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Abstract Water availability in the dry western United States (US) under climate change and increasing
water use demand has become a serious concern. Previous studies have projected future runoff changes across
the western US but ignored the impacts of ecosystem response to elevated CO, concentration. Here, we aim to
understand the impacts of elevated CO, on future runoff changes through ecosystem responses to both rising
CO, and associated warming using the Noah-MP model with representations of vegetation dynamics and plant
hydraulics. We first validated Noah-MP against observed runoff, leaf area index (LAI), and terrestrial water
storage anomaly from 1980 to 2015. We then projected future runoff with Noah-MP under downscaled climates
from three climate models under Representative Concentration Pathway 8.5. The projected runoff declines
variably from the Pacific Northwest by —11% to the Lower Colorado River basin by —92% from 2016 to 2099.
To discern the exact causes, we conducted an attribution analysis of the modeled evapotranspiration from two
additional sensitivity experiments: one with constant CO, and another one with static monthly LAI climatology.
Results show that surface “greening” (due to the CO, fertilization effect) and the stomatal closure effect are

the second largest contributors to future runoff change, following the warming effect. These two counteracting
CO, effects are roughly compensatory, leaving the warming effect to remain the dominant contributor to the
projected runoff declines at large river basin scales. This study suggests that both surface “greening” and
stomatal closure effects are important factors and should be considered together in water resource projections.

Plain Language Summary Water shortage in the western United States (US) is becoming
increasingly serious due to increasing socioeconomic demands and climate change. Although previous studies
have projected various degrees of runoff changes, they neglect the impact of rising CO, on runoff projections.
To explore the possible role that CO, may play in the hydrologic cycle, we conducted three experiments with
the newly improved Noah-MP land model including vegetation dynamics and plant hydraulics. Consistent with
previous studies, the western US tends to be drier toward the end of the 21* Century. CO,-induced leaf area
index increases (surface “greening”) contribute considerably to the projected widespread transpiration increases
and runoff reductions; however, these changes are nearly compensated by the stomatal closure effect of CO, on
transpiration, leaving the warming effect to remain the major cause to these transpiration and runoff changes.
Therefore, the dual roles of CO, in the hydrologic cycle through interactions with vegetation processes need to
be considered in water resource projections.

1. Introduction

Water availability in the dry western United States (US) under increasing water demands and climate change
has become a serious concern. Expanding population, increasing total water use, and rapidly growing agricul-
ture in the western US, have posed a great challenge on sustainable management of water resources (Anderson
& Woosley, 2006). Besides, restoration of endangered riparian ecosystems related to depleted water resources,
which has recently received an increasing attention, requires more water in the episodes of droughts (Anderson &
Woosley, 2006). In addition to substantial water demands, significant reductions in annual runoff yield have been
observed across the western US due to climate change (Forbes et al., 2018), with earlier snowmelt runoff and
reduced summer flows (Clow, 2010; Hamlet et al., 2007). It is crucial to discern the controlling factors of runoff
for reducing the uncertainties in future runoff and water resource projections.
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Runoff generation is largely affected by static factors, for example, soil property and topography, and changes in
climate and associated ecosystem response. Changing precipitation patterns, such as amounts as well as intensity,
duration, and frequency, directly affect runoff generation. Rising temperatures can enhance evapotranspiration
(ET) through increases in the atmospheric water demand and induce a greater loss of snow mass with a shrinking
snow cover, causing a positive feedback to the warming (Milly & Dunne, 2020). Also, changes in other climate
variables, such as downward longwave radiation, wind speed, and atmospheric humidity contribute substantially
to changes in ET (McVicar et al., 2012), resulting in totally different extent of dryland expansion (Sheffield
et al., 2012). Terrestrial ecosystem plays a key role in the terrestrial hydrologic cycle (Lemordant et al., 2018;
Ukkola et al., 2016) through root water uptake, transpiration, canopy interception loss, and hydraulic redistribu-
tion. Recent studies, however, show conflicting effects of vegetation responses to elevated CO, concentration.
Singh et al. (2020) suggested that increases in leaf area index (LAI) and plant water use efficiency (WUE) due
to elevated CO, result in an insignificant trend in the observed runoff in the southeastern US during 1951-2015.
Y. Yang et al. (2016) reported minor changes in LAI and leaf-level transpiration under elevated CO, in 18 trop-
ical forest catchments over 1982-2010 based on in situ and satellite observations. Yet, Frank et al. (2015) found
CO,-induced increases in plant WUE cannot nullify increases in transpiration caused by increases in LAI and
temperature across the European forests during the twentieth century. Ukkola et al. (2016) suggested that the
projected runoff reductions caused by changing climate may be moderated (exacerbated) because of reduced
(increased) vegetation growth in wet and humid (dry) Australia. Y. Yang et al. (2021) found regional differences
in the CO,-induced historical runoff changes and attributed them to differences in resource availabilities (e.g.,
water and energy), suggesting a larger CO,-induced runoff reduction in low resource (semiarid and arid) regions.
Although consistent temperature increases and slight precipitation changes are projected for the western US
(Easterling et al., 2017; Vose et al., 2017), whether the vegetation response to elevated CO, and associated climate
change alleviate or aggravate the future water shortage over the already dry western US remains very uncertain.

Raw runoff outputs from Earth system models (ESMs) are not generally used in regional hydrologic projections.
The coarse horizontal resolution of ESMs (~100 km) poorly characterizes the heterogeneity in the soil, vegeta-
tion, and topographic characteristics. The low spatial resolution may result in uncertainties in the water balance
in hydrologic projections and may miss key hydrologic processes in current ESMs, such as soil water-ground-
water interactions and subsurface lateral flows (Fan et al., 2019; Sun et al., 2016). More importantly, current
land surface models (LSMs) used in ESMs do not adequately represent plant drought resilience, producing an
unrealistically decreasing LAI trend in most drying drylands (Mao et al., 2013). During droughts, these mod-
els produce unrealistically low rain use efficiency (biomass productivity per unit rainfall; Ma et al., 2017; Zhu
et al., 2019). Inadequate representations of plant and root hydraulics, especially under a changing climate, may
result in low transpiration and high runoff. Most recent models have started to implement plant hydraulics (Ken-
nedy et al., 2019; L. Li, Rodell, et al., 2021; Niu et al., 2020; S. Zhu, Piao, et al., 2017) and explicitly represent
plant water storage supplied by dynamic root water uptake and groundwater capillary rise to enhance ecosystem
resilience to drought stress (Niu et al., 2020).

A number of previous studies, to project future water availability, used offline LSMs driven by downscaled ESM's
atmospheric outputs of temperature and precipitation but ignored the impacts of other atmospheric variables
and the vegetation response to elevated CO, (Hamlet & Lettenmaier, 1999; Naz et al., 2016; Sun et al., 2016).
Hamlet and Lettenmaier (1999) used a “delta” method to perturb historical climate data by mapping spatially
averaged future changes in precipitation and temperature resulting from global climate models (GCMs) relative
to their historical records. They reported that the annual runoff of the Columbia River Basin in 2045 would be
85%—110% of that of 1961-1997. Naz et al. (2016) projected an increase in runoff in spring and winter but wide-
spread summer runoff declines in the mid-century (2011-2050) compared to the baseline period (1966—-2005)
with the VIC hydrological model driven by the downscaled and high-resolution precipitation and temperature
from 10 climate models of the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5) under the
Representative Concentration Pathway (RCP) 8.5. Sun et al. (2016) projected more than 20% annual runoff
declines in the central part of the western US during 2031-2060 compared to that during 1979-2007, except in
the Lower Colorado River basin (due to more projected precipitation than ET). However, these previous studies
considered only the impacts of temperature and precipitation but neglected the impacts of other forcing variables
including downward longwave radiation, wind speed, and specific humidity that show an apparent trend (Figure
S1 in Supporting Information S1) and thus may directly affect the projected ET and runoff trends as well as dry-
land expansion (Sheffield et al., 2012). In addition, these offline studies neglected the significant rise of CO, and

ZHANGET AL.

2 0f22



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR030046

related ecohydrological consequences. Ignoring the vegetation response to elevated CO, in these offline studies
may overestimate droughts compared to direct outputs from coupled models (Milly & Dunne, 2017; Roderick
etal., 2015; Y. Yang et al., 2019; Y. Yang et al., 2020).

A widespread surface “greening” over the boreal forests and drylands has been observed and attributed to the
Co, fertilization effect under a warming climate (Fensholt et al., 2012; Z. Zhu, Piao, et al., 2017). Also, despite
a drying trend (Chang et al., 2020), arid and semiarid ecosystems have been greening as evidenced from pro-
nounced greenness increases (Fensholt et al., 2012), large-scale woody encroachment (Andela et al., 2013), and
enhanced net carbon sinks (Ahlstrom et al., 2015) over global drylands. This is well explained by an analysis
based on the gas exchange theory (Donohue et al., 2013). Z. Zeng et al. (2018) reported that vegetation greening
has contributed to over 50% of global ET increases during the past three decades. However, plant stomatal closure
and increased WUE caused by elevated CO, concentration may result in less transpiration at the leaf level scale
(Field et al., 1995). The CO, inhibition effect on stomatal opening is widely used in interpreting runoff changes
projected by ESMs with the conceptual Penman-Monteith & Budyko framework (Milly & Dunne, 2016; Y. Yang
et al., 2019). Therefore, the model projected future runoff change may be largely controlled by the relative im-
portance of these two counteracting CO, effects to terrestrial ecosystem responses, whereas surface “greening”
induced by the CO, fertilization effect is greatly affected by model representations of ecosystem resilience to
increasing drought stress (Niu et al., 2020).

In this study, we aim to discern the dominant processes controlling the projected future runoff changes using the
Noah-MP LSM (Niu et al., 2011) with explicit representations of vegetation dynamics and plant hydraulics (Niu
et al., 2020). Here, our specific objectives are to (a) project future runoff changes in the western US; (b) quantify
the impacts of LAI changes (or “greening”) and stomatal closure on ET changes using the Penman-Monteith
(PM) equation; (c) investigate the role of the two counteracting effects of CO, (“greening” and stomatal closure)
playing in the hydrologic cycle. We first performed future projections of runoff and factors influencing runoff
generation in the western US under the RCP 8.5 scenario with Noah-MP. We then conducted an attribution anal-
ysis on the modeling results based on the PM equation (Y. Yang et al., 2019) and isolated the two counteracting
CO, effects on the projected changes in ET and runoff through model sensitivity experiments with a constant CO,
concentration and static leaf dynamics, respectively.

2. Materials and Methods
2.1. Data
2.1.1. Forcing, Vegetation, and Soil Data

We used the Phase 2 of the North American Land Data Assimilation System (NLDAS-2) atmospheric forcing
data (Xia et al., 2012) to drive Noah-MP during the historical period from 1980 through 2015. This dataset spans
from January 1979 to present at a resolution of 0.125° with an hourly time step throughout the contiguous US
(CONUS). NLDAS-2 provides hourly downward shortwave and longwave radiation fluxes, surface air pressure
and temperature, specific humidity, wind speed, and precipitation rate. NDLAS-2 has been widely verified and
employed in modeling studies over the CONUS domain (Ma et al., 2017; Xia et al., 2012). We used the global
1-km hybrid State Soil Geographic Database and the USGS 24-category vegetation data, which were resampled
to fit the NLDAS-2 resolution to determine the dominant soil and vegetation types (for use in Noah-MP) over the
western US in both the historical and future simulations.

We used the CMIP5 climate models' output (Taylor et al., 2012) for future projections. Nonlinear yearly CO,
concentration (Prather et al., 2013) was used to represent future CO, changes (Figure S2 in Supporting Informa-
tion S1). We selected the model outputs from three CMIP5 GCMs experiments under RCP 8.5 because they pro-
vide sub-daily atmospheric variables for driving Noah-MP, including GFDL-ESM2G (at 2.0° x 2.5°), MIROCS
(1.4° % 1.4°), and IPSL-CM5A-MR (1.3° X 2.5°). The RCP 8.5 scenario was selected, because it may magnify the
signal of vegetation response given the highest CO, growth rate, thereby facilitating process understanding. The
three models represent divergent future climate changes, where the most aggressive increase in air temperature
occurs in IPSL-CMS5A-MR (Buotte et al., 2019), with the least temperature increase in GFDL-ESM2G (Figure
S1 in Supporting Information S1). We downscaled these 3-hourly data (except precipitation) to the resolution of
NLDAS-2 through bilinear interpolation and corrected the biases of the downscaled data using linear regression
models by retaining the probability distributions of historical values similar to those of NLDAS-2 (Dettinger
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et al., 2004). However, this method struggles to reproduce historical patterns of the precipitation extremes. We
then interpolated the daily precipitation data (Abatzoglou, 2013) from the selected GCMs to a spatial resolution
of 0.125° by bilinear interpolation and disaggregated into a temporal resolution of 3 hr following the method
described by Buotte et al. (2019). This method first calculates the ratio of the 3-hourly CMIPS5 precipitation to
the daily CMIP5 precipitation total and then disaggregated the Multivariate Adaptive Constructed Analogs daily
precipitation product based on these ratios over each grid cell. Through downscaling and bias-corrections, the bi-
ases in these GCM outputs are largely reduced for the historical period (Figure S1 in Supporting Information S1).

2.1.2. Observational Data

To calibrate and evaluate the Noah-MP's performance, we used ground-based runoff, satellite-derived LAI and
terrestrial water storage (TWS) change, upscaled FLUXNET data of gross primary production (GPP) and ET
using model tree ensemble (FLUXNET MTE), and ground-based snow water equivalent data (SWE; Broxton
et al., 2016; Dawson et al., 2017; X. Zeng et al., 2018). We calibrated and validated the simulated runoff during
1980-2015 against the USGS WaterWatch monthly runoff data at two-digital hydrological unit code, HUC2
(Seaber et al., 1987) basins (Rivers 14—18; Figure 1). This runoff dataset is generated using stream gage ob-
servations, the corresponding drainage basins, and HUC2 boundaries (Brakebill et al., 2011), which has been
taken as a surrogate of natural streamflow (Ashfaq et al., 2013; Ma et al., 2017). We selected a consistent and
continuous LAI product to evaluate the simulated LAI, which is an improved product (Yuan et al., 2011) of the
Moderate-Resolution Imaging Spectroradiometer (MODIS) LAI at a spatial resolution of 1 km and a temporal
resolution of 8 days. We upscaled this LAI dataset into the resolution of NLDAS-2 (0.125°) and aggregated it into
a monthly product during 2002-2015.

Because of high uncertainties related to current ET products (Mueller et al., 2011), we indirectly evaluated ET
simulations using the terrestrial water storage anomaly (TWSA) product derived from gravity changes detected
by the Gravity Recovery and Climate Experiment (GRACE) twin satellites. We used three 1° monthly GRACE
TWSA products together with their gain factors (to reduce leakage error) and averaged these datasets for the
period of 2003-2015 (Landerer & Swenson, 2012; Sakumura et al., 2014). The FLUXNET MTE dataset is gen-
erated by upscaling water, CO,, and energy fluxes measured at FLUXNET sites, which are densely located in the
US, and incorporating remote sensing, meteorological, and land cover data through a machine learning approach
(Jung et al., 2011).We downscaled 0.5° GPP and ET datasets of FLUXNET MTE to 0.125° to assess the modeled
GPP and ET using a bilinear interpolation method (Ma et al., 2017). The daily SWE product is developed using
in situ observations and 4-km gridded PRISM precipitation and temperature data and has been a benchmark for
large-scale SWE evaluations (Broxton et al., 2016; Cho et al., 2020). We reprocessed the daily SWE data into
a spatial resolution of 0.125° through the bilinear interpolation method and a monthly temporal resolution to
evaluate the simulated SWE.

2.2. Model

We used Noah-MP (Niu et al., 2011), a widely used LSM that simulates the exchanges of energy, water, and car-
bon between the terrestrial ecosystem and the atmosphere. The model includes one canopy layer, up to three snow
layers depending on snow depth, four soil layers with a total depth of 2 m, and an unconfined aquifer. Noah-MP
represents surface heterogeneity with a “semi-tile” scheme that separately computes energy, water, and carbon
fluxes for vegetated and bare fractions of a model grid cell (Niu et al., 2011). Surface runoff and subsurface
runoff are parameterized as functions of water table depth based on the TOPMODEL concept (Niu et al., 2005).

Noah-MP adopts the simple bucket-type groundwater model of Niu et al. (2007) to represent groundwater re-
charge into the aquifer (or “bucket”) in wet periods and groundwater capillary rise from the “bucket” during
dry periods. It also introduces a scaling factor, f, . ,
the capillary rise to account for the presence of subsurface macropores and thus helps improve the modeled soil

(between 0 and 1; fraction of micropore volume) to reduce

moisture variability in the State of Illinois (Z. L. Yang et al., 2011). In general, a larger £, produces a wetter

soil with smaller soil moisture variabilities. In this study, we used a constant f; .

the western US. The hydraulic conductivity of the aquifer (K ) is parameterized as a harmonic mean of that of
the bottom soil layer (K,) and that at the water table (K ): K, =2 K_ K/(K_ + K,), where K_ is the saturated

sat sat
hydraulic conductivity. Groundwater capillary rise is demonstrated important for plants to survive drought stress

over the central US basins (Niu et al., 2020).

of 0.3 for all experiments over
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Figure 1. (a) Elevation (m), (b) mean precipitation (mm/year), (c) mean near-surface air temperature (°C), and (d) aridity index (precipitation/potential
evapotranspiration) during 1980-2015. The polygons represent the boundaries of the USGS two-digital hydrologic unit code regions with their corresponding two-digit
codes: 14: Upper Colorado, 15: Lower Colorado, 16: Great Basin, 17: Pacific Northwest, 18: California.

Noah-MP incorporates a simple but efficient dynamic vegetation model (Niu et al., 2011). This model explicitly
represent photosynthesis, carbon allocation, respiration, turnover, and leaf death due to temperature and water
stresses (Dickinson et al., 1998; Niu et al., 2011; Parton et al., 1978). Noah-MP calculates the gross photosynthe-
sis rate, A, as a sum of leaf-level gross photosynthesis rate, A, (umol CO, m2s!; i =1, 2 for sunlit and shaded
leaves per unit leaf area, respectively), weighted by sunlit and shaded LAI. The leaf-level A, is calculated as the
minimum of three limiting carboxylation rates: the light-limited rate, the Rubisco-limited rate, and the limitation
by the transport of photosynthate for C, and C, plants (Collatz et al., 1992; Farquhar et al., 1980). Noah-MP
represents the leaf-level stomatal conductance, 8, and A, under the control of abiotic factors, such as atmospheric
humidity and CO, concentration, c , for sunlit and shaded leaves (Ball et al., 1987):

8s.i =g0+mﬁﬁpalm 1

Cs e

S 1
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where c_is the CO, concentration at the leaf surface (Pa) controlled by intermittent turbulent diffusion of c,

through the leaf boundary layer: ¢, = ¢ —A P, /(1.37r,), where r, is the leaf boundary layer resistance; e and e,

€aq
——+e;r
g b

are the water vapor pressure at the leaf surface (e; = , where e is the atmospheric water vapor pressure,
+rp

T

8s.i
Pa) and the saturated vapor pressure inside the leaves (Pa) at leaf surface temperature, respectively; g, is the
minimum conductance (#gmol m=2 s=2); m is the slope constant of the g ,— A, relationship; P, is the atmospheric
pressure (Pa). Because A, for the light-limited and Rubisco-limited rates of C, plants and transport-limited rate

of C, plants is linked to the intercellular CO, concentration, C; = C,,—% s
» r'b+g'—_

above equation with a first guess of ¢, = 0.7 ¢, for C, plants and ¢,= 0.4 c, for C , plants. Because g_, is inversely

Noah-MP iteratively solves the

related to ¢ [Equation 1], a higher ¢ due to elevated ¢, results in a reduction in g ; and subsequently a reduction in
leaf-level transpiration, inducing a “stomatal closure” effect on transpiration. On the other hand, A, increases with
increasing c, controlled by the diffusion of ¢  through the leaf boundary layer and plant stomata. LAI increases
with increasing assimilated carbon (A)), resulting in a “surface greening” effect on transpiration.

Reduction in A, due to soil water stress is parameterized through the control of plant water availability, 3, on the
optimum carboxylation rate at 25°C. The Noah-MP version used in this study also includes a dynamic root sub-
module that explicitly describes plant water storage supplied by dynamic root water uptake through hydrotropic
root growth to meet the transpiration demand (Niu et al., 2020). The root water uptake at a root layer is linked
to root surface area density within the layer, being converted from the model-predicted root carbon mass in the
layer. The latter is controlled by the photosynthate being translocated to roots, root exudates, maintenance/growth
respiration, and root turnover due to temperature and water stresses. The model allows more carbon translocation
to roots when the plants are under water stress and represents root hydrotropism through more carbon transloca-
tion to roots in wetter soil layers but with less turnover following Parton et al. (1978). The plant water availability
factor § controlling A, and g ; is parameterized as a function of water storage in the living plant tissues, M, (Niu
et al., 2020).

@

M,— M Wi
A = min <1.0,q—q'h>

Mq.max - MqA,wi]t

where M . represents the minimum plant water storage at the wilting point of 30 bar (306 m or 3.0 MPa), and

g,wilt
M . the maximum plant water storage when the plants are at full hydration. M-M, . is the plant water avail-
M, i) 18 the maximum water that a plant can lose through transpiration until

m
ab{ie for transpiration, and (qumax—
its wilting point. M, is depleted by transpiration while supplied by root water uptake, which is further controlled
by root surface area that is converted from root biomass at each layer and the water pressure gradient between
the soils and the roots. Compared to the static root in previous versions of Noah-MP, the current version greatly
improve plant drought resilience through hydrotropic root growth and groundwater capillary rise in the central

US (Niu et al., 2020).

2.3. Model Experiments

We conducted two sets of simulations using Noah-MP with the parameterization schemes including all recent im-
provements (Table S1 in Supporting Information S1): a historical simulation from 1980 to 2015 using the hourly
NLDAS-2 forcing and projections from 2016 to 2019 driven by the 3-hourly, downscaled climatic forcing. The
historical simulation, starting with arbitrary initial states and a constant CO, concentration of 360 ppm, was spun
up for seven times from 1980 through 2015 (mainly for TWS anomaly), and the last loop was used for analysis.
The future projections were performed with the downscaled and bias-corrected forcing data from 2016 to 2099.
The initial conditions for future projections were from the last loop of the historical simulation of Noah-MP driv-
en by downscaled GCM outputs during 1980-2015.

In the set of future projections, we conducted three experiments: (a) using Noah-MP with the RCP 8.5 CO, con-
centration (hereafter CTRL); (b) based on CTRL but with the constant CO, of 1980 concentration (CON-CO2);
and (c) based on CTRL but with the monthly LAI climatology of MODIS LAI (averaged from 2002 to 2015),
which is “static” without year-to-year variations (STATIC-LAI). These three experiments are designed to discern
the surface greening effect and stomatal closure effect: CTRL includes both effects; STATIC-LAI removes the
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Figure 2. The Noah-MP simulated (black lines) and observed monthly runoff (red circles) during 1980-2015 of the two-
digital hydrologic unit code (HUC?2) river basins in the western US (unit: mm/month): (a) the Upper Colorado (River 14), (b)
the Lower Colorado (River 15), (c) the Great Basin (River 16), (d) the Pacific Northwest (River 17), and (e) California (River
18). The legend provided in (a) applies to all other parts. Also shown on top of each panel are the linear trend (mm/month/
month) of the observed/modeled and model evaluation metrics in the order of RB/r/NSE. The asterisks indicate that trends
pass the non-parametric Mann-Kendall significance test (p < 0.05). RB = relative bias; r = Pearson correlation coefficient;
NSE = Nash-Sutcliffe efficiency.

greening effect but retains the stomatal closure effect; and CON-CO2 excludes the stomatal closure effects and
significantly reduces the LAI trends compared with those in CTRL (to be discussed later in Section 3.4).

To evaluate Noah-MP modeled runoff, LAI, TWSA, GPP, ET, and SWE, we calculated the relative bias (RB),
Pearson Correlation coefficient (r), Nash-Sutcliffe efficiency (NSE), and linear trends between simulations and
observations using USGS WaterWatch runoff, MODIS LAI, GRACE TWSA, FLUXNET MTE, and observed
SWE datasets across the western US, respectively. For the projection results, we calculated long-term linear
trends of annual runoff, LAI, transpiration, and ET during 20162099 and examined the significance of these
trends using the nonparametric Mann-Kendall test. We also analyzed the contribution of net radiation (R ), vapor
pressure deficit (vpd), surface resistance (r,), acrodynamic resistance (), and the slope of the saturation vapor
pressure—temperature relationship () to the projected ET changes using the PM equation (see Appendix A).
More importantly, we isolated the contribution of the surface greening and stomatal closure effects through the
difference between the model experiments using the PM equation.

3. Results
3.1. Model Evaluation

The modeled runoff is comparable with the USGS WaterWatch runoff data from 1980 through 2015 over the
five HUC2 rivers (Figure 2). The RB, r, and NSE values are less than 15%, above 0.89, and over 0.76 for most
regions, respectively. The relatively large RB of 81% and low NSE of —0.11 for the Lower Colorado are due
mainly to the overestimated NLDAS-2 precipitation (Ma et al., 2017); the NLDAS-2 precipitation cannot balance
the sum of USGS runoff and FLUXNET ET estimates for a 30-year period (1982-2011). To improve the model

ZHANGET AL.

7 of 22



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR030046

(trend) (RB/r/INSE)
14 Upper Colorado 0.0001/0.0003 0.14/0.94/0.81

1
@ 7

1 15 Lower Colorado 0.0000/0.0004
(b)
05 »

0 1 1 1 1 1 ] 1
1 16 Great Basin 0.0000/0.0002
(C) T T

0

17 Pacific Northwest 0.0002/0.0004
_( T . T i - T i - T .

18 California -0.0004/-0.0002
T T T T

2t(e) ]

0 1 1 1 1 1 1
2002 2004 2006 2008 2010 2012 2014

Figure 3. Same as Figure 2 but for monthly leaf area index during 2002-2015 (unit: m?*/m?). The trend unit is m*m?/month.

performance in the Lower Colorado, we need to further calibrate a spatially constant parameter, dry soil layer
depth, in the surface soil resistance to enhance soil surface evaporation (Sakaguchi & Zeng, 2009; Swenson &
Lawrence, 2014) and thereby reducing runoff. The value of the dry soil layer depth parameter may compensate
for the deficiency in the precipitation input, which could impact the sensitivity of the simulations to future chang-
es in climates and CO, levels. Noah-MP well reproduces the observed declining trends in runoff, despite slight
overestimations of the observed decreases in most rivers. The simulated LAI agrees with the observed monthly
LAI during 2002-2015 over most of the rivers (Figure 3) with RB values of less than 15%, r values of over 0.91,
and NSE values of over 0.53, respectively, except the Lower Colorado, where Noah-MP overestimate LAI by
16%, resulting in a negative NSE (—0.09; Figure 3b) in response to the overestimated precipitation input. Both
the simulated and observed LAI values do not exhibit apparent trends in all rivers, due possibly to little change in
CO, concentration during this short period (2002-2015).

We also compared the simulated monthly TWSA with GRACE TWSA during 2003-2015 (Figure 4). The sim-
ulated monthly TWSA is derived by subtracting the monthly mean of the simulated TWS during 2004-2009 to
be consistent with the procedure of the GRACE TWSA products. Here, the modeled TWS is the sum of SWE,
soil moisture, groundwater storage, canopy water, and the plant water storage. The simulated TWSA agrees well
with GRACE in phase and variability in most rivers, with the r and NSE values being above 0.81 and 0.29, re-
spectively. Promisingly, Noah-MP captures well the observed TWSA trends, except in the Upper Colorado that is
likely due to the uncertain climate inputs in the last two years (2014 & 2015), suggesting that the ET trend is also
well simulated. Noah-MP also shows comparable estimations of ET and GPP with those of FLUXNET MTE and
of SWE with those of observed SWE over each river basin, respectively (Figures S3—S5 in Supporting Informa-
tion S1). Overall, the good agreement between the simulated and the observed runoff, LAI, TWSA, and relevant
variables ensures an improved credibility of Noah-MP for projected future runoff and vegetation changes.

3.2. Projected Runoff Changes

The Noah-MP projected runoff declines remarkably across the western US rivers in the future under the different
climate produced by the three different GCMs (Figure 5a). The annual runoff averaged over these rivers decreases
by up to —71% during 2016-2099 (—12 mm/year/decade), —92% (—6 mm/year/decade), —52% (—5 mm/year/
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Figure 4. Same as Figure 2 but for monthly terrestrial water storage anomaly during 2003—2015 (unit: mm/month). The trend
unit is mm/month/month.

decade), —11% (—7 mm/year/decade), and —30% (—13 mm/year/decade), over River 14 to River 18, respectively.
The trends with a unit of percent in this study were calculated as the total linear changes relative to the linear
fit of the starting year (2016). The projected TWS also exhibits substantial decreasing trends at a rate of —134,
—152, —104, -2, and —49 mm/year/decade over these rivers, respectively (Figure 5c), resulting in deeper water
tables because groundwater storage changes accounts for the majority of TWS reductions (see Figures 8f and 8h).
Therefore, the model differences in the annual runoff trends are generally consistent with those in the modeled
TWS trends. Insignificant precipitation changes (p > 0.05; Figure 5b) and substantial TWS declines (p < 0.05)
indicate that ET changes likely control the future runoff trends for the western US, based on the annual water
balance. Overall, the runoff reductions in the western US rivers are due mainly to increases in ET, which will
be further discussed in the next section. However, the decreased annual runoff over the Lower Colorado from
IPSL-CM5A-MR and MIROCS and over the Upper Colorado from IPSL-CM5A-MR result from decreasing
precipitation (Figure 5b) and from the smaller magnitudes of ET decreases (Figure 6).

3.3. Projected LAI and ET Changes

From 2016 to 2099, the projected annual mean LAI across the western US exhibits an increasing trend under
all the three climates produced by different GCMs (Figure 6a). The annual LAI increases by 92% (0.06 m*/m?/
decade), 77% (0.05 m?*/m?%decade), 101% (0.04 m*/m*/decade), 60% (0.08 m*m?*/decade), and 57% (0.07 m*/m?/
decade) over River 14 to River 18, respectively. We will show later that these increasing trends are mainly attrib-
uted to the rising CO, through comparison with the constant CO, experiment (see Section 3.4). Increases in the
summer LAI (Figure S6 in Supporting Information S1) resulting from IPSL-CM5A-MR are less than those from
GFDL-ESM2G due mainly to its relatively high temperatures over the optimum temperature (25°C) for photo-
synthesis in all the rivers except the relatively colder Pacific Northwest. The differences in LAI changes for other
three seasons between 2016-2045 and 2070-2099 are smaller compared to those during summer. Therefore,
Noah-MP driven by the GFDL-ESM2G climate with the lowest warming produces the largest annual LAI trends
in the Upper and Lower Colorado and Great basin, but the least in the Pacific Northwest, where the vegetation
growth is limited by cold climates.
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Figure 5. Noah-MP projected (a) runoff change from 2016-2099 (%), (b) precipitation change from 2016-2099 (%), and (c)
TWS linear trends (terrestrial water storage; mm/year/decade) for each river driven by different climates produced by the
three global climate models. The legend provided in (a) applies to all other parts. The asterisks represent significant trends
(p < 0.05); the total linear changes in percent are relative to the starting year of the linear fit (i.e., 2016). Precipitation is used
as an input to drive Noah-MP.

The annual transpiration (T) is projected to significantly increase across the western US (Figure 6b). The annual
transpiration is simulated to increase by up to 68% (8 mm/year/decade), 43% (7 mm/year/decade), 84% (9 mm/
year/decade), 51% (10 mm/year/decade), and 30% (8 mm/year/decade) from 2016 to 2099 over the five HUC2
rivers, respectively. The projected ET increases by up to 27% (10 mm/year/decade), 9% (4 mm/year/decade), 20%
(6 mm/year/decade), 25% (11 mm/year/decade), and 10% (5 mm/year/decade) from 2016 to 2099 over the five
rivers, indicating that transpiration contributes the most to the ET increases. Additionally, the simulated ratio of
transpiration to ET (T/ET) shows a significant increasing trend by up to 53% (2%/decade), 44% (2%/decade),
74% (3%/decade), 21% (1%/decade), and 18% (1%/decade) from 2016 to 2099 over the five rivers, respectively.
Despite the declining transpiration trend in the Lower Colorado for IPSL-CM5A-MR, the T/ET ratio shows an
increasing trend due to decreases in ET. The increasing trend in the T/ET ratio indicates an enhanced WUE under
the increasing CO, concentration. However, increases in transpiration are not necessarily related to increases in
LAI (greening) as reflected from CON-CO2 (Figure 8b; see discussions in Section 3.4).

We conducted an attribution analysis based on the PM equation (see Appendix A), which helps discern the dom-
inant factors contributing to changes in ET. The conceptual PM model represents a “big-leaf” (or a single source)
evaporating surface, while Noah-MP represents multiple evaporating sources including soil surface evaporation,
interception loss, and transpiration. By fitting the Noah-MP modeled ET with the PM model, a single “surface
resistance” (r, in PM) can be derived. As such, r, represents a combined effect of resistances of the soil surface,
leaf boundary layer, and leaf stomata, reflecting the overall water supply from the land surface given the atmos-
pheric water demand.

We first calculated the multi-year mean of basin-averaged air temperature, pressure and specific humidity, wind
speed, surface roughness length, and sensible and latent heat fluxes during 2016-2045 and during 2070-2099.
Using these spatiotemporal-averaged values, we calculated the basin-averaged net radiation (R ), water vapor
pressure deficit (vpd), the slope of the saturated water vapor pressure against air temperature (6), and aerodynam-
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Figure 6. Noah-MP projected total linear changes from 2016 to 2099 relative to the linear fit in 2016 in annual (a) LAI (leaf
area index), (b) T (transpiration), (c) ET (evapotranspiration), and (d) T/ET ratio for the two-digital hydrological unit code
rivers. The legend provided in (a) applies to all subparts. The asterisks indicate total linear changes pass the significant test
(p <0.05).

ic resistance (r,). The basin-averaged r, was then derived by fitting the resulting ET from the PM equation with
inputs of the basin-averaged R , vpd, 6, and r, against the basin-averaged model outputs of ET during 2016-2045
and 2070-2099. We then quantified the contributions of changes in R , vpd, 6, r,, and r (AR, Avpd, AS, Ar,, and
Ar_ in Equation A2) during 2070-2099 averaged over each river basin relative to those during 20162045 to the
corresponding changes in ET (AET in Equation A2; Figure 7).

The ET changes reconstructed through the PM equation from CTRL agree well with the Noah-MP outputs with
an 12 value of 0.98 (Figure 7b), indicating an overall excellent but not perfect fit, more apparently over the Lower
Colorado for IPSL-CM5A-MR (the outlier in Figure 7b). The non-perfect fit is most likely caused by (a) averag-
ing, in space and time, ET and its controlling factors in PM, of which the relationships are nonlinear, and (b) the
difference between r, used in PM and the multiple aerodynamic resistances used in Noah-MP. The largest positive
contributor to AET over all the rivers is Avpd followed by Ad due to the nature of the increasing slope of the satu-
rated water vapor pressure against temperature (Figure 7a). AR also positively contributes to AET, and it is due to
increased downward longwave radiation (Figure S1 in Supporting Information S1), surface “greening”-induced
reduction in surface albedo, and warming-induced surface “darkening” due to shrinking snow cover (Figure 8f;
Milly & Dunne, 2020). AET due to AR , Avpd, and A¢ is the largest for IPSL-CMS5SA-MR (which produces the
strongest warming among the three GCMs), but the lowest for GFDL-ESM2G with a weaker warming, because
vpd and § are strongly dependent on temperature. Due to the slightly slowing winds (Figure S1 in Supporting
Information S1), Ar, plays a negative but negligible role in the ET changes. Increases in r,, which may include
the combined effects of stomatal closure, surface “greening”, and soil surface drying, largely reduce ET by —0.35
(mm/day), —0.71 (mm/day), —0.19 (mm/day), —0.15 (mm/day), and —0.20 (mm/day) over river basins 14-18,
respectively, representing the largest negative contributor. Because the negative contribution of Ar, exceeds the
combined positive contribution of other variables, AET is negative over the Lower Colorado for MIROCS5 (Fig-
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Figure 7. (a) Contribution of AR, Avpd, Ar, Ar,, and Aé to AET (2070-2099 relative to 2016-2045); (b) Scatter plot
of AET during 2070-2099 relative to 2016-2045 resulting from Noah-MP and those computed by the Penman-Monteith
equation. G, M, and I represent GFDL-ESM2G, MIROCS, and IPSL-CM5A-MR, respectively.

ure 6¢). However, due to the bad fit between the PM-derived and the modeled ET (Figure 7b), this approach fails
to explain the ET changes over the Lower Colorado for IPSL-CM5A-MR. From this analysis, it is apparent that
Avpd and Ar_largely control the future ET changes, suggesting the counteracting effects of the warming-induced
increases in the atmospheric demand and the decreasing surface water supply. However, the contribution of Ar,
to AET is more complicated due to the soil surface drying and the two counteracting effects of CO,.

3.4. Compensatory Surface “Greening” and Stomatal Closure Effects

The negative contribution of Ar, to AET can be a combined net effect of plant stomatal closure, surface “green-
ing”, and soil surface drying. We assessed the surface “greening” effect through the difference between CTRL
and STATIC-LAI and the stomatal closure effect through the difference between CON-CO2 and STATIC-LAL
We first compared some key hydrological variables resulting from CTRL, CON-CO2, and STATIC-LAI over
the five rivers (Figure 8) and then conducted a PM-based attribution analysis to quantify the “greening” effect
(Figure 9a) and stomatal closure effect (Figure 9b).

STATIC-LAI (without a trend in LAI or “greening” effects) projects a much smaller trend in transpiration (Fig-
ure 8b) and ET (Figure 8c) than does CTRL, becoming slightly negative. Consequently, the decreasing runoff
trend projected by CTRL is largely reduced due to removal of the “greening” effect in STATIC-LAI The pro-
jected changes in runoff are generally consistent with the changes in TWS (Figure 8e), soil moisture (Figure 8g),
and groundwater storage (Figure 8h), all showing reduced decreasing trends. The comparison between CTRL and
STATIC-LAI suggests that the surface “greening” plays an important role in the projected changes of transpira-
tion, ET, runoff, and TWS. In addition, STATIC-LAI projects a larger declining trend in SWE (Figure 8f) than
does CTRL due likely to less vegetation shading and thus increased solar radiation absorption by the snowpack
on the ground.

In CON-CO2 both the “greening” and stomatal closure effects are removed. As a result, the projected LAI trends
are largely reduced (Figures 8a and S9 in Supporting Information S1) due to removal of the greening effect.
However, CON-CO?2 projects a similar level of changes in transpiration (Figure 8b), ET (Figure 8c), runoff (Fig-
ure 8d), SWE (Figure 8f), and soil moisture (Figure 8g) to those by CTRL. CON-CO?2 projects enhanced runoff
reductions in Rivers 17 & 18, because the stomatal closure effect may exceed the impact of surface greening,
while Rivers 14-16 showing an opposite case. Because the two counteracting effects of CO, are roughly compen-
satory, CON-CO2 projects changes in hydrological variables that are comparable with CTRL. This suggests that
the warming effect remains the largest factor controlling the long-term change in hydrologic processes.
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Figure 8. The model projected trends in (a) leaf area index (LAI) (m%*m?/decade), (b) transpiration (T; mm/year/decade), (c)
evapotranspiration (ET; mm/year/decade), (d) runoff (mm/year/decade), (e) terrestrial water storage (TWS; mm/year/decade),
(f) snow water equivalent (SWE; mm/year/decade), (g) soil moisture (SMC; mm/year/decade), and (h) groundwater storage
in aquifers (WA; mm/year/decade) by CTRL, CON-CO2, and STATIC-LALI for each two-digital hydrological unit code rivers.
The legend provided in (a) applies to all subparts. The circles and error bars represent the ensemble mean of trends and +1
standard deviation from the three climate models.

We conducted the same PM-based analyses of the two sensitivity experiments: STATIC-LAI (Figure S7 in Sup-
porting Information S1) and CON-CO2 (Figure S8 in Supporting Information S1). We then computed the dif-
ference of the AET attributions between CTRL and STATIC-LAI (Figure 9a) and that between CON-CO2 and
STATIC-LAI (Figure 9b). The effect of Ar, stands out above all else, becoming the most dominant contributor in
both cases, but the former (Figure 9a) indicates the surface greening effect, while the latter (Figure 9b) indicates
the stomatal closure effect.

Both STATIC-LAI and CTRL are driven by the increasing RCP 8.5 CO, concentration. The difference between
CTRL and STATIC-LAI removes the CO, effects on stomatal closure but retains only the “greening” effect (Fig-
ure 9a). Also, AR, becomes a positive contributor due to the surface greening, which lowers the surface albedo
(with negligible effects from changes in snow cover; see Figure 8f). Ar, can be a positive or negative contributor
due possibly to different changes in surface roughness length and zero-displacement height associated with a
different extent of greening over various basins under various climates. Avpd and A contributions to AET are
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due largely to the smaller first-derivatives of vpd and 6 because Avpd and A§ are the same in CTRL and STAT-
IC-LAI experiments.

CON-CO2 completely removes the stomatal closure effect and largely removes the surface greening effects,
because other factors such as changes in radiation, temperature, and humidity may contribute to the greening
(Figure 8a), while STATIC-LAI completely removes the greening effect but contains the stomatal closure effect.
Thus, the difference between CON-CO2 and STATIC-LAI approximates the stomatal closure effect with the
greening effect being mostly removed (Figure 9b). The stomatal closure effect also affects the contribution of
changes in Avpd, Ad, Ar,, and AR, to AET, but with a much smaller magnitude compared to that of Ar,. The mag-
nitudes of the two counteracting CO, effects on ET changes are roughly equal (~0.15 mm/day averaged over all
basins and climates, Figure 9c), more than half of the contribution of the warming effects to ET changes, which
are dominated by Avpd (~0.2 mm/day; Figure S8 in Supporting Information S1) in CON-CO2.

Interestingly, the CO, fertilization (greening) effect on ET is lower than the stomatal closure effect at lower ele-
vations (<~1,500 m; ~53% of the western US; Figure S10 in Supporting Information S1) but tends to increase,
slightly exceeding the stomatal closure effect at higher elevations (>~1,500 m; 47%; Figure 10). Both grasslands
and shrublands exhibit a greater greening effect than the stomatal closure effect at all altitudes (Figures S11 &
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Figure 10. Averaged annual evapotranspiration trend (unit: mm/year/decade; solid lines) for each elevation band (100 m) in
the western US with the shaded area representing + 1 standard deviation for GFDL-ESM2G (a), MIROCS (b), and IPSL-
CMS5A-MR (c) models of the CO, fertilization (pink) and inhibition (blue) effects. The legend provided in (a) applies to all
subparts.

ZHANGET AL.

14 of 22



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR030046

S12 in Supporting Information S1), but the evergreen needleleaf forests show an opposite pattern, more apparent-
ly at lower elevations (Figure S13 in Supporting Information S1), dominating the overall pattern in the western
US (Figure 10). This is due likely to different plants' response to other abiotic factors (e.g., temperature, humidity,
and soil water etc.) beyond elevated CO, concentration. More apparently for the shrubs and evergreen needleleaf
trees (Figures S12 & S13 in Supporting Information S1), the CO, greening effects on ET increase with elevation
as they become less water-stressed due likely to the “water tower” effects (Viviroli et al., 2007) and then decline
toward the mountain tops (>3000 m) as they become more cold-stressed.

4. Discussions
4.1. Projected Changes in Runoff, Groundwater Storage, and Vegetation

This study was initiated to project future runoff under projected climates following previous studies (e.g., Naz
et al., 2016; Sun et al., 2016) but used a different LSM with explicit representations of plant physiological and
phenological responses. Overall, the future runoff projected by CTRL declines significantly. Despite the similar
conclusions to previous studies, the two sensitivity experiments with Noah-MP reveals the counteracting CO,
fertilization effects on surface greening and inhibition effects on plant stomatal closure are roughly compensa-
tory. The CON-CO2 experiment is similar to previous studies that did not take CO, concentration changes into
account. Compared to CTRL, CON-CO, projected a similar runoff trend in the Upper and Lower Colorado and
Great Basin but a larger reduction in the Pacific Northwest and California (Figure 8d). In other words, the veg-
etation responses to elevated CO, concentration may alleviate the water shortage in the Pacific Northwest and
California. In summary, Noah-MP projected aggravating and alleviating CO, impacts on runoff in semi-arid and
semi-humid regions (Figure 9c), respectively, consistent with previous studies for Australia (Ukkola et al., 2016)
and the Jinghe River basin in China (Huang et al., 2019). The water shortage in the semiarid and arid regions is
exacerbated partially because elevated CO, enhances carbon allocation to roots and results in deeper roots (Nie
et al., 2013) and larger root surface area, which benefits root uptake of deeper soil water and increases in transpi-
ration (Trancoso et al., 2017; Y. Yang et al., 2021). These processes are also represented in the Noah-MP version
used in this study.

As an important indicator of freshwater resources, changes in TWS including SWE, soil water, and groundwater,
are worth further investigation. Noah-MP shows a fairly good ability to reproduce the TWS variations in the his-
torical period from 2002 to 2015 (Figure 4). The analysis of its components indicates that the decrease in TWS,
given the future warming, is mainly attributed to the declining groundwater storage (Figures 8e—8h). However,
the partitioning of TWS change to changes in the soil water and groundwater components is dependent on the
model representations of root dynamics as well as the hydraulic conductivity and matric water potential (or
capillary fringe) of the aquifers, which further depends on the structure and texture of deeper soils and aquifers
(B. Li, Rodell et al., 2021). Further investigations of the groundwater storage change should be based on model
validations against available groundwater level data (Fan et al., 2013).

The projected LAI changes are dominated by CO, but influenced by multiple other factors consistent with pre-
vious studies (Mahowald et al., 2016; Mankin et al., 2017). Although the LAI trends are substantially reduced
due to the removal of increasing CO, trend, nonnegligible LAI trends were still found in all regions (except River
15; Figure 8a). Earlier and longer growing season induced by the warming facilitates the CO, fertilization effect
on the greening, especially over the colder mountain ridges (Figure S9 in Supporting Information S1). It should
be noted that earlier spring greening reduces spring soil moisture, which can persist into the following summer
and exacerbate summer soil drying (Lian et al., 2020). On the contrary, the warming and precipitation reductions
result in decreases in LAI in the warmer Lower Colorado (River 15) without the CO, fertilization effects (CON-
CO2; Figure S9 in Supporting Information S1). This highlights the important control of other abiotic factors
beyond the CO, fertilization effects on the long-term trend in vegetation growth. Increasing specific humidity
also slightly alleviates the water stress on carbon assimilation, benefiting vegetation growth and reducing forest
mortality risks (Liu et al., 2017).

Since Idso and Brazel (1984), a number of studies have argued the CO,-induced stomatal closure effects on ame-
lioration of water shortage (Lian et al., 2018; Milly & Dunne, 2016; Roderick et al., 2015; Swann et al., 2016; Y.
Yang et al., 2019). Our STATIC-LAI experiment produces negligible changes in transpiration and ET (Figures 8b
and 8c), suggesting that the stomatal closure effect can be as large as the warming effect and thereby cancel out
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the warming effect. Although the CO,-induced stomatal closure remarkably reduces transpiration, widespread
runoff reductions (though small) are still projected in the future (Figure 8d), highlighting the importance of
warming on the hydrologic cycle as shown by the CON-CO2 experiment. However, surface greening mainly due
to rising CO, has nonnegligible impacts on the hydrological cycle, equivalent to the stomatal closure effects. Our
study suggests that the two complementary CO, effects should be considered together rather than emphasizing
one of them as done in some previous studies (Idso & Brazel, 1984; Mankin et al., 2019; Milly & Dunne, 2016;
Y. Yang et al., 2019).

4.2. Uncertainties

In this study, the spatial distribution of vegetation types is prescribed and kept constant during the 100-year sim-
ulations under a changing climate. In reality, natural disturbances (Donohue et al., 2017) and human activities
may influence the vegetation vigor and species. For example, bark beetle outbreaks and wildfire have resulted
in tree mortality in nearly 15% of the forested area across the western US during the past three decades (Hicke
et al., 2016). Tree mortality is also projected to likely increase in the future, especially in the southwest US
(Buotte et al., 2019; Jiang et al., 2013; Thorne et al., 2018). Jiang et al. (2013) projected that half of the regions
dominated by evergreen needleleaf forests in the western US will shift into shrub- and grass-dominant areas by
the end of the 21* century under the “business-as-usual” emission scenario (A2 in the IPCC Assessment Report
4). These potential vegetation changes may increase or reduce runoff by altering the hydrologic cycle (Goeking
& Tarboton, 2020). Although the forested area comprises less than 20% of the western US, future work should
better understand the impacts of these disturbances on water resources.

Another source of uncertainties is the T/ET ratio, which is very uncertain due to a lack of direct transpiration
observations and thus limited understanding of the vegetation physiological processes. Because of the scarcity of
large-scale transpiration observations and accurate ET products, we relied on observational datasets of the USGS
monthly runoff and GRACE TWSA, of which the seasonal variations and trends largely represent the cumulative
effects of ET, in the calibration. However, Lian et al. (2018) found that the simulated global T/ET ratio by CMIP5
ESMs tends to be lower than in-situ observations, indicating that the vegetation would probably play a more im-
portant role in future runoff change. They attributed this underestimation to inadequate representations of canopy
light use, interception loss, and root water uptake. Noah-MP, like many other LSMs, struggles to simulate a T/ET
ratio lower than observations (Figure S14 in Supporting Information S1), indicating that the vegetation contribu-
tion to ET (Zeng et al., 2017; Y. Zhang et al., 2016) and thus runoff changes may be underestimated. The low T/
ET ratio produced by Noah-MP and other LSMs may be caused by a lack of adequate representations of lateral
water flow and water vapor diffusion within the surface soil pores (Chang et al., 2018). Overall, the limited under-
standing of vegetation dynamics constrains us from better projecting the ecosystem responses to an unprecedent
future climate. To reduce these uncertainties, large-scale observations and controlled experiments are required.

Uncertainties also exist in the validation datasets and downscaling processes. The MODIS LAI product is mainly
generated through MODIS reflectance data, a look-up table, and a three-dimensional radiation transfer model
(Yan et al., 2016). Uncertainties in the observed LAI tend to be high in regions with dense canopy cover and
complex terrain. Therefore, this may explain the relatively high negative model biases in the Pacific Northwest
coastal regions and the Cascades. Moreover, the water balance for some grid cells may be not closed because of
different sources of validation datasets (Cai et al., 2014; Zheng et al., 2020). For instance, over the Lower Colo-
rado, the observed precipitation, runoff, ET, and TWS change are not well balanced. For this reason, Noah-MP
overestimated both runoff and ET due to overestimated precipitation input. Additionally, despite the good per-
formance of the linear regression approach in correcting the biases in the CMIPS data, this method may reduce
the interannual variabilities of the variables and usually neglect the dynamic atmospheric processes induced by
subgrid variations in topography and land cover (Xue et al., 2014), compared to dynamic downscaling.

Uncertainties in model structure (process parameterizations) and parameters may also produce biases in the
trend. LSMs may show a wide range of future runoff changes under climate change and elevated CO, in some
regions (Davie et al., 2013). The large spread of model projections potentially comes from various simplified
and incomplete representations of bio-geophysical processes affecting ET. This is also why we used a Noah-MP
version that enhanced the plant drought resilience through representations of dynamic root water uptake and
groundwater capillary rise enhance, thereby surviving more frequent droughts given the future warming (Niu
et al., 2020). Other model components, such as carbon allocation and respiration schemes (Mankin et al., 2017),
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also affect the extent of vegetation greening. Most current LSMs, including Noah-MP, likely overestimate the
greening trends due to incomplete understandings of the vegetation processes, such as nutrient limitations and
interactions between roots and microbes (Smith et al., 2016). In addition, prescribed model parameters can result
in additional uncertainties depending on the parameter sensitivity (Chaney et al., 2016; Cuntz et al., 2016). In this
study, we used a Noah-MP version that are manually optimized (see more details in Niu et al., 2020) and validated
over historical periods (Figures 2—4 and Figures S3-S5 in Supporting Information S1). However, the search of
optimum parameter values may be incomplete, and some key model parameters are constant for the whole model
domain, for example, the decay factor of groundwater discharge (or baseflow). To reduce the modeling uncer-
tainty from parameter values, combining sensitivity analyses with machine learning (Chaney et al., 2016) and
model selection techniques (X. Zhang et al., 2014) may represent a way forward despite the expensive computa-
tional cost (Huo et al., 2019). We hope this study would inspire more future studies on the vegetation responses
to elevated CO, concentration using different models with different process representations while considering
parameter uncertainties.

5. Conclusion

This study aimed to improve the understanding of the impacts of terrestrial ecosystems response to rising CO, on
terrestrial water resources across the western US river basins through projections of runoff under different warm-
ing climates projected by three GCMs under RCP 8.5. We used the mechanistic Noah-MP LSM with explicit
representations of plant physiological and structural responses to the CO, inhibition effect on stomatal opening
(stomatal closure) and fertilization effect on photosynthesis (surface “greening”). The good performance of No-
ah-MP in comparison with observations (Figures 2—4 and Figures S3—S5 in Supporting Information S1) gives us
some confidence in the projected changes in the 21% Century. The relatively worse model performance over the
Lower Colorado River is due mainly to the overestimated precipitation input. Through sensitivity experiments
and PM-based attribution analyses, we conclude that:

1. The projected annual runoff shows a widespread decline over the Upper Colorado, Great Basin, Pacific North-
west, and California by —=71%, —52%, —11%, and —30% from 2016 to 2099, respectively, due mainly to in-
creases in ET, and over the Lower Colorado by —92% but due mainly to decreases in precipitation.

2. Both the stomatal closure and surface “greening” effects represent the second largest contributor to the pro-
jected increases in ET following the warming effect. The PM-based analysis indicates that the increasing at-
mospheric demand (through increases in vpd and §) plays a dominant role over the increasing available energy
(through changes in R ) due to increases in downward longwave radiation, surface “greening” (increases in
LAI), and surface “darkening” (due to shrinking snow cover).

3. The two counteracting effects of surface “greening” and stomatal closure are roughly compensatory at the
HUC2 river basin scale, and therefore the projected changes in ET and runoff under RCP 8.5 (CTRL) show
a magnitude of change similar to those with constant CO, concentration (CON-CO2) across the western
US HUC?2 rivers. However, the strength of the two effects are dependent on vegetation types distributing
over different elevation bands, with the stomatal closure effect exceeding the “greening” effect for evergreen
needleleaf forests over low elevation bands (<~1,500 m).

This study suggests that both the surface “greening” and stomatal closure effects are important factors and should
be considered together in runoff and water availability projections. In contrast, projections with prescribed LAI
seasonal cycle without year-to-year variations (i.e., without the “greening” effect) would lead to misleading
results.

Appendix A
We quantified the attribution of ET changes based on the Penman-Monteith equation (Monteith, 1965).

_ S8R, + paCpupd [1,

AET = 5+y(1+rs/ra) (A)

where 4 is the latent heat of vapourization (J/kg); ET is the evaporation flux (kg/(m?/s)); & is the slope of the sat-
uration vapor pressure-temperature relationship (Pa/K); R is the total available energy (equivalent to the sum of
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sensible and latent heat fluxes; W/m?); p, is the air density (kg/m?); Cp is the specific heat of air (J/(kg/K)); vpd is
the vapor pressure deficit of the air (Pa); y is the psychrometric constant (Pa/K); r, is the aerodynamic resistance
(s/m); and r, is the surface resistance (s/m).

The change in ET can be approximated as the sum of ET changes caused by changes in R , vpd, r,, r,, and 6,
following Y. Yang et al. (2019), Ban et al. (2020), and Neto et al. (2020):
OET OET OET OET OET

AET ~ Z2AR, + 28 Avpd + Z2Ar + 0 Ar, + Z2As
IR, dopd P T 5 BT T o5 (A2)

where the first derivatives of the five dependent variables in Equation A2 are as follows:
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The data used in this study are all available online: NLDAS-2 data (http://www.emc.ncep.noaa.gov/mmb/nldas/);
the 1-km hybrid State Soil Geographic Database and the USGS 24-category vegetation data (https://ral.ucar.edu/
solutions/products/noah-multiparameterization-land-surface-model-noah-mp-Ism); the monthly USGS Water
Watch hydrological unit runoff data (https://waterwatch.usgs.gov/); the FLUXNET-MTE GPP and latent heat
flux data (https://www.bgc-jena.mpg.de/bgi/index.php/Services/Overview); the MODIS LAI data (http://global-
change.bnu.edu.cn/research/laiv6); the GRACE TWSA data (http://grace.jpl.nasa.gov); the University of Arizo-
na SWE data (https://nsidc.org/data/nsidc-0719/versions/1); the CMIPS model outputs (https://esgf-node.llnl.
gov/search/cmip5/); the future CO, concentration data under RCP8.5 (https://pcmdi.lInl.gov/mips/cmip5/forcing.
html); and the daily precipitation of MACAV2-METDATA (https://climate.northwestknowledge.net/ MACA/).
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