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ABSTRACT

Analyses of Doppler radar data and environmental parameters for 300 tornado cases are used to propose 
an alternative framework for tornado intensity prediction during pretornadic stages of ongoing storms, 
conditional on tornadogenesis. This framework is founded on the robust relationship (R² = 0.69) between 
pretornadic mesocyclone width and the EF rating of the subsequent tornado. In contrast, the linear relationship 
between pretornadic mesocyclone intensity and EF scale is much weaker (R² = 0.29). Environmental 
information for each case was additionally used to explore relationships between environmental parameters 
and tornado intensity. Such relationships depend in part on how the tornado-intensity categories are 
distributed [i.e., nonsignificant (EF0–1) versus significant (EF2–5), or weak (EF0–1) versus strong (EF2–3) 
versus violent (EF4–5)]. Low-level shear parameters discriminate the environments of significant tornadoes 
from nonsignificant tornadoes, but not the environments of violent tornadoes from strong tornadoes. The 
converse is true for thermodynamic parameters. Operational implementation of this framework for the 
purposes of impact-based warnings will require real-time, automated quantification of mesocyclone width in 
addition to intensity and other attributes. The information gained from the pretornadic analysis demonstrated 
in this study would allow an operational forecaster to be aware of—and communicate—information about 
potential tornado intensity in warning text to the public before a tornado develops to better protect life and 
property. Currently, these relationships are being utilized in machine learning models for binary prediction of 
non-significant versus significant tornado intensity where skill is being demonstrated.

1. Introduction

 It is well documented that strong to violent 
tornadoes cause a disproportionate amount of damage 
and fatalities (Ashley 2007; Simmons and Sutter 2011; 
Anderson-Frey and Brooks 2019). Implied by this 
statement is the need for robust operational tools that 
focus on tornado intensity rather than simply on 
tornadogenesis, especially given that most tornadoes 
are nonsignificant (EF0–EF1; Brooks et al. 2003). 
Toward this end, there have been efforts to develop 
methods to diagnose the intensity of an ongoing 
tornado. As first successfully demonstrated by Toth et 
al. (2013), these methods primarily involve the use of 
radar-based characteristics of the tornadic circulation 
and parent storm (also see Kingfield and LaDue 2015; 
Gibbs 2016; Thompson et al. 2017; Van Den Broeke 
2017; Smith et al. 2015, 2020a), which also can be 
coupled to the use of environmental parameters (e.g., 

Cohen et al. 2018), such as the supercell composite 
parameter (SCP) and significant tornado parameter 
(STP; e.g., Thompson et al. 2012). Reiterating, these 
methods require the existence of a tornado, and thus 
their applications are conditional on tornadogenesis 
[Thompson et al. (2017) also included null cases in 
their analysis].
 There have been fewer efforts to develop methods 
to predict tornado intensity during pretornadic stages 
of ongoing storms. These appear to include the 
following: (i) Gibbs (2016) and Gibbs and Bowers 
(2019), who found that the depth, rotational velocity, 
and temporal evolution of the width and rotational 
velocity of pretornadic mesocyclones had operationally 
useful skill in differentiating between either 
significantly tornadic, weakly tornadic, or nontornadic 
supercells, (ii) Marion et al. (2019), who used satellite-
diagnosed overshooting-top area (OTA) to gauge 
potential tornado intensity, (iii) Sessa and Trapp (2020; 
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hereinafter ST20), who demonstrated that pretornadic 
mesocyclone width (differential velocity) was strongly 
(only moderately) correlated to tornado intensity, (iv) 
Baerg et al. (2020), who used the characteristics of the 
lifetime of pretornadic circulations at the 0.5° radar 
elevation angle combined with the STP to produce 
tornado probabilities preceding tornadogenesis, and 
found a more substantial increase in tornado 
probabilities in the 15 min preceding tornadogenesis for 
significant tornadoes (EF2+) than for non-significant 
tornadoes (EF0–1), and (v) most recently, French and 
Kingfield (2021) who found, using differential 
reflectivity (ZDR) as a proxy for midlevel updraft area 
and strength, that stronger tornadoes tended to have a 
larger ZDR column area at the time of tornadogenesis 
than did weaker tornadoes and nontornadic supercells 
at their time of peak 0–1-km azimuthal shear.
 The studies by Marion et al. (2019), ST20, and 
French and Kingfield (2021) all provide observational 
support of the Trapp et al. (2017) hypothesis that 
intense tornadoes should form more readily out of wide, 
rotating updrafts. For reference, the simplistic 
theoretical underpinning of this hypothesis is 
conservation of angular momentum (or, equivalently 
vortex stretching); a more complicated dynamical 
pathway linking updraft area to downdraft area to 
baroclinically generated horizontal vorticity to near-
ground vertical vorticity is described by Trapp et al. 
(2017; also see Marion and Trapp 2019). The results of 
these studies may seem inconsistent with the pervading 
guidance relating “clear and tight circulations” to 
significant tornadoes (e.g., Thompson et al. 2017; 
Smith et al. 2020a). This guidance, incidentally, also is 
based fundamentally on angular-momentum-
conservation or vortex-stretching concepts. However, 
the clear and tight characterization applies specifically 
to the circulation associated with an ongoing tornado 
[i.e., a circulation that simultaneously represents the 
tornado and, in most cases, its parent, mesocyclonic 
vortex; see section 2c of Smith et al. (2015)]. In 
contrast, the “wide-mesocyclone–significant-tornado” 
relationship revealed by ST20 applies to pretornadic
circulations. Such a pretornadic focus eliminates the 
effects of the tornado itself on the mesocyclone 
characteristics and, most importantly, allows for the 
development of tools for tornado-intensity prediction 
conditional on tornadogenesis, rather than for tornado-
intensity diagnosis conditional on tornadogenesis.
 Herein we use an expanded dataset to provide 
further evidence of the robust relationship between 

tornado intensity and pretornadic mesocyclone width. 
This relationship is shown to hold equally well for 
pretornadic mesocyclones quantified at heights <1 km 
and at heights extending to ~2 km. We also use 
environmental information for each of the cases in this 
dataset to explore relationships between environmental 
parameters and tornado intensity. We show that such 
relationships depend in part on how the tornado-
intensity categories are distributed. For example, low-
level shear parameters discriminate the environments of 
significant tornadoes from nonsignificant tornadoes, but 
not the environments of violent (EF4–5) tornadoes 
from strong (EF2–3) tornadoes. The converse is true for 
thermodynamic parameters. Finally, we discuss how 
our results can be implemented in an operational 
setting. This includes the use of machine learning for 
binary, tornado intensity prediction.  

2. Data and methods

a. Development of radar-based dataset 

 ST20 assembled an observational radar dataset of 
102 tornado cases that encompassed a reasonable 
sample of parent-storm morphologies, seasonal and 
geographical diversity, and variations in environmental 
conditions. For the purposes of the current study and its 
companion (e.g., Sessa and Trapp 2022), the dataset 
was expanded to 300 tornado cases primarily from 
2019 and 2020 (Fig. 1). Cases were selected using the 
NCEI Storm Events Database (https://www.ncdc.noaa.
gov/stormevents/). The basic case-selection methods of 
ST20 were employed. Summarizing, it was required 
that all tornadoes were within ≤100 km of a WSR-88D, 
to lessen the impact of radar range and beam width 
limitations (e.g., Wood and Brown 1997). In addition, 
each tornado had to be the first produced by its 
respective parent storm. This restriction was imposed to 
avoid potential confusion about how to classify a 
mesocyclone as pretornadic when in the presence of 
ongoing/dissipated tornadoes; it is demonstrated below, 
however, that the overall conclusions of the study 
should be insensitive to this restriction. Finally, no 
tornado within 1 h and 80 km of another tornado was 
included in the dataset if its EF rating was more than 
one EF category lower than the peak EF rating within 
this time and space range. This was to ensure the 
strongest tornadoes within a particular environment 
were sampled without leading to the removal of too 
many cases from this condition. The expanded dataset 
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is composed of the following: 78 EF0s, 116 EF1s, 59 
EF2s, 33 EF3s, 10 EF4s, and 4 EF5s, which generally 
reflects the overall climatological distribution (Brooks 
et al. 2003). The relatively smaller number of EF0s was 
due to the tendency for insufficient pretornadic radar 
sampling of such events [i.e., weak tornadoes often 
formed and then dissipated within one or two radar 
volume scans and thus were not preceded by a time- 
and space-resolvable pretornadic circulation (especially 
for the cases farthest from the radar)]. The difficulty in 
applying this technique to the weaker, more diffuse 
circulations that tend to precede EF0 tornadoes is a 
limitation, but the information provided by these cases 
with short-lived pretornadic circulations is still 
important to include because it is relevant in a real-time 
operational setting. Additionally, if a storm contains a 
poorly resolved, weak, diffuse mesocyclone, it should 
be intuitive that the storm has a very low probability of 
producing a significant tornado if any tornado at all, and 
this also highlights the operational difficulty of 
identifying the weaker rotation signatures that may 
precede weak tornadoes (especially for quasi-linear 

Figure 1. Geographic distribution of the 300-case 
dataset (April 2011–October 2020), also showing 
convective mode [circles: Discrete cases (DSC), 
squares: Quasi-linear convective system cases (QLCS), 
triangles: Multicell cases (MUL)], tornado intensity 
(increasing intensity with increasing shape size), and 
season (red: warm or blue: cool).  Click image for an 
external version; this applies to all figures and 
animations hereafter.

convective system cases and storms that are a greater 
distance from the radar).
 The Gibson Ridge radar software (GR2Analyst) 
was used to manually analyze single-site, WSR-88D 
level II data for each case. Reflectivity criteria (see 
ST20, and references therein) were employed to 
categorize the convective mode of the parent storm of 
each tornado. Of the 300 cases in the dataset, 130 were 
associated with discrete supercells (DSC), 124 with 
quasi-linear convective systems (QLCS), and 46 with 
clusters or multicells (MUL). As explained in more 
detail in ST20, Doppler velocity data were then used to 
quantify the pretornadic mesocyclone width, defined 
here as the linear distance between the inbound and 
outbound velocity peaks in the vortex couplet, as well 
as the pretornadic mesocyclone intensity, equated here 
to the differential velocity (ΔV) computed using the 
inbound and outbound velocity peaks. From ST20 
[methods similar to Smith et al. (2012)], the presence of 
a mesocyclone required a peak ΔV ≥10 m s–1 over a 
horizontal distance of <7 km, over the depth of the three 
lowest radar elevation angles, during at least one 
volume scan. The pretornadic mesocyclone metrics 
(Table 1) were evaluated at the three lowest radar-
elevation angles, for up to four volume scans during the 
lifetime of the identifiable mesocyclone, through the 
volume scan just prior to the time of reported 
tornadogenesis. To clarify, at least one pretornadic 
volume scan was required. There were mesocyclones in 
the dataset that had pretornadic lifetimes exceeding 
four volume scans, and although there were consistent 
results when a greater number of scans were included 
(when present), analysis of characteristics beyond four 
volume scans did not provide unique information. This 
was done to attain a representative measure of the 
mesocyclone and its evolution without having 
unnecessary data collection. The percentages of cases 
in which four, three, two, and one volume scan were 
used in their analysis are 56%, 21%, 19%, and 4%, 
respectively.
 Before including a case, the quality of the velocity 
data was thoroughly considered to ensure the maximum 
inbound and outbound velocities were associated with 
a mesocyclone. When contaminants such as three body 
scatter spikes and dealiasing issues prevented a 
mesocyclone from being resolved, the case was not 
used. Additionally, to further ensure that the velocity 
maxima were associated with a rotating updraft instead 
of divergence or convergence signatures the positioning 
of the extrema with respect to one another and the larger 
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storm structure from reflectivity data were considered. 
Based on the analyses presented by Wood and Brown 
(1997), the potential errors in mesocyclone width at 
radar ranges ≤100 km appear to be ≤500 m, and the 
potential errors in mesocyclone intensity within these 
same ranges are ≤3 m s–1. While these are potential 
sources of inconsistencies in the radar analyses, the 
larger sample size of events studied should represent 
the spread of error that is inherent in radar studies, and 
there is consistency between the methods here and 
operational practice as these radar range and beam 
width discrepancies (e.g., averaging velocities across a 
beam width, separation of circulation center from 
center of beam) would be present in real-time radar 
assessments as well.
 We acknowledge that there are other mesocyclone 
metrics that could have been considered, including 
mesocyclone depth, mesocyclone width and intensity 
over more than the lowest three elevation angles, and 
the temporal evolution of width, depth, and intensity 
(Gibbs 2016; Gibbs and Bowers 2019). Characteristics 
in polarimetric variables such as ZDR columns and arcs 
also could have been considered (Van Den Broeke 
2017, 2020; French and Kingfield 2021). However, 
pretornadic mesocyclone width and intensity most 
directly relate to the Trapp et al. (2017) hypothesis on 
tornado intensity, and therefore are the characteristics 
of focus herein. Indeed, as will be shown, mesocyclone 
width is a robust predictor of tornado intensity for the 
cases in this expanded dataset.
 Although we have no specific hypothesis linking 
mesocyclone width and/or intensity to tornadogenesis, 
there may be utility in exploring the analyzed 
mesocyclone characteristics in relation to 
tornadogenesis through the inclusion of a small sample 
of nontornadic or null cases. Herein, nontornadic 
storms were defined as storms that were tornado-
warned by the National Weather Service but did not 
produce a reported tornado. The analysis reference time 
(T-0) was the time of the first tornado warning issued 

for a non-tornado producing storm; thus, T-0 is meant 
to correspond to the time of tornadogenesis failure, as 
originally introduced by Trapp (1999). Only storms 
with one circulation within the warning box were 
included (e.g., QLCS cases with large warning boxes 
including multiple circulations were excluded). The 
Iowa Environmental Mesonet storm warning database 
was used to identify tornado warnings that were the first 
to be issued for a particular storm. The Storm Prediction 
Center (SPC) severe weather events archive (https://
www.spc.noaa.gov/exper /archive/event .php?
date=20211210) as well as the NCEI Storm Events 
Database (https://www.ncdc.noaa.gov/stormevents/) 
were used to confirm that a particular storm and 
associated mesocyclone never produced a tornado. If 
this basic criterion was met, then radar data were 
analyzed to confirm that the case met the other criteria 
outlined above (e.g., within 100 km of a radar, presence 
of a mesocyclone over the lowest three radar elevation 
angles). The mesocyclone characteristics over the pre-
warning time were then analyzed following the same 
methods applied to tornadic storms. Cases were 
selected from the previous two years and are seasonally 
and geographically diverse. As will be discussed, the 
mesocyclone widths and intensities of our 35 
nontornadic cases are distinguishable from those 
associated with EF3+ tornadic cases, but not from 
weaker tornadic cases.

b. Development of environmental dataset

 There are numerous factors to consider when 
evaluating near-storm, pretornadic environmental 
conditions (e.g., Brooks et al. 1994; Thompson et al. 
2003; Potvin et al. 2010, Coniglio 2012; Parker 2014; 
Smith et al. 2015), such as how to sample the 
environment (e.g., proximity, inflow or pre-/ongoing/
post-convective environments) and what time and 
space scales are most appropriate. For example, Potvin 
et al. (2010) found using a large dataset of observed 

Parameter Description 

Total average pretornadic mesocyclone width (km) The mean mesocyclone width over the lowest three elevation angles and all volume scans 
analyzed during the pretornadic period. 

Peak pretornadic mesocyclone intensity (ΔV, m s-1) The maximum ΔV over the lowest three elevation angles and all volume scans analyzed during 
the pretornadic period. 

Distance from radar (km) The distance from the radar to the approximate location of the tornado at the time of 
tornadogenesis using the 0.5° elevation angle scan closest to the time of tornadogenesis. 

Convective mode Either discrete supercell, QLCS, or multicell [see Sessa and Trapp (2020) for further 
description] 

Table 1. List of pretornadic, radar-based parameters analyzed.
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proximity soundings associated with significant 
tornado reports that there appears to be a favorable 
spatiotemporal distance from a thunderstorm-related 
event that it is close enough to capture the background 
environment of the storm while being far enough away 
to minimize impacts of a storm’s influence on the local 
environment (often referred to as convective 
feedbacks). This optimum spatiotemporal distance was 
found to be within 40–80 km and 1–2 h of the storm or 
event, and several studies have adopted these guidelines 
(e.g., Coniglio 2012; Reames 2017; Coniglio and 
Parker 2020), although only one sounding was used for 
each storm and only differences in distance, not 
azimuth, were considered.
 One issue with rawinsonde datasets is that they 
often lack adequate spatial and temporal coverage. 
Model-based soundings have high spatial and temporal 
resolution, but also have model biases and inaccuracies, 
dependences on model parameterizations, and potential 
convective feedbacks that can result in errors in model 
soundings as compared to observed soundings in a pre-
convective environment (Thompson et al. 2003; 
Coniglio 2012; Laflin 2013). Even with these 
limitations, previous studies have concluded that model 
analysis soundings provide a reasonable proxy for 
observed soundings in severe thunderstorm 
environments, and that certain sounding parameters 
have skill in identifying supercell and tornado 
environments, especially when using 0- and 1-h 
analysis data (Markowski et al. 2003; Thompson et al. 
2003; King and Kennedy 2019). 
 Model soundings from the Rapid Update Cycle 
(Benjamin et al. 2004) and the Rapid Refresh 
(Benjamin et al. 2016) have been used in studies of 
supercell and severe thunderstorm environments. 
Several studies have sampled the environment from the 
nearest analysis grid point at the closest hour prior to a 
significant severe event (Markowski et al. 2003; 
Thompson et al. 2003, 2007; Grams et al. 2012; 
Brotzge et al. 2013; Nowotarski and Jensen 2013). 
Others have sampled the environment at the grid point 
of maximum STP within a warning area or a certain 
distance to the storm (Smith et al. 2015; Anderson-Frey 
et al. 2016). To increase the representativeness of 
surface conditions, some studies combined the model 
analyses with objectively analyzed surface 
observations (Thompson et al. 2007; Coniglio 2012; 
Grams et al. 2012; Thompson et al. 2012).  
 Guided and motivated by the previously described 
studies, the 13-km Rapid Refresh Version 3 (RAP) 

analysis data from the THREDDS database (https://
www.ncei.noaa.gov/access/thredds-user-guide) were 
used herein. Beginning with the 3D state variables from 
the RAP analysis, 42 desired environmental variables 
(Table 2) were computed either manually or using the 
Unidata MetPy python module (May et al. 2022). The 
RAP analysis time nearest but prior to the time of 
tornadogenesis was used for the computations. For 
example, if tornadogenesis for a particular case took 
place at 2132 UTC, then the 2100 UTC RAP analysis 
hour was used. This choice of analysis time was based 
on experimentation, as was the choice of an analysis 
domain with horizontal dimensions 130 km × 130 km, 
centered on the RAP grid point closest to the location of 
tornadogenesis. The domain was not centered on the 
grid point closest to the greatest EF rating because we 
cannot assume reliable spatial coverage of damage 
indicators along a tornado path, nor can we assume that 
EF ratings would be continuous along a given damage 
path even with an abundance of damage indicators. To 
limit the impacts of convective feedbacks (or so-called 
convective contamination), any grid point with a 1-km 
AGL simulated reflectivity >20 dBZ was excluded from 
the sampling domain. Additionally, any grid point with 
a most-unstable (MU) convective available potential 
energy (MUCAPE) <75 J kg–1 was excluded. This 
threshold was chosen after sensitivity tests were 
completed using different thresholds with cases where 
a cold front or warm front dissected the sampling box. 
Thus, this successfully acted to remove grid points from 
behind cold fronts or ahead of warm fronts without 
removing grid points that represented the near-storm 
environment. Last, values of sampled parameters ≤0 
were excluded. These criteria reduced the number of 
grid-point values in the sampling domain and therefore 
varied the number of grid-point values from case to 
case.
 The maximum, mean, and median value of each 
parameter in the 130 km × 130 km sampling domain 
were calculated across cases, as was the standard 
deviation, to understand how each parameter varied 
across the sampling domains. Based on 
intercomparisons across several cases, the mean value 
in the sampling domain was chosen for the analyses 
presented in section 3. This allowed for the near-storm 
environment to be represented by multiple grid points 
rather than by only one (i.e., the maximum value, or 
value closest to the location of tornadogenesis). 
Because the focus of this analysis is on relationships 
between the near-storm environment and tornado 

https://www.ncei.noaa.gov/access/thredds-user-guide
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intensity, considering a larger area that the storm and 
tornado may experience is particularly relevant.  

3. Analysis

a. Pretornadic characteristics of mesocyclones 
 associated with significant versus nonsignificant 
 tornadoes

 The box-and-whisker plot in Fig. 2a confirms the 
robust relationship found by ST20 between pretornadic 
mesocyclone width and the EF of the resultant tornado. 
In the linear regression between pretornadic 

mesocyclone width and EF scale, the coefficient of 
determination (R2) is 0.69 (Fig. 2b), which supports the 
remarkably clear separation shown in Fig. 2a for the 
widths associated with lower-end (EF0–1) versus 
higher-end (EF3–5) tornadoes. A tabular view of this 
separation of mean pretornadic mesocyclone width is 
provided in Tables 3 and 4. The same R2 results from a 
linear regression between pretornadic width and 
estimated tornado windspeeds (not shown). If the EF0–
1 tornadoes are omitted from the linear regression, the 
resultant R2 is 0.68, which shows that this relationship 
is robust over the range of significant (EF2+) tornadoes. 
As a function of convective mode, the widths of 

Table 2. List of pretornadic environmental parameters computed.
Parameter Description

100-mb Mixed-Layer Convective Available Potential Energy (MLCAPE, J kg–1) Calculated in MetPy
100-mb Mixed-Layer Convective Inhibition (MLCIN, J kg–1) Calculated in MetPy

Surface-based Convective Available Potential Energy (SBCAPE, J kg–1) Calculated in MetPy
Surface-based Convective Inhibition (SBCIN, J kg–1) Calculated in MetPy

Most-Unstable Convective Available Potential Energy (MUCAPE, J kg–1) Calculated in MetPy
Most-Unstable Convective Inhibition (MUCIN, J kg–1) Calculated in MetPy

0–3-km Convective Available Potential Energy (CAPE03, J kg–1) Calculated in MetPy using layer interpolation
Lifted Index (LI, °C) Calculated in MetPy

0–8-km Bulk Shear (S08, m s–1) Calculated in MetPy using layer interpolation
0–6-km Bulk Shear (S06, m s–1) Calculated in MetPy using layer interpolation
0–3-km Bulk Shear (S03, m s–1) Calculated in MetPy using layer interpolation
0–1-km Bulk Shear (S01, m s–1) Calculated in MetPy using layer interpolation

0–500-m bulk shear (S500, m s–1) Calculated in MetPy using layer interpolation
Effective bulk shear (EBS, m s–1) Manually calculated using methods and equations outlined in Thompson et al. (2007)

Bunkers Right Storm Motion (BR, m s–1) Calculated in MetPy
0–6-km Mean Flow (06Mean, m s–1) Calculated in MetPy

0–1-km Storm Relative Helicity (01SRH, m2 s–2) Calculated in MetPy
0–3-km Storm Relative Helicity (03SRH, m2 s–2) Calculated in MetPy

0–500-m Storm Relative Helicity (0500SRH, m2 s–2) RAP analysis variable
Effective Storm Relative Helicity (ESRH, m2 s–2) Manually calculated using methods and equations outlined in Thompson et al. (2007)

Effective Layer Base Height (ELB, m) Manually calculated using methods and equations outlined in Thompson et al. (2007)
Effective Layer Top Height (ELT, m) Manually calculated using methods and equations outlined in Thompson et al. (2007)

Effective Layer Depth (ELD, m) Manually calculated using methods and equations outlined in Thompson et al. (2007)
0–2-km Storm Relative Wind (02SRW, m s–1) Manually calculated using MetPy layer interpolation
4–6-km Storm Relative Wind (46SRW, m s–1) Manually calculated using MetPy layer interpolation

9–11-km Storm Relative Wind (911SRW, m s–1) Manually calculated using MetPy layer interpolation
0–3-km Lapse Rate (03LR, °C km–1) Manually calculated using MetPy layer interpolation
3–6-km Lapse Rate (36LR, °C km–1) Manually calculated using MetPy layer interpolation

Lifting Condensation Level Height (LCLh, m) Calculated in MetPy
Level of Free Convection Height (LFCh, m) Calculated in MetPy

 Lifting Condensation Level to Level of Free Convection Height Difference (LCL-LFC, 
m)

Manually calculated

0–3-km Relative Humidity (03RH, %) Calculated in MetPy using layer interpolation
3–6-km Relative Humidity (36RH, %) Calculated in MetPy using layer interpolation

 Lifting Condensation Level to Level of Free Convection Relative Humidity (LCL-
LFC-RH, %)

Manually calculated

0–1-km Energy Helicity Index (01EHI) Manually calculated using methods and equations outlined in Thompson et al. (2003)
0–3-km Energy Helicity Index (03EHI) Manually calculated using methods and equations outlined in Thompson et al. (2003)

Fixed-layer Supercell Composite Parameter (SCPf) Manually calculated using methods and equations outlined in Thompson et al. (2003)
Effective-layer Supercell Composite Parameter (SCPe) Calculated in MetPy

Fixed-layer Significant Tornado Parameter (STPf) Calculated in MetPy
Violent Tornado Parameter (VTP) Manually calculated using methods and equations outlined in Hampshire et al. (2018)

0–1-km Tornadic Energy Helicity Index (torEHI) Manually calculated using methods and equations outlined from SPC
Tornadic Tilting and Stretching Parameter (TTS) Manually calculated using methods and equations outlined from the SPC

Critical Angle (CA, degrees) Calculated in MetPy
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supercell mesocyclones exhibit higher correlations to 
EF (R2 = 0.77) than do the widths of QLCS 
mesocyclones/mesovortices (R2 = 0.48).  
 Specifically shown in Fig. 2a are widths that are 
averaged in height over the three lowest radar scans, 
and in time over the pretornadic (or pre-warning) 
volume scans (see Table 1); ST20 demonstrated, 
however, that this relationship can be generalized to 
widths at individual scans (e.g., the lowest) and at 

individual pretornadic times. Indeed, there is relatively 
little time variability in the pretornadic width, such that, 
except for the few minutes immediately prior to 
tornadogenesis when mesocyclone contraction occurs, 
a wide (narrow) mesocyclone is consistently wide 
(narrow) (Fig. 3; also see ST20) allowing for these 
characteristics to be more easily used in a prognostic 
manner. Our results do show that the majority of EF3 
and greater rated tornadoes (which tended to be 

Table 3. Mean and standard deviation of the mean pretornadic mesocyclone width, peak pretornadic mesocyclone 
ΔV, and spatial mean of each environmental parameter across all cases, separated by non-significant (EF0–1) and 
significant (EF2–5) tornado intensity.

Parameter EF0 to EF1 (194 cases) EF2 to EF5 (106 cases)
Pretornadic Mesocyclone Width (km) 2.04, 0.37 3.28, 0.98
Pretornadic Mesocyclone ΔV (m s–1) 35.8, 10.2 47.4, 12.7

100-mb Mixed-Layer Convective Available Potential Energy (MLCAPE, J kg–1) 985, 249 1241, 270
100-mb Mixed-Layer Convective Inhibition (MLCIN, J kg–1) –49, 23 –54, 26

Surface-based Convective Available Potential Energy (SBCAPE, J kg–1) 1317, 416 1485, 391
Surface-based Convective Inhibition (SBCIN, J kg–1) –63, 34 –60, 29

Most-Unstable Convective Available Potential Energy (MUCAPE, J kg–1) 1538, 356 1748, 349
Most-Unstable Convective Inhibition (MUCIN, J kg–1) –20, 16 –23, 16

0–3-km Convective Available Potential Energy (CAPE03, J kg–1) 54, 24 52, 22
Lifted Index (LI, °C) –2.69, 0.91 –2.62, 0.93

0–8-km Bulk Shear (S08, m s–1) 25, 2 29, 2.3
0–6-km Bulk Shear (S06, m s–1) 23, 1.8 27, 2.0
0–3-km Bulk Shear (S03, m s–1) 18, 1.9 22, 1.9
0–1-km Bulk Shear (S01, m s–1) 13, 1.6 17, 1.7

0–500-m bulk shear (S500, m s–1) 10, 1.4 12, 1.4
Effective bulk shear (EBS, m s–1) 21, 2.3 26, 2.2

Bunkers Right Storm Motion (BR, m s–1) 15, 1.3 18, 1.2
0–6-km Mean Flow (06Mean, m s–1) 18, 1.1 22, 1.1

0–1-km Storm Relative Helicity (01SRH, m2 s–2) 204, 37 274, 43
0–3-km Storm Relative Helicity (03SRH, m2 s–2) 279, 48 372, 58

0–500-m Storm Relative Helicity (0500SRH, m2 s–2) 184, 38 225, 41
Effective Storm Relative Helicity (ESRH, m2 s–2) 196, 54 291, 67

Effective Layer Top Height (ELT, m) 1528, 478 1719, 512
Effective Layer Depth (ELD, m) 1510, 414 1713, 463

0–2-km Storm Relative Wind (02SRW, m s–1) 10, 0.63 11, 0.74
4–6-km Storm Relative Wind (46SRW, m s–1) 10, 0.82 10, 0.88

9–11-km Storm Relative Wind (911SRW, m s–1) 16.3, 2.0 17, 2.3
0–3-km Lapse Rate (03LR, °C km–1) 5.72, 0.38 5.82, 0.35
3–6-km Lapse Rate (36LR, °C km–1) 6.21, 0.21 6.56, 0.23

Lifting Condensation Level Height (LCLh, m) 389, 126 434, 133
Level of Free Convection Height (LFCh, m) 1707, 760 1916, 786

Lifting Condensation Level to Level of Free Convection Height Difference (LCL-LFC, m) 1401, 815 1559, 764
0–3-km Relative Humidity (03RH, %) 80, 4.5 79, 4.9
3–6-km Relative Humidity (36RH, %) 65, 8.4 59, 8.5

Lifting Condensation Level to Level of Free Convection Relative Humidity (LCL-LFC-RH, %) 83, 5.4 82.5, 6.45
0–1-km Energy Helicity Index (01EHI) 1.01, 0.34 1.84, 0.48
0–3-km Energy Helicity Index (03EHI) 1.51, 0.46 2.61, 0.65

Fixed-layer Supercell Composite Parameter (SCPf) 2.07, 0.51 4.19, 0.98
Effective-layer Supercell Composite Parameter (SCPe) 4.96, 1.77 9.18, 2.59

Fixed-layer Significant Tornado Parameter (STPf) 1.27, 0.51 2.46, 0.86
Violent Tornado Parameter (VTP) 0.89, 0.42 2.01, 0.88

0–1-km Tornadic Energy Helicity Index (torEHI) 0.62, 0.29 1.68, 0.64
Tornadic Tilting and Stretching Parameter (TTS) 1.65, 0.77 2.9, 1.21

Critical Angle (CA, degrees) 67, 11 63, 8.5
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preceded by wider pretornadic circulations) were 
associated with mesocyclones that narrowed and 
strengthened just prior to tornadogenesis. This supports 
the idea that a pretornadic mesocyclone that shows an 
increase in ΔV and a decrease in width immediately 
prior to tornadogenesis may be more likely to produce 
a tornado, specifically a potentially strong tornado, and 
this pattern has been found in other observational 
studies as well (e.g., Gibbs and Bowers 2019; Baerg et 
al. 2020); how this relates to tornadogenesis is 
discussed below.

 A relationship between pretornadic mesocyclone 
intensity (peak pretornadic ΔV; see Table 1) and the EF 
of the resultant tornado also is apparent in the box-and-
whisker plot presented as Fig. 4a (also see Tables 3 and 
4). However, as quantified by linear regression, the 
relationship is relatively weak (R2 = 0.29; Fig. 4b); the 
relationship also is relatively weak (R2 = 0.27) if 
average pretornadic ΔV is used in the linear regression. 
As a function of convective mode, the correlations are 
again higher for DSC (R2 = 0.43), and lower for QLCS 
cases (R2 = 0.09). As noted by ST20, pretornadic ΔV 

Figure 2. (a) Box-and-whiskers plot of the total 
average pretornadic mesocyclone width (km) of EF0–5 
tornadoes and the total average pre-warning 
mesocyclone width (km) of nontornadic storms for all 
cases. (b) Scatterplot of the relationship between the 
total average pretornadic mesocyclone width (km) and 
the EF rating of the resultant tornado for all cases. In 
(a), the mean is represented by the “X” and the median 
by the bar. The top and bottom of the box represent the 
3rd and 1st quartiles with exclusive medians, 
respectively. The top whisker represents the boundary 
of 1.5 times the interquartile range above the 3rd 
quartile, and the bottom whisker represents the 
boundary of 1.5 times the interquartile range below the 
1st quartile. Any point beyond these whiskers is plotted 
as an outlier point.

Figure 3. As in Fig. 2a, except for the average changes 
(km) in mesocyclone width during the pretornadic or 
pre-warning sampling time.

Figure 4. As in Fig. 2, except for the peak pretornadic 
or pre-warning mesocyclone intensity (differential 
velocity; m s–1).

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_4.png
http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_2.png
http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_3.png
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tends not to be as temporally consistent as width. On 
average, mesocyclone intensity tends to increase during 
the pretornadic sampling time (Fig. 5), which also has 
been demonstrated by Gibbs (2016) and Gibbs and 
Bowers (2019), which conforms to the expectation of 
tornadogenesis. Embedded within this trend, however, 
are fluctuations that may complicate real-time 
interpretation.
 Because the foregoing analysis is fundamentally 
motivated by the principle of conservation of angular 
momentum or, equivalently, of circulation defined as: 

𝑉𝑇𝑟𝑇=Γ=𝑉𝑀𝑟𝑀 (1) 

where 𝑟𝑇 and 𝑉𝑇 (𝑟𝑀 and 𝑉𝑀) are, respectively, the radius 
and tangential windspeed of the tornado (pretornadic 
mesocyclone), and Γ is circulation (see Trapp et al. 
2017), it would seem logical to also evaluate circulation 
itself. Figure 6a shows a box-and-whisker plot of 
average pretornadic mesocyclone circulation, which is 
represented here as the product between average 
differential velocity and average width, as a function of 
the EF of the resultant tornado. The plot indicates clear 
distinctions between pretornadic circulations for lower-
end versus higher-end tornadoes, and consistently, the 
linear relationship between pretornadic mesocyclone 
circulation and EF is strong (R2 = 0.62; Fig. 6b). 
Interestingly, the linear relationship between 
pretornadic mesocyclone width and intensity is 
relatively weak (R2 = 0.29; not shown), indicating that 
wide pretornadic mesocyclones are not necessarily 
intense, and vice versa. These collective results seem to 
support the argument of Trapp et al. (2017) that a large-
𝑟𝑀, small-𝑉𝑀 product is more likely to explain a large 
value of mesocyclonic Γ than does a small-𝑟𝑀, large-𝑉𝑀

product.

 It is relevant to ask whether the circulation-
conservation principle embodied in Eq. (1) also 
provides information about the tornado damage track. 
The box-and-whisker plots in Fig. 7 reveal a 
relationship between pretornadic mesocyclone width 
and tornado path width, such that the widest 
mesocyclones are associated with the widest damage 
paths. A relationship between pretornadic mesocyclone 
intensity and tornado path width also is suggested. 
Although not robust, the linear relationships between 
pretornadic mesocyclone characteristics and tornado 
path width (R2 = 0.36 for mesocyclone width, R2 = 0.21 
for mesocyclone intensity) are at least relatively 
stronger than those between the pretornadic 
mesocyclone characteristics and tornado path length 
(R2 = 0.25 for mesocyclone width, R2 = 0.14 for 
mesocyclone intensity). This is perhaps not surprising 
given that for the cases in this dataset, the linear 
correlations between EF and tornado path width (R2 = 
0.43) are higher than those between EF and path length 
(R2 = 0.28).
 When viewing the average, pre-warning, 
mesocyclone width for nontornadic cases (Fig. 2a), 
there is clearly no distinction between nontornadic and 
tornadic storms, but there is separation from EF3+ 

Figure 5. As in Fig. 2a, except for the average changes 
(m s–1) in mesocyclone intensity during the pretornadic 
or pre-warning sampling time.

Figure 6. As in Fig. 2, except for the average 
pretornadic or pre-warning mesocyclone circulation 
(m2 s–1).

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_5.png
http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_6.png


 Sessa and Trapp NWA Journal of Operational Meteorology 22 May 2023

ISSN 2325-6184, Vol. 11, No. 5 58

tornadoes. When viewing the peak, pre-warning, 
mesocyclone intensity (Fig. 4a), the distribution of 
intensities is similar to EF0–1 tornado-producing 
storms, but there is separation from EF2+ tornadoes. 
The pre-warning circulation (Fig. 6a), has a similar 
distribution to EF2 tornado-producing storms, similar 
to the pre-warning mesocyclone width, but still shows 
separation from EF3+ tornadoes. When considering the 

trend of pre-warning mesocyclone width (Fig. 3), there 
tended to still be a narrowing trend immediately prior to 
T-0 but to a lesser magnitude than tornadic cases and 
with more variability throughout the pre-warning time. 
There is still an increasing trend in the pre-warning 
mesocyclone intensity but to a lesser degree than during 
the pretornadic period of tornadic storms (Fig. 5). 
Importantly, the presence of these trends in nontornadic 

Parameter EF0 to EF1 (194 cases) EF2 to EF3 (92 cases) EF4 to EF5 (14 cases)
Pretornadic Mesocyclone Width (km) 2.04, 0.37 3.01, 0.73 5.01, 0.59
Pretornadic Mesocyclone ΔV (m s–1) 35.8, 10.2 45.4, 11.5 60.5, 12.9

100-mb Mixed-Layer Convective Available Potential Energy
(MLCAPE, J kg–1)

985, 249 1133, 250 1948, 404

100-mb Mixed-Layer Convective Inhibition (MLCIN, J kg–1) –49, 23 –53, 25 –60, 32
Surface-based Convective Available Potential Energy (SBCAPE, J kg–1) 1317, 416 1330, 381 2507, 457

Surface-based Convective Inhibition (SBCIN, J kg–1) –63, 34 –61, 30 –52, 23
Most-Unstable Convective Available Potential Energy (MUCAPE, J kg–1) 1538, 356 1593, 342 2771, 392

Most-Unstable Convective Inhibition (MUCIN, J kg–1) –20, 16 –21, 17 –33, 13
0–3-km Convective Available Potential Energy (CAPE03, J kg–1) 54, 24 52, 21 49, 25

Lifted Index (LI, °C) –2.69, 0.91 –2.42, 0.9 –3.85, 1.08
0–8-km Bulk Shear (S08, m s–1) 25, 2 28, 2.2 32, 2.1
0–6-km Bulk Shear (S06, m s–1) 23, 1.8 27, 2.1 29, 2.0
0–3-km Bulk Shear (S03, m s–1) 18, 1.9 21, 1.3 24, 2.1
0–1-km Bulk Shear (S01, m s–1) 13, 1.6 17, 1.2 16, 1.7

0–500-m bulk shear (S500, m s–1) 10, 1.4 12, 1.1 11, 1.3
Effective bulk shear (EBS, m s–1) 21, 2.3 25, 2.3 29, 2.1

Bunkers Right Storm Motion (BR, m s–1) 15, 1.3 17, 1.4 19, 1.1
0–6-km Mean Flow (06Mean, m s–1) 18, 1.1 21, 1.3 23, 0.9

0–1-km Storm Relative Helicity (01SRH, m2 s–2) 204, 37 276, 43 254, 48
0–3-km Storm Relative Helicity (03SRH, m2 s–2) 279, 48 372, 57 370, 67

0–500-m Storm Relative Helicity (0500SRH, m2 s–2) 184, 38 191, 29 194, 40
Effective Storm Relative Helicity (ESRH, m2 s–2) 196, 54 288, 67 307, 69

Effective Layer Top Height (ELT, m) 1528, 478 1677, 504 1991, 563
Effective Layer Depth (ELD, m) 1510, 414 1668, 453 2013, 526

0–2-km Storm Relative Wind (02SRW, m s–1) 10, 0.63 11, 0.73 11, 0.74
4–6-km Storm Relative Wind (46SRW, m s–1) 10, 0.82 10, 0.88 11, 0.83

9–11-km Storm Relative Wind (911SRW, m s–1) 16.3, 2.0 17, 2.3 17, 2.1
0–3-km Lapse Rate (03LR, °C km–1) 5.72, 0.38 5.70, 0.34 6.6, 0.4
3–6-km Lapse Rate (36LR, °C km–1) 6.21, 0.21 6.49, 0.24 7, 0.18

Lifting Condensation Level Height (LCLh, m) 389, 126 393, 120 706, 222
Level of Free Convection Height (LFCh, m) 1707, 760 1962, 829 1616, 504

Lifting Condensation Level to Level of Free Convection Height Difference 
(LCL-LFC, m)

1401, 815 1652, 811 946, 452

0–3-km Relative Humidity (03RH, %) 80, 4.5 80, 4.9 72, 4.9
3–6-km Relative Humidity (36RH, %) 65, 8.4 61, 8.7 42, 6.7

 Lifting Condensation Level to Level of Free Convection Relative Humidity 
(LCL-LFC-RH, %)

83, 5.4 83, 6.2 78, 8.0

0–1-km Energy Helicity Index (01EHI) 1.01, 0.34 1.69, 0.45 2.73, 0.67
0–3-km Energy Helicity Index (03EHI) 1.51, 0.46 2.38, 0.58 4.14, 1.0

Fixed-layer Supercell Composite Parameter (SCPf) 2.07, 0.51 3.73, 0.87 7.14, 1.62
Effective-layer Supercell Composite Parameter (SCPe) 4.96, 1.77 8.29, 2.45 15, 3.4

Fixed-layer Significant Tornado Parameter (STPf) 1.27, 0.51 2.21, 0.81 4.1, 1.2
Violent Tornado Parameter (VTP) 0.89, 0.42 1.67, 0.66 4.23, 0.89

0–1-km Tornadic Energy Helicity Index (torEHI) 0.62, 0.29 1.43, 0.57 3.26, 1.0
Tornadic Tilting and Stretching Parameter (TTS) 1.65, 0.77 2.91, 1.1 2.82, 1.4

Critical Angle (CA, degrees) 67, 11 63, 8.4 62, 8.9

Table 4. As in Table 3, except now separated by weak (EF0–1), strong (EF2–3), and violent (EF4–5) tornado 
intensity.
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storms is consistent with radar signatures that would 
lead an operational forecaster to issue a tornado 
warning. The presence of narrowing and intensification 
is, therefore, not a trend specific to tornado-producing 
storms, but EF3+ tornadoes still had greater narrowing 
and intensification trends prior to tornadogenesis than 
the nontornadic storms prior to tornadogenesis failure. 
While mesocyclone width and intensity and their trends 
do not discriminate between nontornadic and tornadic 
storms, there still is separation of these variables 
between EF3+ tornado-producing storms and 
nontornadic and EF0–2 tornado-producing storms. 
Therefore, a weak, narrow mesocyclone would have a 
greater likelihood of being nontornadic or weakly 
tornadic than producing an EF3+ tornado, and a wide 
strong mesocyclone would have a greater likelihood of 
producing an EF3+ tornado than a weak tornado or no 
tornado at all.
 An open question at this point is whether the 
pretornadic mesocyclone radar analyses are sensitive to 
the radar range and the associated changes in beam 
width and beam height, both of which impact how the 
vortex is sampled. To answer this, a similar radar range 
and beam height analysis to that of ST20 was 
completed in which the full dataset was divided into 
three range groups at the time of tornadogenesis as 
follows: 0–34 km (20% of cases), 35–69 km (48% of 
cases), and 70–100 km (32% of cases). Importantly, 
there is no consistent reduction in the linear 
relationship between EF rating and the pretornadic 
mesocyclone width across the three range groups (R2 = 
0.69, R2 = 0.6, R2 = 0.75, respectively; Fig. 8). The 
same can be said for the peak pretornadic mesocyclone 
ΔV, and in fact there is an increase in the coefficients of 

determination with radar range (R2 = 0.21, R2 = 0.25, R2

= 0.31, respectively; not shown). Additionally, the 
linear regression between the pretornadic mesocyclone 
width and the radar range (not shown), has a weak 
positive linear relationship (R2 = 0.13), which is 
reflected in the slight increase in the average 
pretornadic mesocyclone width of each EF category 
from the closest range group to the farthest range group 
(Table 5). There is no linear relationship between the 
peak pretornadic mesocyclone ΔV and the radar range 

Figure 7. As in Fig. 2a, except for pretornadic:
(a) mesocyclone width and tornado path width,
(b) mesocyclone width and tornado path length,
(c) mesocyclone intensity and tornado path width, and 
(d) mesocyclone intensity and tornado path length.

Figure 8. Scatterplot showing the linear relationship 
between the average pretornadic mesocyclone width 
(km) and the EF rating of the resultant tornado for all 
cases with a radar range of (a) 0–34 km, (b) 35–69 km, 
and (c) 70–100 km. 

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_7.png
http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_8.png
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(not shown). To directly consider whether cases of the 
same EF rating category have a similar distribution of 
distances from the radar, notice that the mean case 
distance is as follows: EF0-55 km, EF1-54 km, EF2-59 
km, EF3-66 km EF4&5-69 km. While EF3–5 cases 
have larger mean distances, each EF category contains 
cases from each range group, implying that cases of all 
EF ratings experience the potential impacts and biases 
of the dependence of beam height and width with radar 
range, Therefore, the impact/bias of radar range on our 
overall conclusions should be limited. 
 A similar analysis can be completed for the height 
of the 0.5° beam at the approximate time and location 
of tornadogenesis, by dividing the dataset into the three 
0.5° beam height groups of 0–500 m (34% of cases), 
501–1000 m (43% of cases), and 1000+ m (23% of 
cases). As in the preceding analysis, there is no 
consistent decrease in the linear relationship between 
EF rating and the pretornadic mesocyclone width 
across the beam height groups (R2 = 0.71, R2 = 0.59, R2

= 0.76, respectively; not shown). This also is true for 
the peak pretornadic mesocyclone ΔV (R2 = 0.18, R2 = 
0.28, R2 = 0.36, respectively).
 This exercise demonstrates more explicitly that the 
proposed relationship to EF rating is not limited to 
mesocyclones necessarily characterized as “near 
surface” or “low level” from the radar perspective. To 
this point it should be remembered that Doppler 
weather radar does not simply sample the atmosphere at 
discrete levels. A radar beam that is centered at 1000 m, 
for example, at some range is sampling target motion 
above and below that height. Thus, the framework 
suggested by this study to anticipate tornado intensity 
conditional on tornadogenesis can be applied to any 
storm within 100 km of a radar and the associated 
heights and depth of rotation that are viewed in that 
range. An important note here is the lack of non-
significant tornadoes in the highest 0.5° beam height 
group. Only 10% of EF0s and 19% of EF1s (i.e., 15% 
of non-significant cases) were in the highest 0.5° beam 
height group demonstrating the difficulty in resolving 
the weaker, shallower mesocyclones of non-significant 
tornadoes when the lowest beam height is >1 km AGL. 

 It also is worthwhile to consider the impact of radar 
range and beam height on the separation of the mean 
pretornadic mesocyclone width and peak pretornadic 
mesocyclone ΔV with increasing EF rating. When 
viewing the change in the mean pretornadic 
mesocyclone width and the peak pretornadic 
mesocyclone ΔV with increasing EF rating for each 
range group, there is no pattern of change with range 
(Table 6). There is a similar result when considering the 
changes across the beam height groups. This 
demonstrates that the critical thresholds of width and 
intensity are not dependent on radar range and beam 
height.
 Recalling the restriction imposed in section 2a that 
each tornado had to be the first produced by its 
respective parent storm, here we explore whether the 
relationships between pretornadic mesocyclone 
characteristics and EF rating apply when this restriction 
is removed. To do so, eight new cases from 2021 and 
2022 in which more than one tornado was produced by 
the same storm were analyzed (Table 7). These cases 
were separated into two different scenarios based on the 
time between the dissipation of one tornado and the 
start of the following tornado. The first scenario 
encompasses storms wherein the dissipation of one 
tornado and the start of another tornado occurs over a 
period confined to less than two full volume scans 
(approximately 10 min). For cases in this scenario, the 
pretornadic mesocyclone characteristics prior to the 
first tornado would be applied to the maximum 
intensity of all tornadoes that were produced in quick 
succession. For example, from case #6 in Table 8, the 
first tornado (EF1) began at 2012 UTC and dissipated 
at 2026 UTC. The next tornado (EF3) began at 2033 
UTC, so the time between the two tornadoes only 
included one full volume scan placing the case into the 
first scenario. The pretornadic characteristics prior to 
the first tornado were then associated with the 
maximum EF rating the storm produced, which in this 
instance was EF3. There are likely real-time situations 
where the determination that a tornado has dissipated 
and a new pretornadic period has begun could be done 
sooner than in two volume scans (especially when extra 
low-level scans are available via supplemental adaptive 

Table 5. The mean pretornadic mesocyclone width (km) of each range group separated by EF rating.
EF0 EF1 EF2 EF3 EF4–5

0–34 km 1.76 1.92 2.34 3.53 4.77
35–70 km 1.85 2.16 2.58 3.6 4.85
70–100 km 2.1 2.3 2.87 3.75 5.1
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intra-volume low-level scans). It was found that this 
could possibly be done in a few of these cases allowing 
for new pretornadic characteristics to be applied to the 
subsequent tornado in the immediate next full volume 
scan after tornado dissipation, but in our demonstration 
if only one full volume scan is present between the end 
of one tornado and the start of another, this storm would 
fall under scenario 1. This was determined from 
keeping in mind that in a real-time scenario a forecaster 
would need to be able to say that a tornado has 
dissipated with some confidence so that the 
characteristics of the rotation are no longer being 
influenced by a tornado and are part of a new 
pretornadic period. This would realistically require a 
full volume scan (about 5–10 min) with potentially less 
time when extra low-level scans are available. 
 For cases in which at least two full volume scans 
are present between the dissipation of one tornado and 
the start of another, new pretornadic mesocyclone 

characteristics are applied to the subsequent tornado, 
and this defines scenario two. This scenario includes 
cases where 15 min pass between one tornado and the 
next, or even when ≥1 h has passed. The same methods 
are applied where up to four volume scans prior to 
tornadogenesis are analyzed. For example, from case 
#2 in Table 8, the same storm produced three EF3 
tornadoes with more than two full volume scans 
between each tornado. Therefore, this storm fell into 
scenario two, and each of the three EF3 tornadoes 
produced by the same storm had their own unique 
pretornadic mesocyclone characteristics. Additionally, 
as demonstrated in case #3, one storm can encompass 
both scenarios over its lifetime. 
 As shown in Table 8, the pretornadic mesocyclone 
characteristics demonstrated in these examples of 
storms that produce multiple tornadoes are consistent 
with the relationships shown from the full dataset. The 
pretornadic widths and intensities fall within the 

Table 6. Change in the mean pretornadic mesocyclone width (km) and peak pretornadic mesocyclone intensity (ΔV, 
m s–1) with increasing EF rating for each range group.

Table 7. Case information for the eight tornadoes associated with storms that produced multiple tornadoes with 
tornadoes produced by the same storm having the same case number.

EF1 - EF0 EF2 - EF1 EF3 - EF2 EF4&5 - EF3 Significant -
Non-Significant

0–34 km 0.16 km, 1.3 m s–1 0.42 km, 8.2 m s–1 1.19 km, 1.1 m s–1 1.24 km, 8.5 m s–1 1.70 km, 12.4 m s–1

35–70 km 0.3 km, 6.4 m s–1 0.42 km, 7.0 m s–1 1.02 km, 5.1 m s–1 1.25 km, –1.0 m s–1 1.67 km, 13.1 m s–1

70‒100 km 0.2 km, 4.7 m s–1 0.57 km, 4.0 m s–1 0.88 km, 3.1 m s–1 1.35 km, 17.7 m s–1 1.70 km, 14.3 m s–1

Case # Date State County Mode
Genesis 
Location

(LAT, LON)

Dissipation 
Location

(LAT, LON)
Path Length 

(miles)
Path Width 

(yds)

1 3/13/2021 Texas Swisher DSC 34.70, –101.99 34.95, –101.76 21.65 1500
1 3/13/2021 Texas Randall DSC 34.98, –101.73 35.04, –101.60 8.39 800
1 3/13/2021 Texas Randall DSC 35.01, –101.64 35.17, –101.53 13.17 1000
2 3/25/2021 Alabama Hale DSC 32.94, –87.58 33.01, –87.40 11.15 1400
2 3/25/2021 Alabama Bibb DSC 33.12, –87.17 33.50, –86.44 50.36 1100
2 3/25/2021 Alabama Calhoun DSC 33.7, –86.11 33.99, –85.54 38.44 1700
3 3/26/2021 Mississippi Chilton DSC 35.52, –90.25 32.89, –86.33 14.73 800
3 3/26/2021 Mississippi Tallapoosa DSC 33.09, –85.77 33.23, –85.26 31.13 1000
3 3/26/2021 Georgia Heard DSC 33.25, –85.19 33.45, –84.56 38.89 1850
4 3/27/2021 Arkansas Mississippi DSC 35.52, –90.25 35.52, –90.23 1.2 50
4 3/27/2021 Arkansas Mississippi DSC 35.54, –90.17 35.54, –90.15 1.1 80
4 3/27/2021 Arkansas Mississippi DSC 35.60, –90.08 35.60, –90.08 3.91 100
4 3/27/2021 Arkansas Mississippi DSC 35.66, –89.95 35.70, –89.87 4.93 125
5 12/11/2021 Arkansas Jonesboro DSC 35.47, –91.23 35.53, –91.13 6.69 150
5 12/11/2021 Arkansas Poinsett DSC 35.61, –90.93 35.62, –90.88 2.98 50
5 12/11/2021 Arkansas Craighead DSC 35.71, –90.73 35.75, –90.64 6.17 150
5 12/11/2021 Arkansas Craighead DSC 35.79, –90.55 36.40, –89.31 81.24 1800
5 12/11/2021 Tennessee Obion DSC 36.48, –89.14 37.61, –86.51 165.6 1760
6 3/21/2022 Texas Palo Pinto MUL 32.87, –98.53 32.96, –98.40 9.72 400
6 3/21/2022 Texas Jack MUL 33.04, –98.33 33.44, –97.97 34.51 880
7 3/21/2022 Texas Travis DSC 30.25, –97.48 30.36, –97.32 12.21 500
7 3/21/2022 Texas Travis DSC 30.37, –97.29 30.40, –97.21 5.57 50
8 3/31/2022 Alabama Perry DSC 32.55, –87.29 32.62, –87.23 6 500
8 3/31/2022 Alabama Perry DSC 32.75, –87.12 33.11, –86.86 29.36 1200
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distributions from the larger dataset. Narrower, weaker 
pretornadic mesocyclones still tended to precede 
weaker tornadoes, and wider, stronger pretornadic 
mesocyclones still tended to precede stronger tornadoes 
in both scenarios described. Also, when these new cases 
are included with the original 300 cases, the results 
from the linear regression analyses do not change (not 
shown). Thus, the results from these additional cases 
support the idea that the pretornadic mesocyclone 
characteristics of a storm provide useful information 
about tornado intensity, conditional on tornadogenesis, 
for storms that produce multiple tornadoes. When using 
2.5 km as a critical threshold of pretornadic 
mesocyclone width to separate non-significant from 
significant tornadoes, the average mesocyclone width 
from each pretornadic period could have been used to 
correctly predict the peak EF rating category 
(significant versus non-significant) associated with it. 
This is true for the maximum tornado intensity of 
multiple tornadoes from the same storm that occur in 
quick succession (scenario 1) or tornadoes that occur 
with new pretornadic periods between each tornado 
with each tornado having its own associated 
pretornadic characteristics (scenario 2). The hope is that 
these example cases at the very least demonstrate how 

the pretornadic mesocyclone characteristics and the 
methods of collecting them can be applied to 
subsequent tornadoes with a similar skill to when they 
are applied to the first tornado produced by a storm 
(while acknowledging that this is demonstrated in a few 
cases). 
 The radar-based results show much promise for 
real-time prediction of tornado intensity, conditional on 
tornadogenesis, during pretornadic stages of ongoing 
storms. Next, we consider whether near-storm 
environmental information may add predictive value 
toward this prediction goal.  

b. Environments of significant versus nonsignificant 
 tornadoes

 To start, the overall results from our environmental 
analyses are consistent with previous studies (e.g., 
Thompson et al. 2012; Hampshire et al. 2018). Relative 
to non-significant tornadoes (EF0–1), significant 
tornadoes (EF2+) tend to occur in environments 
characterized by larger values of CAPE, midlevel 
temperature lapse rates, low-level and deep-layer 
vertical wind shear, storm-relative helicity (SRH), and 
composite parameters such as the SCP, STP, and energy 

Table 8. Characteristics of the tornadoes and their pretornadic period for the eight tornadoes from storms that 
produced multiple tornadoes. Tornadoes produced by the same storm have the same case number, and subsequent 
tornadoes are labeled as scenario 1 or scenario 2 as described in section 3a.

Case # Scenario Genesis Time
(UTC)

Dissipation 
Time

(UTC)
EF Rating

Peak Est. 
Wind 

Speeds
(m s–1)

Start Time 
of 

Pretornadic 
Analysis

Average 
Pretornadic 
Mesocyclone 
Width (km)

Peak 
Pretornadic 
Mesocyclone 

ΔV (m s–1)

Average 
Pretornadic 
Circulation 

(m2 s–1)

# of 
Pretornadic 

Volume 
Scans

1 1st Tor. 21:15 22:00 2 51 20:55 3.41 55 137 301 4
1 1 22:00 22:14 1 49 20:55 3.41 55 137 301 4
1 1 22:06 22:34 0 36 20:55 3.41 55 137 301 4
2 1st Tor. 17:16 17:29 3 63 16:53 4.41 49.5 193 700 4
2 2 17:53 19:02 3 63 17:34 3.77 39.5 120 060 3
2 2 19:31 20:27 3 63 19:16 4.59 73.5 273 058 3
3 1st Tor. 2:01 2:21 2 51 1:39 3.02 48.5 125 796 4
3 2 2:55 3:33 2 56 2:44 5.23 59.5 272 981 2
3 1 3:37 4:30 4 76 2:44 5.23 59.5 272 981 2
4 1st Tor. 23:01 23:05 0 32 22:43 2.08 35.5 54 361 3
4 1 23:11 23:15 0 32 22:43 2.08 35.5 54 361 3
4 1 23:21 23:28 1 43 22:43 2.08 35.5 54 361 3
4 1 23:37 23:46 1 43 22:43 2.08 35.5 54 361 3
5 1st Tor. 0:17 0:25 UNK UNK 23:49 4.75 46.5 195 597 4
5 1 0:36 0:43 0 29 23:49 4.75 46.5 195 597 4
5 1 0:57 1:04 1 45 23:49 4.75 46.5 195 597 4
5 1 1:07 2:36 4 76 23:49 4.75 46.5 195 597 4
5 1 2:41 5:47 4 85 0:49 4.75 46.5 195 597 4
6 1st Tor. 20:12 20:26 1 43 20:01 2.91 32.5 88 522 2
6 1 20:33 21:20 3 63 20:01 2.91 32.5 88 522 2
7 1st Tor. 23:30 23:50 2 58 23:13 3.41 50 14 224 3
7 1 23:54 0:04 0 34 23:13 3.41 50 14 224 3
8 1st Tor. 2:33 2:41 2 51 2:08 3.94 49.5 173 482 4
8 2 2:53 3:24 3 65 2:49 4.22 50 192 771 1
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helicity index (EHI) (Figs. 9–11; also see Table 3). 
Greater effective-layer depth also was associated with 
EF2+ tornadoes (Fig. 10). On the other hand, low-level 
instability parameters (e.g., 0–3-km CAPE, 0–3-km 
lapse rates) do not appear to discriminate well between 
non-significant and significant tornadoes (Fig. 11).  
 Given the objectives of impact-based warnings 
(NWS 2011; also see the discussion by Gibbs and 
Bowers 2019), our goal herein is the successful binary 
prediction of significant (EF2+) versus non-significant 
(EF0–1) tornado intensity (section 3c). However, 
motivated by the results of Hampshire et al. (2018)—as 
well as by the clear separation in the pretornadic 
mesocyclone widths of weak (EF0–1) versus violent 
(EF4–5) tornadoes (Fig. 2a)—it also is instructive to 
view the environmental parameters over the three 
intensity categories of EF0–1 (weak), EF2–3 (strong), 
and EF4–5 (violent) (Figs. 12–14; also see Table 4); we 
do this with the caveat that the number of violent 
tornadoes in our dataset is approximately an order of 
magnitude less than that of weak tornadoes. CAPE 
parameters, effective-layer depth, 3–6-km temperature 
lapse rates, and all composite parameters show an 
increase across each of the three categories but a 
noticeably larger increase from EF2–3 to EF4–5 
tornadoes (Figs. 13–14). The 0–8-, 0–6-, and 0–3-km 
bulk shear parameters, as well as effective bulk shear, 
show an even increase across each intensity category 
(Fig. 12). Lifted index, 0–3-km lapse rates, 0–3-km RH, 
3–6-km RH, and the distance between the lifting 
condensation level (LCL) and the level of free 
convection (LFC) all show separation between 
environments of EF2–3 and EF4–5 tornadoes (while 
noting the limited sample size of 14 violent cases) but 
not between EF0–1 and EF2–3 tornadoes, highlighting 
how these parameters are especially relevant for the 
recognition of violent tornado environments (Fig. 14; 
Table 4). Low-level shear and SRH parameters, 
including effective SRH, show separation between 
environments of EF0–1 and EF2–3 tornadoes but not 
between EF2–3 and EF4–5 tornadoes, indicating that 
low-level shear may be a good discriminator between 
weak and strong tornado environments but not of 
violent tornado environments (Fig. 12). The importance 
of low-level instability/buoyancy parameters over low-
level shear parameters for the identification of violent 
tornado environments is consistent with the 
relationships shown in Hampshire et el. (2018). These 
results highlight the importance of considering–when 
appropriate and feasible–the relationships between 

tornado intensity and the near-storm environment 
across three intensity categories instead of two. 
 For reference, the physical significance of the 
environmental parameters related to low-level vertical 
shear have been described, for example, by Markowski 
and Richardson (2014) and Markowski et al. (2002), 
although in the context of tornadogenesis rather than 
tornado intensification; the physical connection 
between low-level shear and rotating updraft width, and 
in turn between rotating updraft width and tornado 
intensification, has been demonstrated by Marion and 
Trapp (2019) and Trapp et al. (2017). Finally, predictors 
related to lapse rates and CAPE (i.e., individually and 
through the composite parameters, SCP, STP, and EHI) 

Figure 9. Box-and-whisker plot demonstrating the 
relationship, or lack thereof, between (a) S01 (m s-1), (b) 
EBS (m s-1), (c) S03 (m s-1), (d) SRH01 (m2 s-2), (e) S06 
(m s-1), (f) ESRH (m2 s-2) and non-significant (EF0–1) 
and significant tornado intensity (EF2–5) for all cases. 
Refer to Table 2 for a description of these parameters, 
and how they were computed.

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_9.png
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are physically connected to tornado intensification 
through their contributions to vertical accelerations 
and, presumably, to vertical vortex stretching; CAPE 
also contributes to rotating updraft width (Marion and 
Trapp 2019). 

 Although LCL height may be more important for 
distinguishing between nontornadic and tornadic 
storms instead of non-significant and significant 
tornadoes (e.g., Thompson et al. 2003; Hampshire et al. 
2018), it is still relevant to rectify the somewhat higher 
LCL heights for violent tornadoes (Table 4). The mean 
LCL heights for each of the three EF rating groups 
(weak, strong, violent) are all low LCL heights, even 
for the violent cases (706 m). While still low overall, 
the higher LCL heights for violent tornadoes in this 
dataset compared to weak and strong may be due to 
their occurrence outside of the summer months 
typically inhabited by richer moisture, the greater 
proportion of cases away from the very moist regimes 
of the Gulf States, and the occurrence of strong 
moisture gradients in several of the smaller sample of 
violent cases in this dataset (note the greater standard 
deviation for LCL height for the violent cases). Also, 
Davies (2006) found that significant tornadoes can 
occur in high LCL environments (>2 km) in the 

Figure 10. As in Fig. 9, except for (a) SCPf, (b) STPf, 
and (c) 01EHI.

Figure 11. As in Fig. 9, except for (a) MLCAPE
(J kg-1), (b) LCL-LFC (m), (c) 03LR (°C km-1),
(d) 36RH (%), (e) 36LR (°C km-1), (f) ELD (m).

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_10.png
http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_11.png
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presence of steep low-level lapse rates and adequate 
low-level moisture. Although no violent case (or any 
case at all), had a mean LCL height >2 km, three violent 
cases had mean LCL heights just over 1 km and these 
cases also had large low-level lapse rates and certainly 
adequate low-level moisture. Also, the distribution of 
LCL heights for the violent cases in this dataset are 
consistent with the results of Grams et al. (2012). 
 Upon further stratifying these results across the 
three convective modes of DSC, QLCS, and MUL, the 
same relationships between the three intensity 
categories generally apply (not shown). The only 
exception is that the 0–3- and 3–6-km lapse rates only 
show a noticeable increase from strong to violent 
tornadoes for DSC cases. An interesting relationship 
seen between convective mode and tornado intensity is 
that strong QLCS tornadoes are associated with greater 
low-level shear and SRH but lower CAPE than strong 
DSC tornadoes. There are no clear differences seen 

with composite parameters between the convective 
modes. This indicates that significant QLCS tornadoes 
tend to occur in high-shear–low-CAPE environments, 
as also shown by Thompson et al. (2012), Davis and 

Figure 12. As in Fig. 9, except now categorized by 
weak (EF0–1), strong (EF2–3), and violent (EF4–5) 
tornado intensity.

Figure 13. As in Fig. 10, except now categorized by 
weak (EF0–1), strong (EF2–3), and violent (EF4–5) 
tornado intensity.

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_12.png
http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_13.png
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Parker (2014), and Sherburn and Parker (2019). MUL 
cases did not include any violent tornadoes, but the 
same parameters that show separation between EF0–1 
and EF2–3 tornadoes for all cases show similar 
relationships for MUL cases. Additionally, QLCS cases 
only include one violent tornado (associated with a 
deep, strong rotating updraft in the midlevels of the 
storm and rapid development of rotation across the 
lowest three elevation angles immediately preceding 
tornadogenesis).

4. Discussion

 The operational implementation of these results for 
the purposes of tornado-intensity prediction is 
straightforward. Environmental parameters are easily 
obtainable from observed soundings or operational-
model grids using software packages such as MetPy 
(May et al. 2022) and SHARPpy (Blumberg et al. 
2017), and indeed are already routinely computed as 
part of the SPC mesoanalysis (Bothwell et al. 2002). In 

principle, the radar-based predictors also are relatively 
easily obtainable, but would need to be quantified in 
real time, using automated approaches. Mesocyclone 
width and intensity are attributes computed within the 
(original) mesocyclone detection algorithm (Stumpf et 
al. 1998), and presumably could be extracted and made 
available to forecasters. The time series of these 
attributes for identified and tracked mesocyclones are 
of particular relevance. We envision the need for a 
moving time average of the width (and intensity) of 
identified mesocyclones (calculated using up to the 
most recent four volume scans) and their temporal 
variability, which would then be the key metrics used to 
predict intensity upon tornadogenesis. For example, 
taken alone, a mesocyclone that is narrow (e.g., 
diameter <1.5 km) over its lifetime would not be 
expected to be associated with a significant tornado, 
and this conclusion still remains even with the added 
consideration of nontornadic cases. When applying 
these methods to a storm that produces multiple 
tornadoes, the metrics could be paused when a tornado 
is detected and resumed upon the dissipation of the 
tornado so that the characteristics of the mesocyclone 
are not influenced by the presence of a tornado. The 
environmental predictors are available hourly and thus 
could provide lead time of up to 1 h. The lead time 
provided by the radar predictors (which would update 
approximately every 5 min) may be from about 4 min 
up to the time when the mesocyclone is first present 
when a running mean of the mesocyclone 
characteristics could begin. 
 Most often, information about tornado intensity is 
communicated once the presence of a significant 
tornado is confirmed using the spotter network and 
tornadic debris signatures, but this is only once the 
tornado has been in progress. The information gained 
from the pretornadic analysis demonstrated in this 
study would allow an operational forecaster to be aware 
of and communicate this information about potential 
tornado intensity in warning text to the public before a 
tornado develops to better protect life and property.
Realization of the predicted intensity is conditional on 
tornadogenesis, so the recommended intensity 
prediction procedure should be coupled to a 
tornadogenesis prediction. There have been several 
recent machine learning applications specifically 
involving the prediction or likelihood of tornadogenesis 
(e.g., Lagerquist et al. 2018, 2020; Steinkruger et al. 
2020; Coffer et al. 2021). The predictors range from 
radar-observed storm attributes to convection-allowing 

Figure 14. As in Fig. 11, except now categorized by 
weak (EF0–1), strong (EF2–3), and violent (EF4–5) 
tornado intensity.

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM5-figs/Figure_14.png
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model variables such as updraft helicity. Additionally, 
simple observational approaches for the prediction of 
tornadogenesis outside of machine learning include the 
use of radar signatures such as the ZDR arc and column 
and KDP foot (Crowe et al. 2012; Homeyer et al. 2020; 
Van Den Broeke 2020) and trends in mesocyclone 
characteristics such as width, depth, and intensity 
(Gibbs and Bowers 2019; Sandmæl et al. 2019). Also, 
the inclusion of an analysis of nontornadic cases in this 
study allows for an understanding of how the radar 
metrics used to anticipate tornado intensity relate to 
tornadogenesis and stresses the need for additional 
tools for anticipating tornadogenesis to be coupled with 
the tornado intensity anticipation tools outlined in this 
study. Additionally, it should be highlighted that after 
applying the prognostic techniques of this study to 
anticipate tornado intensity that diagnosing the tornado 
intensity of the later formed tornado is equally 
important to validate the forecasted intensity. As 
highlighted earlier, there are several previous studies 
that discuss diagnosing the intensity of ongoing 
tornadoes using radar characteristics such as velocity 
and correlation coefficient as well as the near storm 
environment and population density (e.g., Toth et al. 
2013, Smith et al. 2020a,b).

5. Conclusions

 Analyses of Doppler radar data and environmental 
parameters for 300 tornado cases were used to propose 
an alternative framework for tornado intensity 
prediction during pretornadic stages of ongoing storms. 
This framework is founded on the robust relationship 
between pretornadic mesocyclone width and tornado 
intensity, which is based on theoretical arguments 
posed by Trapp et al. (2017). Specifically, in the linear 
regression between (average) pretornadic mesocyclone 
width and the EF of the resultant tornado, the 
coefficient of determination (R2) is 0.69. In contrast, the 
linear relationship between pretornadic mesocyclone 
intensity (peak pretornadic ΔV) and EF scale is much 
weaker, as quantified by an R2 of 0.29.
 The additional analysis of 35 nontornadic storms 
revealed that mesocyclone width and intensity could 
not be used to discriminate between nontornadic and 
tornadic storms, and their trends could not be used to 
anticipate tornadogenesis. On the other hand, this 
analysis revealed a distinct separation of the pre-
warning mesocyclone widths and intensities of 
nontornadic storms from the pretornadic mesocyclone 

widths and intensities of EF3+ tornado-producing 
storms. This null case analysis increases the 
understanding and applicability of these methods for 
anticipating tornado intensity in ongoing 
thunderstorms. Future exploration of how the 
mesocyclone attributes explored in this study relate to 
tornadogenesis would certainly be beneficial through an 
expansion of the nontornadic dataset, which could 
further reveal any relationships between mesocyclone 
width and intensity and tornadogenesis as well as help 
identify critical thresholds of trends in mesocyclone 
width and intensity for the anticipation of 
tornadogenesis and tornado intensity.
 Environmental information for each of the cases in 
this dataset also was used to explore relationships 
between environmental parameters and tornado 
intensity. As also noted by Hampshire et al. (2018), 
such relationships depend in part on how the tornado-
intensity categories are distributed [i.e., significant 
(EF2+) versus nonsignificant (EF0–1), or weak (EF0–
1) versus strong (EF2–3) versus violent (EF4–5)]. So, 
for example, low-level shear parameters (bulk shear, 
SRH) discriminate the environments of significant 
tornadoes from nonsignificant tornadoes, but not the 
environments of violent tornadoes from strong 
tornadoes. On the other hand, thermodynamic 
parameters such as CAPE (SB, ML, MU, 0–3), as well 
as the composite parameters that include CAPE, 
discriminate the environments of violent tornadoes 
from strong tornadoes. 
 It is important to mention some of the limitations of 
this study as well. First, the spatial constraints of being 
able to adequately resolve pretornadic characteristics in 
the lowest levels of a storm using WSR-88Ds limit the 
pretornadic characteristics used to generally only be 
from storms within about 100 km of a radar site. The 
pretornadic radar characteristics used in this study may 
not always be resolvable for every storm. Also, the 
limitations of the United States tornado report dataset 
are acknowledged, well-known, and discussed in recent 
decades (e.g., Doswell and Burgess 1988; Smith et al. 
2012; Potvin et al. 2019). Tornado reports do not 
consistently capture tornado intensity because the EF 
scale is damage based (McDonald et al. 2010; Edwards 
et al. 2013; Wurman et al. 2021), and tornadoes of the 
same pathlength, width, and intensity can produce 
different damage depending upon their location 
(Strader and Ashley 2018; Strader et al. 2018). 
Additionally, the time and location of tornadogenesis 
may not always be accurate. It is important to keep 
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these limitations in mind when interpreting this study.
 Operational implementation of this framework for 
the purposes of impact-based warnings will require 
real-time, automated quantification of mesocyclone 
width in addition to intensity and other attributes. This 
should be straightforward, given the construction of the 
mesocyclone detection algorithm. The information 
given from pretornadic characteristics of a storm and its 
surrounding environment can provide useful 
information about potential tornado intensity to an 
operational forecaster before a tornado develops that 
can be communicated and used in warning decisions 
and text to better protect life and property.
 The datasets used in this study are being applied to 
tornado-intensity prediction through machine learning 
applications in a separate study (e.g., Sessa and Trapp 
2022). Several machine learning algorithms are being 
implemented and used to examine their skill in 
predicting significant or non-significant tornado 
intensity for a given storm. Models such as logistic 
regression, random forests, and gradient-boosted 
decision trees are found to be the most skilled classifier 
as measured by several binary classification metrics and 
performance diagrams. Adequacy of model training, 
model reliability, and the significance of results also are 
being explored. Finally, feature importance and the 
decision-making process within each model is being 
analyzed to help reveal a more physical understanding 
of the model performance and results, as well as 
relationships between the predictors and tornado 
intensity including the establishment of critical 
thresholds of predictors. Results demonstrate that the 
pretornadic radar predictors of mesocyclone width and 
differential velocity are the most important followed by 
environmental vertical wind shear and composite 
parameters. This additional work utilizing the 
relationships outlined in this study and combining the 
datasets through the power of machine learning, thus 
far, demonstrates a skilled binary prediction of tornado 
intensity, conditioned upon tornadogensis, and the 
potential for these machine learning applications to 
become a helpful resource in an operational setting. 
Additional future work could involve the continued 
exploration of any potential relationships between 
pretornadic mesocyclone characteristics, specifically 
width and intensity, and tornadogenesis as well as 
further testing the relationships shown in this study on 
a larger sample of multiple tornado producing storms as 
well as other independent datasets. The development of 
a larger climatology of pretornadic mesocyclone 

characteristics would certainly be beneficial to the 
operational implementation of this work as well.
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