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ABSTRACT: To examine the utility of smartphone pressure observations (SPOs), a climatology of mesoscale pressure
features was developed to evaluate whether SPOs could better resolve mesoscale phenomena than existing surface
pressure networks (MADIS). A comparison between MADIS and smartphone pressure analyses was performed by tracking
and characterizing bandpass-filtered, mesoscale pressure features. Over the year 2018, nearly 3000 pressure features were
tracked across the central and eastern United States. Pressure features identified by smartphone observations lasted, on average,
25 min longer, traveled 25 km farther, and exhibited larger amplitudes than features observed by MADIS. An examination of
smartphone pressure features tracks by season and location found that almost all pressure features propagated eastward. With
over 87% of observed pressure features associated with convection, the climatology of surface pressure features largely reflects
the geographic and seasonal variation of mesoscale convection. Phase relationships between pressure features and other surface
variables were consistent with those expected for mesohighs and wake lows. These results suggest that SPOs could enhance
convective analyses and forecasts compared to existing surface networks like MADIS by better resolving mesoscale structures
and features, such as wake lows and mesohighs.

SIGNIFICANCE STATEMENT: While smartphone pressure networks provide unprecedented observation coverage
and density, it was unclear whether they can add value to existing surface pressure networks. This study addresses this
question by developing a yearlong record of mesoscale pressure features over the eastern and central United States.
Analysis of this record revealed that smartphone analyses better resolved mesoscale pressure features, especially across
the central United States where existing surface pressure networks are sparser. Nearly all observed pressure features
were observed near precipitation, with five in six associated with convection. Relationships between mesoscale pressure
features and other surface state variables were consistent with those expected for mesohighs and wake lows.

KEYWORDS: Convective storms/systems; Mesoscale systems; Squall lines; Climatology; Surface pressure; Data
processing/distribution; In situ atmospheric observations; Surface observations; Filtering techniques; Statistical
techniques; Seasonal variability

1. Introduction

Measurements of atmospheric pressure remain an essential
tool for the detection, analysis, and prediction of atmospheric
phenomena across spatial and temporal scales. Since atmospheric
pressure reflects the three-dimensional structure of the atmo-
sphere and is less prone to errors of representativeness than
other surface variables (Madaus et al. 2014), surface pressure
measurements have proved useful for the identification and
tracking of mesoscale phenomena, even when other surface vari-
ables remain unperturbed (Jacques et al. 2017).

Surface pressure perturbations have been linked to a variety
of phenomena, such as high-frequency internal gravity waves
associated with deep convective diabatic heating (Adams-Selin
and Johnson 2013), katabatic drainage flows (Viana et al. 2010),
and inertia–gravity waves generated by topographic forcing,
fronts, and geostrophic adjustment (Hooke and Jones 1986;
Fritts and Alexander 2003; Kim et al. 2003; Koppel et al. 2000;
Jewett et al. 2003). Fronts and drylines associated with midlati-
tude cyclones, differential heating of land–water surfaces, and
atmospheric tides also generate surface pressure perturbations
(Mass et al. 1991; Crawford and Bluestein 1997; Novak and Colle

2006; Gaberšek and Durran 2006; Geerts et al. 2008; Li et al.
2009; Li and Smith 2010; Pedatella et al. 2012; Giovannini et al.
2017; Price et al. 2018). Such pressure perturbations can also be
produced by convection (Koch and Golus 1988; Metz and Bosart
2010; Adams-Selin and Johnson 2010). Convectively generated
mesohighs and wake lows are often accompanied by strong
winds (Fujita 1955; Johnson and Hamilton 1988; Evans and
Doswell 2001; Engerer et al. 2008).

Only a handful of studies have produced climatologies of
surface mesoscale pressure features. Koppel et al. (2000) created
a climatology of large surface pressure fluctuations (.4.25 hPa)
over 25 years. Their analysis was limited to large amplitude
inertia–gravity waves due to their reliance on a sparse, hourly
network of surface airways observations. de Groot-Hedlin et al.
(2017) provided a multiyear climatology of near-surface gravity
waves over the central and eastern United States by tracking
mesoscale pressure perturbations from the subsynoptic Earth-
scope USArray Transportable Array (USArray) pressure net-
work (Jacques et al. 2017; Tytell et al. 2016). The USArray
pressure network, utilized by de Groot-Hedlin et al. (2017) to
study gravity waves, has also been applied to examine the
broader spatial and temporal characteristics of surface pres-
sure perturbations. Jacques et al. (2015) decomposed two
years of USArray surface pressure observations intoCorresponding author: Callie McNicholas, cmcnich@uw.edu
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mesoscale (10 min–4 h), subsynoptic (4–30 h), and synoptic
(30–120 h) perturbations using a bandpass-filter approach
(Koch and O’Handley 1997; Koch and Saleeby 2001). The
spatial distribution of subsynoptic perturbations varied by sea-
son due to the diverse mechanisms responsible for their genera-
tion [e.g., fronts, mesoscale convective systems (MCS)]. For
example, large magnitude mesoscale pressure perturbations
were observed over the southern and central Great Plains dur-
ing the spring and summer, respectively. Synoptic-scale pressure
perturbations were strongest during the winter and exhibited a
frequency and intensity maxima over the northeastern United
States.

In a follow-up study, Jacques et al. (2017) tracked and cata-
loged mesoscale pressure perturbations over the central United
States from 1 March to 31 August 2011. Using a 2D variational
assimilation system (Tyndall and Horel 2013), 5-min 5-km pres-
sure analyses were created by assimilating pressure tendency
from bandpass-filtered USArray observation onto temporally
interpolated pressure analyses from the real-time mesoscale anal-
ysis (RTMA; de Pondeca et al. 2011). Most mesoscale pressure
features propagated over short distances (,200 km), were short-
lived (,3 h), and were limited in areal extent (,40000 km2).
Approximately, three in four features exhibited phase speeds of
15–35 m s21. Like the de Groot-Hedlin et al. (2017) study, the
deployment strategy of the USArray network limited the tem-
poral period and scale of the phenomena examined to .1 h
and .10 000 km2, respectively. Since the USArray network
spanned only 108 of longitude, the duration and distance trav-
eled of zonally propagating pressure features were likely under-
estimated. Jacques et al. (2017) examined large-amplitude
surface pressure perturbations (.3 hPa), differentiating surface
pressure features related to convection as either associated with
an MCS or another type of “convective” feature. In total, 84%
of all mesoscale pressure features exceeding 3 hPa in magnitude
were associated with convection.

Previous climatologies of surface pressure features associ-
ated with mesoscale phenomena have been limited by a lack
of density, temporal frequency (Koppel et al. 2000), and
spatial extent of surface pressure observations (Jacques et al.
2015). To address this issue, the present study applies a net-
work of surface pressure observations from smartphones of
unprecedented density and spatial extent (McNicholas and
Mass 2021). In McNicholas and Mass (2021), the bias cor-
rection, quality control (QC), and objective analysis of
smartphone pressure observations were demonstrated. This
paper extends this analysis to other surface state variables
using MADIS data to facilitate a yearlong analysis of sur-
face pressure features across the central and eastern United
States. Expanding upon the work of Jacques et al. (2017),
mesoscale pressure perturbations were extracted from
MADIS and smartphone pressure analysis through band-
pass filtering (Koch and O’Handley 1997). Using particle
tracking at 5-min intervals (Allan et al. 2014) to identify fea-
tures, climatologies of surface pressure features were pro-
duced. These climatologies, in combination with surface
perturbations of other state variables, were employed to
answer the following questions:

1) Do smartphone pressure analyses capture mesoscale
pressure features poorly observed by existing surface
pressure networks (e.g., MADIS).

2) How does the climatology of surface pressure features based
on smartphone pressure observation vary geographically,
seasonally, and diurnally? How do the results compare with
prior research (e.g., Jacques et al. 2015; Jacques et al. 2017)?

3) What phase relationships exist between mesoscale pressure
perturbations and other surface state variables? How do
pressure perturbations relate to precipitation?

2. Observation datasets

Two datasets were used in this study and are described below.
The first is a smartphone pressure dataset from The Weather
Company (IBM), while the second includes pressure, tempera-
ture, moisture, and winds from conventional surface observa-
tions, provided by the Meteorological Assimilation Data Ingest
System (MADIS; Miller et al. 2005). Observations from both
datasets were retrieved from 15 August 2017 to 30 December
2018 across the central and eastern United States. The western
United States was excluded due to the relative sparsity of
MADIS and smartphone observations across the Intermountain
West.

a. MADIS observations

MADIS includes observations from local mesonets (mesoscale
observing networks) and METARs (Meteorological Aerodrome
Reports) and applies three levels of QC checks. The majority of
MADIS mesonet observations were provided by the Citizen
Weather Observer Program (CWOP; www.wxqa.com), a net-
work of personal weather stations (PWSs) maintained by private
citizens. Mesonet observations report pressure to 0.01 hPa while
METARs, provided by MADIS, report pressure to the nearest
0.01 in. of mercury (∼0.33 hPa). To address the lower resolution
of MADIS pressure observation at METAR location, 1-min
station pressure observations with a resolution of ∼0.03 hPa were
retrieved from the Automated Surface Observing System
(ASOS) archive (NCEI 2018). Following Eq. (2) of McNicholas
and Mass (2018a), a 5-min station pressure average was com-
puted and reduced to sea level assuming the U.S. Standard
Atmosphere, 1976 (COESA 1976).

All MADIS surface observations undergo up to three levels of
QC. A validity check evaluates whether observations fell within
a physically reasonable range (MADIS 2017). For temporal con-
sistency, the rate of change of each surface variable is calculated
to determine if a reasonable threshold was exceeded. Last, a spa-
tial consistency (buddy) check compares surface observations to
neighboring observations through optimum interpolation and
cross validation (Miller et al. 2005). Since METAR observations
from the ASOS archive were not quality controlled, the MADIS
spatial consistency check was applied to these observations. On
average, less than 1% of ASOS pressure observations were
flagged by this QC check.

Following McNicholas and Mass (2021), the R package
LatticeKrig (Nychka et al. 2016) was used to perform multireso-
lution kriging (Nychka et al. 2015) of MADIS pressure, surface
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air temperature, surface dewpoint temperature, and near-surface
wind component observations. Terrain elevation from the High-
Resolution Rapid Refresh (HRRR; Alexander et al. 2017; Blay-
lock et al. 2017) was regridded and used as a linear covariate, as
were temperature, dewpoint temperature, and wind component,
infrared satellite brightness temperature, distance from coastline,
and surface type (i.e., land/water). For temperature and dewpoint
temperature, HRRR vegetation type and surface roughness
were also used as linear covariates, allowed kriging analyses to
depict realistic variations in temperature and wind in the pres-
ence of complex terrain and land-sea boundaries.

MADIS temperature, dewpoint temperature, and wind com-
ponent analyses, with a spatial resolution of 0.058 (∼5 km),
were generated every 5 min between 15 August 2017 and 30
December 2018. The analysis domain covered most of the cen-
tral and eastern United States, (28.58–48.58N, 105.58–70.58W). A
total of 30 conditional simulations were performed with Lattice
Krig to estimate analysis uncertainty. Kriging standard error was
computed by calculating the standard deviation of the analysis
variable for conditional simulations. This standard error was
used to define uncertainty in Kalman temporal smoothing with a
Rauch–Tung–Striebel (RTS) smoother, which was applied to
time series of MADIS surface analyses at each grid point in the
analysis domain. Following McNicholas and Mass (2021), RTS
smoothing was performed over a series of 2-h time windows with
a 1-h time step between windows.

b. Smartphone pressure dataset

All SPOs used in this study were provided by IBM and were
retrieved from smartphones with unique identifiers (UIDs)
through the Weather Channel (WC) app. For each SPO, sea
level pressure was calculated using the DEM ground elevation
following the approach of McNicholas and Mass (2018, 2021).
SPO errors were estimated by binning SPOs into 5-min win-
dows and bilinearly interpolating 5-min MADIS pressure anal-
yses to the location of each SPO. Following McNicholas and
Mass (2021), SPOs were bias-corrected, each month, using
SPO error predictions from DBSCAN (Ester et al. 1996) and
extreme gradient boosting (XGB; Chen and Guestrin 2016)
models trained on data from all prior months. Historical biases,
used in training, were calculated by subtracting observed pres-
sures (from interpolated MADIS analyses) from SPOs. After
bias correction, a gross spatial check (Madaus and Mass 2017)
and a spatial consistency check (Miller and Benjamin 1992)
were applied to remove SPOs in substantial disagreement with
surrounding observations (McNicholas and Mass 2021). Bias
corrected and QC’d SPOs were subsequently superobbed at a
resolution of 5 km. These superobservations (superobs) were
produced by calculating a weighted average of UID SPOs
within a 5-km radius (McNicholas and Mass 2021).

After bias correction and QC, superobbed SPOs were used to
generate smartphone pressure analyses. These analyses were
generated using the same multiresolution kriging and Kalman
temporal smoothing employed to create MADIS pressure anal-
yses. LatticeKrig parameters (Table 1) were unchanged and
smartphone pressure analyses were produced at the same spatial
and temporal resolution as MADIS pressure analyses. Smart-
phone pressure analyses were generated every 5 min between 1
January 2018 and 30 December 2018. These analyses were pro-
duced for the same domain as MADIS pressure analyses.

c. Observation counts

Table 2 lists the average 5-min observation count for surface
variables, retrieved during April 2018 across the full analysis
domain. Among MADIS surface variables, wind observations
were most numerous followed by dewpoint, temperature, and
pressure observations. MADIS reported fewer pressure obser-
vations overall as some MADIS providers (e.g., state DOTs)
typically report only temperature and wind measurements.
The 5-min SPOs, superobbed at 5-km resolution, outnum-
bered MADIS pressure observations by a ratio of 4:1.

3. Methodology

a. Mesoscale perturbation analysis

To extract and identify pressure perturbations associated
with mesoscale weather phenomena, a frequency filtering
approach was employed. This technique was applied to the
kriging analysis of smartphone and MADIS altimeter obser-
vations for 2018 (McNicholas and Mass 2021). The resulting
mesoscale perturbation analyses were used to identify and
characterize mesoscale pressure features associated with sen-
sible weather. In the following section, the method of identify-
ing, tracking, and analyzing mesoscale pressure features is
outlined. One case, featuring a long-lived prefrontal squall
line, is examined to illustrate this methodology.

TABLE 1. List of parameters used to initialize LatticeKrig
multiresolution pressure analyses.

Parameter Description Value

NC No. of lattice points in first level and
along the largest dimension

75

nlevels No. of levels for the multiresolution
basis

2

a.wght The weight given to the central lattice
point in the spatial autoregression

4.5

lambda Smoothing parameter (noise to signal
ratio)

0.5

alpha Relative variances for the
multiresolution levels

0.1, 0.9

TABLE 2. Total count of observations (Ob), by type and provider, during the 5-min analysis window centered at 0045 UTC 4 Apr
2018. Note that these observation counts are valid for the entire analysis domain that spanned 208 of latitude (28.58–48.58N) and 408
of longitude (105.58–70.58W).

Smartphone pressure (superobbed) MADIS pressure MADIS temperature MADIS dewpoint MADIS wind

5-min Ob count 20 798 5100 6867 6883 7525
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To extract mesoscale pressure perturbations, a 2–6-h (fifth-
order) bandpass filter was applied each month to time series at
each point from MADIS and smartphone pressure analyses.
Gaps in time series were filled by temporal interpolation if less
than 12 h of data were missing during a month. To account for
edge effects, time series from each month were extended to
include data from the last day of the previous month and the first
day of the following month. This frequency filtering approach
was extended to other surface state variables to retrieve meso-
scale temperature, dewpoint temperature, and wind component
perturbations fromMADIS analyses.

A visualization illustrating a surface perturbation analysis
is provided in Fig. 1 for a squall-line case from April 2018.

Mesoscale pressure perturbations associated with the squall
line were larger in amplitude and spatial extent (Fig. 1b) in
the smartphone analysis, relative to the MADIS analysis
(Fig. 1c). Furthermore, the smartphone perturbation analysis
captured a wake low that was poorly observed by MADIS due

FIG. 1. The 2–6-h bandpass-filtered surface perturbation analyses of (b) smartphone pressure, (c) MADIS pressure,
(d) MADIS temperature, (e) MADIS dewpoint temperature, and MADIS (f) zonal and (g) meridional winds for (a) a
squall-line case at 0045 UTC 4 Apr 2018. In (a), smartphone pressure perturbations are overlaid on composite reflec-
tivity. The location of observations used to generate multiresolution kriging analyses is shown as yellow markers.

TABLE 3. Trackpy parameters used to identify pressure features
from monthly mesoscale pressure perturbation analyses.

TrackPy parameter Parameter value

search_range 5 grid points (25 km)
Memory 2 frames (10 min)
Threshold 12 frames (1 h)
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to a lack of observation density (Figs. 1b,c). The MADIS tem-
perature perturbation analysis revealed positive temperature
perturbations preceding the squall line and large negative tem-
perature perturbations in the region of stratiform precipitation
behind the convective line (Fig. 1d). Similarly, wind observa-
tions from MADIS captured zonal and meridional wind per-
turbations (Figs. 1f,g) that revealed convergence ahead of the
squall line and divergence in its wake (Fig. 1a).

b. Feature identification and tracking

In this study, mesoscale pressure features were defined based
on several spatial and temporal criteria. Pressure perturbations,
like those shown in Figs. 1b and 1c, were masked (selected)
where the value of the perturbation field exceeded 60.75 hPa.1

Masked objects were removed if no grid point within the
masked area exceeded 61 hPa. The centroids of masked
objects were tracked with the Python TrackPy package (Allan
et al. 2014) at 5-min intervals. TrackPy parameters are listed in
Table 3. Object centroids were allowed to move up to five grid
points (25 km) between frames. Objects that disappeared and
reappeared within two frames (10 min) were considered identi-
cal. To be considered a feature, the object had to be tracked for
a minimum of twelve frames (1 h). Last, a spatial filter was
applied to remove feature objects if their maximum areal extent
never exceeded 2500 km2. This filter was applied to eliminate
small spurious pressure features, many of which were too small
to be characterized using surface analyses derived fromMADIS
observations, which have an average station separation of ∼25
km (McNicholas and Mass 2021). Feature objects near the edge
of the analysis domain, whose start/endpoint was within 18 of
the grid boundary, were removed. Pressure features insuffi-
ciently resolved by the MADIS surface network were removed.
Specifically, features whose contoured area passed over fewer
than five MADIS surface temperature/wind observations over
their lifetime were removed.

An example of mesoscale pressure object tracking is pro-
vided in Fig. 2, which shows the track path and object centroid

for a positive pressure feature associated with the squall
line depicted in Fig. 1. On the left, a smartphone pressure
feature track extends from east Texas to the Louisiana–
Mississippi border. The final point in the track marks the
centroid of the smartphone pressure feature at the time of
the analysis. In contrast, the plot on the right shows the
track of a MADIS pressure feature, whose duration and
extent was notably less than the smartphone pressure fea-
ture on the left.

c. Composite and cross-spectral analysis

To evaluate the structure and evolution of mesoscale pres-
sure features, a compositing technique was developed. This
approach, depicted in Fig. 3, involves extracting 12-h time
series at grid points within a 250 km 3 250 km bounding box
centered at each time step (i.e., 5-min frame). As illustrated in
the left panel of Fig. 3, the bounding box follows the centroid
of the mesoscale pressure feature as it propagates across the
domain. For each time, 2500 time series are extracted from
grid points within the box (Fig. 3, right panel), producing a
four-dimensional time-lagged ensemble of perturbation
time series. Composite analyses were generated by averag-
ing these time series, resulting in three-dimensional analy-
ses represent the composite spatiotemporal evolution of
the pressure feature along its track. Figure 4 illustrates the
composite analyses for the smartphone pressure feature
tracked in Fig. 3 and depicts the changing morphology of
the pressure feature.

While TrackPy provides the estimated positions of the fea-
ture centroids, these location estimates are sensitive to changes
in feature morphology, which is defined by a single contour line
(60.75 hPa). To estimate the velocity of mesoscale pressure fea-
tures a beamsteering approach was employed (described in the
appendix). Figure 5 shows the direction of feature propagation,
derived through beamsteering, for the squall-line case. For the
squall-line feature, the estimated phase speed was 17.5 m s21

[see Eq. (A4)]. Once the direction of propagation is deter-
mined, the perturbation wind component parallel to the direc-
tion of feature propagation is calculated as follows:

U*′ � 2u′ sina 2 y ′ cosa, (1)

FIG. 2. Track of a positive mesoscale pressure perturbation associated with a squall line, observed in both (a) smart-
phone and (b) MADIS perturbation analysis. Black dotted lines depict the past locations of the feature centroid. The
solid black contour highlights the feature (i.e., where p′ . 0.75 hPa).

1 This threshold was selected since the root-mean-squared error
of smartphone pressure analyses in 2018 peaked at 0.75 hPa
(McNicholas and Mass 2021).
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where u′ and y ′ are cartesian perturbation wind components
and a is the direction from which the feature is propagating.
Figure 5b shows the results of this calculation for the compos-
ite pressure feature tracked in Fig. 4. Analysis of the feature
normal wind perturbation U*′ suggests a close phase relation-
ship between pressure and wind, with wind perturbations
preceding pressure perturbations of the same sign.

For a more quantitative evaluation of the phase relation-
ships between mesoscale pressure features and surface state
variables, cross-spectral analysis was employed. An example
of this analysis is provided in Fig. 6, which shows the cross-
spectral analysis of composite pressure and feature normal
wind time series, retrieved at the center of the composite anal-
ysis grid. The cross-spectral density (CSD) of pressure and fea-
ture normal wind perturbations is shown in Fig. 6b, with a

dashed line indicating the frequency of the maximum CSD
derived from beamsteering analysis (Fig. A1). At this fre-
quency (∼0.004 min21), the coherence between pressure and
feature normal wind was 0.97 (Fig. 7c). The phase angle
between feature normal wind and pressure perturbations was
approximately 368 (Fig. 6d). This phase relationship is consis-
tent with the solitary model of deep convection (Fujita 1955;
Koch and Golus 1988), wherein surface wind perturbations
precede pressure perturbations of the same sign.

4. Results

a. Smartphone and MADIS comparison

A key question is whether SPOs and analyses based on them
can detect and resolve mesoscale meteorological phenomena

FIG. 3. (left) Spatial and (right) temporal analysis of the positive smartphone pressure feature from the squall-line
case. In the left column, the positive mesoscale pressure feature is tracked (green line) and followed by a bounding
box (pink) encompassing the area in which perturbation time series are extracted for compositing. In the right column,
time series of smartphone pressure and MADIS temperature perturbations retrieved at feature centroid points (black
dots) are displayed.
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better than existing surface pressure networks such as
MADIS. To answer this question, MADIS and smartphone
pressure feature climatologies were compared.

Throughout 2018, a total of 2897 smartphone pressure features
and 2790 MADIS pressure features were detected (Table 4).
Approximately 52% (51%) of smartphone (MADIS) features
were associated with negative pressure perturbations. The simi-
larity in feature counts between positive and negative features is
sensible given the conservation of mass. Almost all MADIS and
smartphone pressure features were observed within 50 km of
precipitation, which is consistent with Jacques et al. (2017), who
found that 97% of mesoscale pressure features were associated
with precipitation. In this study, 86% of MADIS pressure fea-
tures and 88% of smartphone pressure features were observed
within 50 km of convection. While the percentage of features
associated with precipitation was similar for both MADIS and
smartphone climatologies, the magnitude of the features differed.

Features with peak perturbations of at least double the perturba-
tion threshold (0.75 hPa) were detected more frequently in the
smartphone feature climatology (35%) than in the MADIS fea-
ture climatology (26%).

Smartphone and MADIS pressure feature tracks are plot-
ted by sign in Fig. 7. In both climatologies, most features were
detected in the western half of the domain. In all quadrants of
the domain, smartphone feature counts exceeded MADIS
feature counts (Figs. 7a,b). As in the total count (Table 4),
slightly more negative features than positive features
observed were also detected in all quadrants. In contrast to
smartphone feature tracks, MADIS tracks were more tightly
clustered due to the sparsity and irregular spacing of
MADIS pressure observations (Fig. 7b). The clustering of
MADIS feature tracks produced large gaps in feature track
coverage where MADIS pressure observations were sparse
(e.g., southeast Georgia).

FIG. 4. (left) Spatial and (right) temporal composite analysis of the positive smartphone pressure feature from the
squall-line case. In the left column, the composite mesoscale pressure feature is tracked (green) in space. Composite
time series, extracted at the centroid of the composite feature (black dots), are displayed in the right column.
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Figure 8 displays the number of unique smartphone and
MADIS features (i.e., perturbation events) for each 5-km
horizontal grid cell within the domain. Local maxima in the num-
ber of pressure perturbations events appear in the southern and
northern Great Plains (Fig. 8a), which is consistent with spring
and summertime maxima in feature counts observed by Jacques
et al. (2017). As in Fig. 7, most perturbation events occurred over
the western half of the domain (Figs. 8a,b). In the eastern half of
the domain, the difference between smartphone and MADIS
pressure event counts was minimal, while in the western half of
the domain, the average grid cell saw 7–10 more smartphone
features than MADIS features. Thus, it appears MADIS obser-
vations lacked the spatial and temporal density over the Great
Plains to capture pressure perturbations that could meet the
detection threshold. One exception to this pattern is west Texas,
where MADIS incorporates observations from the West Texas
Mesonet.

A comparison of the characteristics of smartphone and
MADIS pressure features is found in Fig. 9. Smartphone
pressure features exhibited a larger average amplitude than
MADIS pressure features (Fig. 9a) because the spatial and
temporal density of SPOs was greater than MADIS pressure
observations. While the amplitude of MADIS and smart-
phone pressure features differed, their maximum areal
extent was similar (Fig. 9b), with the median pressure fea-
ture of each having a maximum area of around 40 000 km2.

In Jacques et al. (2017) most pressure features had a small
areal extent (,40 000 km2). This difference is likely attrib-
uted to the fact that the maximum feature extent in Jacques
et al. (2017) was limited by the size of the USArray network,
which was confined to a region between 1008 and 908W, and
limited period of study, which spanned from March to
August 2011. In Jacques et al. (2017), most observed fea-
tures lasted less than three hours and traveled less than
200 km. Analysis of smartphone and MADIS pressure fea-
tures were similar in those characteristics. The median dura-
tion of smartphone and MADIS features was 120 and
95 min, respectively, and the average smartphone (MADIS)
pressure feature traveled 105 (80) km. The difference in fea-
ture duration and distance traveled between MADIS and
smartphone features is consistent with SPOs better resolv-
ing mesoscale pressure perturbations, allowing them to be
tracked longer and farther.

b. Seasonal feature analysis

Although most pressure features examined in this study were
associated with convection (Table 4), this association varied
depending on the season and sign of the perturbation. Figure 10
highlights these differences by displaying the distribution of maxi-
mum neighborhood reflectivity (NREFL) for positive and nega-
tive features during each season. This statistic was calculated by

FIG. 5. (b) Feature normal wind, derived from (c),(d) perturbation wind components, and (a) the direction of fea-
ture propagation. The feature propagation direction, derived from cross-correlation lag-analysis and beamsteering, is
indicated by colored arrows in (a). Composite perturbation wind and pressure analyses are displayed at T = 0 min.
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retrieving the maximum value of composite reflectivity within
50 km of feature centroids. During all seasons, positive pressure
perturbations were associated with higher values of NREFL than
negative features. The difference in NREFL between positive
and negative pressure features increased during the spring and
summer months as the mode of precipitation evolved from strati-
form to convective. Furthermore, the median NREFL for both
positive and negative pressure features rose from ∼45 dBZ dur-
ing the winter to over 55 dBZ during the summer. During the
summer, the median NREFL was ∼60 dBZ for positive pressure
features and 54 dBZ for negative pressure features, and the dis-
tribution of NREFL for positive pressure features became more
concentrated around the mean (leptokurtic). This narrowed dis-
tribution may be attributed to squall line and MCS positive pres-
sure perturbations during summer being dominated by the
leading convective line where reflectivity values are highest
(Johnson and Hamilton 1988). Conversely, wake lows are typi-
cally observed in the stratiform region behind the convective line
and mesohigh (Coleman and Knupp 2009). This explains the gap
in NREFL values between positive and negative pressure fea-
tures during the summer month when over 92% of features were
associated with mesoscale convection (.35 dBZ).

While smartphone and MADIS features exhibited similar
total counts (Table 4), considerable variability in feature count
was observed by month (Fig. 11). During the 1-yr period, both
MADIS and smartphone pressure feature counts peaked
between April and July (Figs. 11a,b). During the summer
months, the difference in feature count between smartphone
and MADIS increased (Fig. 11c), with more smartphone than
MADIS pressure features detected between May and August.
This difference may be attributed to the increase in organized
mesoscale convection during the spring and summer months
within the Great Plains (Haberlie and Ashley 2019) where

MADIS pressure observations are sparser (McNicholas and
Mass 2021).

Figure 12 displays the number of smartphone pressure fea-
tures (perturbation events), that passed over each 5-km grid
cell, by season. Although only available for a single calendar
year (2018), the spatial distribution of pressure perturbation
events by season largely agrees with prior work by Jacques
et al. (2015), who observed a peak in mesoscale pressure
events across the central Plains during the spring and summer
months. During that half of the year, perturbation events were
largely concentrated west of the Mississippi (Figs. 12b,c). In
both spring and summer, local maxima in perturbation events
were observed in the northern central plains where previous
studies have found peaks in MCS (Haberlie and Ashley 2019)
and AGW activity (DeGroot Hedlin et al. 2017). During the
winter (Fig. 12a) and fall (Fig. 12d), there were fewer pressure
perturbations across the domain since most pressure perturba-
tion events are associated with convection (Table 4), whose
incidence is typically reduced during that period.

Seasonal variation in both the spatial extent and magnitude
of smartphone pressure features was observed. Figure 13
shows the distribution of smartphone feature magnitude for
each season. On average, feature magnitudes were larger dur-
ing the spring and summer, when the intensity of convection
was greater (Fig. 10). In the fall, the landfalls of Hurricane
Florence and Hurricane Michael were responsible for outliers
in feature magnitude.

c. Feature velocity and environment

For each feature, the distance between feature centroids and
the time between frames were used to estimate the average
speed and direction of the pressure perturbation. The frequency
distribution of smartphone feature perturbation velocity is

FIG. 6. (a)–(d) Cross-spectral analysis of pressure and feature-normal wind time series, extracted at the center of the composite domain.
Cross-power spectral density (CSD) is displayed in (b), and magnitude squared coherence is displayed in (c). Phase is provided in (d). The
dashed (vertical) line in (b)–(d) marks the frequency of the peak CSD, used to evaluate the coherence and phase of the feature.
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displayed in Fig. 14. Across the full domain, the direction of
feature perturbation propagation veered from northeastward
during the winter to southeastward during the summer. On
average, feature perturbations moved faster during the winter
(∼23 m s21) than during the summer (19 m s21) due to stronger
synoptic forcing during that season, consistent with the results
of Jacques et al. (2015). Between the winter and summer, the
percentage of features propagating in a westerly direction rose
from 3% to 8%. During all seasons, the mean perturbation
speed of westward propagating features was considerably lower
(∼15 m s21) than eastward propagating features (∼21 m s21).

Most of the pressure features analyzed in this study were
associated with mesoscale convection, which is typically associ-
ated with a sinusoidal variation in perturbation pressure and
wind (Vescio and Johnson 1992). This wave-like characteristic
of convectively induced pressure perturbations motivated the
estimation of pressure feature phase velocity through beamst-
eering (see the appendix). Note that the phase velocity is the
velocity of the pressure wave associated with the feature while
the perturbation velocity is the average velocity of the60.75 hPa
perturbation contour which outlines the feature (Fig. 3). A
comparison between the perturbation velocity and phase velocity
is provided for smartphone pressure features in Fig. 15. On aver-
age, the feature phase speed (Fig. 15b) was greater than the fea-
ture perturbation speed (Fig. 15a) by approximately 7 m s21.
This finding is consistent with Vescio and Johnson (1992) who
observed that perturbation pressure waves associated with squall
lines tend to propagate faster than air parcels within them.

While the preferred direction of propagation for perturbations
(Fig. 15d) was eastward the direction of wave phase propagation
was predominately southeastward (Fig. 15e). This difference in
perturbation velocity and phase velocity is highlighted in Fig. 15f.
For approximately 72% of smartphone pressure features the
direction of phase propagation was veered (rotated clockwise)
with respect to the direction of perturbation propagation. This
result is reminiscent of Rees et al. (2000) who examined gravity

FIG. 7. (bottom) Smartphone and (top) MADIS feature tracks for positive (red) and negative (blue) perturbations from the year 2018.
Feature counts for each geographic quadrant (NC: north-central, SC: south-central, NE: northeast, SE: southeast) are displayed in their
respective corners.

TABLE 4. Counts (percentages) of MADIS and smartphone
pressure features by sign, magnitude, and proximity to precipitation.
Features were associated with precipitation if composite reflectivity
values exceeding 20 dBZ were detected within 50 km of a feature
centroid.

Category Feature count (%)

MADIS 2790 (100%)
Positive 1357 (49%)
Negative 1433 (51%)
Precipitation (dBZ . 20) 2667 (96%)
Convective precipitation (dBZ . 35) 2398 (86%)
Magnitude |p′| . 1.5 hPa 733 (26%)

Smartphone 2897 (100%)
Positive 1390 (48%)
Negative 1507 (52%)
Precipitation (dBZ . 20) 2799 (97%)
Convective precipitation (dBZ . 35) 2536 (88%)
Magnitude |p′| . 1.5 hPa 1022 (35%)
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waves with time series of pressure perturbations fromAntarctica.
In their analysis, they observed that, for most wave-like pressure
perturbations, the direction of wave propagation veered from the
mean wind. This implies that the phase lines of pressure waves
associated with convection are typically not perpendicular to the
mean wind.

d. Composite feature analysis

To examine the relationship between mesoscale pressure
perturbations and other surface state variables, composite
analyses of smartphone pressure features were performed

following the methodology introduced in section 3, using
MADIS observations for variables other than pressure. The
distribution of composite time series, retrieved at the center
of the composite domain (Fig. 4), is shown for all smartphone
pressure features in Fig. 16.

In Fig. 16a, the distribution of composite time series of pertur-
bation pressure is displayed for both positive and negative smart-
phone pressure features. In both time series, the primary
perturbation is preceded and followed by a smaller perturbation
of the opposite sign, indicative of the wave-like nature of
observed mesoscale pressure perturbations (Fig. 16a). Composite

FIG. 8. Spatial histogram of perturbation events split into four geographic quadrants. Perturbation
events were counted by the number of unique features that passed over a 5-km grid cell during the
year 2018. The average event count for each quadrant is displayed in each corner.
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time series of other surface state variables (Figs. 16b–d) indicate
that the feature-normal wind field responded strongly to
perturbations in pressure. On average, feature-normal wind
perturbations slightly lead perturbation pressure, with peaks
in wind perturbations (Fig. 16b) preceding corresponding
peaks in perturbation pressure (Fig. 16a). Temperature and
dewpoint temperature perturbations similarly lead perturba-
tions in pressure but to a greater degree (Figs. 16c,d).

In general, positive (negative) pressure features were associ-
ated with positive (negative) normal wind perturbations, indic-
ative of a positive correlation between pressure and wind
perturbations. Conversely, temperature and dewpoint perturba-
tions were negatively correlated with perturbation pressure as
positive pressure perturbations were coincident with negative
temperature/dewpoint perturbations. Interestingly, positive (neg-
ative) perturbations were associated with local maxima (minima)
in reflectivity. Given that 97% of pressure features were
observed in proximity to precipitation, this suggests that
positive (negative) pressure perturbations were generally
mesohighs (wake lows). This is further evidenced by the fact
that composite time series of perturbation pressure and reflectiv-
ity are consistent with models of convective precipitation that
place a mesohigh beneath a leading line of stronger precipitation
(Fig. 17a) and a wake low to the lee of the mesohigh (Fig. 17b) in
a region of lighter (stratiform) precipitation (Fig. 16).

In Fig. 18, spatial composite analyses, retrieved at the center
of the compositing time window, were averaged separately for
positive and negative smartphone pressure features. Overlaid
on each plot, a vector field depicts the feature-normal wind
perturbation field. The axis of mean composite perturbations
was oriented southwest to northeast as the direction of phase
propagation for most features was southeastward (Fig. 15e).
For positive (negative) pressure perturbations (Fig. 18a), the
perturbation wind field was divergent (convergent). On
average, this line of divergence/convergence was displaced
rearward of the pressure perturbation because the speed of
the pressure wave typically exceeded the perturbation speed
(Fig. 15).

This result is consistent with the findings of Vescio and
Johnson (1992) who observed a similar phase shift between
wave normal wind perturbations and pressure perturbations in
squall lines, independent of wave amplitude. Ahead of the
positive perturbation (mesohigh) and behind the negative per-
turbation (wake low) convergence was observed (Fig. 18b).
Convergence behind the wake low appears in tandem with a
local maximum in composite reflectivity, suggesting that con-
vergence behind the wake low contributes to the development
of new precipitation (Johnson and Hamilton 1988).

The dynamics of this spatial climatology presented in Fig. 18
can be explained by precipitation processes. Positive pressure

FIG. 9. Distribution of smartphone (blue) and MADIS (orange) feature characteristics. (a) The maximum absolute
magnitude and (b) areal extent of feature perturbations. (c) Feature duration and (d) distance traveled. Median statistics
for each characteristic are embedded in each plot.
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perturbations (mesohighs), observed beneath more intense
precipitation (Fig. 18e), are produced by evaporative cooling
and hydrometeor loading in downdrafts (Haertel and Johnson
2000). This cooling is visible in average composite analyses of
surface temperature and perturbations (Fig. 18c). Behind the
mesohigh, a wake low is produced by adiabatic warming from

subsidence (Fig. 17a; Coleman and Knupp 2009). Conse-
quently, positive temperature perturbations are observed in
the mean composite analysis of negative pressure features
(Fig. 18c). On average, perturbations in dewpoint temperature
were small and consistent in sign with observed temperature
perturbations (Fig. 18d).

FIG. 10. Seasonal distribution of maximum neighborhood reflectivity for smartphone pressure features. Each frame the
neighborhood reflectivity was assessed by calculating the peak value of composite reflectivity within 50 km of the feature
centroid. The maximum value observed over the lifetime of each feature is shown above, for both positive (blue) and
negative (orange) features. Probability density functions (PDFs), derived through kernel density estimation, are overlaid
atop histograms of the same color.

FIG. 11. Monthly feature counts for (a) positive and (b) negative smartphone and MADIS features. (c) The difference in monthly feature
count between smartphone (SMART) and MADIS is displayed.
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Averages of feature composites indicate that wind, temper-
ature, and dewpoint perturbations usually lead perturbations
in pressure (Fig. 18). In the analysis of composite time series,
the correlation between wind and pressure perturbations
appeared to be stronger than for pressure and temperature
perturbations (Fig. 16). To further examine these subjective

findings, a quantitative analysis of the phase and coherence of
smartphone pressure features was performed. Figure 19 high-
lights the results of this analysis, for positive and negative
pressure features, through 2D stacked histograms that show
the distribution of phase and coherence between perturbation
pressure and feature temperature, dewpoint, and normal
wind perturbations.

Phase and coherence relationships, between pressure and
other surface state variables, were not sensitive to the sign of
pressure perturbation (Fig. 19). For both negative and positive
pressure features the average coherence between pressure and
feature normal wind was high (∼0.8). For temperature and
dewpoint perturbations the average coherence with pressure
was lower at 0.57 and 0.53, respectively. Concerning phase, the
feature normal wind consistently leads perturbation pressure
by a phase of p/4. This phase relationship is more consistent
with convection (Vescio and Johnson 1992) than gravity
waves, where pressure and wind are in phase (Koch and Golus
1988). While ducted gravity waves may have contributed to
convective pressure perturbations (Coleman and Knupp 2009),
an analysis to confirm such events was precluded by the poor
absolute accuracy of MADIS wind observations and the
repeated spatial and temporal averaging of wind data by kriging
and compositing analysis.

Unlike surface wind perturbations, which are dynamically
generated in response to perturbations in pressure, surface
temperature perturbations are linked to thermodynamic pro-
cesses aloft. Consequently, the phase relationship between

FIG. 12. Spatial histogram of perturbation events by season. Perturbation events were counted by the number of unique features that
passed over a 5-km grid cell during the given season.

FIG. 13. Seasonal distribution of smartphone feature maximum
absolute amplitude. This statistic was calculated as the absolute
value of the maximum magnitude of the pressure perturbation
over the lifetime of the feature. Boxes depict the interquartile
range (IQR) of the distribution. Notches in each boxplot indicate
bootstrapped confidence intervals for the median. The median fea-
ture maximum magnitude is displayed above the boxplots.
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temperature and pressure perturbations was more variable
(Fig. 19b), with phases ranging from p/2 to p. For positive
pressure features, temperature perturbations were, on aver-
age, approximately 3p/2 out of phase with pressure perturba-
tions of the same sign. For negative pressure features the
average phase between temperature and pressure perturba-
tions was slightly more negative (Fig. 19e). This may be
explained by the fact that feature-normal winds associated
with negative pressure perturbations were marginally weaker

than those associated with positive pressure perturbations
(Fig. 18b). The phase relationship between pressure and dew-
point perturbations largely mirrored that between pressure
and temperature. One exception was that dewpoint perturba-
tions were more frequently in negative phase with pressure
perturbations. For 40% of pressure features, dewpoint pertur-
bations lagged pressure perturbations of the same sign. In
contrast, only 23% of pressure features exhibited temperature
perturbations which lagged pressure perturbations.

FIG. 14. Stacked histograms of feature velocity by season. Plotted in a polar coordinate system, stacked histograms show the frequency dis-
tribution of perturbation speed (r) and direction of propagation (u). Colors depict bins of different perturbation speeds.

FIG. 15. Distribution of feature speed for (a) feature perturbation speed and (b) phase speed. (c) The difference between phase and pertur-
bation speed is shown. 2D stacked histograms of (d) feature perturbation velocity, (e) phase velocity, and (f) their difference.

M CN I C HO LA S AND MA S S 673MAY 2022

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/25/25 05:08 PM UTC



5. Conclusions

A climatology of mesoscale pressure features was devel-
oped to evaluate whether smartphone pressures observations
(SPOs) can better resolve mesoscale phenomena than existing
surface pressure networks such as MADIS. To produce this
climatology, bandpass filtering of smartphone and MADIS

surface pressure analyses was performed to extract mesoscale
pressure perturbations. To examine how pressure covaries with
other parameters, the multiresolution kriging approach from
McNicholas and Mass (2021) was adapted to generate MADIS
surface analyses of temperature, dewpoint temperature, and
wind. Pressure features that lasted at least 1 h, possessed an area

FIG. 16. Distribution of composite time series of (a) perturbation pressure, (b) feature normal wind, (c) temperature,
(d) dewpoint, and (e) composite reflectivity for (left) positive and (right) negative smartphone pressure features. Com-
posite time series were retrieved from the center of the composite domain when the pressure feature was centered
within the domain.
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of at least 2500 km2, and reached peak absolute amplitude of at
least 1 hPa, were tracked to provide a climatology of pressure
feature trajectories.

To examine the structure of pressure features and covariate
parameters (e.g., wind), a compositing method was developed.
In this technique, time series at grid points were retrieved from
a 250 km 3 250 km bounding box that followed the pressure
feature centroid over its lifetime. The resulting ensemble of
time series was averaged along the feature track to retrieve the
spatial and temporal average evolution of the pressure feature.
This methodology of feature tracking and compositing was
demonstrated for the case of a squall line.

During 2018, nearly 3000 pressure features were tracked across
the central and eastern United States. Almost all (∼97%) were
in proximity to precipitation at some point during their lifetime,
with over five in six associated with convection. Across the analy-
sis domain, smartphone-revealed pressure features outnumbered
MADIS pressure features. This was most apparent in the
northern and western half of the domain. It appears that the
greater number of smartphone pressure features than
MADIS-observed features is a consequence of SPOs better-
resolving pressure perturbations than MADIS. This result is
primarily attributed to the more extensive coverage and higher

density of SPOs compared to the sparser conventional observation
platforms, particularly in the northwest portion of the domain.

MADIS and smartphone feature counts varied considerably
over the year. For both climatologies, the highest feature counts
were observed between April and June, with the lowest counts
during the fall in September and October. The difference in
smartphone and MADIS feature counts peaked in the summer,
when synoptic and subsynoptic forcing was weakest. During
the spring and summer, local maxima in perturbation events
were observed across the Great Plains. Analysis of pressure
feature characteristics revealed that, on average, smart-
phone pressure features traveled 25 km further and lasted
25 min longer than MADIS pressure features. More large-
amplitude (.1.5 hPa) pressure perturbations were detected
by smartphones (35%) than MADIS (26%).

An examination of smartphone pressure features tracks
found that most pressure features propagated eastward. While
the centroid of smartphone pressure perturbations propagated
at an average speed of 21 m s21 the phase velocity of pressure
features, estimated through beamsteering, averaged 28 m s21.
For smartphone pressure features the direction of phase propa-
gation veered from the direction of perturbation propagation.

The composite feature analyses showed regions of divergence
and convergence displaced rearward of positive (negative) pres-
sure features that were generally associated with precipitation.
In general, positive pressure features were associated with more
intense precipitation than negative pressure features, especially
during the spring and summer. Spatial composite feature analy-
ses demonstrated that smartphone positive and negative pres-
sure features were consistent with mesohighs and wake low. A
local maximum in composite reflectivity lagged convergence
behind the negative pressure perturbation suggesting some
pressure features may have contributed to incipient convection
to the rear of the pressure wave.

Composite feature analyses were used to derive quantitative
estimates of the coherence and phase of pressure perturbations
with respect to temperature, dewpoint, and feature normal
wind perturbations. The results showed that the coherence of
pressure and feature-normal wind perturbations was greater
than the coherence of pressure and temperature perturbations.
For most pressure features, the feature normal wind perturba-
tions lead pressure perturbations by a phase of p/4.

Overall, analysis of smartphone and MADIS pressure clima-
tology revealed that bias-corrected SPOs can capture mesoscale
pressure features poorly observed by existing pressure networks,
like MADIS, in regions where observation density is sparse. The
climatology of surface pressure features largely reflected the
geographic, seasonal, and diurnal variation of organized meso-
scale convection. Feature characteristics such as propagation
velocity, duration, and distance traveled were consistent with prior
analysis of mesoscale pressure perturbations by Jacques et al.
(2017). Phase relationships between mesoscale pressure perturba-
tions and other surface state variables were consistent with those
expected for mesohighs and wake lows associated with
convection.

This work demonstrates that smartphone observations can
supplement existing surface pressure networks, especially for
mesoscale pressure features. By better resolving mesoscale

FIG. 17. Schematic cross section through (a) wake low and (b)
surface pressure and wind fields and precipitation distribution dur-
ing squall-line mature stage. [Adapted from Johnson and Hamilton
(1988). Copyright American Meteorological Society. Used with
permission.]
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structures and features, such as wake lows and mesohighs,
smartphones have the potential to enhance the analysis and
forecasting of convection.
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Data availability statement. Conventional surface pressure
observations from ASOS stations were retrieved from the

FIG. 18. Average composite analyses of (a) perturbation pressure, (b) feature normal wind, (c) temperature,
(d) dewpoint temperature, and (e) composite reflectivity for (left) positive and (right) negative smartphone pressure
features. Spatial averaging of composites was performed at the center of the compositing time window (T = 0) when
the pressure feature was centered within the composite domain. Brown contours depict regions of divergence (solid)
and convergence (dashed) in units of 1025 s21.
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National Climatic Data Center (NCEI 2018) for the follow-
ing website: https://www.ncdc.noaa.gov/data-access/land-based–
station-data/land-based-datasets/automated-surface-observing-
system-asos. METAR and meteorological surface (i.e.,
Mesonet) observations from MADIS are available through a
request from https://madis.ncep.noaa.gov/data_application.
shtml. In this study, surface pressure observations from
restricted Mesonets were used. These observations are not
publicly accessible and are only available to researchers
(https://madis.ncep.noaa.gov/madis_restrictions.shtml). Due
to privacy and ethical concerns, as well as confidentiality
agreements and data storage limitations, the smartphone
pressure observations used in this study cannot be made
publicly available. The source code used to generate all fig-
ures in this paper is provided in the open-source repository
meteo-krig (https://github.com/cmac994/meteo-krig). In this
repository, the generation of smartphone pressure and
MADIS surface analysis is demonstrated. Furthermore, the
identification, tracking, and compositing of mesoscale pres-
sure features is illustrated through the case study of a squall

line. Linked with this repository is an archive containing all
data used to produce the figures in this article. These data
include but are not limited to surface analysis, mesoscale
perturbation analyses, smartphone and MADIS feature
tracks/statistics, and composite feature analysis.

APPENDIX

Beamsteering Analysis

While lag analysis has been used in the past to extract wave
parameters from surface pressure perturbations (Rees and
Mobbs 1988), beamsteering has also been applied to determine
horizontal wave speeds and directions from surface pressure
variations (Einaudi et al. 1989; Hauf et al. 1996; Denholm-Price
and Rees 1998; Rees et al. 2000; de Groot Hedlin et al. 2017).
One advantage of beamsteering, over lag analysis, is that it is
accurate across a range of frequencies and wave parameters
(Rees et al. 2000). In beamsteering, a “beam” is steered in the
frequency domain until a horizontal wave vector and wave

FIG. 19. 2D stacked histograms of phase and coherence between perturbation pressure and feature (a),(d) normal perturbation wind;
(b),(e) perturbation temperature; and (c),(f) perturbation dewpoint temperature for (top) positive and (bottom) negative smartphone pres-
sure features. Stacked histograms show the frequency distribution of coherence (r) and phase (u).
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frequency is found which maximizes the cross-power spectral
density between all pairs of station pairs. In composite feature
analysis (Fig. 4), station pairs are taken as grid points along the
composite feature track. Mathematically, beamsteering in the
frequency domain is performed by calculating the array power
spectrum, which is the sum of the cross-spectral power density
over all combinations of grid point pairs (Nappo 2012):

Ĝ v, k( ) � ∑M
i�1

∑M
j�1

Gij v( )exp ik · dij( )
: (A1)

In practice, Eq. (1) is calculated by searching across the
frequency and wavenumber domain for the values of v and
k which maximize the array power spectrum Ĝ. Once found,
v and k can be used to calculate the slowness components:
Sx � k=v, Sy � l=v. In beamsteering the slowness vector S is
defined as follows:

S � 1
cx

( )
x̂ 1

1
cy

( )
ŷ, (A2)

with components Sx and Sy (Nappo 2012). The slowness
vector has a magnitude of 1/c and is always parallel to
the direction of propagation of the feature. After retriev-
ing slowness components, an estimate of the feature
speed c and direction of propagation (phase) can be
calculated:

c � 1�����������
S2x 1 S2y

√ , (A3)

f � tan21 Sx
Sy

( )
: (A4)

Beamsteering analysis in the frequency domain was applied
to the pressure feature examined in Fig. 4. The result is
displayed in Fig. A1, which shows the distribution of normal-
ized cross-power spectral density (CSD), plotted as a function
of wavenumber for the angular frequency v at which the
peak CSD was found. The black arrow in the figure repre-
sents the “beam” and points to the peak in the CSD in the
wavenumber domain. Note that in Fig. A1 the angle of the
beam, with respect to the abscissa, represents the direction
from which the feature is propagating.
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