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ABSTRACT

Analyses of Doppler radar data and environmental parameters for 300 tornado cases are used to propose
an alternative framework for tornado intensity prediction during pretornadic stages of ongoing storms,
conditional on tornadogenesis. This framework is founded on the robust relationship (R* = 0.69) between
pretornadic mesocyclone width and the EF rating of the subsequent tornado. In contrast, the linear relationship
between pretornadic mesocyclone intensity and EF scale is much weaker (R*> = 0.29). Environmental
information for each case was additionally used to explore relationships between environmental parameters
and tornado intensity. Such relationships depend in part on how the tornado-intensity categories are
distributed [i.e., nonsignificant (EF0-1) versus significant (EF2-5), or weak (EF0-1) versus strong (EF2-3)
versus violent (EF4-5)]. Low-level shear parameters discriminate the environments of significant tornadoes
from nonsignificant tornadoes, but not the environments of violent tornadoes from strong tornadoes. The
converse is true for thermodynamic parameters. Operational implementation of this framework for the
purposes of impact-based warnings will require real-time, automated quantification of mesocyclone width in
addition to intensity and other attributes. The information gained from the pretornadic analysis demonstrated
in this study would allow an operational forecaster to be aware of—and communicate—information about
potential tornado intensity in warning text to the public before a tornado develops to better protect life and
property. Currently, these relationships are being utilized in machine learning models for binary prediction of

non-significant versus significant tornado intensity where skill is being demonstrated.

1. Introduction

It is well documented that strong to violent
tornadoes cause a disproportionate amount of damage
and fatalities (Ashley 2007; Simmons and Sutter 2011;
Anderson-Frey and Brooks 2019). Implied by this
statement is the need for robust operational tools that
focus on tornado intensity rather than simply on
tornadogenesis, especially given that most tornadoes
are nonsignificant (EFO-EF1; Brooks et al. 2003).
Toward this end, there have been efforts to develop
methods to diagnose the intensity of an ongoing
tornado. As first successfully demonstrated by Toth et
al. (2013), these methods primarily involve the use of
radar-based characteristics of the tornadic circulation
and parent storm (also see Kingfield and LaDue 2015;
Gibbs 2016; Thompson et al. 2017; Van Den Broeke
2017; Smith et al. 2015, 2020a), which also can be
coupled to the use of environmental parameters (e.g.,

Cohen et al. 2018), such as the supercell composite
parameter (SCP) and significant tornado parameter
(STP; e.g., Thompson et al. 2012). Reiterating, these
methods require the existence of a tornado, and thus
their applications are conditional on tornadogenesis
[Thompson et al. (2017) also included null cases in
their analysis].

There have been fewer efforts to develop methods
to predict tornado intensity during pretornadic stages
of ongoing storms. These appear to include the
following: (i) Gibbs (2016) and Gibbs and Bowers
(2019), who found that the depth, rotational velocity,
and temporal evolution of the width and rotational
velocity of pretornadic mesocyclones had operationally
useful skill in differentiating between either
significantly tornadic, weakly tornadic, or nontornadic
supercells, (ii) Marion et al. (2019), who used satellite-
diagnosed overshooting-top area (OTA) to gauge
potential tornado intensity, (iii) Sessa and Trapp (2020;
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hereinafter ST20), who demonstrated that pretornadic
mesocyclone width (differential velocity) was strongly
(only moderately) correlated to tornado intensity, (iv)
Baerg et al. (2020), who used the characteristics of the
lifetime of pretornadic circulations at the 0.5° radar
elevation angle combined with the STP to produce
tornado probabilities preceding tornadogenesis, and
found a more substantial increase in tornado
probabilities in the 15 min preceding tornadogenesis for
significant tornadoes (EF2+) than for non-significant
tornadoes (EF0-1), and (v) most recently, French and
Kingfield (2021) who found, using differential
reflectivity (Zpr) as a proxy for midlevel updraft area
and strength, that stronger tornadoes tended to have a
larger Zpr column area at the time of tornadogenesis
than did weaker tornadoes and nontornadic supercells
at their time of peak 0—1-km azimuthal shear.

The studies by Marion et al. (2019), ST20, and
French and Kingfield (2021) all provide observational
support of the Trapp et al. (2017) hypothesis that
intense tornadoes should form more readily out of wide,
rotating updrafts. For reference, the simplistic
theoretical underpinning of this hypothesis is
conservation of angular momentum (or, equivalently
vortex stretching); a more complicated dynamical
pathway linking updraft area to downdraft area to
baroclinically generated horizontal vorticity to near-
ground vertical vorticity is described by Trapp et al.
(2017; also see Marion and Trapp 2019). The results of
these studies may seem inconsistent with the pervading
guidance relating “clear and tight circulations” to
significant tornadoes (e.g., Thompson et al. 2017;
Smith et al. 2020a). This guidance, incidentally, also is
based fundamentally on  angular-momentum-
conservation or vortex-stretching concepts. However,
the clear and tight characterization applies specifically
to the circulation associated with an ongoing tornado
[i.e., a circulation that simultaneously represents the
tornado and, in most cases, its parent, mesocyclonic
vortex; see section 2¢ of Smith et al. (2015)]. In
contrast, the “wide-mesocyclone—significant-tornado”
relationship revealed by ST20 applies to pretornadic
circulations. Such a pretornadic focus eliminates the
effects of the tornado itself on the mesocyclone
characteristics and, most importantly, allows for the
development of tools for tornado-intensity prediction
conditional on tornadogenesis, rather than for tornado-
intensity diagnosis conditional on tornadogenesis.

Herein we use an expanded dataset to provide
further evidence of the robust relationship between
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tornado intensity and pretornadic mesocyclone width.
This relationship is shown to hold equally well for
pretornadic mesocyclones quantified at heights <1 km
and at heights extending to ~2 km. We also use
environmental information for each of the cases in this
dataset to explore relationships between environmental
parameters and tornado intensity. We show that such
relationships depend in part on how the tornado-
intensity categories are distributed. For example, low-
level shear parameters discriminate the environments of
significant tornadoes from nonsignificant tornadoes, but
not the environments of violent (EF4-5) tornadoes
from strong (EF2-3) tornadoes. The converse is true for
thermodynamic parameters. Finally, we discuss how
our results can be implemented in an operational
setting. This includes the use of machine learning for
binary, tornado intensity prediction.

2. Data and methods
a. Development of radar-based dataset

ST20 assembled an observational radar dataset of
102 tornado cases that encompassed a reasonable
sample of parent-storm morphologies, seasonal and
geographical diversity, and variations in environmental
conditions. For the purposes of the current study and its
companion (e.g., Sessa and Trapp 2022), the dataset
was expanded to 300 tornado cases primarily from
2019 and 2020 (Fig. 1). Cases were selected using the
NCEI Storm Events Database (https://www.ncdec.noaa.
gov/stormevents/). The basic case-selection methods of
ST20 were employed. Summarizing, it was required
that all tornadoes were within <100 km of a WSR-88D,
to lessen the impact of radar range and beam width
limitations (e.g., Wood and Brown 1997). In addition,
each tornado had to be the first produced by its
respective parent storm. This restriction was imposed to
avoid potential confusion about how to classify a
mesocyclone as pretornadic when in the presence of
ongoing/dissipated tornadoes; it is demonstrated below,
however, that the overall conclusions of the study
should be insensitive to this restriction. Finally, no
tornado within 1 h and 80 km of another tornado was
included in the dataset if its EF rating was more than
one EF category lower than the peak EF rating within
this time and space range. This was to ensure the
strongest tornadoes within a particular environment
were sampled without leading to the removal of too
many cases from this condition. The expanded dataset
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Figure 1. Geographic distribution of the 300-case
dataset (April 2011-October 2020), also showing
convective mode [circles: Discrete cases (DSC),
squares: Quasi-linear convective system cases (QLCS),
triangles: Multicell cases (MUL)], tornado intensity
(increasing intensity with increasing shape size), and
season (red: warm or blue: cool). Click image for an
external version, this applies to all figures and
animations hereafter.

is composed of the following: 78 EF0s, 116 EF1s, 59
EF2s, 33 EF3s, 10 EF4s, and 4 EF5s, which generally
reflects the overall climatological distribution (Brooks
et al. 2003). The relatively smaller number of EFOs was
due to the tendency for insufficient pretornadic radar
sampling of such events [i.e., weak tornadoes often
formed and then dissipated within one or two radar
volume scans and thus were not preceded by a time-
and space-resolvable pretornadic circulation (especially
for the cases farthest from the radar)]. The difficulty in
applying this technique to the weaker, more diffuse
circulations that tend to precede EFO tornadoes is a
limitation, but the information provided by these cases
with short-lived pretornadic circulations is still
important to include because it is relevant in a real-time
operational setting. Additionally, if a storm contains a
poorly resolved, weak, diffuse mesocyclone, it should
be intuitive that the storm has a very low probability of
producing a significant tornado if any tornado at all, and
this also highlights the operational difficulty of
identifying the weaker rotation signatures that may
precede weak tornadoes (especially for quasi-linear
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convective system cases and storms that are a greater
distance from the radar).

The Gibson Ridge radar software (GR2Analyst)
was used to manually analyze single-site, WSR-88D
level 11 data for each case. Reflectivity criteria (see
ST20, and references therein) were employed to
categorize the convective mode of the parent storm of
each tornado. Of the 300 cases in the dataset, 130 were
associated with discrete supercells (DSC), 124 with
quasi-linear convective systems (QLCS), and 46 with
clusters or multicells (MUL). As explained in more
detail in ST20, Doppler velocity data were then used to
quantify the pretornadic mesocyclone width, defined
here as the linear distance between the inbound and
outbound velocity peaks in the vortex couplet, as well
as the pretornadic mesocyclone intensity, equated here
to the differential velocity (AV) computed using the
inbound and outbound velocity peaks. From ST20
[methods similar to Smith et al. (2012)], the presence of
a mesocyclone required a peak AV >10 m s™ over a
horizontal distance of <7 km, over the depth of the three
lowest radar elevation angles, during at least one
volume scan. The pretornadic mesocyclone metrics
(Table 1) were evaluated at the three lowest radar-
elevation angles, for up to four volume scans during the
lifetime of the identifiable mesocyclone, through the
volume scan just prior to the time of reported
tornadogenesis. To clarify, at least one pretornadic
volume scan was required. There were mesocyclones in
the dataset that had pretornadic lifetimes exceeding
four volume scans, and although there were consistent
results when a greater number of scans were included
(when present), analysis of characteristics beyond four
volume scans did not provide unique information. This
was done to attain a representative measure of the
mesocyclone and its evolution without having
unnecessary data collection. The percentages of cases
in which four, three, two, and one volume scan were
used in their analysis are 56%, 21%, 19%, and 4%,
respectively.

Before including a case, the quality of the velocity
data was thoroughly considered to ensure the maximum
inbound and outbound velocities were associated with
a mesocyclone. When contaminants such as three body
scatter spikes and dealiasing issues prevented a
mesocyclone from being resolved, the case was not
used. Additionally, to further ensure that the velocity
maxima were associated with a rotating updraft instead
of divergence or convergence signatures the positioning
of the extrema with respect to one another and the larger
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Table 1. List of pretornadic, radar-based parameters analyzed.

Parameter Description

Total average pretornadic mesocyclone width (km)

The mean mesocyclone width over the lowest three elevation angles and all volume scans
analyzed during the pretornadic period.

Peak pretornadic mesocyclone intensity (AV, m s)

The maximum AV over the lowest three elevation angles and all volume scans analyzed during
the pretornadic period.

Distance from radar (km)

The distance from the radar to the approximate location of the tornado at the time of
tornadogenesis using the 0.5° elevation angle scan closest to the time of tornadogenesis.

Convective mode oo
description]

Either discrete supercell, QLCS, or multicell [see Sessa and Trapp (2020) for further

storm structure from reflectivity data were considered.
Based on the analyses presented by Wood and Brown
(1997), the potential errors in mesocyclone width at
radar ranges <100 km appear to be <500 m, and the
potential errors in mesocyclone intensity within these
same ranges are <3 m s-!. While these are potential
sources of inconsistencies in the radar analyses, the
larger sample size of events studied should represent
the spread of error that is inherent in radar studies, and
there is consistency between the methods here and
operational practice as these radar range and beam
width discrepancies (e.g., averaging velocities across a
beam width, separation of circulation center from
center of beam) would be present in real-time radar
assessments as well.

We acknowledge that there are other mesocyclone
metrics that could have been considered, including
mesocyclone depth, mesocyclone width and intensity
over more than the lowest three elevation angles, and
the temporal evolution of width, depth, and intensity
(Gibbs 2016; Gibbs and Bowers 2019). Characteristics
in polarimetric variables such as Zpr columns and arcs
also could have been considered (Van Den Broeke
2017, 2020; French and Kingfield 2021). However,
pretornadic mesocyclone width and intensity most
directly relate to the Trapp et al. (2017) hypothesis on
tornado intensity, and therefore are the characteristics
of focus herein. Indeed, as will be shown, mesocyclone
width is a robust predictor of tornado intensity for the
cases in this expanded dataset.

Although we have no specific hypothesis linking
mesocyclone width and/or intensity to tornadogenesis,
there may be utility in exploring the analyzed
mesocyclone  characteristics in  relation  to
tornadogenesis through the inclusion of a small sample
of nontornadic or null cases. Herein, nontornadic
storms were defined as storms that were tornado-
warned by the National Weather Service but did not
produce a reported tornado. The analysis reference time
(T-0) was the time of the first tornado warning issued

for a non-tornado producing storm; thus, T-0 is meant
to correspond to the time of tornadogenesis failure, as
originally introduced by Trapp (1999). Only storms
with one circulation within the warning box were
included (e.g., QLCS cases with large warning boxes
including multiple circulations were excluded). The
Iowa Environmental Mesonet storm warning database
was used to identify tornado warnings that were the first
to be issued for a particular storm. The Storm Prediction
Center (SPC) severe weather events archive (https://
www.spc.noaa.gov/exper/archive/event.php?
date=20211210) as well as the NCEI Storm Events
Database  (https://www.ncdc.noaa.gov/stormevents/)
were used to confirm that a particular storm and
associated mesocyclone never produced a tornado. If
this basic criterion was met, then radar data were
analyzed to confirm that the case met the other criteria
outlined above (e.g., within 100 km of a radar, presence
of a mesocyclone over the lowest three radar elevation
angles). The mesocyclone characteristics over the pre-
warning time were then analyzed following the same
methods applied to tornadic storms. Cases were
selected from the previous two years and are seasonally
and geographically diverse. As will be discussed, the
mesocyclone widths and intensities of our 35
nontornadic cases are distinguishable from those
associated with EF3+ tornadic cases, but not from
weaker tornadic cases.

b. Development of environmental dataset

There are numerous factors to consider when
evaluating near-storm, pretornadic environmental
conditions (e.g., Brooks et al. 1994; Thompson et al.
2003; Potvin et al. 2010, Coniglio 2012; Parker 2014;
Smith et al. 2015), such as how to sample the
environment (e.g., proximity, inflow or pre-/ongoing/
post-convective environments) and what time and
space scales are most appropriate. For example, Potvin
et al. (2010) found using a large dataset of observed
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proximity soundings associated with significant
tornado reports that there appears to be a favorable
spatiotemporal distance from a thunderstorm-related
event that it is close enough to capture the background
environment of the storm while being far enough away
to minimize impacts of a storm’s influence on the local
environment (often referred to as convective
feedbacks). This optimum spatiotemporal distance was
found to be within 40—80 km and 1-2 h of the storm or
event, and several studies have adopted these guidelines
(e.g., Coniglio 2012; Reames 2017; Coniglio and
Parker 2020), although only one sounding was used for
each storm and only differences in distance, not
azimuth, were considered.

One issue with rawinsonde datasets is that they
often lack adequate spatial and temporal coverage.
Model-based soundings have high spatial and temporal
resolution, but also have model biases and inaccuracies,
dependences on model parameterizations, and potential
convective feedbacks that can result in errors in model
soundings as compared to observed soundings in a pre-
convective environment (Thompson et al. 2003;
Coniglio 2012; Laflin 2013). Even with these
limitations, previous studies have concluded that model
analysis soundings provide a reasonable proxy for
observed soundings in severe thunderstorm
environments, and that certain sounding parameters
have skill in identifying supercell and tornado
environments, especially when using 0- and 1-h
analysis data (Markowski et al. 2003; Thompson et al.
2003; King and Kennedy 2019).

Model soundings from the Rapid Update Cycle
(Benjamin et al. 2004) and the Rapid Refresh
(Benjamin et al. 2016) have been used in studies of
supercell and severe thunderstorm environments.
Several studies have sampled the environment from the
nearest analysis grid point at the closest hour prior to a
significant severe event (Markowski et al. 2003;
Thompson et al. 2003, 2007; Grams et al. 2012;
Brotzge et al. 2013; Nowotarski and Jensen 2013).
Others have sampled the environment at the grid point
of maximum STP within a warning area or a certain
distance to the storm (Smith et al. 2015; Anderson-Frey
et al. 2016). To increase the representativeness of
surface conditions, some studies combined the model
analyses  with  objectively  analyzed  surface
observations (Thompson et al. 2007; Coniglio 2012;
Grams et al. 2012; Thompson et al. 2012).

Guided and motivated by the previously described
studies, the 13-km Rapid Refresh Version 3 (RAP)
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analysis data from the THREDDS database (https://
www.ncei.noaa.gov/access/thredds-user-guide)  were
used herein. Beginning with the 3D state variables from
the RAP analysis, 42 desired environmental variables
(Table 2) were computed either manually or using the
Unidata MetPy python module (May et al. 2022). The
RAP analysis time nearest but prior to the time of
tornadogenesis was used for the computations. For
example, if tornadogenesis for a particular case took
place at 2132 UTC, then the 2100 UTC RAP analysis
hour was used. This choice of analysis time was based
on experimentation, as was the choice of an analysis
domain with horizontal dimensions 130 km x 130 km,
centered on the RAP grid point closest to the location of
tornadogenesis. The domain was not centered on the
grid point closest to the greatest EF rating because we
cannot assume reliable spatial coverage of damage
indicators along a tornado path, nor can we assume that
EF ratings would be continuous along a given damage
path even with an abundance of damage indicators. To
limit the impacts of convective feedbacks (or so-called
convective contamination), any grid point with a 1-km
AGL simulated reflectivity >20 dBZ was excluded from
the sampling domain. Additionally, any grid point with
a most-unstable (MU) convective available potential
energy (MUCAPE) <75 J kg was excluded. This
threshold was chosen after sensitivity tests were
completed using different thresholds with cases where
a cold front or warm front dissected the sampling box.
Thus, this successfully acted to remove grid points from
behind cold fronts or ahead of warm fronts without
removing grid points that represented the near-storm
environment. Last, values of sampled parameters <0
were excluded. These criteria reduced the number of
grid-point values in the sampling domain and therefore
varied the number of grid-point values from case to
case.

The maximum, mean, and median value of each
parameter in the 130 km x 130 km sampling domain
were calculated across cases, as was the standard
deviation, to understand how each parameter varied
across the sampling domains. Based on
intercomparisons across several cases, the mean value
in the sampling domain was chosen for the analyses
presented in section 3. This allowed for the near-storm
environment to be represented by multiple grid points
rather than by only one (i.e., the maximum value, or
value closest to the location of tornadogenesis).
Because the focus of this analysis is on relationships
between the near-storm environment and tornado
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Table 2. List of pretornadic environmental parameters computed.

Parameter Description

100-mb Mixed-Layer Convective Available Potential Energy (MLCAPE, J kg™) Calculated in MetPy
100-mb Mixed-Layer Convective Inhibition (MLCIN, J kg™") Calculated in MetPy
Surface-based Convective Available Potential Energy (SBCAPE, J kg™!) Calculated in MetPy
Surface-based Convective Inhibition (SBCIN, J kg™) Calculated in MetPy
Most-Unstable Convective Available Potential Energy (MUCAPE, J kg™") Calculated in MetPy
Most-Unstable Convective Inhibition (MUCIN, J kg™ Calculated in MetPy

0-3-km Convective Available Potential Energy (CAPE03, J kg™ Calculated in MetPy using layer interpolation
Lifted Index (LI, °C) Calculated in MetPy

0-8-km Bulk Shear (S08, m s™)

Calculated in MetPy using layer interpolation

0-6-km Bulk Shear (S06, m s™)

Calculated in MetPy using layer interpolation

0-3-km Bulk Shear (S03, m s™)

Calculated in MetPy using layer interpolation

0—1-km Bulk Shear (SO1, ms™)

Calculated in MetPy using layer interpolation

0-500-m bulk shear (S500, m s™)

Calculated in MetPy using layer interpolation

Effective bulk shear (EBS, ms™)

Manually calculated using methods and equations outlined in Thompson et al. (2007)

Bunkers Right Storm Motion (BR, m s™!) Calculated in MetPy
0—6-km Mean Flow (06Mean, ms™') Calculated in MetPy
0-1-km Storm Relative Helicity (01SRH, m* s%) Calculated in MetPy
0-3-km Storm Relative Helicity (03SRH, m* s%) Calculated in MetPy
0-500-m Storm Relative Helicity (0500SRH, m’ s2) RAP analysis variable

Effective Storm Relative Helicity (ESRH, m? s2)

Manually calculated using methods and equations outlined in Thompson et al. (2007)

Effective Layer Base Height (ELB, m)

Manually calculated using methods and equations outlined in Thompson et al. (2007)

Effective Layer Top Height (ELT, m)

Manually calculated using methods and equations outlined in Thompson et al. (2007)

Effective Layer Depth (ELD, m)

Manually calculated using methods and equations outlined in Thompson et al. (2007)

0-2-km Storm Relative Wind (02SRW, m s™)

Manually calculated using MetPy layer interpolation

4-6-km Storm Relative Wind (46SRW, m s™')

Manually calculated using MetPy layer interpolation

9—11-km Storm Relative Wind (911SRW, ms™)

Manually calculated using MetPy layer interpolation

0-3-km Lapse Rate (03LR, °C km™)

Manually calculated using MetPy layer interpolation

3-6-km Lapse Rate (36LR, °C km™")

Manually calculated using MetPy layer interpolation

m)

Lifting Condensation Level Height (LCLh, m) Calculated in MetPy
Level of Free Convection Height (LFCh, m) Calculated in MetPy
Lifting Condensation Level to Level of Free Convection Height Difference (LCL-LFC, Manually calculated

0-3-km Relative Humidity (03RH, %)

Calculated in MetPy using layer interpolation

3—6-km Relative Humidity (36RH, %)

Calculated in MetPy using layer interpolation

Lifting Condensation Level to Level of Free Convection Relative Humidity (LCL-
LFC-RH, %)

Manually calculated

0-1-km Energy Helicity Index (01EHI)

Manually calculated using methods and equations outlined in Thompson et al. (2003)

0-3-km Energy Helicity Index (03EHI)

Manually calculated using methods and equations outlined in Thompson et al. (2003)

Fixed-layer Supercell Composite Parameter (SCPf)

Manually calculated using methods and equations outlined in Thompson et al. (2003)

Effective-layer Supercell Composite Parameter (SCPe)

Calculated in MetPy

Fixed-layer Significant Tornado Parameter (STPf)

Calculated in MetPy

Violent Tornado Parameter (VTP)

Manually calculated using methods and equations outlined in Hampshire et al. (2018)

0-1-km Tornadic Energy Helicity Index (torEHI)

Manually calculated using methods and equations outlined from SPC

Tornadic Tilting and Stretching Parameter (TTS)

Manually calculated using methods and equations outlined from the SPC

Critical Angle (CA, degrees)

Calculated in MetPy

intensity, considering a larger area that the storm and
tornado may experience is particularly relevant.

3. Analysis

a. Pretornadic characteristics of mesocyclones
associated with significant versus nonsignificant
tornadoes

The box-and-whisker plot in Fig. 2a confirms the
robust relationship found by ST20 between pretornadic
mesocyclone width and the EF of the resultant tornado.
In the linear regression between pretornadic

mesocyclone width and EF scale, the coefficient of
determination (R?) is 0.69 (Fig. 2b), which supports the
remarkably clear separation shown in Fig. 2a for the
widths associated with lower-end (EF0-1) versus
higher-end (EF3-5) tornadoes. A tabular view of this
separation of mean pretornadic mesocyclone width is
provided in Tables 3 and 4. The same R? results from a
linear regression between pretornadic width and
estimated tornado windspeeds (not shown). If the EF0—
1 tornadoes are omitted from the linear regression, the
resultant R? is 0.68, which shows that this relationship
is robust over the range of significant (EF2+) tornadoes.
As a function of convective mode, the widths of
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Table 3. Mean and standard deviation of the mean pretornadic mesocyclone width, peak pretornadic mesocyclone
AV, and spatial mean of each environmental parameter across all cases, separated by non-significant (EF0-1) and
significant (EF2-5) tornado intensity.

Parameter EF0 to EF1 (194 cases) EF2 to EF5 (106 cases)
Pretornadic Mesocyclone Width (km) 2.04,0.37 3.28,0.98
Pretornadic Mesocyclone AV (m s™) 35.8,10.2 47.4,12.7
100-mb Mixed-Layer Convective Available Potential Energy (MLCAPE, J kg™!) 985, 249 1241, 270
100-mb Mixed-Layer Convective Inhibition (MLCIN, J kg™") —49, 23 —54, 26
Surface-based Convective Available Potential Energy (SBCAPE, J kg") 1317, 416 1485, 391
Surface-based Convective Inhibition (SBCIN, J kg™!) —63, 34 —60, 29
Most-Unstable Convective Available Potential Energy (MUCAPE, J kg™ 1538, 356 1748, 349
Most-Unstable Convective Inhibition (MUCIN, J kg™') -20, 16 -23,16
0—3-km Convective Available Potential Energy (CAPE03, J kg™!) 54,24 52,22
Lifted Index (LI, °C) —2.69, 0.91 —2.62,0.93
0—8-km Bulk Shear (S08, m s™') 25,2 29,23
0—6-km Bulk Shear (S06, m s™) 23,18 27,2.0
0—3-km Bulk Shear (S03, m s™) 18,1.9 22,19
0—1-km Bulk Shear (S01, ms™) 13,1.6 17,1.7
0—500-m bulk shear (S500, m s!) 10, 1.4 12,14
Effective bulk shear (EBS, m s™) 21,23 26,2.2
Bunkers Right Storm Motion (BR, m s™') 15,1.3 18,1.2
0—6-km Mean Flow (06Mean, m s™') 18,1.1 22,1.1
0—1-km Storm Relative Helicity (01SRH, m? s%) 204,37 274,43
0—3-km Storm Relative Helicity (03SRH, m? s) 279, 48 372,58
0—500-m Storm Relative Helicity (0500SRH, m* s2) 184, 38 225,41
Effective Storm Relative Helicity (ESRH, m? s2) 196, 54 291, 67
Effective Layer Top Height (ELT, m) 1528, 478 1719, 512
Effective Layer Depth (ELD, m) 1510, 414 1713, 463
0—2-km Storm Relative Wind (02SRW, m s™) 10, 0.63 11, 0.74
4—6-km Storm Relative Wind (46SRW, m s) 10, 0.82 10, 0.88
9—11-km Storm Relative Wind (911SRW, m s™) 16.3,2.0 17,2.3
0—3-km Lapse Rate (O3LR, °C km™) 5.72,0.38 5.82,0.35
3—6-km Lapse Rate (36LR, °C km™") 6.21,0.21 6.56, 0.23
Lifting Condensation Level Height (LCLh, m) 389, 126 434, 133
Level of Free Convection Height (LFCh, m) 1707, 760 1916, 786
Lifting Condensation Level to Level of Free Convection Height Difference (LCL-LFC, m) 1401, 815 1559, 764
0—3-km Relative Humidity (03RH, %) 80,4.5 79,4.9
3—6-km Relative Humidity (36RH, %) 65, 8.4 59, 8.5
Lifting Condensation Level to Level of Free Convection Relative Humidity (LCL-LFC-RH, %) 83,54 82.5, 6.45
0—1-km Energy Helicity Index (01EHI) 1.01, 0.34 1.84,0.48
0—3-km Energy Helicity Index (03EHI) 1.51,0.46 2.61,0.65
Fixed-layer Supercell Composite Parameter (SCPf) 2.07,0.51 4.19, 0.98
Effective-layer Supercell Composite Parameter (SCPe) 4.96, 1.77 9.18,2.59
Fixed-layer Significant Tornado Parameter (STPf) 1.27,0.51 2.46, 0.86
Violent Tornado Parameter (VTP) 0.89, 0.42 2.01,0.88
0—1-km Tornadic Energy Helicity Index (torEHI) 0.62,0.29 1.68, 0.64
Tornadic Tilting and Stretching Parameter (TTS) 1.65, 0.77 29,121
Critical Angle (CA, degrees) 67,11 63, 8.5

supercell mesocyclones exhibit higher correlations to
EF (R* = 0.77) than do the widths of QLCS
mesocyclones/mesovortices (R? = 0.48).

Specifically shown in Fig. 2a are widths that are
averaged in height over the three lowest radar scans,
and in time over the pretornadic (or pre-warning)
volume scans (see Table 1); ST20 demonstrated,
however, that this relationship can be generalized to
widths at individual scans (e.g., the lowest) and at

individual pretornadic times. Indeed, there is relatively
little time variability in the pretornadic width, such that,
except for the few minutes immediately prior to
tornadogenesis when mesocyclone contraction occurs,
a wide (narrow) mesocyclone is consistently wide
(narrow) (Fig. 3; also see ST20) allowing for these
characteristics to be more easily used in a prognostic
manner. Our results do show that the majority of EF3
and greater rated tornadoes (which tended to be
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(a) Average Pretornadic and Pre-warning Mesocyclone Width for All
Cases
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(b)  Average Pretornadic Mesocyclone Width vs EF Rating for All
Cases
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Figure 2. (a) Box-and-whiskers plot of the total
average pretornadic mesocyclone width (km) of EF0-5
tornadoes and the total average pre-warning
mesocyclone width (km) of nontornadic storms for all
cases. (b) Scatterplot of the relationship between the
total average pretornadic mesocyclone width (km) and
the EF rating of the resultant tornado for all cases. In
(a), the mean is represented by the “X” and the median
by the bar. The top and bottom of the box represent the
3rd and 1st quartiles with exclusive medians,
respectively. The top whisker represents the boundary
of 1.5 times the interquartile range above the 3rd
quartile, and the bottom whisker represents the
boundary of 1.5 times the interquartile range below the
1st quartile. Any point beyond these whiskers is plotted
as an outlier point.

preceded by wider pretornadic circulations) were
associated with mesocyclones that narrowed and
strengthened just prior to tornadogenesis. This supports
the idea that a pretornadic mesocyclone that shows an
increase in AV and a decrease in width immediately
prior to tornadogenesis may be more likely to produce
a tornado, specifically a potentially strong tornado, and
this pattern has been found in other observational
studies as well (e.g., Gibbs and Bowers 2019; Baerg et
al. 2020); how this relates to tornadogenesis is
discussed below.

Pretornadic and Pre-warning Mesocyclone Width Average Trend for
All Cases

Width Trend (km)

+++++¥-

Nontor EFO EF1 EF2 EF3 EF4 EF5

Figure 3. As in Fig. 2a, except for the average changes
(km) in mesocyclone width during the pretornadic or
pre-warning sampling time.
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Figure 4. As in Fig. 2, except for the peak pretornadic
or pre-warning mesocyclone intensity (differential
velocity; m s™).

A relationship between pretornadic mesocyclone
intensity (peak pretornadic AV; see Table 1) and the EF
of the resultant tornado also is apparent in the box-and-
whisker plot presented as Fig. 4a (also see Tables 3 and
4). However, as quantified by linear regression, the
relationship is relatively weak (R* = 0.29; Fig. 4b); the
relationship also is relatively weak (R* = 0.27) if
average pretornadic AV is used in the linear regression.
As a function of convective mode, the correlations are
again higher for DSC (R? = 0.43), and lower for QLCS
cases (R* = 0.09). As noted by ST20, pretornadic AV
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Figure 5. As in Fig. 2a, except for the average changes
(m s™) in mesocyclone intensity during the pretornadic
or pre-warning sampling time.
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tends not to be as temporally consistent as width. On
average, mesocyclone intensity tends to increase during
the pretornadic sampling time (Fig. 5), which also has
been demonstrated by Gibbs (2016) and Gibbs and
Bowers (2019), which conforms to the expectation of
tornadogenesis. Embedded within this trend, however,
are fluctuations that may complicate real-time
interpretation.

Because the foregoing analysis is fundamentally
motivated by the principle of conservation of angular
momentum or, equivalently, of circulation defined as:

VTFTZF:VMFM ( 1 )

where rrand Vi (ra and Vy) are, respectively, the radius
and tangential windspeed of the tornado (pretornadic
mesocyclone), and I' is circulation (see Trapp et al.
2017), it would seem logical to also evaluate circulation
itself. Figure 6a shows a box-and-whisker plot of
average pretornadic mesocyclone circulation, which is
represented here as the product between average
differential velocity and average width, as a function of
the EF of the resultant tornado. The plot indicates clear
distinctions between pretornadic circulations for lower-
end versus higher-end tornadoes, and consistently, the
linear relationship between pretornadic mesocyclone
circulation and EF is strong (R* = 0.62; Fig. 6b).
Interestingly, the linear relationship between
pretornadic mesocyclone width and intensity is
relatively weak (R? = 0.29; not shown), indicating that
wide pretornadic mesocyclones are not necessarily
intense, and vice versa. These collective results seem to
support the argument of Trapp et al. (2017) that a large-
ru, small-Vy product is more likely to explain a large
value of mesocyclonic I than does a small-r, large-Vi,
product.

(a) Average Pretornadic and Pre-warning Mesocyclone Circulation for All
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(b) EF Ratingvs Average Pretornadic Mesocyclone Circulation for All

Cases

EF Rating

Figure 6. As in Fig. 2, except for the average
pretornadic or pre-warning mesocyclone circulation
(m*s™).

It is relevant to ask whether the circulation-
conservation principle embodied in Eq. (1) also
provides information about the tornado damage track.
The box-and-whisker plots in Fig. 7 reveal a
relationship between pretornadic mesocyclone width
and tornado path width, such that the widest
mesocyclones are associated with the widest damage
paths. A relationship between pretornadic mesocyclone
intensity and tornado path width also is suggested.
Although not robust, the linear relationships between
pretornadic mesocyclone characteristics and tornado
path width (R? = 0.36 for mesocyclone width, R*=0.21
for mesocyclone intensity) are at least relatively
stronger than those between the pretornadic
mesocyclone characteristics and tornado path length
(R* = 0.25 for mesocyclone width, R* = 0.14 for
mesocyclone intensity). This is perhaps not surprising
given that for the cases in this dataset, the linear
correlations between EF and tornado path width (R* =
0.43) are higher than those between EF and path length
(R*=0.28).

When viewing the average, pre-warning,
mesocyclone width for nontornadic cases (Fig. 2a),
there is clearly no distinction between nontornadic and
tornadic storms, but there is separation from EF3+
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intensity.
Parameter EFO0 to EF1 (194 cases) | EF2 to EF3 (92 cases) | EF4 to EF5 (14 cases)
Pretornadic Mesocyclone Width (km) 2.04, 0.37 3.01, 0.73 5.01, 0.59
Pretornadic Mesocyclone AV (m s™) 35.8,10.2 454,11.5 60.5,12.9
100-mb Mixed-Layer Convective Available Potential Energy 985, 249 1133, 250 1948, 404
(MLCAPE, J kg'!)
100-mb Mixed-Layer Convective Inhibition (MLCIN, J kg™) —49, 23 -53,25 —60, 32
Surface-based Convective Available Potential Energy (SBCAPE, J kg!) 1317,416 1330, 381 2507, 457
Surface-based Convective Inhibition (SBCIN, J kg™') —63, 34 —61, 30 —52,23
Most-Unstable Convective Available Potential Energy (MUCAPE, J kg™") 1538, 356 1593, 342 2771, 392
Most-Unstable Convective Inhibition (MUCIN, J kg™ -20, 16 21,17 —33,13
0—3-km Convective Available Potential Energy (CAPE03, J kg™") 54,24 52,21 49,25
Lifted Index (LI, °C) —2.69,0.91 —2.42,0.9 —3.85,1.08
0—8-km Bulk Shear (S08, m s™') 25,2 28,2.2 32,2.1
0—6-km Bulk Shear (S06, m s™') 23,1.8 27,2.1 29, 2.0
0—3-km Bulk Shear (S03, ms™") 18,1.9 21,13 24,2.1
0—1-km Bulk Shear (S01, m s™) 13,16 17,12 16, 1.7
0—500-m bulk shear (S500, m s™') 10, 1.4 12,1.1 11,1.3
Effective bulk shear (EBS, m s™) 21,23 25,23 29,2.1
Bunkers Right Storm Motion (BR, m s™) 15,1.3 17,1.4 19, 1.1
0—6-km Mean Flow (06Mean, m s™') 18, 1.1 21,13 23,09
0—1-km Storm Relative Helicity (01SRH, m? s) 204,37 276,43 254,48
0—3-km Storm Relative Helicity (03SRH, m? s 279, 48 372,57 370, 67
0—500-m Storm Relative Helicity (0500SRH, m? s2) 184, 38 191, 29 194, 40
Effective Storm Relative Helicity (ESRH, m? s2) 196, 54 288, 67 307, 69
Effective Layer Top Height (ELT, m) 1528, 478 1677, 504 1991, 563
Effective Layer Depth (ELD, m) 1510,414 1668, 453 2013, 526
0—2-km Storm Relative Wind (02SRW, m s™') 10, 0.63 11, 0.73 11, 0.74
4—6-km Storm Relative Wind (46SRW, m s™) 10, 0.82 10, 0.88 11, 0.83
9—11-km Storm Relative Wind (911SRW, m s™') 16.3,2.0 17,23 17,2.1
0—3-km Lapse Rate (03LR, °C km™") 5.72,0.38 5.70, 0.34 6.6,0.4
3—6-km Lapse Rate (36LR, °C km™) 6.21, 0.21 6.49, 0.24 7,0.18
Lifting Condensation Level Height (LCLh, m) 389, 126 393, 120 706, 222
Level of Free Convection Height (LFCh, m) 1707, 760 1962, 829 1616, 504
Lifting Condensation Level to Level of Free Convection Height Difference 1401, 815 1652, 811 946, 452
(LCL-LFC, m)
0—3-km Relative Humidity (03RH, %) 80, 4.5 80, 4.9 72,4.9
3—6-km Relative Humidity (36RH, %) 65,84 61, 8.7 42,6.7
Lifting Condensation Level to Level of Free Convection Relative Humidity 83,54 83,6.2 78, 8.0
(LCL-LFC-RH, %)
0—1-km Energy Helicity Index (01EHI) 1.01,0.34 1.69, 0.45 2.73,0.67
0—3-km Energy Helicity Index (03EHI) 1.51, 0.46 2.38,0.58 4.14,1.0
Fixed-layer Supercell Composite Parameter (SCPf) 2.07,0.51 3.73,0.87 7.14,1.62
Effective-layer Supercell Composite Parameter (SCPe) 4.96, 1.77 8.29,2.45 15,3.4
Fixed-layer Significant Tornado Parameter (STPf) 1.27,0.51 2.21,0.81 41,12
Violent Tornado Parameter (VTP) 0.89, 0.42 1.67, 0.66 4.23,0.89
0—1-km Tornadic Energy Helicity Index (torEHI) 0.62,0.29 1.43,0.57 3.26,1.0
Tornadic Tilting and Stretching Parameter (TTS) 1.65, 0.77 291, 1.1 2.82,1.4
Critical Angle (CA, degrees) 67, 11 63,84 62, 8.9

tornadoes. When viewing the peak, pre-warning,
mesocyclone intensity (Fig. 4a), the distribution of
intensities is similar to EF0-1 tornado-producing
storms, but there is separation from EF2+ tornadoes.
The pre-warning circulation (Fig. 6a), has a similar
distribution to EF2 tornado-producing storms, similar
to the pre-warning mesocyclone width, but still shows
separation from EF3+ tornadoes. When considering the

trend of pre-warning mesocyclone width (Fig. 3), there
tended to still be a narrowing trend immediately prior to
T-0 but to a lesser magnitude than tornadic cases and
with more variability throughout the pre-warning time.
There is still an increasing trend in the pre-warning
mesocyclone intensity but to a lesser degree than during
the pretornadic period of tornadic storms (Fig. 5).
Importantly, the presence of these trends in nontornadic
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Figure 7. As in Fig. 2a, except for pretornadic:
(a) mesocyclone width and tornado path width,
(b) mesocyclone width and tornado path length,
(c) mesocyclone intensity and tornado path width, and
(d) mesocyclone intensity and tornado path length.

(¢) d)

storms is consistent with radar signatures that would
lead an operational forecaster to issue a tornado
warning. The presence of narrowing and intensification
is, therefore, not a trend specific to tornado-producing
storms, but EF3+ tornadoes still had greater narrowing
and intensification trends prior to tornadogenesis than
the nontornadic storms prior to tornadogenesis failure.
While mesocyclone width and intensity and their trends
do not discriminate between nontornadic and tornadic
storms, there still is separation of these variables
between EF3+ tornado-producing storms and
nontornadic and EF0-2 tornado-producing storms.
Therefore, a weak, narrow mesocyclone would have a
greater likelihood of being nontornadic or weakly
tornadic than producing an EF3+ tornado, and a wide
strong mesocyclone would have a greater likelihood of
producing an EF3+ tornado than a weak tornado or no
tornado at all.

An open question at this point is whether the
pretornadic mesocyclone radar analyses are sensitive to
the radar range and the associated changes in beam
width and beam height, both of which impact how the
vortex is sampled. To answer this, a similar radar range
and beam height analysis to that of ST20 was
completed in which the full dataset was divided into
three range groups at the time of tornadogenesis as
follows: 0—34 km (20% of cases), 35—69 km (48% of
cases), and 70-100 km (32% of cases). Importantly,
there is no consistent reduction in the linear
relationship between EF rating and the pretornadic
mesocyclone width across the three range groups (R? =
0.69, R? = 0.6, R* = 0.75, respectively; Fig. 8). The
same can be said for the peak pretornadic mesocyclone
AV, and in fact there is an increase in the coefficients of
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Figure 8. Scatterplot showing the linear relationship
between the average pretornadic mesocyclone width
(km) and the EF rating of the resultant tornado for all
cases with a radar range of (a) 0-34 km, (b) 35-69 km,
and (¢) 70-100 km.

determination with radar range (R*=0.21, R?=0.25, R?
= 0.31, respectively; not shown). Additionally, the
linear regression between the pretornadic mesocyclone
width and the radar range (not shown), has a weak
positive linear relationship (R* = 0.13), which is
reflected in the slight increase in the average
pretornadic mesocyclone width of each EF category
from the closest range group to the farthest range group
(Table 5). There is no linear relationship between the
peak pretornadic mesocyclone AV and the radar range
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Table 5. The mean pretornadic mesocyclone width (km) of each range group separated by EF rating.
EF0 EF1 EF2 EF3 EF4—5
0-34 km 1.76 1.92 234 3.53 4.77
3570 km 1.85 2.16 2.58 3.6 4.85
70-100 km 2.1 2.3 2.87 3.75 51

(not shown). To directly consider whether cases of the
same EF rating category have a similar distribution of
distances from the radar, notice that the mean case
distance is as follows: EF0-55 km, EF1-54 km, EF2-59
km, EF3-66 km EF4&5-69 km. While EF3-5 cases
have larger mean distances, each EF category contains
cases from each range group, implying that cases of all
EF ratings experience the potential impacts and biases
of the dependence of beam height and width with radar
range, Therefore, the impact/bias of radar range on our
overall conclusions should be limited.

A similar analysis can be completed for the height
of the 0.5° beam at the approximate time and location
of tornadogenesis, by dividing the dataset into the three
0.5° beam height groups of 0-500 m (34% of cases),
501-1000 m (43% of cases), and 1000+ m (23% of
cases). As in the preceding analysis, there is no
consistent decrease in the linear relationship between
EF rating and the pretornadic mesocyclone width
across the beam height groups (R>=0.71, R*=0.59, R?
= (0.76, respectively; not shown). This also is true for
the peak pretornadic mesocyclone AV (R*=0.18, R2 =
0.28, R*=0.36, respectively).

This exercise demonstrates more explicitly that the
proposed relationship to EF rating is not limited to
mesocyclones necessarily characterized as “near
surface” or “low level” from the radar perspective. To
this point it should be remembered that Doppler
weather radar does not simply sample the atmosphere at
discrete levels. A radar beam that is centered at 1000 m,
for example, at some range is sampling target motion
above and below that height. Thus, the framework
suggested by this study to anticipate tornado intensity
conditional on tornadogenesis can be applied to any
storm within 100 km of a radar and the associated
heights and depth of rotation that are viewed in that
range. An important note here is the lack of non-
significant tornadoes in the highest 0.5° beam height
group. Only 10% of EFOs and 19% of EF1s (i.e., 15%
of non-significant cases) were in the highest 0.5° beam
height group demonstrating the difficulty in resolving
the weaker, shallower mesocyclones of non-significant
tornadoes when the lowest beam height is >1 km AGL.

It also is worthwhile to consider the impact of radar
range and beam height on the separation of the mean
pretornadic mesocyclone width and peak pretornadic
mesocyclone AV with increasing EF rating. When
viewing the change in the mean pretornadic
mesocyclone width and the peak pretornadic
mesocyclone AV with increasing EF rating for each
range group, there is no pattern of change with range
(Table 6). There is a similar result when considering the
changes across the beam height groups. This
demonstrates that the critical thresholds of width and
intensity are not dependent on radar range and beam
height.

Recalling the restriction imposed in section 2a that
each tornado had to be the first produced by its
respective parent storm, here we explore whether the
relationships between pretornadic mesocyclone
characteristics and EF rating apply when this restriction
is removed. To do so, eight new cases from 2021 and
2022 in which more than one tornado was produced by
the same storm were analyzed (Table 7). These cases
were separated into two different scenarios based on the
time between the dissipation of one tornado and the
start of the following tornado. The first scenario
encompasses storms wherein the dissipation of one
tornado and the start of another tornado occurs over a
period confined to less than two full volume scans
(approximately 10 min). For cases in this scenario, the
pretornadic mesocyclone characteristics prior to the
first tornado would be applied to the maximum
intensity of all tornadoes that were produced in quick
succession. For example, from case #6 in Table 8, the
first tornado (EF1) began at 2012 UTC and dissipated
at 2026 UTC. The next tornado (EF3) began at 2033
UTC, so the time between the two tornadoes only
included one full volume scan placing the case into the
first scenario. The pretornadic characteristics prior to
the first tornado were then associated with the
maximum EF rating the storm produced, which in this
instance was EF3. There are likely real-time situations
where the determination that a tornado has dissipated
and a new pretornadic period has begun could be done
sooner than in two volume scans (especially when extra
low-level scans are available via supplemental adaptive
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Table 6. Change in the mean pretornadic mesocyclone width (km) and peak pretornadic mesocyclone intensity (AV,

m s™') with increasing EF rating for each range group.

EF1 - EF0 EF2 - EF1 EF3 - EF2 EF4&S5 - EF3 Significant -
Non-Significant
0—34 km 0.16 km, 1.3 ms! 042 km, 82 ms! 1.19km, 1.1 ms™! 1.24 km, 8.5 ms™! 1.70 km, 124 ms™!
35—70 km 0.3km, 6.4ms! 042 km, 7.0 ms™! 1.02 km, 5.1 ms™ 1.25km,-1.0 ms™! 1.67km, 13.1 ms™!
70-100 km 0.2km,4.7ms"! 0.57 km,4.0ms! 0.88 km, 3.1 ms! 1.35km, 17.7ms™' 1.70 km, 14.3 ms™'

Table 7. Case information for the eight tornadoes associated with storms that produced multiple tornadoes with
tornadoes produced by the same storm having the same case number.

Genesis Dissipation .
Case # Date State County Mode Location Locl;tion Path Pength Path Width
(LAT, LON) | (LAT, LON) (miles) (vds)
1 3/13/2021 Texas Swisher DSC 34.70,-101.99 | 34.95,-101.76 21.65 1500
1 3/13/2021 Texas Randall DSC 34.98,-101.73 | 35.04,-101.60 8.39 800
1 3/13/2021 Texas Randall DSC 35.01,-101.64 | 35.17,-101.53 13.17 1000
2 3/25/2021 Alabama Hale DSC 32.94,-87.58 | 33.01,-87.40 11.15 1400
2 3/25/2021 Alabama Bibb DSC 33.12,-87.17 | 33.50,-86.44 50.36 1100
2 3/25/2021 Alabama Calhoun DSC 33.7,-86.11 33.99, —85.54 38.44 1700
3 3/26/2021 Mississippi Chilton DSC 35.52,-90.25 | 32.89,-86.33 14.73 800
3 3/26/2021 Mississippi Tallapoosa DSC 33.09,-85.77 | 33.23,-85.26 31.13 1000
3 3/26/2021 Georgia Heard DSC 33.25,-85.19 | 33.45,-84.56 38.89 1850
4 3/27/2021 Arkansas Mississippi DSC 35.52,-90.25 | 35.52,-90.23 1.2 50
4 3/27/2021 Arkansas Mississippi DSC 35.54,-90.17 | 35.54,-90.15 1.1 80
4 3/27/2021 Arkansas Mississippi DSC 35.60,-90.08 | 35.60,-90.08 391 100
4 3/27/2021 Arkansas Mississippi DSC 35.66,-89.95 | 35.70,-89.87 4.93 125
5 12/11/2021 Arkansas Jonesboro DSC 35.47,-91.23 | 35.53,-91.13 6.69 150
5 12/11/2021 Arkansas Poinsett DSC 35.61,-90.93 | 35.62,-90.88 2.98 50
5 12/11/2021 Arkansas Craighead DSC 35.71,-90.73 | 35.75,-90.64 6.17 150
5 12/11/2021 Arkansas Craighead DSC 35.79,-90.55 | 36.40,-89.31 81.24 1800
5 12/11/2021 Tennessee Obion DSC 36.48,-89.14 | 37.61,-86.51 165.6 1760
6 3/21/2022 Texas Palo Pinto MUL 32.87,-98.53 | 32.96,-98.40 9.72 400
6 3/21/2022 Texas Jack MUL 33.04,-98.33 | 33.44,-97.97 34.51 880
7 3/21/2022 Texas Travis DSC 30.25,-97.48 | 30.36,-97.32 12.21 500
7 3/21/2022 Texas Travis DSC 30.37,-97.29 | 30.40,-97.21 5.57 50
8 3/31/2022 Alabama Perry DSC 32.55,-87.29 | 32.62,-87.23 6 500
8 3/31/2022 Alabama Perry DSC 32.75,-87.12 | 33.11,-86.86 29.36 1200

intra-volume low-level scans). It was found that this
could possibly be done in a few of these cases allowing
for new pretornadic characteristics to be applied to the
subsequent tornado in the immediate next full volume
scan after tornado dissipation, but in our demonstration
if only one full volume scan is present between the end
of one tornado and the start of another, this storm would
fall under scenario 1. This was determined from
keeping in mind that in a real-time scenario a forecaster
would need to be able to say that a tornado has
dissipated with some confidence so that the
characteristics of the rotation are no longer being
influenced by a tornado and are part of a new
pretornadic period. This would realistically require a
full volume scan (about 5—10 min) with potentially less
time when extra low-level scans are available.

For cases in which at least two full volume scans
are present between the dissipation of one tornado and
the start of another, new pretornadic mesocyclone

characteristics are applied to the subsequent tornado,
and this defines scenario two. This scenario includes
cases where 15 min pass between one tornado and the
next, or even when >1 h has passed. The same methods
are applied where up to four volume scans prior to
tornadogenesis are analyzed. For example, from case
#2 in Table 8, the same storm produced three EF3
tornadoes with more than two full volume scans
between each tornado. Therefore, this storm fell into
scenario two, and each of the three EF3 tornadoes
produced by the same storm had their own unique
pretornadic mesocyclone characteristics. Additionally,
as demonstrated in case #3, one storm can encompass
both scenarios over its lifetime.

As shown in Table 8, the pretornadic mesocyclone
characteristics demonstrated in these examples of
storms that produce multiple tornadoes are consistent
with the relationships shown from the full dataset. The
pretornadic widths and intensities fall within the

ISSN 2325-6184, Vol. 11, No. 5



Sessa and Trapp

NWA Journal of Operational Meteorology

22 May 2023

Table 8. Characteristics of the tornadoes and their pretornadic period for the eight tornadoes from storms that
produced multiple tornadoes. Tornadoes produced by the same storm have the same case number, and subsequent
tornadoes are labeled as scenario 1 or scenario 2 as described in section 3a.

L Dissipation Pealf Est. | Start Time Average. Peak . Average' # of .
Case #| Scenario Genesis Time Time EF Rating Wind of . Pretornadic | Pretornadic Pr‘etorna.dlc Pretornadic
(UTC) (UTC) Speeds Pretorna‘dlc Me.socyclone Mesocyclone | Circulation | Volume
(ms™) Analysis Width (km) AV (m s™) (m?s™) Scans
1 1st Tor. 21:15 22:00 2 51 20:55 3.41 55 137301 4
1 1 22:00 22:14 1 49 20:55 3.41 55 137301 4
1 1 22:06 22:34 0 36 20:55 3.41 55 137301 4
2 1st Tor. 17:16 17:29 3 63 16:53 4.41 49.5 193 700 4
2 2 17:53 19:02 3 63 17:34 3.77 39.5 120 060 3
2 2 19:31 20:27 3 63 19:16 4.59 73.5 273 058 3
3 1st Tor. 2:01 2:21 2 51 1:39 3.02 48.5 125 796 4
3 2 2:55 3:33 2 56 2:44 5.23 59.5 272 981 2
3 1 3:37 4:30 4 76 2:44 5.23 59.5 272 981 2
4 1st Tor. 23:01 23:05 0 32 22:43 2.08 35.5 54 361 3
4 1 23:11 23:15 0 32 22:43 2.08 35.5 54 361 3
4 1 23:21 23:28 1 43 22:43 2.08 35.5 54 361 3
4 1 23:37 23:46 1 43 22:43 2.08 35.5 54 361 3
5 1st Tor. 0:17 0:25 UNK UNK 23:49 4.75 46.5 195 597 4
5 1 0:36 0:43 0 29 23:49 4.75 46.5 195 597 4
5 1 0:57 1:04 1 45 23:49 4.75 46.5 195 597 4
5 1 1:07 2:36 4 76 23:49 4.75 46.5 195 597 4
5 1 2:41 5:47 4 85 0:49 4.75 46.5 195 597 4
6 1st Tor. 20:12 20:26 1 43 20:01 291 325 88 522 2
6 1 20:33 21:20 3 63 20:01 291 32.5 88 522 2
7 1st Tor. 23:30 23:50 2 58 23:13 3.41 50 14 224 3
7 1 23:54 0:04 0 34 23:13 3.41 50 14 224 3
8 1st Tor. 2:33 2:41 2 51 2:08 3.94 49.5 173 482 4
8 2 2:53 3:24 3 65 2:49 4.22 50 192 771 1

distributions from the larger dataset. Narrower, weaker
pretornadic mesocyclones still tended to precede
weaker tornadoes, and wider, stronger pretornadic
mesocyclones still tended to precede stronger tornadoes
in both scenarios described. Also, when these new cases
are included with the original 300 cases, the results
from the linear regression analyses do not change (not
shown). Thus, the results from these additional cases
support the idea that the pretornadic mesocyclone
characteristics of a storm provide useful information
about tornado intensity, conditional on tornadogenesis,
for storms that produce multiple tornadoes. When using
2.5 km as a critical threshold of pretornadic
mesocyclone width to separate non-significant from
significant tornadoes, the average mesocyclone width
from each pretornadic period could have been used to
correctly predict the peak EF rating -category
(significant versus non-significant) associated with it.
This is true for the maximum tornado intensity of
multiple tornadoes from the same storm that occur in
quick succession (scenario 1) or tornadoes that occur
with new pretornadic periods between each tornado
with each tornado having its own associated
pretornadic characteristics (scenario 2). The hope is that
these example cases at the very least demonstrate how

the pretornadic mesocyclone characteristics and the
methods of collecting them can be applied to
subsequent tornadoes with a similar skill to when they
are applied to the first tornado produced by a storm
(while acknowledging that this is demonstrated in a few
cases).

The radar-based results show much promise for
real-time prediction of tornado intensity, conditional on
tornadogenesis, during pretornadic stages of ongoing
storms. Next, we consider whether near-storm
environmental information may add predictive value
toward this prediction goal.

b. Environments of significant versus nonsignificant
tornadoes

To start, the overall results from our environmental
analyses are consistent with previous studies (e.g.,
Thompson et al. 2012; Hampshire et al. 2018). Relative
to non-significant tornadoes (EF0-1), significant
tornadoes (EF2+) tend to occur in environments
characterized by larger values of CAPE, midlevel
temperature lapse rates, low-level and deep-layer
vertical wind shear, storm-relative helicity (SRH), and
composite parameters such as the SCP, STP, and energy
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helicity index (EHI) (Figs. 9-11; also see Table 3).
Greater effective-layer depth also was associated with
EF2+ tornadoes (Fig. 10). On the other hand, low-level
instability parameters (e.g., 0-3-km CAPE, 0-3-km
lapse rates) do not appear to discriminate well between
non-significant and significant tornadoes (Fig. 11).
Given the objectives of impact-based warnings
(NWS 2011; also see the discussion by Gibbs and
Bowers 2019), our goal herein is the successful binary
prediction of significant (EF2+) versus non-significant
(EF0-1) tornado intensity (section 3c). However,
motivated by the results of Hampshire et al. (2018)—as
well as by the clear separation in the pretornadic
mesocyclone widths of weak (EF0-1) versus violent
(EF4-5) tornadoes (Fig. 2a)—it also is instructive to
view the environmental parameters over the three
intensity categories of EF0—1 (weak), EF2-3 (strong),
and EF4-5 (violent) (Figs. 12—14; also see Table 4); we
do this with the caveat that the number of violent
tornadoes in our dataset is approximately an order of
magnitude less than that of weak tornadoes. CAPE
parameters, effective-layer depth, 3—6-km temperature
lapse rates, and all composite parameters show an
increase across each of the three categories but a
noticeably larger increase from EF2-3 to EF4-5
tornadoes (Figs. 13—14). The 0-8-, 0—6-, and 0-3-km
bulk shear parameters, as well as effective bulk shear,
show an even increase across each intensity category
(Fig. 12). Lifted index, 0—3-km lapse rates, 0—3-km RH,
3—6-km RH, and the distance between the lifting
condensation level (LCL) and the level of free
convection (LFC) all show separation between
environments of EF2-3 and EF4-5 tornadoes (while
noting the limited sample size of 14 violent cases) but
not between EF0—1 and EF2-3 tornadoes, highlighting
how these parameters are especially relevant for the
recognition of violent tornado environments (Fig. 14;
Table 4). Low-level shear and SRH parameters,
including effective SRH, show separation between
environments of EF0—1 and EF2-3 tornadoes but not
between EF2-3 and EF4-5 tornadoes, indicating that
low-level shear may be a good discriminator between
weak and strong tornado environments but not of
violent tornado environments (Fig. 12). The importance
of low-level instability/buoyancy parameters over low-
level shear parameters for the identification of violent
tornado environments 1is consistent with the
relationships shown in Hampshire et el. (2018). These
results highlight the importance of considering—when
appropriate and feasible—the relationships between
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Figure 9. Box-and-whisker plot demonstrating the
relationship, or lack thereof, between (a) SO1 (m s™), (b)
EBS (ms™), (¢) S03 (m s™), (d) SRHO1 (m? s?), (¢) S06
(m s™), (f) ESRH (m?* s?) and non-significant (EF0-1)
and significant tornado intensity (EF2—5) for all cases.
Refer to Table 2 for a description of these parameters,
and how they were computed.

tornado intensity and the near-storm environment
across three intensity categories instead of two.

For reference, the physical significance of the
environmental parameters related to low-level vertical
shear have been described, for example, by Markowski
and Richardson (2014) and Markowski et al. (2002),
although in the context of tornadogenesis rather than
tornado intensification; the physical connection
between low-level shear and rotating updraft width, and
in turn between rotating updraft width and tornado
intensification, has been demonstrated by Marion and
Trapp (2019) and Trapp et al. (2017). Finally, predictors
related to lapse rates and CAPE (i.e., individually and
through the composite parameters, SCP, STP, and EHI)
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Figure 10. As in Fig. 9, except for (a) SCPf, (b) STPf,
and (c) O1EHL.

are physically connected to tornado intensification
through their contributions to vertical accelerations
and, presumably, to vertical vortex stretching; CAPE
also contributes to rotating updraft width (Marion and
Trapp 2019).
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Although LCL height may be more important for
distinguishing between nontornadic and tornadic
storms instead of non-significant and significant
tornadoes (e.g., Thompson et al. 2003; Hampshire et al.
2018), it is still relevant to rectify the somewhat higher
LCL heights for violent tornadoes (Table 4). The mean
LCL heights for each of the three EF rating groups
(weak, strong, violent) are all low LCL heights, even
for the violent cases (706 m). While still low overall,
the higher LCL heights for violent tornadoes in this
dataset compared to weak and strong may be due to
their occurrence outside of the summer months
typically inhabited by richer moisture, the greater
proportion of cases away from the very moist regimes
of the Gulf States, and the occurrence of strong
moisture gradients in several of the smaller sample of
violent cases in this dataset (note the greater standard
deviation for LCL height for the violent cases). Also,
Davies (2006) found that significant tornadoes can
occur in high LCL environments (>2 km) in the
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Figure 12. As in Fig. 9, except now categorized by
weak (EF0-1), strong (EF2-3), and violent (EF4-5)
tornado intensity.

presence of steep low-level lapse rates and adequate
low-level moisture. Although no violent case (or any
case at all), had a mean LCL height >2 km, three violent
cases had mean LCL heights just over 1 km and these
cases also had large low-level lapse rates and certainly
adequate low-level moisture. Also, the distribution of
LCL heights for the violent cases in this dataset are
consistent with the results of Grams et al. (2012).
Upon further stratifying these results across the
three convective modes of DSC, QLCS, and MUL, the
same relationships between the three intensity
categories generally apply (not shown). The only
exception is that the 0-3- and 3—6-km lapse rates only
show a noticeable increase from strong to violent
tornadoes for DSC cases. An interesting relationship
seen between convective mode and tornado intensity is
that strong QLCS tornadoes are associated with greater
low-level shear and SRH but lower CAPE than strong
DSC tornadoes. There are no clear differences seen
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Figure 13. As in Fig. 10, except now categorized by
weak (EF0-1), strong (EF2-3), and violent (EF4-5)
tornado intensity.

with composite parameters between the convective
modes. This indicates that significant QLCS tornadoes
tend to occur in high-shear-low-CAPE environments,
as also shown by Thompson et al. (2012), Davis and
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Parker (2014), and Sherburn and Parker (2019). MUL
cases did not include any violent tornadoes, but the
same parameters that show separation between EF0—1
and EF2-3 tornadoes for all cases show similar
relationships for MUL cases. Additionally, QLCS cases
only include one violent tornado (associated with a
deep, strong rotating updraft in the midlevels of the
storm and rapid development of rotation across the
lowest three elevation angles immediately preceding
tornadogenesis).

4. Discussion

The operational implementation of these results for
the purposes of tornado-intensity prediction is
straightforward. Environmental parameters are easily
obtainable from observed soundings or operational-
model grids using software packages such as MetPy
(May et al. 2022) and SHARPpy (Blumberg et al.
2017), and indeed are already routinely computed as
part of the SPC mesoanalysis (Bothwell et al. 2002). In
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principle, the radar-based predictors also are relatively
easily obtainable, but would need to be quantified in
real time, using automated approaches. Mesocyclone
width and intensity are attributes computed within the
(original) mesocyclone detection algorithm (Stumpf et
al. 1998), and presumably could be extracted and made
available to forecasters. The time series of these
attributes for identified and tracked mesocyclones are
of particular relevance. We envision the need for a
moving time average of the width (and intensity) of
identified mesocyclones (calculated using up to the
most recent four volume scans) and their temporal
variability, which would then be the key metrics used to
predict intensity upon tornadogenesis. For example,
taken alone, a mesocyclone that is narrow (e.g.,
diameter <1.5 km) over its lifetime would not be
expected to be associated with a significant tornado,
and this conclusion still remains even with the added
consideration of nontornadic cases. When applying
these methods to a storm that produces multiple
tornadoes, the metrics could be paused when a tornado
is detected and resumed upon the dissipation of the
tornado so that the characteristics of the mesocyclone
are not influenced by the presence of a tornado. The
environmental predictors are available hourly and thus
could provide lead time of up to 1 h. The lead time
provided by the radar predictors (which would update
approximately every 5 min) may be from about 4 min
up to the time when the mesocyclone is first present
when a running mean of the mesocyclone
characteristics could begin.

Most often, information about tornado intensity is
communicated once the presence of a significant
tornado is confirmed using the spotter network and
tornadic debris signatures, but this is only once the
tornado has been in progress. The information gained
from the pretornadic analysis demonstrated in this
study would allow an operational forecaster to be aware
of and communicate this information about potential
tornado intensity in warning text to the public before a
tornado develops to better protect life and property.
Realization of the predicted intensity is conditional on
tornadogenesis, so the recommended intensity
prediction procedure should be coupled to a
tornadogenesis prediction. There have been several
recent machine learning applications specifically
involving the prediction or likelihood of tornadogenesis
(e.g., Lagerquist et al. 2018, 2020; Steinkruger et al.
2020; Coffer et al. 2021). The predictors range from
radar-observed storm attributes to convection-allowing
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model variables such as updraft helicity. Additionally,
simple observational approaches for the prediction of
tornadogenesis outside of machine learning include the
use of radar signatures such as the ZDR arc and column
and KDP foot (Crowe et al. 2012; Homeyer et al. 2020;
Van Den Broeke 2020) and trends in mesocyclone
characteristics such as width, depth, and intensity
(Gibbs and Bowers 2019; Sandmzl et al. 2019). Also,
the inclusion of an analysis of nontornadic cases in this
study allows for an understanding of how the radar
metrics used to anticipate tornado intensity relate to
tornadogenesis and stresses the need for additional
tools for anticipating tornadogenesis to be coupled with
the tornado intensity anticipation tools outlined in this
study. Additionally, it should be highlighted that after
applying the prognostic techniques of this study to
anticipate tornado intensity that diagnosing the tornado
intensity of the later formed tornado is equally
important to validate the forecasted intensity. As
highlighted earlier, there are several previous studies
that discuss diagnosing the intensity of ongoing
tornadoes using radar characteristics such as velocity
and correlation coefficient as well as the near storm
environment and population density (e.g., Toth et al.
2013, Smith et al. 2020a,b).

5. Conclusions

Analyses of Doppler radar data and environmental
parameters for 300 tornado cases were used to propose
an alternative framework for tornado intensity
prediction during pretornadic stages of ongoing storms.
This framework is founded on the robust relationship
between pretornadic mesocyclone width and tornado
intensity, which is based on theoretical arguments
posed by Trapp et al. (2017). Specifically, in the linear
regression between (average) pretornadic mesocyclone
width and the EF of the resultant tornado, the
coefficient of determination (R?) is 0.69. In contrast, the
linear relationship between pretornadic mesocyclone
intensity (peak pretornadic AV) and EF scale is much
weaker, as quantified by an R? of 0.29.

The additional analysis of 35 nontornadic storms
revealed that mesocyclone width and intensity could
not be used to discriminate between nontornadic and
tornadic storms, and their trends could not be used to
anticipate tornadogenesis. On the other hand, this
analysis revealed a distinct separation of the pre-
warning mesocyclone widths and intensities of
nontornadic storms from the pretornadic mesocyclone
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widths and intensities of EF3+ tornado-producing

storms. This null case analysis increases the
understanding and applicability of these methods for
anticipating  tornado  intensity in  ongoing
thunderstorms. Future exploration of how the

mesocyclone attributes explored in this study relate to
tornadogenesis would certainly be beneficial through an
expansion of the nontornadic dataset, which could
further reveal any relationships between mesocyclone
width and intensity and tornadogenesis as well as help
identify critical thresholds of trends in mesocyclone
width and intensity for the anticipation of
tornadogenesis and tornado intensity.

Environmental information for each of the cases in
this dataset also was used to explore relationships
between environmental parameters and tornado
intensity. As also noted by Hampshire et al. (2018),
such relationships depend in part on how the tornado-
intensity categories are distributed [i.e., significant
(EF2+) versus nonsignificant (EF0-1), or weak (EF0-
1) versus strong (EF2-3) versus violent (EF4-5)]. So,
for example, low-level shear parameters (bulk shear,
SRH) discriminate the environments of significant
tornadoes from nonsignificant tornadoes, but not the
environments of violent tornadoes from strong
tornadoes. On the other hand, thermodynamic
parameters such as CAPE (SB, ML, MU, 0-3), as well
as the composite parameters that include CAPE,
discriminate the environments of violent tornadoes
from strong tornadoes.

It is important to mention some of the limitations of
this study as well. First, the spatial constraints of being
able to adequately resolve pretornadic characteristics in
the lowest levels of a storm using WSR-88Ds limit the
pretornadic characteristics used to generally only be
from storms within about 100 km of a radar site. The
pretornadic radar characteristics used in this study may
not always be resolvable for every storm. Also, the
limitations of the United States tornado report dataset
are acknowledged, well-known, and discussed in recent
decades (e.g., Doswell and Burgess 1988; Smith et al.
2012; Potvin et al. 2019). Tornado reports do not
consistently capture tornado intensity because the EF
scale is damage based (McDonald et al. 2010; Edwards
et al. 2013; Wurman et al. 2021), and tornadoes of the
same pathlength, width, and intensity can produce
different damage depending upon their location
(Strader and Ashley 2018; Strader et al. 2018).
Additionally, the time and location of tornadogenesis
may not always be accurate. It is important to keep
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these limitations in mind when interpreting this study.

Operational implementation of this framework for
the purposes of impact-based warnings will require
real-time, automated quantification of mesocyclone
width in addition to intensity and other attributes. This
should be straightforward, given the construction of the
mesocyclone detection algorithm. The information
given from pretornadic characteristics of a storm and its
surrounding environment can provide useful
information about potential tornado intensity to an
operational forecaster before a tornado develops that
can be communicated and used in warning decisions
and text to better protect life and property.

The datasets used in this study are being applied to
tornado-intensity prediction through machine learning
applications in a separate study (e.g., Sessa and Trapp
2022). Several machine learning algorithms are being
implemented and used to examine their skill in
predicting significant or non-significant tornado
intensity for a given storm. Models such as logistic
regression, random forests, and gradient-boosted
decision trees are found to be the most skilled classifier
as measured by several binary classification metrics and
performance diagrams. Adequacy of model training,
model reliability, and the significance of results also are
being explored. Finally, feature importance and the
decision-making process within each model is being
analyzed to help reveal a more physical understanding
of the model performance and results, as well as
relationships between the predictors and tornado
intensity including the establishment of critical
thresholds of predictors. Results demonstrate that the
pretornadic radar predictors of mesocyclone width and
differential velocity are the most important followed by
environmental vertical wind shear and composite
parameters. This additional work utilizing the
relationships outlined in this study and combining the
datasets through the power of machine learning, thus
far, demonstrates a skilled binary prediction of tornado
intensity, conditioned upon tornadogensis, and the
potential for these machine learning applications to
become a helpful resource in an operational setting.
Additional future work could involve the continued
exploration of any potential relationships between
pretornadic mesocyclone characteristics, specifically
width and intensity, and tornadogenesis as well as
further testing the relationships shown in this study on
a larger sample of multiple tornado producing storms as
well as other independent datasets. The development of
a larger climatology of pretornadic mesocyclone
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characteristics would certainly be beneficial to the
operational implementation of this work as well.
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