasonal cycle of the GEFS outbreak in-
dex and corresponding predictors (Fig. 1), we found that
GEEFS has a systematic low-CAPE bias that results in index
biases. These CAPE biases are greater than a factor of four
in the afternoon hours, present over most regions and during
most times of the year (Fig. S1). In addition, the index has er-
rors in its seasonality—i.e., underestimation of activity during
DJF and overestimation of activity during JJA—due to fac-
tors not accounted for in the index (i.e., this bias is also
present in the NARR-based index). Therefore, first we
bias-corrected CAPE in GEFS and recalculated the outbreak
index. Then, we applied a postcalibration method to the GEFS
outbreak index (Fig. 2). Together, these methods improve
the climatological representation of tornado outbreak activ-
ity in GEFS.
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We showed that the postcalibration benefits GEFS MSESS
and reliability in particular (cf. Figs. 3 and 5). Overall, GEFS
skill in forecasting tornado outbreak activity is highest during
winter and spring, showing low skill into week 2 on average
(Figs. 3 and 4). In contrast, GEFS has little to no skill in fore-
casting the tornado outbreak index during summer. Reliability
diagrams revealed that the GEFS index is generally overesti-
mating the relatively high probabilities (>16% for winter,
spring, and autumn, or >3% for summer). The forecast under-
confidence as seen in the seasonal reliability diagrams (cf. Fig. 5,
red lines) is consistent with the broad regions of the postcalibra-
tion scaling factor being greater than one in all seasons except
JJA (cf. Fig. 2), and overconfidence is consistent with broad re-
gions of the scaling factor being less than one. GEFS has slightly
better skill in forecasting CONUS-wide tornado outbreak activ-
ity (Fig. 6), or region-wide tornado outbreak activity (cf. Figs. S3
and S4), than tornado outbreak activity at individual grid points,
showing some skill into week 2.

To help explain GEFS skill in the outbreak index forecasts,
we evaluated GEFS forecast skill in representing the environ-
mental variables and their covariability. In general, the high-
est skill is shown for SRH and CAPE, and the lowest skill is
shown for CP. Furthermore, the covariability of SRH and/or
CAPE with CP is lower than the covariability of SRH and
CAPE. This suggests that GEFS forecast skill for the out-
break index is most limited by the GEFS forecast skill of CP.

Finally, we demonstrated how the GEFS index forecasts rep-
resent the spring 2013 season and a historical tornado outbreak
event, 20 May 2013, at a 10-day lead. GEFS forecasts signal in-
creased U.S. tornado outbreak activity for that day, including
high index probabilities over the general region where observed
reports are located.

This work extends upon previous studies that have esti-
mated medium- to long-range forecast skill of SCS in GEFS
(Tsonevsky et al. 2018; Gensini and Tippett 2019; Wang et al.
2021; Hill et al. 2023). By focusing on tornado outbreaks and
separating GEFS forecast skill by season and region, we pro-
vided a detailed skill assessment of extreme SCS events, which
has not been done previously. Tornado outbreak occurrence
was modeled by the outbreak index from Malloy and Tippett
(2024), which has no explicit dependence on location or sea-
son, only dependence on environments. Here, we found that a
postcalibration that added seasonal and regional dependence
to the outbreak index improved its climatology and usefulness
in forecast applications. We found that the 5° X 5° spatial
coarsening of the index before calculating MSESS and rank
correlation does improve the scores compared to no smooth-
ing (not shown), as in Wang et al. (2021). The sporadic nature
of tornadoes means predicting exact locations—even if related
to the spatial distribution of CP, SRH, and CAPE—is a chal-
lenge. In addition, the poor performance of the GEFS outbreak
index in summer is consistent with previous work. Convective
modes during summer might differ from convective modes dur-
ing other seasons (Hart and Cohen 2016; Smith et al. 2012), and
therefore, forecasting outbreak activity via this outbreak index
is not as feasible during summer.

In addition, by examining the forecast skill of environments
and their covariability, we attempt to explain the environmental
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factors that benefit or limit GEFS forecast skill. While the low
bias in CAPE has been noted by operational forecasters as
potentially related to planetary boundary layer processes
(A. M. Bentley 2024, personal communication; Tallapragada
2022; Sun et al. 2024), this work documents its seasonal cycle
biases compared to NARR and shows the impact of this bias
on the representation of tornado outbreak activity here and
SCS activity in general. We found that these biases did not
change substantially with forecast lead time (not shown), sug-
gesting that the biases were due to model deficiencies rather
than model initialization/drift issues. Interestingly, although
the CAPE seasonal cycle improved with the bias correction,
the seasonal cycle of covariability and the index did not im-
prove over all regions, and skill did not improve with the
CAPE bias correction. Perhaps CAPE has conditional biases or
biases with a different functional dependence, both of which
the scaling factor does not address. The low skill in forecasting
CP relative to SRH and CAPE might suggest that improving
the representation of convective processes in models might lead
to improving prediction skill of outbreak activity. Alternatively,
an outbreak index that does not include CP could have better
predictive skill despite being a worse index when computed us-
ing reanalysis data. There might be a trade-off between con-
structing an index that effectively captures observed tornado
outbreak activity and performs well in a forecast context.
Future work should further explore the ensemble predict-
ability of tornado outbreak activity from GEFS. In this study,
we use the GEFS ensemble mean tornado outbreak index, not
taking advantage of the full set of ensembles to understand
the predictability of tornado outbreak activity (cf. Figs. 9d,f).
A next step could be forecasting the chance of above- or be-
low-normal activity based on the ensembles, an approach used
in other studies (Lee et al. 2021). Another next step would be
to test the outbreak index and its postcalibration for GEFS
real-time forecasts. Future work should also consider if there
are periods of enhanced prediction skill of the index due to
ENSO, MJO, or other sources of climate variability. Miller
and Gensini (2023) found that GEFS forecasts initialized in
warm ENSO and active MJO were more skillful on average.
Kim et al. (2024) found that a strongly negative and long-lived
Pacific-North American (PNA) pattern preceded many high-
impact tornado outbreaks. In general, ENSO can modulate
tornado and tornado outbreak frequency and has been linked
to SCS predictability (Lepore et al. 2017, 2018; Tippett and
Lepore 2021; Tippett et al. 2022; Malloy and Tippett 2024).
Given that there are times when SCS can be forecast 8+ days
in advance (cf. Fig. 9, Miller and Gensini 2023), and winter
and spring show average forecast skill of tornado outbreaks
into week 2, it might be of value to develop guidance products
for medium- to long-range severe weather alongside SPC or
Climate Prediction Center (CPC) operational forecasters.
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