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Abstract Increased oceanic uptake of CO, due to rising anthropogenic emissions has caused lowered pH
levels (ocean acidification) that are hypothesized to diminish biotic calcification and reduce the export of total
alkalinity (Ay) as carbonate minerals from the surface ocean or their burial in coastal sediments. This “CO,-
biotic calcification feedback™ is a negative feedback on atmospheric CO,, as elevated levels of surface Ay
increase the ocean's capacity to uptake CO,. We detect signatures of this feedback in the global ocean for the
first time using repeat hydrographic measurements and seawater property prediction algorithms. Over the
course of the past 30 years, we find an increase in global surface Ay of 0.072 =+ 0.023 pmol kg™ yr™!, which
would have caused approximately 20 Tmol of additional A} to accumulate in the surface ocean. This finding
suggests that anthropogenic CO, emissions are measurably perturbing the cycling of carbon on a planetary scale
by disrupting biological patterns. More observations of At would be required to understand the effects of this
feedback on a regional basis and to fully characterize its potential to reduce the efficiency of marine carbon
dioxide removal technology.

Plain Language Summary Human activities are causing more carbon dioxide (CO,) to be absorbed
by the oceans from the atmosphere, leading to decreasing ocean pH levels (ocean acidification). Acidification
slows down biotic calcification, the process by which many marine organisms build their shells and skeletons.
Lowered biotic calcification is hypothesized to reduce the carbon moving from the ocean's surface to the deep
when these organisms die and sink. This decrease in the amount of sinking shells leads to a buildup in total
alkalinity (Ar) in surface waters, which helps the ocean absorb more CO,—a natural feedback mechanism that
could limit the rise of atmospheric CO,. We have identified signs of this feedback in the global ocean. Our
findings show that the At in the ocean's surface is increasing by 0.072 £ 0.023 pmol per kilogram per year,
which would have caused the amount of human-emitted carbon in the ocean to increase by about 0.20 PgC since
the 1990s. This shows that the chemistry of the oceans is changing as human-produced CO, emissions cause
shifts in the patterns of life and death of some marine organisms. More data on Ay is needed to better quantify
this feedback and its impacts.

1. Introduction

From the 1960s to the present day, the Earth's oceans have absorbed about 25% of anthropogenic carbon dioxide
(CO,) emissions, reducing atmospheric CO, concentrations and slowing the rate of climate change (Friedling-
stein et al., 2023; Gruber et al., 2023). The resulting increased levels of CO, in the ocean have caused a global pH
reduction in seawater, termed ocean acidification, which has begun to alter marine ecosystems and put the human
communities that rely on them at risk (Doney et al., 2009, 2020; Gattuso et al., 2015). Biotic calcification by
organisms such as coccolithophores, pteropods, foraminifera, and corals remove carbon from the surface ocean in
the form of calcium carbonate (CaCO;) and other carbonate minerals and export it to the deep ocean (Berelson
et al., 2007; Boudreau et al., 1999, 2018; Subhas et al., 2022; Milliman, 1993; Milliman et al., 1999). However, it
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has been hypothesized that ocean acidification could reduce this “CaCO; pump” by damaging calcifying or-
ganisms, disfavoring CaCOj; production, and speeding CaCOj; dissolution (Heinze, 2004; Ilyina et al., 2009;
Zondervan et al., 2001).

Total alkalinity (A), or the excess of hydrogen ion acceptors over hydrogen ion donors in seawater, is a parameter
that describes the carbonate system of seawater and does not change with air-sea CO, exchange (Dickson, 1981).
However, the concentration of A does shift with changes in biotic calcification and carbonate mineral export. If
carbonate mineral export rates are decreasing, less Ay is transported to the depth, which would cause a relative
buildup of At in the surface ocean. Trends in Ay, therefore, can be used to assess whether patterns in biotic
calcification and export are changing over time.

Theoretically, an increase in surface A due to lowered calcification rates would enhance the ocean's buffering
capacity and increase the drawdown of CO,, dampening atmospheric CO, rise. This “CO,-biotic calcification
feedback” would cause greater uptake of CO, into surface waters and the ocean interior (Ridgwell et al., 2007,
Zondervan et al., 2001). However, the magnitude of the response is uncertain and would vary regionally based on
the background buffering capacity. Models show that the CO,-biotic calcification feedback may even play a
larger role in regulating ocean CO, content than the well-established CO,-ocean warming feedback, where
increased seawater temperatures reduce the amount of inorganic carbon in the ocean present at air-sea CO,
equilibrium (Zhang & Cao, 2016). Furthermore, Earth System Model outputs show differences in both magnitude
and sign of the trend in surface alkalinity over time, meaning that existing parameterizations may not adequately
represent this feedback (Jiang et al., 2023).

In this work, repeat hydrographic sections of total alkalinity measurements (Ap) are used in conjunction with
seawater property prediction algorithms to detect trends in A consistent with the CO,-biotic calcification
feedback in observational data sets. This phenomenon is hypothesized to have emerged, or become statistically
significant above natural variability, only in this decade (Schlunegger et al., 2019). In this study, we observe a
long-term (>30 years) trend in surface ocean Ay, which we find can likely be attributed to a global negative
feedback in biotic calcification or carbonate mineral export. This indicates that anthropogenic CO, emissions are
changing the marine carbon cycle's controls on Earth's climate through biological mechanisms.

2. Data and Methods
2.1. Data Used: GLODAPv2.2023

Data made available by the Global Ocean Data Analysis Project (GLODAP) version 2.2023 were used for this
analysis (Lauvset et al., 2022, 2023; Olsen et al., 2019, 2020). GLODAP provides a collection of ship-based ocean
biogeochemical data, including marine carbonate system data, that has undergone secondary quality control to
improve data product consistency. Cruise records from the current version GLODAPv2.2023 were filtered to
include only data from cruises on transects occupied by the Global Ocean Ship-Based Hydrographic In-
vestigations Program (GO-SHIP). All data used in this analysis were collected from cruises associated with GO-
SHIP, the World Ocean Circulation Experiment (WOCE)/the Joint Global Ocean Flux Study (JGOFS), Climate
and Ocean: Variability, Predictability, and Change (CLIVAR), and Southern Ocean Carbon and Climate Ob-
servations and Modeling (SOCCOM).

Data were further filtered to ensure only the highest quality observations were included in this analysis. Only A
data that were flagged by GLODAP as “2,” meaning “acceptable,” were kept. Additionally, any A data that were
marked by GLODAP as “calculated” instead of “measured” were excluded. To constrain the analysis to only the
open ocean, points with associated salinity measurements that fell outside 30-37 (i.e., estuaries) were excluded.
Cruises were trimmed to keep only the data points that were located on GO-SHIP transects, typically omitting
only “test cast” stations. Following the filtering and trimming processes, 230,572 A measurements spread across
201 total cruises were available for analysis, which were collected between 1 September 1991 and 4 October
2021. Figure 1 shows the spatial coverage of data.

The seawater A+ measurements used in this study have been collected by the global oceanographic community
following standard operating procedures (Dickson et al., 2007). These measurements have benefitted from the
regular use of a community reference material since the early 1990s (Dickson et al., 2003). The exact titration
methods vary between research groups (Carter, Sharp, Dickson, et al., 2024), and there is some indication that
different methods can return different values for identical seawater when organic or unidentified contributions to
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Figure 1. Map of locations of A measurements (rounded to the nearest 4° of latitude and longitude) available from
GLODAPvV2.2023 that were used in this analysis following all quality control steps. Coloring shows the number of unique
years where measurements are available at each location.

A1 with a pK| close to approximately four are present (Sharp & Byrne, 2020). The GLODAPv2 adjustments may
have accounted for these variations to an unknown degree (Olsen et al., 2019). Inter-laboratory calibration studies
show variations between measurements across laboratories (Bockmon & Dickson, 2015). The random variability
in a subset of open-ocean repeat hydrographic A measurements (which includes cruise-to-cruise variations) has
recently been estimated as (16) 2 pmol kg ™! before the GLODAPv2 adjustment procedure (Carter, Sharp, Garcia-
Ibéiez, et al., 2024). This is smaller than the uncertainty across all A} measurements, which is estimated to be
2.4 pmol kg™! (Carter, Sharp, Garcia-Ibafiez, et al., 2024). We repeat this analysis here and estimate an uncer-
tainty in Ay of 2 pmol kg ™" for the subset of cruises involved in the present study (Figure 1). However, we caution
that this analysis further limits the cruises considered to the subset of the cruises we use that have overdetermined
carbonate chemistry measurements.

2.2. Algorithms Used: Empirical Seawater Property Estimation Routines (ESPERSs)

Empirical Seawater Property Estimation Routines (ESPERSs) are algorithms trained on GLODAPv2.2020 data
that are able to predict seawater properties, including A, at a given location. Salinity, with which Ay has the
strongest covariance, and optional additional seawater property information are used to make each prediction
(Carter et al., 2021). Two independent algorithms are available-ESPER_LIR, which is based on locally inter-
polated regressions, and ESPER_NN, which uses a neural network approach.

In this study, we quantify the correlation between time and the evolving difference between A measurements and
co-located ESPER A estimates. ESPERs do not include a long-term temporal component in the prediction of A,
which makes it possible for ESPER-generated predictions to serve as a counterfactual that represents conditions
in the ocean under a steady-state scenario. The difference between a measured property of seawater and the
ESPER estimate of the same property (henceforth defined for A as AAy) allows for the presence and magnitude
of any long-term climatic changes in seawater to be assessed. It should be noted that a temporal component in
these estimates may be implicit due to long-term trends in the predictors used to produce the estimates (Figure S1
in Supporting Information S1), which would contribute to uncertainty in ESPER predictions. We explore this
possibility further when alternative hypotheses are presented (see Section 4). Furthermore, the sign of the trend in
A over time may be different from the sign of AA over time, as Ay is the absolute measurement of total
alkalinity, while AAy represents the difference between the measured and ESPER-predicted A value.

This same approach to determining trends in a variable of interest in the marine carbonate system was used in
fitting a term in the development of the Locally Interpolated pH Regression (LIPHR) algorithm to account for the
temporal effect of ocean acidification on pH predictions (Carter et al., 2018). The method found a global surface
ocean acidification rate of —0.0018 + 0.0003 pH units per year, which compares very closely with independent
estimates for a similar time period of —0.0017 £ 0.001 pH units per year (Ma et al., 2023).
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Table 1 Both ESPER routines (ESPER_LIR and ESPER_NN) were used to predict A
Combinations of Input Parameters Used to Calculate A, in Each ESPER at the location and time of each A measurement used in this study. There are
Equation 16 equations that can be used in each ESPER for seawater property pre-
Equation Input properties dictions, each of which requires a different combination of input seawater

— ——._ property measurements. For A, this is outlined below in Table 1. Ay varies
! Se. T, NO, ™, Oy, 510, most strongly with salinity, but is also correlated with changes in temperature,
2 Sp. T, NO, ™, Si0,* oxygen, and macronutrient distributions. Salinity is a required input in all 16
3 Sp, T, 0,, Si0,*~ equations and the other predictors are each used in half of the 16 equations.
4 Se. T, Si0;* The unweighted ensemble mean of the estimates produced by the 16 equa-
> Sp 1 NOS, O, tions was used to calculate AA; for each ESPER routine. Plancherel
6 Sp, T, NO5;™ et al. (2013) showed that errors using multiple linear regression (MLR) al-
7 Sp, T, O, gorithms tend to be uncorrelated from each other, and therefore benefit
8 Sp. T somewhat from ensemble mean averaging. While some of the 16 equations
9 Sp, NO,™, O,, Si0,* we use in our ensemble average produce estimates with higher fidelity than

C others, Carter et al. (2019) found the benefit of weighting ensemble members
10 S,, NO,™, SiO, ) : . . L

: by the inverse of their uncertainty to be limited when estimating anthropo-
Wl Sp O, Si0,* genic carbon accumulation rates. For that study and this one, the important
12 Sp. Si0,*” quantity is how the estimate varies over time rather than the value of the
13 Sp, NO; 7, O, estimate, so we again average ensemble members without any prior
14 Sp. NO5™ weighting. The standard deviation of the trend in AAy across the 16 equations
15 Sp O, is also calculated (uggpggr) as an estimate of one component of uncertainty in

the trend.

16 Sp

Note. ““Sp” represents salinity on the practical scale, “T” represents temper- .
ature (°C), “NO, ™ represents nitrate (umol kg "), “O,” represents dissolved 2.3. Statistical Analyses

oxygen (umol kg™"), and “Si0,” represents silicate (pmol kg™h.

Measurements from the surface ocean as well as the full depth of the water
column were separately analyzed, as trends in alkalinity due to ocean acidi-
fication are expected to be visible first in the surface ocean (Carter et al., 2016). Multiple definitions of “surface
ocean” were tested, including 10 m depth, 25 m depth, 100 m depth, average monthly mean mixed layer depth,
and maximum monthly maximum mixed layer depth, and the depth selected had little effect on the results.
Climatology described by Holte et al., 2017 were used for average monthly mean mixed layer depth and
maximum monthly maximum mixed layer depth. For the following analysis, a surface ocean depth of 25 m will be
used. “Full depth” indicates that all available depths of measurements were used, which includes all depths from
the surface to a maximum of 6,742 m. The average depth of measurement was 1,426 m. 95% of measurements fell
between 0 and 4,500 m in depth.

Two linear regression techniques were used to analyze changes in AAp over time. Robust linear regression
(RLM), using maximum likelihood type estimation (M-estimation) with Huber's t function, was performed to
reduce the sensitivity of the regression results to outliers in A+ measurements (Figure S2 in Supporting Infor-
mation S1). Robust regression is an established practice used to reduce the influence of outliers (Andersen, 2007).
For comparison purposes—and to ensure our results were not overly sensitive to our robust regression weighting
choices—ordinary least squares (OLS) regression was also performed. No temporal or spatial patterns in outliers
were detected (Figure S3 in Supporting Information S1).

A Monte Carlo analysis was performed to account for uncertainty in GLODAP data by adding offsets to the data
randomly selected from a Gaussian distribution centered at zero with a standard deviation of 2 pmol kg™, which
represents the accepted uncertainty in open-ocean repeat hydrographic A measurements (see Section 2.1; Carter,
Sharp, Garcia-Ibafiez, et al., 2024). Two variations of the Monte Carlo analysis were conducted. In the first “per-
cruise transect” method, a random offset was selected for each cruise to be applied to every A measurement taken
on that cruise to represent systematic sampling errors that may have occurred. 1,000 repetitions of the Monte
Carlo simulations were performed, and the standard deviation of the resulting trends in AA+ is taken to represent

sampling uncertainty (i, ). This uncertainty differs from the individual measurement uncertainty

sample.
(2 pmol kg™ in that it does not represent uncertainty in a single measurement of Ay, but rather the uncertainty in

the trend in AAt over time possible when all individual measurements are taken together.
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Figure 2. Difference between the ESPER-predicted A and ensemble mean for each ESPER equation. Each data point
represented in the histogram is one ESPER prediction. Subplot A uses ESPER_LIR as the counterfactual; subplot B uses
ESPER_NN.

Sampling uncertainty (Ugampie) 18 summed in quadrature (the square root of the sum of squares) with uggprr
(previously defined in Section 2.2) to estimate total uncertainty (U). Results were analyzed on both a global,
regional, and per-cruise transect basis. The per-cruise transect analysis was performed only when two or more
reoccupations existed in that transect. In the second “per-point” method, a unique random offset was applied to
every measurement used in the analysis, but it was found that this style of Monte Carlo simulation had no
meaningful impact on the trend in AAt due to the large number of measurements (Figures S4 and S5 in Sup-
porting Information S1).

A flow chart outlining the methodology utilized in this work is included as Figure S6 in Supporting
Information S1.

3. Results

Across all equations, the average AA; calculated using ESPER_LIR was —0.29 pmol kg™', with a standard
deviation of 4.27 pmol kg™'. The average AA; using ESPER_NN was —0.26 pmol kg™', with a standard de-
viation of 4.23 pmol kg™'. Mean AA; was statistically indistinguishable across all 16 ESPER equations
(Figure 2). Adding more predictors decreases the standard deviation in AAr, consistent with a known
improvement in the estimate fidelity in the GLODAPv2.2020 training product, which has strong overlap with the
subset of GLODAPv2.2023 we use for this study (Carter et al., 2021). The number of viable AA} values decreases
by 6.3% as the number of predictors used increases from 1 to 5, because each ESPER calculation is only per-
formed if all the required predictors were concurrently measured.

A statistically significant positive temporal trend in AA+ in the surface ocean (<25 m) was found using both
ordinary least squares (OLS) regression and robust linear model (RLM) regression (Table 2, Figure 3). In other
words, the measured A values are increasing compared to the ESPER-calculated counterfactual, which indicates
that A levels have been increasing on a global scale in the surface ocean over the past three decades.

Trends in AAy in the surface ocean are positive and greater than twice the overall uncertainty in the trends (i.e.,
>20, or >95% confidence). A positive trend is also seen across the full ocean depth, though this trend is only
statistically significant when considering the uncertainty in the slope term fit by the linear regression alone. The
deep trend is not statistically significant when considering the much larger overall uncertainty (U) estimate that
accounts for the likely errors in measurements of A and ESPER estimates. Lessening the weight of outliers with
RLM always results in a trend that is both more positive and significant, but the statements regarding significance
remain unchanged for OLS.
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Table 2
Trends in AA; Over Time (umol kg~! yr~!) for Each Region Calculated by Robust Linear Model (RLM) and Ordinary Least
Squares (OLS) Regression With Associated Uncertainties

RLM OLS
ESPER_LIR ESPER_NN ESPER_LIR ESPER_NN
Surface Ocean (<25 m) 0.072 £ 0.023 0.070 = 0.023 0.054 = 0.023 0.056 + 0.023
Full Ocean Depth 0.011 = 0.022 0.005 = 0.022 0.008 = 0.022 0.003 £ 0.022

Note. ESPER_LIR and ESPER_NN were each used as counterfactuals, and the trends in the surface ocean (<25 m) and for
the full depth of measurements are shown for each regression type and counterfactual.

The majority of uncertainty U in each trend in AAr is derived from ug,, ., Which is calculated using the Monte
Carlo simulation (Figure 4). Monte Carlo analysis shows high confidence in a positive trend in surface ocean AAr
over time. On average across the set of 1,000 Monte Carlo runs, the standard deviation of the simulated trends in
surface AAy is 0.022 pmol kg™ yr™". Even with this uncertainty, 99.3% of simulations result in a positive trend
with ESPER_LIR as the counterfactual (99.5% with ESPER_NN). This does not hold for the full-ocean analysis,
as much smaller trends in AA; are found relative to estimated uncertainties (standard deviation of
0.022 pmol kg™' yr™"). A positive trend is only seen 65.5% of the time (with ESPER_LIR as counterfactual,
55.9% with ESPER_NN).

Uncertainty analysis shows that trends in AA over time along individual transects, which are sometimes apparent
from regression statistics, are not able to be confidently distinguished from either the global trend or from the null
hypothesis that changes are the result of measurement uncertainties (Figure S7 in Supporting Information S1).
Most of the OLS-calculated trends in AAy across 1,000 Monte Carlo runs do not show a clear positive or negative
result (Figure S8 in Supporting Information S1). Furthermore, a visual analysis of the spatial distribution of
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Figure 3. Ordinary least squares (OLS) and robust linear regression (RLM) calculated for surface values only (<25 m depth,
subplots A,B) and over the full depth of available data (subplots C, D) using the ensemble mean of each ESPER routine (A,
C: ESPER_LIR, B, D: ESPER_NN). RLM regression line is overlaid on a two-dimensional histogram showing the
difference between the measured A and ESPER-estimated A (AA) over time. Slopes (m) and p-values (p) for both
regression techniques are shown on each subplot. Positive slopes on all plots indicate that the measured A is becoming larger
than the co-located ESPER-estimated Ar.
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Figure 4. Monte Carlo simulation results. During each run of the Monte Carlo simulation, a single offset randomly chosen
from a normal distribution centered at zero with standard deviation 2 pmol kg~ was applied to all of the measurements made
on a single cruise transect, such that all measurements on each cruise were offset by the same amount but each cruise was
offset by a different random amount. Histogram shows the slope (¢) and standard deviation (o) of the difference in measured
Arand ESPER-estimated A (AA+) over time obtained by ordinary least squares regression for each of the 1,000 Monte Carlo
simulation runs. Subplots A-B: surface values (<25 m depth); subplots C-D: full depth; A, C: ESPER_LIR; B, D:

ESPER_NN.

surface AAy does not show any clear patterns (Figure S3 in Supporting Information S1). Combining individual
transects into groups of regions (see definition of regions in Figure S9 in Supporting Information S1) reduces
uncertainties below the calculated trend for only some regions (Figure 5). Trends and uncertainties on a per-region
basis are given in Tables S1 and S2 in Supporting Information S1.
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Figure 5. Trend in the difference in measured A and ESPER-estimated A} (AAy) over time for each region. Dark purple
points were calculated using ESPER_LIR as counterfactual, and light blue with ESPER_NN. Trends were calculated with
robust linear model regression. Subplot A: surface values only (<25 m); subplot B: full depth of measurements available;
subplot C: trend in AA . calculated for full depth of measurements subtracted from trend in AA- calculated for surface values
only. Error bars represent calculated uncertainties (U) in subplots A and B. In subplot C, the error is calculated by summation
in quadrature of the individual uncertainties U of the corresponding surface and full depth AA; trends.
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Three regions, the North Atlantic, South Pacific, and Indian Oceans show positive trends in AAr in the surface
ocean above the bounds of uncertainty, but only the Indian Ocean shows a non-zero surface ocean trend above the
20 confidence level (Figure 5a). The North Pacific shows a decreasing trend in AAr that strengthens across the
full ocean depth. The Arctic Ocean especially has a high degree of uncertainty, which can be attributed to both the
lower frequency of hydrographic measurements in this basin and the higher uncertainty in ESPER predictions, as
the Arctic is generally a challenging area for ESPER algorithms (Carter et al., 2021). It should be noted that these
trends do not reflect changes in regional A caused by shifts in salinity due to the intensification of the water cycle
(Fine et al., 2017), but instead represent changes in Ay due to shifts in biological processes, as ESPER algorithms
are designed to account for salinity changes (see Section 4.3 for further discussion).

Potential trends in AAr were also examined across different depth ranges (Table S3 in Supporting Informa-
tion S1). Between 500 and 4,000 m, the vast majority of depth ranges showed no significant trend in AAp, and
none showed significance at the 2¢ confidence level. At depths below 4,000 m, a negative trend (generally at 1o
confidence) was detected using both ESPER_LIR and ESPER_NN. This may indicate that diminished biotic
calcification at the surface or increased near-surface dissolution has resulted in a decreasing export of carbonates
to depth, but the low statistical confidence of the trend implies that ESPER or measurement uncertainties are also
plausible explanations, given that measurement uncertainties are nearly constant with depth while changes in Ay
distributions are generally smaller.

Differences in trends in AA on a seasonal basis were observed (Tables S4 and S5 in Supporting Information S1).
Positive trends in surface AAr at the 20 confidence level were found in the winter, spring, and autumn months,
while no statistically significant trend was detected in summer. No statistically significant seasonal trends at the
20 confidence level were detected across the full ocean depth. One plausible explanation for the lack of a sig-
nificant positive trend in surface AAy during summer months could be a decrease in net community production
due to shoaling of the mixed layer brought on by enhanced stratification under a changing climate (Fu
et al., 2016). Reduced nitrate uptake would result in a lower production of At (Brewer et al., 1975; Kanamori &
Ikegami, 1982; Wolf-Gladrow et al., 2007), potentially masking decreases in CaCO; production; however, more
research is needed to investigate this hypothesis.

Furthermore, ESPERs are trained on seasonally biased data. 40.1% of the measurements are made in summer,
while 18.1%, 13.5%, and 28.3% of the measurements are made in spring, winter, and autumn, respectively. This
makes extracting seasonal trends with high confidence challenging. It is also possible that ESPERs have
implicitly captured the summertime trend in A due to a fairly consistent seasonal distribution of measurements
over time (Figure S10 in Supporting Information S1), though this trend would fall within the calculated
uncertainties.

4. Discussion
4.1. Regional Trends in AAp

Unlike in the surface ocean, high uncertainties in the underlying processes make it unclear how the deep and
intermediate ocean will respond to the CO,-biotic calcification and export feedback. Subsurface At could
decrease due to diminished surface export (and thus diminished dissolution) or increase due to higher rates of
shelf or water column dissolution. Regardless, models suggest that the deep response should be sluggish in
comparison with the surface response (Carter et al., 2016). In contrast, spurious apparent A} trends from mea-
surement uncertainties or shifts in methods over time could result in trends that span both the deep and surface
ocean. Therefore, the difference between the surface trend and the full water column trend might provide a more
reliable metric for the impacts of the CO,-biotic calcification and export feedback.

Indeed, the regional variability, which our Monte Carlo analysis shows to be meaningfully impacted by mea-
surement uncertainties, is diminished when considering this difference metric (Figure 5c). In particular, the
larger-than-normal trend in the Indian Ocean and the smaller-than-normal trend in the North Pacific are brought in
line with the global trend when this metric is applied. The difference between the surface and full water column
trends in AAris 0.146 + 0.072 pmol kg ™' yr™" in the Indian Ocean and 0.035 + 0.059 pmol kg~' yr™' in the North
Pacific using ESPER_LIR as the counterfactual (Table S1 in Supporting Information S1). Both the Indian (Miiller
etal., 2023) and the North Pacific (Carter, Sharp, Dickson, et al., 2024) are regions where there have been shifts in
A1 measurement and adjustment practices over time, so we contend the surface-to-deep trend difference is likely a
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more reliable metric for these regions. Furthermore, this supports our assertion that much of the regional vari-
ations we see can be attributed to measurement uncertainties. There may be additional interesting regional pat-
terns to examine during this global signal, but we leave this to future work and maintain that this will remain
statistically challenging until more decades of repeated hydrographic A+ measurements are available.

4.2. Sources of Error

Errors in this analysis could arise from long-term trends in predictor variables, biases potentially inherent to
ESPER_LIR or ESPER_NN, or biases in GLODAP data. One explanation for the trend in AAy is that the strategy
for removing the impacts of natural variations by using ESPERSs as counterfactuals relies on predictor information
that may also be influenced by separate long-term trends. However, we have used many predictor combinations
and shown that variations across regression equations, which variably omit each of the predictors besides Sp, are
comparatively small (Figure 2). We have included these variations in our overall trend uncertainty estimate U, and
we consider long-term trends in Sp (Which is common to all ESPER variants) separately below.

It is also possible that the apparent trend is due to a bias inherent to the structure of ESPER_LIR or ESPER_NN.
However, these are independent algorithms trained on nearly identical training data, which indicates that the trend
is a product of A} measurements and not the algorithm used to account for natural variability. It is also possible
that the data used to train the algorithms, which includes data from many hydrographic cruises that were never
occupied more than once and thus never appear directly within this study, contain a regional or measurement bias.
To assess this, the analysis was repeated with a version of ESPER_LIR (ESPER_LIR_GO-SHIP) trained using
identical training scripts to those used for ESPER_LIR after limiting the training data to the data used for the AA.
calculations in this study (Figure S11 in Supporting Information S1). Statistically equivalent trends in AA+ were
found with this variant.

Collectively, these observations provide some support for the statement that the results we find are not an artifact
of the algorithm used as a counterfactual or its training data. We note that the GLODAPv2 adjustments are made
on the basis of reducing apparent mismatches between measurements made by repeated cruises in the deep and
interior oceans. It is possible that adjustments made on this basis could reduce or eliminate the deep ocean Ay
trend.

4.3. Attribution to CO,-Biotic Calcification and Export Feedback

To discern if the observed trend in surface AAr can be attributed to the CO,-biotic calcification and export
feedback, other processes affecting the distribution of surface A were considered (Fry et al., 2015). These include
(a) changes in the rate of riverine discharge of A} (Cai et al., 2008), (b) increases in A input from increased sea ice
melt (Rysgaard et al., 2012), (c) dilution of surface A by increased land and sea ice melt inputs of freshwater to
the surface, (d) changes in the stratification of the ocean and therefore shifts in upwelling patterns of subsurface
A (Lee et al., 2006), (e) changes in organic matter production and export (Wolf-Gladrow et al., 2007), and (f)
trends in Ay distributions due to fluctuations in the ocean's state caused by glacial/interglacial cycles (Yu
et al., 2015). For each of these processes, we consider both how this process would change the distribution of
alkalinity and the degree to which the empirical ESPER relationships may or may not be expected to counter those
changes.

Simple A budgets were performed to address processes (a) and (b) and are outlined in Texts S1 in Supporting
Information S1 (Cai et al., 2008; Gudmundsson et al., 2021; Stets et al., 2014) and S2 (Dieckmann et al., 2008; Ji
etal., 2021; Perovich et al., 2020; Rysgaard et al., 2012; Smith et al., 2020). As a result of increases in the rate of
riverine discharge of Ay (process a), we estimate that the rate of surface A; increase could be up to
0.028 pmol kg_1 yr_l, approximately 3 times less than the observed trend in AA+, indicating that this process is
not sufficient to explain the observed trend. Increases in the rate of sea ice melt (process b) are similarly less than
the observed trend, as we estimate that the rate of surface A increase from this process is 0.010 pmol kg™ yr™",
approximately 7 times less than the observed trend.

Process (c), the effect of dilution by freshwater on surface At due to increases in melting of both land and sea ice,
is addressed with a salinity budget (Text S3; Carter et al., 2014; Cox & Weeks, 1974; Hugonnet et al., 2021; Smith
et al., 2020). It is estimated that surface ocean Sp could be decreasing at a rate of up to —0.03 dec™", which would

cause a decrease in surface A over time due to dilution with freshwater (Cox & Weeks, 1974; Hugonnet
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et al., 2021). ESPERs predict a positive correlation between A and Sp, as the average surface ocean coefficient
reflecting the sensitivity of Ay to Sp (AAp:ASp) calculated for use in ESPER_LIR is 55 pmol Ay kg™'. This
coefficient implies that ESPER-predicted surface A could be changing by —0.165 pmol kg ™' yr™' (55 pmol A
kg™" * —0.03 dec™") due to salinity changes. The global surface ocean A:Sp ratio, which can also be considered a
slope due to the assumption of a freshwater end-member with zero A+, is approximately 66.4 pmol A kg™ (mean
surface ocean Ay and Sp of 2305 pmol kg™' yr~! and 34.71, respectively, are taken from Carter et al., 2014).
Therefore, this freshwater would be expected to decrease measured surface ocean A by approximately 1.2
(66.4 pmol Ap kg™'/55 pmol A kg™") times as much as it would decrease ESPER-estimated A. Thus, this
process might be expected to lead to a negative trend in AA+ (—0.033 pmol kg™ yrh.

Intensification of the hydrological cycle is projected to occur under climate change and would influence sea
surface salinity distributions (Durack & Wijtfels, 2010). Though shifts in evaporation and precipitation patterns
locally would not change the global mean value of A+, this process could affect trends in AAt on a regional scale
(Fine et al., 2017). This possibility is explored in Text S4 in Supporting Information S1 (Carter et al., 2014;
Durack & Wijffels, 2010). Applying the same methodology used to quantify the effects from potential long-term
salinity changes (process c), we find that in the Atlantic, where salinity has increased by 0.078 = 0.095 from 1950
to 2000 (Durack & Wijffels, 2010), a salinity increase could account for a trend in AA of +0.022 pmol kg ™" yr™".
In the Pacific, which freshened by 0.044 + 0.064 over the same period (Durack & Wijffels, 2010), there could be a
trend in AA; of —0.010 pmol kg™ yr™". In the Indian Ocean, no significant trend was detected in salinity over this
period. Even the most extreme changes in salinity reported by Durack and Wijffels (2010), found only in localized
regions, of +0.2 from 1950 to 2000 would only be expected to produce a localized AA; trend of

+0.05 pmol kg™' yr~!, a number that is still less than the globally averaged trend in AA.

Changes in stratification could also change the supply of At from below the surface mixed layer (process d).
However, a related study for nitrate estimated that increases in stratification are leading to a decrease in surface
ocean nitrate of —0.18 pmol L™ dec™ (—0.018 pmol kg™' yr™') as the supply from below declines (Gregg &
Rousseaux, 2019). As Ay tends to increase with depth in the ocean (on average), an increase in stratification would
be expected to lead to a decrease in surface A rather than an increase, and thus this change seems unlikely to
explain our observations.

If, however, the decline in surface nitrate is due instead to increased organic matter production and export
(process e) with a constant supply of nitrate and A and an unchanged carbonate mineral cycle (or a concentration
of biological production in a shallower mixed layer), this would be accompanied by an increase in Ay due to
charge balance (Brewer et al., 1975; Kanamori & lkegami, 1982; Wolf-Gladrow et al., 2007). This case represents
the extreme other end of the spectrum of the nitrate/A relationship. Even when (unrealistically) attributing the
surface nitrate decline calculated by Gregg and Rousseaux (2019) entirely to this process, we estimate that the
corresponding increase in A required to satisfy the charge balance would be 0.024 pmol kg™ yr™!, 3 times less
than the observed trend in surface Ay increase (Text S5 in Supporting Information S1; Gregg & Rousseaux, 2019;
Wolf-Gladrow et al., 2007).

We also consider the possibility that these processes could bias the trend by decreasing the A estimated by
ESPERs as surface nitrate is decreasing. ESPERs predict a positive correlation between Ap and nitrate (average
surface ocean Ar:nitrate ratio calculated for use as coefficient in ESPER_LIR is 0.110 pmol pmol™"), indicating
ESPER-predicted surface A could have an implicit trend of —0.0020 pmol kg™ yr™' (0.110 pmol Ay [pumol
nitrate] ™" * —0.018 pmol kg™' yr™!), which is less than 3% of the magnitude of the observed trend (ESPER_LIR,
RLM). This sensitivity would only affect predictions from the 50% of ESPER equations that include nitrate as a
predictor, so this process would only be expected to change the mean AA+ trend by 4+0.00099 pmol kg™" yr™'
even if the supply of surface ocean A were somehow unaffected by the decrease in vertical mixing.

This analysis is repeated to determine the possible effects of a bias in ESPER estimates due to a positive trend in
sea surface temperature (SST). Garcia-Soto et al. (2021) quantified a global average SST increase of
0.280 =+ 0.068°C dec™' from the years 2010-2019. The average surface ocean Ay:T coefficient calculated by
ESPERs is —0.338 pmol kg~ A °C™, indicating that ESPER-predicted surface Ay could have an implicit trend
of —0.0095 pmol kg™ yr™' (=0.338 pmol kg™' A °C™" * 0.280°C dec™"). Similar to nitrate, this would only
affect 50% of predictions by ESPER equations, therefore biasing the mean AA trend by +0.0047 pmol kg ™" yr™",
which is about 15 times less than the observed trend in AAr.
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Due to the effects of glacial/interglacial cycles on the Earth system (process f), it cannot be assumed that Ap
distributions in the ocean were in a steady state prior to the industrial era. However, literature suggests that Ay in
the surface ocean was likely to decrease slightly during the pre-industrial Holocene (Brovkin et al., 2019; Elsig
et al., 2009; Yu et al., 2015). As implicit biases in the salinity and nitrate predictor variables, which represent
abiotic and biotic processes, have already been addressed, it is unlikely that a non-steady state ocean is causing the
observed trend in AA} and instead it seems likely that anthropogenic effects are at the root of this change.

4.4. Possible Biological and Chemical Mechanisms

There are four mechanisms related to biotic calcification that could lead to the observed increase in surface ocean
alkalinity. First, calcifying organisms could be preferentially decreasing their rates of calcification over time.
Alternatively, the number of calcifying organisms in the ocean could be decreasing. Third, it is possible that
sedimentary carbonates are being preferentially redissolved instead of buried due to an acidifying ocean. Finally,
the rate of dissolution of carbonates in shallow waters could be increasing, and thus the export of alkalinity from
the surface ocean could be decreasing or the exported alkalinity could be increasingly redissolved at shallow
depth and returned to the surface through mixing processes. We did not find sufficient observational evidence to
distinguish between these mechanisms.

Some of these four mechanisms might be expected to result in different signals in alkalinity distributions, as
explored to some extent by Liang et al. (2023). These authors assess how well model simulations of various
carbonate mineral dissolution mechanisms reconstruct the observed alkalinity distribution. They note that several
dissolution processes result in similar preformed and excess alkalinity distributions, and that the best match is
found for constant-dissolution with depth or dissolution that is partially mediated by respiration in the upper
ocean. Our approach is focused on small changes in the ocean alkalinity distribution over several decades rather
than the shape of the global alkalinity distribution, which results from processes acting over the thousand year
timescales of ocean overturning. For this reason, our approach is even less well-suited to reveal the exact pro-
cesses behind the observed trend. We are therefore unable to distinguish between these mechanisms on the basis
of our findings.

A review of laboratory studies has found mixed responses of all calcifying species to ocean acidification (Leung
et al., 2022), though for calcifying plankton, a decrease in calcification rates is often observed under ocean
acidification scenarios (Bednarsek et al., 2019; Kuroyanagi et al., 2021; Meyer & Riebesell, 2015). Furthermore,
the magnitude of the observed trend in surface ocean AA is relatively small compared to uncertainty in satellite-
based measurements of particulate inorganic carbon (PIC), which estimate the average amount of CaCO; pro-
duced annually by coccolithophores to be 1.42 + 1.69 PgC (Hopkins & Balch, 2018). Nevertheless, we believe we
have shown that the carbonate system is not in steady state in the anthropocene and that our findings are consistent
with the CO,-biotic calcification and export/burial feedback hypothesis.

4.5. Applications to Marine Carbon Dioxide Removal

New technologies, referred to as marine carbon dioxide removal (mCDR), have been proposed to harness the
ocean's capacity as a carbon sink to store atmospheric CO, (National Academies of Sciences et al., 2022). One
technique, ocean alkalinity enhancement (OAE), involves elevating levels of Ay in the surface ocean such that
atmospheric CO, is drawn down as the surface ocean and atmosphere re-equilibrates via air-sea gas exchange
(Kheshgi, 1995; Renforth & Henderson, 2017). By some measures, OAE is a “reverse experiment” for ocean
acidification. In an OAE scenario, instead of an accumulation of surface A+, the CO,-biotic calcification feedback
would cause a reduction in surface A as some of the additional A from OAE is diverted to biotic calcification.
This would result in a loss of efficiency for an OAE deployment because precipitation of carbonate minerals in
seawater drives CO, from the ocean to the atmosphere in a ratio of about 0.6-0.7 mol CO, per mole precipitated
CO32_ (Frankignoulle et al., 1994), which would need to be accounted for to accurately determine the amount of
CO, removed from the atmosphere. This study provides an observational constraint on what the magnitude of this
inefficiency could be in an OAE operation, indicating that while the CO,-biotic calcification feedback will not
likely be a large loss term, it should be counted in the overall budget. Furthermore, the trend in Ay found in this
study implies that long-term evaluation of OAE may need to account for non-steady state trends in the “natural”
alkalinity cycle.
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However, increased rates of calcification due to an influx of Ay could cause other changes in an OAE scenario.
Higher levels of CaCOj; could potentially act to increase the amount of ballast material for particulate organic
carbon, which could increase the efficiency or remineralization length scale of biological carbon export, which is
known as the “more ballast feedback mechanism” (Bach et al., 2019). This could potentially oppose the reduction
in available alkalinity due to the CO,-biotic calcification feedback to some degree. Further research must be done
to clarify the relative strength of these processes in order to quantify their effects on carbon export during an OAE
deployment.

5. Conclusions

Algorithms designed to predict seawater properties, including total alkalinity (A), are used as a counterfactual to
extract a trend in surface A} measurements performed on repeat hydrographic cruises. This >30 years trend can
likely be attributed to the hypothesized CO,-biotic calcification feedback, in which increasing oceanic CO,
uptake, worsening ocean acidification, and decreasing rates of biotic calcification and export cause accumulation
in surface Ap. Over the past 30 years, approximately 20 Tmol of additional A has accumulated in the surface
ocean due to this buildup, equivalent to over half the annual input of A} via riverine sources (Cai et al., 2008).
Assuming complete equilibration, this would have increased the ocean anthropogenic carbon burden by an
estimated 0.2%, or 0.20 PgC (Text S6 in Supporting Information S1, Carter et al., 2014; Humphreys et al., 2022;
Lan & Keeling, n.d.). This does not account for the potential impacts of reduced calcification on the biological
carbon pump, such as a decreased flux of organic carbon to the deep sea due to lower availability of CaCOj; ballast
materials (Riebesell et al., 2009).

It is well understood that marine anthropogenic CO, accumulation has influenced ocean carbonate chemistry and
decreased the ocean's capacity to store additional atmospheric CO,. Our findings here point to a global slowdown
in biotic calcification and export and a resulting buildup in surface A, which increases the surface ocean's ability
to uptake CO,. In summary, we contend that anthropogenic CO, emissions are quantifiably changing the pro-
cesses by which the marine carbon cycle regulates Earth's climate on a planetary scale, likely by disrupting
patterns in the life cycles of calcifying organisms. Ocean acidification is now both a symptom and a cause of
measurable anthropogenic perturbations to the global carbon cycle.

Though signatures of the CO,-biotic calcification feedback can be detected on a global scale, we do not have
enough repeat hydrographic measurements to assess how the feedback operates on a regional basis or along
individual cruise transects. Understanding this phenomenon on a local scale would be necessary to project
changes in key ecosystems under climate change and to accurately model the carbon uptake of mCDR de-
ployments. A larger scale of measurements, especially in rapidly changing and relatively under-sampled regions
such as the Arctic, would enable us to place further constraints on the effect of this feedback within the marine
carbon cycle.

Data Availability Statement

The GLODAPv2.2023 data used in the study are available at the National Oceanic and Atmospheric Adminis-
tration (NOAA)'s National Centers for Environmental Information (NCEI) Ocean Carbon and Acidification Data
System (OCADS) via https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0283442/.

* Lauvset et al. (2022, 2023) and Olsen et al. (2019, 2020).

The Empirical Seawater Property Estimation Routines (ESPERs) used for the prediction of alkalinity co-located
with GLODAP measurements are preserved at https://github.com/BRCScienceProducts/ESPER and developed
by B. R. Carter.

* Carter et al. (2021).

The PyCO2SYS software package used for calculations in Text S6 in Supporting Information S1 is available at
https://zenodo.org/records/14506565.

* Humphreys et al. (2022).
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Erratum

The originally published version of this article contained typographical errors. The process identifiers have been
changed in Section 4.3. In addition, the supporting information has been updated. This may be considered the
authoritative version of record.
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