

The Future of Snowstorms in Central and Eastern North America

Walker S. Ashley^a, Aaron Zeeb^b, Alex M. Haberlie^a, Vittorio A. Gensini^a, and Allison Michaelis^a

^a Department of Earth, Atmosphere, and Environment, Northern Illinois University, DeKalb, IL

^b Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, MI

ORCID and email addresses:

Walker S. Ashley <https://orcid.org/0000-0003-0816-3333> washley@niu.edu

Aaron W. Zeeb <https://orcid.org/0009-0005-4519-9329> aaronwzeeb@gmail.com

Alex M. Haberlie <https://orcid.org/0000-0001-9172-4028> ahaberlie1@niu.edu

Vittorio A. Gensini <https://orcid.org/0000-0001-6362-9197> vgensini@niu.edu

Allison C. Michaelis <https://orcid.org/0000-0002-0793-5779> amichaelis@niu.edu

Funding statement: This research was supported by the National Science Foundation Awards 1637225 and 1800582 and National Oceanic and Atmospheric Administration Award NA22OAR4690645.

19

Abstract

20 We investigate the changing snowstorm landscape in eastern North America using dynamically
21 downscaled regional climate simulations that compare the late-twentieth century against mid- and late-
22 twenty-first-century epochs for two climate pathways that include moderate and pessimistic warming.
23 By identifying, tracking, and cataloging snowstorms, we illustrate how the frequency, snow water
24 equivalent, and other features of these events may change. Results suggest changes in snowstorm
25 characteristics are most significant for the pessimistic pathway, especially toward the late twenty-first
26 century. There is similar event frequency between the historical period and mid-twenty-first-century
27 projections but declines of 3 to 10% are still projected for snowstorm counts, hours, cumulative area,
28 and snow water equivalent. By the late twenty-first century, snowstorm attributes have losses of 6 to
29 37% versus the historical period, revealing a projected acceleration in loss from the mid to late century.
30 Spatially, snowstorm reduction is most dramatic along and south of the Ohio River Valley as the latitude
31 that separates steady snowstorm counts to the north and reduced snowstorms to the south migrates
32 poleward in the future. Similarly, extreme snowstorms decline to the south, with some northern regions
33 experiencing increase in counts and snow water equivalent, affirming prior research theorizing that
34 some snowfall may intensify as increasing moisture in a warming climate interacts with environments
35 with temperatures still supportive of snowfall. Significant reductions in early and late cool-season
36 snowstorms are projected across all future epochs, revealing a shrinking season. These results provide a
37 set of perspectives on how a dominant cryospheric input—the snowstorm—will change across eastern
38 North America in the future.

39 **Keywords:** Snow, snowstorm, United States, Canada, dynamical downscaling, climate change, climate
40 models, climatology, extreme events

41

42 **1. Introduction**

43 Snowstorms produce a myriad of effects on the climate system, environment, and society, from
44 impacts on hydrology and water storage, energy balance, agriculture, transportation, hydropower,
45 sports and tourism, to snow-sensitive flora and fauna found in the extratropics. As the climate system
46 undergoes change (IPCC 2021; USGCRP 2023), the timing, placement, and magnitude of snowstorms and
47 their resulting snowfall and cover are evolving (Krasting et al., 2013; Diffenbaugh et al., 2013; Danco et
48 al., 2016; Ashley et al., 2020). Considering the significance of snowstorms on natural and human
49 systems, it is important to project how they may evolve in the future so that constituents impacted and
50 dependent on this cryospheric input are informed of their potential change.

51 Prior climatological research on snow has focused on changes in snowfall (Knowles et al., 2006;
52 Feng and Hu 2007; Krasting et al., 2013; Kapnick and Delworth 2013; O’Gorman 2014; Danco et al.,
53 2016; Demaria et al., 2016), snowpack or mass (Dyer and Mote 2006; Notaro et al., 2014; Rhoades et al.,
54 2017; Zeng et al., 2018; Pulliainen et al., 2020; Tedesche et al., 2023), and snow melt (Diffenbaugh et al.,
55 2013; Mankin et al., 2015). Much of this work finds observed (Kunkel et al., 2009, 2016) and projected
56 (Krasting et al., 2013; Lute et al., 2015; Ning and Bradley 2015; Demaria et al., 2016) declines in
57 climatological snow metrics across North America, except for the most extreme snow days, which are
58 predicted to have smaller fractional changes compared to mean snowfall in many regions (O’Gorman
59 2014; Janoski et al., 2018) and/or possibly intensify (Chen et al., 2020; Quante et al., 2021).
60 Comparatively, little work has examined the primary drivers of climatological character of snow in the
61 extratropics—the snowstorm—principally due to the challenges presented by observed data and
62 classification of those data (Kunkel et al., 2013), as well as the relatively coarse resolution of GCMs or
63 regional climate models (RCMs) used to project the future of these events that are driven by processes,
64 and are most impactful, at the mesoscale (Suriano and Leathers 2015; Giorgi 2019; Gutowski et al.,
65 2020). Most studies that have examined snow characteristics on shorter time scales have examined
66 snow days (Danco et al., 2016; Janoski et al., 2018; Chen et al., 2020; Quante et al., 2021; McCray et al.,
67 2023; Browne and Chen 2023) and not specific events, or storms, likely due to the difficulty in defining
68 and tracking events, especially in relatively coarse model data that does not correspond to the scale
69 needed to delineate storms (Ashley et al., 2020). However, recent work has explored the use of high-
70 resolution RCMs to reveal the characteristics of snowstorms (Zarycki 2018; Ashley et al., 2020; Chen et
71 al., 2021; McCray et al., 2023). Conclusions from these limited RCM efforts reveal broad declines in
72 snowstorms and snow/precipitation ratios across the central and eastern CONUS.

73 Herein we employ a snowstorm tracking algorithm developed by Ashley et al. (2020) on high-
74 resolution, dynamically downscaled RCM output to evaluate the potential change in these events in the
75 central and eastern CONUS and adjacent parts of southern Canada for the twenty-first century.
76 Specifically, we use the Gensini et al. (2023) simulations to explore how snowstorms in the mid- (2040–
77 2055) and late- (2085–2100) twenty-first century compare to their late-twentieth-century (1990–2005)
78 counterparts. Two greenhouse gas concentration trajectories representing intermediate and pessimistic
79 climate pathways are explored for the twenty-first-century epochs, providing two perspectives on the
80 future of snowstorms in North America. The novelty of this work compared to our prior effort (Ashley et
81 al., 2020) is that the present study includes: a set of mid- and late-twenty-first-century simulations;
82 intermediate and pessimistic climate pathways for each epoch; and the inclusion of thermodynamic as
83 well as large-scale dynamic changes (i.e., changes in general circulation and modes of climate variability)
84 to the climate system unlike a pseudo-global warming (PGW) approach (Liu et al., 2017; Ikeda et al.,
85 2021; Chen et al., 2021; Chen et al., 2023; Brogli et al., 2023) that solely modifies the boundary
86 conditions of a control RCM. Results reveal robust spatiotemporal changes in the characteristics of
87 snowstorms across the domain under both climate projections. While computational, storage, and
88 processing expenses generally limit RCM experiments, the RCM output and epoch comparisons herein
89 provide an initial set of views on the potential changes of these impactful events, while also providing a
90 structure for additional simulations and future research.

91 **2. Data and methods**

92 *2.1 Data*

93 We use dynamically downscaled RCM output generated by Gensini et al. (2023) to explore the
94 changing snowstorm landscape in a domain that covers most of the central and eastern CONUS and
95 adjacent parts of Canada (**Figure 1**). The Gensini et al. (2023) dataset was generated using bias-corrected
96 output from NCAR’s Community Earth System Model (CESM; Hurrel et al., 2013; Brûyère et al., 2014)
97 CMIP phase 5 (CMIP5; Taylor et al., 2012) GCM as initial and lateral boundary conditions for WRF-ARW
98 v.4.1.2 (Skamarock et al., 2019). Bias correction reduces errors produced by GCMs that, in turn, may be
99 passed to WRF during the dynamical downscaling process, effectively improving performance and
100 accuracy (Ines and Hansen 2006; Christensen et al., 2008; Gensini et al., 2023). The RCM was used in a
101 convection-permitting configuration characterized by horizontal grid spacing of 3.75 km, 51 vertical
102 levels, and data output intervals as frequent as 15 minutes. Gensini et al. (2023) refer to their RCM
103 simulations as WRF-BCC (WRF-Bias Corrected CESM).

104 2.2 WRF-BCC verification

105 Gensini et al. (2023) compared the WRF-BCC historical 15-year period to Parameter-elevation
106 Regressions on Independent Slopes Model (PRISM; Daly et al., 1994) and a gridded ensemble dataset
107 based on 12,000 surface observation stations (Newman et al., 2015) to assess the potential temperature
108 and precipitation bias in the simulations. Details of those comparisons and simulation verification are
109 provided in Gensini et al. (2023), but are summarized as the following: The WRF-BCC closely recreated
110 the spatial patterns of temperature and precipitation across the domain at monthly, seasonal, and
111 annual timescales; biases included 2-m maximum temperature that were too cool across seasons and
112 most locations, while an annual precipitation bias was generally restricted to the southeastern and
113 eastern CONUS where WRF-BCC conditions were too dry; and, relevant for this study, simulations had a
114 wet bias in the northern High Plains during the Dec-Feb period. Overall, monthly climatologies of
115 temperature and precipitation found few locations that were outside of observational spread of
116 uncertainty, providing confidence in the simulations' ability to replicate the historical climate.

117 To define and assess changes in snowstorms, we used the "AFWA_SNOW" variable generated
118 from the Air Force Weather Agency (AFWA) diagnostics described in Creighton et al. (2014).
119 AFWA_SNOW, which is the accumulation of liquid-equivalent snow, uses a precipitation type algorithm
120 that is calculated at every model time step and is determined empirically, independent of the
121 microphysics scheme. We compared the AFWA_SNOW variable—or, as we label, WRF-BCC snow water
122 equivalent (SWE)—against NOAA National Operational Hydrologic Remote Sensing Center's SNOw Data
123 Assimilation System (SNODAS) data (Barret 2003; NSDIC 2024). Assimilating both remote sensing and in
124 situ data, SNODAS has several snow variables—including SWE—that are used to provide the best
125 possible modeled estimates of snow cover in support of simulations and analysis (NSDIC 2024). Daily
126 SNODAS SWE output for October 1–April 1 2003–2013 were used as for comparison with daily HIST
127 WRF-BCC output for 1990–2005 (**Figure 2**). While years do not overlap wholly since SNODAS data only
128 exist since 2003, this comparative analysis provides a perspective on the validity of WRF-BCC output for
129 the historical period. Annual SWE means for SNODAS and WRF-BCC were generated, with absolute
130 difference values between the two datasets used to express similarities, differences, and possible
131 biases. We caution that SNODAS is a model dataset and not "ground truth" since there is immense
132 difficulty and uncertainty—or, as McCrary et al. (2022) describe, insufficiency—in snow observations
133 and accurately representing snow derived variables such as SWE. The considerable uncertainties of

134 snow in assimilated and simulation datasets are well described and illustrated in Clow et al. (2012) and
135 McCrary et al. (2017, 2022).

136 The percentage difference illustrates that the areal SWE mean totals from WRF-BCC are
137 generally representative of the assimilated SNODAS dataset, especially in climatologically high-SWE
138 regions. There is strong agreement between the datasets in the central and northern Great Plains,
139 Midwest, Ohio Valley, Mid-Atlantic, and, to a lesser extent, the Northeast and upper Great Lakes; in the
140 latter two regions, WRF-BCC contains a low SWE bias. In regions where snow is rare—generally along
141 and south of 35°N parallel, and especially along the far southern gradient of areas that experience
142 snow—there are larger percentage differences, similar to the difference found between SNODAS and Liu
143 et al. (2017) PGW simulation SWE output evaluated in Ashley (2020). In these southern regions, snow is
144 relatively rare, illustrated by the order of magnitude difference in SWE compared to regions to the
145 north. The rarity, low magnitude (<10 mm SWE annually), and intermittent spatial variability of
146 snowstorms in this region, especially for relatively short 15-year epochs, are likely causes of these
147 seemingly large differences. Further, differences in how SNODAS and WRF-BCC are derived and their
148 sensitivity to very small SWE accumulations could be an additional reason for the disparities. Despite
149 these apparent biases, the objective of this study is to generate and compare deltas—or “apples to
150 apples” comparison—between WRF-BCC epochs, not to uncover reasonings and provide corrections for
151 SWE between SNODAS and the Gensini et al. (2023) simulations.

152 *2.3 Snowstorm tracking methods*

153 This research employs the same snowstorm-tracking algorithm described in Ashley et al. (2020)
154 and provided by Haberlie (2020). Algorithm details and schematic examples are provided in Ashley et al.
155 (2020; cf. their Extended data Fig. 2) and are summarized herein. The algorithm uses SWE output, which
156 provides a reasonable representation of spatial distribution and intensity of snow. We do not use snow
157 accumulation proxies in the algorithm due to the variability in snow-to-liquid ratios, which are highly
158 dynamic spatially and temporally across both seasons and individual storm events (Baxter et al., 2005).

159 Initially, the algorithm detects 3-hourly “slices” of potential snow events, where a slice is a
160 collection of connected grid points that meet or exceed 0.1 mm of SWE for a 3-hr period that is greater
161 than ~100 km². Slices are concatenated to produce a “swath” and, thereafter, tested for spatiotemporal
162 overlap to assure the representation of a spatial outline of a potential snow event. All swath, or snow-
163 event, candidates are further tested to confirm that the first and last slices in the concatenated swath

164 have an area of at least $1 \times 10^5 \text{ km}^2$ and exceed 24 hours between the first and last slice. These swaths
165 are considered snow events and are tracked across a domain that includes most of the central and
166 eastern CONUS and adjacent regions of Canada that are roughly less than 1500 m elevation east of the
167 Continental Divide. Some meso- β and γ events may not be captured by the algorithm purposely; this
168 includes lake-effect snow cases that are not affiliated with migratory extratropical cyclones across the
169 Great Lakes (Ashley et al., 2020) and do not meet the spatial criterion minimum.

170 The historical epoch (HIST; 1990–2005) is compared against two future periods that are characterized by
171 RCP 4.5 and 8.5, which represent intermediate and pessimistic anthropogenic climate change
172 trajectories, respectively. The two future epochs include mid-twenty-first-century (MID; 2040–2055) and
173 end-of-twenty-first-century (EOC; 2085–2100) projections.

174 Like Ashley et al. (2020), we calculated the 50th and 90th percentiles for 3-hour SWE
175 accumulations for the HIST period. These were calculated by gathering all HIST pixels greater than or
176 equal to 0.1 mm within the tracked snowstorms across the central and eastern CONUS domain during
177 the October–April period. The HIST 50th and 90th percentile values, representing moderate and extreme
178 snowfall intensities, are 0.35 mm and 1.18 mm, respectively. These serve as thresholds for comparing
179 historical conditions to future epochs to assess whether these intensities occur more frequently in a
180 changing climate. We also compare the totality of SWE across the domain for monthly and seasonal
181 periods to assess how the ratio of snow-to-total precipitation may potentially change.

182 Statistical significance tests are performed on counts and means between HIST and respective
183 future epochs using the Mann-Whitney U test with a p-value of less than 0.05. We caution that
184 confidence in these significance tests is relatively low due to small sample size between epochs ($n = 15$)
185 and may be influenced by interannual variability as much as, or more than, anthropogenic climate
186 change (McCrary et al., 2023) and difficulty in quantifying uncertainty due to a singular RCM approach
187 (McCrary et al., 2017; McCrary and Mearns 2019; McCrary et al., 2022). Similarly, percentage change
188 calculations may be influenced by small sample size, which is a common issue for current convective
189 permitting RCM experiments.

190 **3. Results**

191 *3.1 Changes in cumulative snowstorm attributes*

192 All four future epochs are projected to have fewer cool-season snowstorms than HIST, which
193 averaged 78.4 seasonal events across the domain with a maximum of 94 and minimum of 60 events per

194 season during the 15-year epoch (**Figure 3a, Table S1**). The percent change differences in mean counts
195 are relatively small for MID4.5 (-5.19%), MID8.5 (-9.18%), and EOC4.5 (-8.9%) but robust for EOC8.5 (-
196 26.7%); both 8.5 projections, as well as the EOC4.5, are significantly different from HIST. The percentage
197 decline in EOC8.5 is similar to Ashley et al. (2020), who found a decline of 28% snowstorms in Liu et al.'s
198 (2017) PGW simulations, which compared similar time periods and used the same RCP. Visualizing
199 changes with another perspective, seasonal cumulative frequency of snowstorms reveals large overlap
200 with a slight decrease between midcentury RCPs compared to HIST, but with increasing spread and
201 significant reduction in events toward the end of the century compared to HIST (**Figure 4a-b**).

202 SWE also declines across all future epochs (**Figure 3b**), but there is considerable central
203 tendency overlap and relatively small percentage change differences for MID4.5 (-3.0%), MID8.5 (-7.7%),
204 and EOC4.5 (-6.0%). Only the EOC8.5 is significantly different than HIST, with a nearly 32% reduction in
205 SWE, or roughly 227 km³ reduction in mean seasonal domain SWE compared to HIST's 715 km³; this
206 percentage change is nearly the same for that found in Ashley et al. (2020). The character of these
207 trends is further revealed using seasonal cumulative SWE (**Figure 4d-e**), with notable overlap in SWE for
208 midcentury between epochs and a modest decline for EOC4.5 and significant decline of EOC8.5
209 compared to HIST. A similar declining pattern from HIST to future epochs is found for other snowstorm
210 attributes, including seasonal cumulative snowstorm swath spatial extent, or area, and swath hours
211 (**Figure 3c-d**). The most notable attribute change is cumulative snowstorm area, which has percent
212 change declines ranging from 6.7% for MID4.5 to roughly 10% for both MID8.5 and EOC4.5 to a robust,
213 and significantly different, reduction of 37.2% for EOC8.5. Though varying, the overall decline in these
214 attributes suggests that the reduction in SWE is caused by fewer snowstorms and, collectively, smaller
215 snowstorm footprints.

216 3.2 Spatial changes

217 Consistent with the overall snowfall climatology (Durre et al., 2013), there is a strong latitudinal
218 gradient in snowstorm events across the domain (**Figure 1**). All epochs illustrate a snowstorm maximum
219 in southeast Canada, with more than 32 snowstorm tracks per season—or, on average, 1.2 storms a
220 week—from the northern Great Lakes to Hudson Bay, generally north of the St. Lawrence River.
221 Equatorward from this maximum, the northern CONUS Plains through the Northeast experience 16 to
222 32 events per season, with a slowly waning frequency toward the Mid-South, where less than one event
223 per season is expected. Snowstorm climatology is consistent with the overall maximum in extratropical

224 cyclones, which drive most winter precipitation events (Hawcroft et al., 2012) across the domain (Plante
225 et al., 2014; Lombardo et al., 2015; Eichler 2020).

226 Future epochs versus HIST generally show declining snowstorm counts (**Figure 5 and 6**) and SWE
227 (**Figures 7 and 8**) across the domain, especially across the central and northern CONUS Plains—
228 consistent with GCM-based research that has shown a decrease in future blizzards in this region
229 (Browne and Chen 2023)—and some parts of the Tennessee and southern Ohio River Valleys,
230 Cumberland Plateau, into the Mid-Atlantic. There are a few areas of slight increase in snowstorm
231 frequency and SWE in MID4.5, MID8.5, and EOC4.5. The most dramatic spatial change is found in
232 EOC8.5, where snowstorm frequency is found to decline 25 to 50% across most areas that experience
233 events (**Figure 6b,d**). Across all epochs, the southern fringe of the domain—from Texas to the southern
234 Mid-Atlantic—may see a near removal of snowstorms in the future, which is consistent with the
235 expected increasing temperatures under future anthropogenic climate change scenarios (Almazroui et
236 al., 2021; Gensini et al., 2023 (cf. their Fig. 8b); USGCRP 2023) affecting those events that have lower
237 tropospheric and surface temperatures that are marginal to produce winter precipitation (Krasting et al.,
238 2013; Liu et al., 2016; Danco et al., 2016). The trend toward more rain-dominated or transitional (rain
239 and snow) precipitation climate regimes along the equatorward edge of regions that experience snow,
240 which is leading to an overall poleward shift in snow-affected areas, has already been established in
241 observed data over the last 40 years (Tedesche et al., 2023); WRF-BCC projections suggest that this
242 trend will continue.

243 *3.3 Seasonal, monthly, and weekly changes*

244 Similar to Ashley et al. (2020), the greatest temporal change in the character of snowstorms
245 across the domain occurs during the shoulder seasons (**Table S1, Figures 4c,f**) where temperatures, as
246 discussed, are generally marginal to produce snowfall and the partition of snowfall-to-rainfall is
247 susceptible to warming due to interannual variability and anthropogenic climate change (Huntington et
248 al., 2004; Knowles et al., 2006; Feng and Hu 2007; Krasting et al., 2013; Danco et al., 2016; Chen et al.,
249 2020; Prein and Heymsfield 2020; Shi and Liu et al., 2021). Though overall numbers are low, the early-
250 season month of October has notable decreases in event counts, ranging from -26.2% for MID4.5 to -
251 80.1% for EOC8.5. Similar, but generally smaller, percentage change departures in snowstorm counts
252 from HIST are found for November, March, and April. Interestingly, January has notable percent change
253 departures for all future epochs—ranging from -7.3% to -10.2%; conversely, December and February
254 reveal little departure in percent changes in snowstorm counts. Broadly, the percent changes in

255 snowstorm counts for future epochs versus HIST are found in other snowstorm attributes, including
256 total SWE, cumulative swath hours, and cumulative swath area. The latter attribute, though variable,
257 shows the greatest percent change, suggesting that the extent of snowstorm footprints will be smaller in
258 the future under most scenarios and months.

259 Providing another perspective, weekly-calculated percent changes of snowstorm counts, SWE,
260 and snowstorm area for future epochs versus HIST reveal the dramatic change in the shoulder seasons,
261 with many weekly departures for MID4.5 and MID8.5 exceeding -40% and EOC4.5 and EOC8.5 exceeding
262 -60% (**Figure 9**). The most notable change in the character of the season is found in EOC8.5, with a
263 significant departure in percent change found across the entire season except in late February and parts
264 of March. Overall, these results suggest a shortening of the snowstorm season, which is consistent with
265 prior research that has examined daily snowfall using GCMs (Danco et al., 2016; Chen et al., 2020).

266 *3.4 Changes in moderate and intense areas of accumulation*

267 Research using GCMs and relatively coarse RCMs suggests that there may be smaller fractional
268 changes, or even increases, in future intense, or heavy, snowfall days in regions where mean seasonal
269 snowfall is projected to broadly decrease (O’Gorman 2014; Danco et al., 2016; Chen et al., 2020; Quante
270 et al., 2021; McCray et al., 2023). This dichotomy is likely due to climate warming leading to more rain
271 than snow when thermal conditions are marginal (McCray et al., 2023), whereas slight decreases or
272 increases in extreme snowfalls may be due to increasing moisture (i.e., specific humidity) in
273 environments with temperatures still supportive of snowfall (O’Gorman 2014; Quante et al., 2020)
274 and/or shifting storm tracks and intensification of extratropical cyclones projected across parts of the
275 domain (Colle et al., 2013; Eichler 2020; Browne and Chen 2023). O’Gorman (2014, 2015) theorizes that
276 extreme snowfall situations occur in a range of temperatures that are, for the most part, insensitive to
277 warming temperatures due to anthropogenic climate change.

278 To assess the more intense areas in swaths identified and tracked in this study, we gathered
279 SWE pixels within each swath that exceeded the HIST 50th and 90th percentiles for 3-hour accumulations
280 (cf. Extended data Fig. 2 in Ashley et al. (2020)); these percentiles represent the spatial extent of
281 moderate and extreme intensities within each corresponding swath, respectively, and provide a point of
282 comparison to studies that have examined extremes using daily snowfalls from GCM or coarse RCM
283 output. WRF-BCC’s high spatial and temporal resolution is particularly suited for this analysis since it can
284 resolve banded, meso-β snow events (Novak et al., 2004; Baxter and Schumacher 2017; McCrary 2022)

285 driven by low-to-mid-level frontogenesis (Novak et al., 2008, 2010; Ganetis et al., 2018) that are
286 responsible for high snowfall rates and notable impacts to society (Changnon and Changnon 2011).

287 Overall, various measures of central tendency for total SWE, accumulated area, and duration for
288 both 50th and 90th SWE percentile events for MID and EOC have small declines or broad overlap with
289 HIST, except for RCP 8.5 (**Figure 10**). Percentage changes between 50th SWE percentile events for future
290 epochs and HIST generally show small decreases of 4 to 9% for 50th percentile swath counts except for
291 EOC8.5, which decreased by nearly 24% (**Table S2**). Percentage changes for 90th SWE percentile swath
292 counts are mixed, with slight increases or decreases, except for, again, EOC8.5 (**Table S3**). This
293 percentage change pattern for 50th and 90th SWE percentiles is generally replicated for other variables
294 such as total SWE, accumulated area, and duration. Beyond the significantly different RCP 8.5 scenarios,
295 the relative overlap across all variables suggests that changes in moderate and intense events will be
296 subtle; though, some of this overlap between HIST and the future epochs is likely caused by the
297 capturing of deltas across the entirety of the domain. Latitudinally, these changes appear more robust
298 (**Figures 11 and 12**).

299 In related manner, spatially, the most pronounced change signal in both the MID and EOC
300 epochs versus HIST are across the southern part of the domain, where both 50th and 90th percentile
301 events have notable declines, which is consistent with the trend found for overall snowstorm counts.
302 There is a sharp gradient to the changes in moderate and extreme events, which moves poleward during
303 the EOC climate pathways. There are regions of increase in extreme events poleward of the relative
304 sharp gradient of increase/decrease in these events. Percent change increases are most prominent in
305 the 90th percentile compared to the 50th percentile and overall snowstorm counts. This finding
306 suggesting that climate warming induces more rain than snow in areas to the south with marginal
307 thermal profiles supportive of snow, while increasing moisture in a warming climate (Held and Soden
308 2006; Willett et al., 2007; Lombardo et al., 2015; Coffel et al., 2018) leads to enhanced snowfall rates
309 and more extreme events where temperatures remain sufficient for snowfall production to the
310 immediate north. Spatially, this finding corresponds with the O'Gorman (2014, 2015) theory discussed
311 above and reinforced by others (Krasting et al., 2013; Danco et al., 2016; Chen et al., 2020; Quante et al.,
312 2021; McCray et al., 2023).

313 *3.5 Changes in snow/precipitation ratio*

314 Prior research suggests that the ratio of snowfall to overall precipitation across most of North
315 America has decreased during the last century (Feng and Hu 2007; Shi and Liu 2021) and is projected to
316 continue to decrease in the twenty-first century (Räisänen 2008; Krasting et al., 2013). We use these
317 prior results as a basis to examine the change in the fraction of liquid equivalent that falls as snow in the
318 Gensini et al. (2023) simulations during the cool season (**Figure 13**).

319 Roughly 14.7% of the October through April liquid-equivalent precipitation across the domain is
320 snow in the HIST epoch. By mid-century, the percentage of precipitation that falls as snow drops to
321 14.2% under the intermediate scenario (3.3% percent change from HIST) and 13.8% under the
322 pessimistic scenario (6.6% percent change). By the end of the century, the percentage decreases to
323 13.4% for intermediate (8.6% percent change from HIST) and 9.6% for pessimistic (34.3% percent
324 change) scenarios. Though the EOC8.5 is the only change that is significantly different from the historical
325 epoch, the proportion of precipitation that falls as snow during the cool season is, on average, projected
326 to decrease across all future epochs. Monthly, the EOC epochs reveal the largest decreases in that
327 proportion of precipitation that is snow, with significant decreases compared to HIST for all months for
328 EOC8.5. Projected MID changes are mixed, but most months still show declines in the snow-to-total-
329 precipitation ratio.

330 Spatially, the percentage contribution of snow to the overall cool-season precipitation, as
331 expected, reveals a strong latitudinal gradient, with the highest SWE contributions—exceeding 60% in
332 HIST—across the northern Plains into the Great Lakes (**Figure 14**). Percentage changes in snow
333 contribution to overall precipitation from HIST to MID are projected to be variable across the study
334 domain; broad declines are interspersed with some local increases. Significantly different changes in
335 SWE contributions for the MID epochs are restricted to areas off the Mid-Atlantic and Northeast coast
336 and intermittent parts of the Great Plains (**Figure 15**). Percent contribution differences for the EOC
337 epochs are more notable, with significant decreases far more widespread than MID, with nearly the
338 entirety of the domain that experiences snow expected to have statistically significant declines in the
339 snow-to-total-precipitation ratio in the EOC8.5 scenario.

340 The snow-rain partitioning is driven by thermodynamic changes in the climate system, with
341 broad increases in surface and lower tropospheric temperatures leading to changes in the precipitation
342 that falls as snow due to higher melting layer heights (Feng and Hu 2007; Lemke et al., 2007; Räisänen
343 2008; Krasting et al., 2013; Almazroui et al., 2021; Gensini et al., 2024). This is particularly the case for
344 regions that have temperatures marginal for snowfall and, temporally, during the shoulder, or

345 transition, months (Knowles et al., 2006; Krasting et al., 2013). Per the Clausius-Clapeyron relationship
346 (Trenberth et al., 2003; Pall et al., 2007), as temperatures increase, higher evaporation rates lead to
347 greater atmospheric moisture available for snowstorms and, therefore, higher precipitation rates and
348 extremes (Donat et al., 2016; Lee et al., 2021). Therefore, regions that retain surface and tropospheric
349 temperatures suitable for snow may see minimal decreases, or even slight increases, in snow totals and
350 extremes (O’Gorman 2014; Quante et al., 2020).

351 **4. Discussion and conclusion**

352 Snowfall and related accumulations produce considerable impacts to society and modify energy
353 and hydrologic cycles. Assessing how snow will evolve under future climates is essential for
354 understanding changes in the earth-atmospheric system, environment, and society. While it is
355 established that anthropogenic climate change will modify and likely intensify precipitation events (IPCC
356 2021; USGCRP 2023), how snow will change in a future climate state is complex as snow is particularly
357 attuned to subtle—and difficult to gauge—changes in lower tropospheric and surface temperatures that
358 must be sufficient to produce snow at the ground (O’Gorman 2015).

359 Even though overall snowfall and snow-to-total-precipitation ratios may decrease in future due
360 to a warming climate (Diffenbaugh et al., 2013; Kapnick and Delworth 2013; Krasting et al., 2013; Notaro
361 et al., 2014; McCrary et al., 2022; McCray et al., 2023), high-end events may not decrease at the same
362 rate as mean seasonal snowfall and may shift climatologically poleward (O’Gorman 2014; McCray et al.,
363 2023). This persistence and/or even enhancement of heavy daily snowfalls is theorized to occur because
364 of the increasing availability of moisture in a warming climate that overlaps an optimal temperature
365 range (~-4 to -2°C) for extreme snowfall (O’Gorman 2014, 2015; Quante et al., 2021; McCray et al.,
366 2023). Conversely, research by Browne and Chen (2023) suggests that blizzard-like events may decline in
367 the Northern Plains and Upper Midwest and Ashley et al. (2020) project significant decreases in the
368 frequency and size of snowstorms, including intense storms under a pessimistic climate pathway.
369 Adding to the complexity, projections suggest that extratropical cyclones that produce a majority of
370 central and eastern CONUS snowfall (Hawcroft et al., 2012) may, on the mean, intensify and shift
371 poleward (McDonald 2010; Tamarin-Brodsky and Kaspi 2017; Hawcroft et al., 2018; Eichler 2020);
372 though, other research suggests a reduction in cyclone numbers across North America (Catto et al.,
373 2011), but dichotomous intensity results (Priestley and Catto 2022). Unquestionably, the changing snow
374 landscape across North America is complex and uncertain.

375 Our work complements the limited body of research that has focused on the primary producer
376 of snowfall and snowpack: the snowstorm. This method differs from most research on the topic, which
377 has generally employed daily or longer periods to measure and evaluate changes in snowfall using
378 coarse GCMs or ~12-25 km grid spacing RCMs (Notaro et al., 2014; O’Gorman 2014; Danco et al., 2016;
379 Janoski et al., 2018; Zarzycki 2018; Chen et al., 2020; Quante et al., 2021; McCray 2023). Our use of an
380 RCM at 3.75 km grid spacing permits the capturing of meso-β snow bands within storms that are
381 frequently the cause of significant accumulations (Novak et al., 2004; Changnon and Changnon 2011;
382 Baxter and Schumacher 2017; McCrary 2022), resolves important physiographic and orographic effects,
383 and enables the identification, tracking, and cataloging of snowstorms at high spatiotemporal resolution
384 (Ashley et al., 2020). Further, we used a non-PGW method to promote the inclusion of both
385 thermodynamic and large-scale dynamic changes to the climate system and explore two separate
386 climate pathways for mid- and late-twenty-first-century periods.

387 Our results reveal that the frequency, placement, and intensity of snowstorms are projected to
388 change across the central and eastern CONUS and adjacent regions of southern Canada during the
389 twenty-first century. Changes are most dramatic for the pessimistic climate pathway toward the end-of-
390 the-twenty-first century, where significant declines are projected for various snowstorm attributes,
391 including frequency, SWE, area, and duration. Mid-twenty-first-century changes for all epochs and
392 climate pathways are more muted, but all snowstorm variables still show average percent change
393 declines of 3 to 10% from the HIST epoch. The two most notable changes in all future epochs are the
394 significant declines in shoulder season snowstorms and the poleward shift in the latitude that
395 demarcates steady snowstorm counts to the north and reduced, or elimination of, snowstorms to the
396 south. The latter occurs with moderate (50th percentile SWE) and intense (90th percentile SWE) events,
397 as well, with intense events illustrating areas of increase poleward of the sharp drop off in snowstorms
398 along and south of the Arkansas, Tennessee, and Ohio River Valleys. This lack of decline and, in some
399 regions, increases in high-end events reaffirms results from prior research by O’Gorman (2014) and
400 McCray et al. (2023). The partitioning of snow and rain is projected to change, with the ratio of snow to
401 total precipitation across the study domain expected to decline from 13.4% to 34.3% by the end of the
402 twenty-first century. Such changes have implications for energy and moisture budgets, water storage
403 and balance, flood risk, and, overall, environmental and societal systems dependent on water.

404 Our research, while providing an initial set of perspectives on the changing snowstorm
405 landscape, has several limitations. The narrow ensemble envelope (RCP 4.5 and 8.5) and relatively short

406 period of record in each epoch (15 years) constrains explanatory power and retains uncertainty when
407 examining extreme events. With such short temporal windows, fully assessing the individual and
408 collective contribution of large-scale climate modes and variability (e.g., Ghatak et al., 2010; Liu et al.,
409 2015, 2020) versus anthropogenic climate change to the alterations uncovered is unknown. While
410 expansion of scenarios and analysis periods is always desirable, computing resources, data storage, data
411 egress, and post-processing are restrictive. As these constraints ease in the future as computational and
412 storage capabilities improve, research groups and programs should collectively strive to increase the
413 RCM populations by exploring variations in grid spacing, model physics and parameterization schemes,
414 dynamical cores, additional GCM inputs and shared socioeconomic pathways, bias corrections, and
415 perturbations during model initialization (Gensini 2021; Ashley et al., 2023). This ensemble framework
416 will improve explanatory power and reduce uncertainty in our understanding of snowstorms and how
417 they change in the future (McCray et al., 2023).

418 **Acknowledgements**

419 This research was supported by the National Science Foundation Awards 1637225 and 1800582 and
420 National Oceanic and Atmospheric Administration Award NA22OAR4690645. The authors acknowledge
421 high-performance computing support from Cheyenne (doi:10. 5065/D6RX99HX) provided by NCAR's
422 Computational and Information Systems Laboratory, sponsored by the National Science Foundation. We
423 also acknowledge the high-performance computing support from Comet, which was hosted by the San
424 Diego Supercomputer Center at the University of California, San Diego. This computational resource was
425 made available by the Atmospheric River Program (Phases 2 and 3), which is supported by the California
426 Department of Water Resources (awards 4600013361 and 4600014294, respectively) and the U.S. Army
427 Corps of Engineers Engineer Research and Development Center (award USACE W912HZ-15-2-0019). We
428 also acknowledge and thank Dr. Michael Papka (ANL) for data storage and postprocessing assistance.
429 This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of
430 Science User Facility supported under Contract DE-AC02-06CH11357. We thank the editor and reviewers
431 for their constructive feedback.

432 **Conflict of Interest statement**

433 The authors declare no conflicts of interest.

434 **Data availability statement**

435 The source code for the snow event identification and tracking is available from Haberlie (2020) and/or
436 <https://github.com/ahaberlie/FutureSnow>. In the spirit of reproducibility, if an email request is made to
437 the authors, we will make available data and materials necessary to interested researchers for
438 duplication and verification of results herein. WRF-BCC simulation output is available in netCDF format
439 and stored on Argonne systems. We request that anyone interested in using the WRF-BCC output
440 contact coauthor Gensini (vgensini@niu.edu) for information on how to access the data, including any
441 collaboration.

442 **Supporting Information**

443 **Table S1.** Mean monthly and seasonal total snowstorm counts and percentage changes for all epochs.
444 Percentage changes are calculated for each future epoch versus HIST.

445 **Table S2.** As in Table S1, except for 50th percentile events.

446 **Table S3.** As in Table S1, except for 90th percentile events.

447 **References**

448 Almazroui, M., M. N. Islam, F. Saeed, and Coauthors, 2021: Projected changes in temperature and
449 precipitation over the United States, Central America, and the Caribbean in CMIP6 GCMs. *Earth Syst.*
450 *Environ.*, **5**, 1–24, <https://doi.org/10.1007/s41748-021-00199-5>.

451 Ashley, W. S., A. M. Haberlie, and V. Gensini, 2020: Reduced frequency and size of late twenty-first-
452 century snowstorms over North America. *Nat. Climate Change*, **10**, 539–544.

453 Barrett, A., 2003: National Operational Hydrologic Remote Sensing Center Snow Data Assimilation
454 System (SNODAS) products at NSIDC. NSIDC Special Report 11, National Snow and Ice Data Center,
455 https://nsidc.org/sites/nsidc.org/files/files/nsidc_special_report_11.pdf

456 Baxter, M. A., and P. N. Schumacher, 2017: Distribution of single-banded snowfall in central U.S.
457 cyclones. *Wea. Forecasting*, **32**, 533–554, <https://doi.org/10.1175/WAF-D-16-0154.1>.

458 Baxter, M. A., C. E. Graves, and J. T. Moore, 2005: A Climatology of Snow-to-Liquid Ratio for the
459 Contiguous United States. *Wea. Forecasting*, **20**, 729–744, <https://doi.org/10.1175/WAF856.1>.

460 Brogli, R., and Coauthors, 2023: A global model of climate-driven water scarcity including the feedbacks
461 of water use and adaptation dynamics. *Geosci. Model Dev.*, **16**, 907–926, <https://doi.org/10.5194/gmd-16-907-2023>.

463 Browne, A., and L. Chen, 2023: Investigating the occurrence of blizzard events over the contiguous
464 United States using observations and climate projections. *Environ. Res. Lett.*, **18**, 114044,
465 <https://doi.org/10.1088/1748-9326/ad0449>.

466 Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2011: Northern Hemisphere Extratropical Cyclones in a
467 Warming Climate in the HiGEM High-Resolution Climate Model. *J. Climate*, **24**, 5336–
468 5352, <https://doi.org/10.1175/2011JCLI4181.1>.

469 Changnon, S. A., and D. Changnon, 2005: Snowstorm catastrophes in the United States. *Global Environ.*
470 *Change Part B: Environ. Hazards*, **6**, 158–166, <https://doi.org/10.1016/j.hazards.2006.06.001>.

471 Chen, G., W. Wang, C. Cheng, and H. Hsu, 2021: Extreme snow events along the coast of the Northeast
472 United States: Potential changes due to global warming. *J. Climate*, **34**, 2337–2353,
473 <https://doi.org/10.1175/JCLI-D-20-0197.1>.

474 Chen, H., J. Sun, and W. Lin, 2020: Anthropogenic influence would increase intense snowfall events over
475 parts of the Northern Hemisphere in the future. *Environ. Res. Lett.*, <https://doi.org/10.1088/1748-9326/abbc93>.

477 Chen, X., L. R. Leung, Y. Gao, and Coauthors, 2023: Sharpening of cold-season storms over the western
478 United States. *Nat. Clim. Chang.*, **13**, 167–173, <https://doi.org/10.1038/s41558-022-01578-0>.

479 Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher, 2008: On the need for bias
480 correction of regional climate change projections of temperature and precipitation. *Geophys. Res. Lett.*,
481 **35**, L20709, <https://doi.org/10.1029/2008GL035694>.

482 Clow, D. W., L. Nanus, K. L. Verdin, and J. Schmidt, 2012: Evaluation of SNODAS snow depth and snow
483 water equivalent estimates for the Colorado Rocky Mountains, USA. *Hydrol. Process.*, **26**, 2583–2591.

484 Creighton, G., E. Kuchera, R. Adams-Selin, J. McCormick, S. Rentschler, and B. Wickard, 2014: AFWA
485 diagnostics in WRF.

486 Coffel, E. D., R. M. Horton, and A. de Sherbinin, 2018: Temperature and humidity-based projections of a
487 rapid rise in global heat stress exposure during the 21st century. *Environ. Res. Lett.*, **13**, 014001,
488 <https://doi.org/10.1088/1748-9326/aaa00e>.

489 Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical Evaluation and
490 Future Prediction of Eastern North American and Western Atlantic Extratropical Cyclones in the CMIP5
491 Models during the Cool Season. *J. Climate*, **26**, 6882–6903, <https://doi.org/10.1175/JCLI-D-12-00498.1>.

492 Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological
493 precipitation over mountainous terrain. *J. Appl. Meteorol. Climatol.*, **33**, 140–158.

494 Danco, J. F., A. M. DeAngelis, B. K. Raney, and A. J. Broccoli, 2016: Effects of a warming climate on daily
495 snowfall events in the Northern Hemisphere. *J. Climate*, **29**, 6295–6318, <https://doi.org/10.1175/JCLI-D-15-0687.1>.

496

497 Demaria, E. M. C., J. K. Roundy, S. Wi, and R. N. Palmer, 2016: The effects of climate change on seasonal
498 snowpack and the hydrology of the Northeastern and Upper Midwest United States. *J. Climate*, **29**,
499 6527–6541, <https://doi.org/10.1175/JCLI-D-15-0632.1>.

500 Diffenbaugh, N. S., M. Scherer, and M. Ashfaq, 2012: Response of snow-dependent hydrologic extremes
501 to continued global warming. *Nat. Clim. Change*, **3**, 379–384.

502 Donat, M., A. Lowry, L. Alexander, and Coauthors, 2016: More extreme precipitation in the world's dry
503 and wet regions. *Nature Clim. Change*, **6**, 508–513, <https://doi.org/10.1038/nclimate2941>.

504 Durre, I., M. F. Squires, R. S. Vose, X. Yin, A. Arguez, and S. Applequist, 2013: NOAA's 1981–2010 U.S.
505 climate normals: Monthly precipitation, snowfall, and snow depth. *J. Appl. Meteor. Climatol.*, **52**, 2377–
506 2395, <https://doi.org/10.1175/JAMC-D-13-051.1>.

507 Dyer, J. L., and T. L. Mote, 2006: Spatial variability and trends in observed snow depth over North
508 America. *Geophys. Res. Lett.*, **33**(16), L16503, <https://doi.org/10.1029/2006GL027258>.

509 Eichler, T. P., 2020: The impacts of a warming climate on winter mid-latitude cyclones in the NARCCAP
510 model suite. *Clim. Dyn.*, **54**, 4379–4398, <https://doi.org/10.1007/s00382-020-05236-z>.

511 Feng, S., and Q. Hu, 2007: Changes in winter snowfall/precipitation ratio in the contiguous United States.
512 *J. Geophys. Res. Atmos.*, **112**(D15), D15109, <https://doi.org/10.1029/2007JD008397>.

513 Ganetis, S. A., B. A. Colle, S. E. Yuter, and N. P. Hoban, 2018: Environmental conditions associated with
514 observed snowband structures within northeast U.S. winter storms. *Mon. Wea. Rev.*, **146**, 3675–3690,
515 <https://doi.org/10.1175/MWR-D-18-0054.1>.

516 Gensini, V. A., 2021: Severe convective storms in a changing climate. *Climate Change and Extreme
517 Events*, A. Fares, Ed., Springer, 39–56, <https://doi.org/10.1016/C2019-0-04922-9>.

518 Gensini, V., A. Haberlie, and W. S. Ashley, 2023: Convection-permitting simulations of historical and
519 possible future climate over the contiguous United States. *Clim. Dyn.*, **60**, 109–126.

520 Gensini, V. A., W. S. Ashley, A. C. Michaelis, and A. M. Haberlie, J. Goodin, and B. C. Wallace, 2024:
521 Hailstone size dichotomy in a warming climate. *npj Clim. Atmos. Sci.*, **7**, 185,
522 <https://doi.org/10.1038/s41612-024-00728-9>.

523 Ghatak, D., G. Gong, and A. Frei, 2010: North American Temperature, Snowfall, and Snow-Depth
524 Response to Winter Climate Modes. *J. Climate*, **23**, 2320–2332, <https://doi.org/10.1175/2009JCLI3050.1>.

525 Giorgi, F., 2019: Thirty years of regional climate modeling: Where are we and where are we going next?
526 *J. Geophys. Res. Atmos.*, **124**, 6881–6904, <https://doi.org/10.1029/2018JD030094>.

527 Gutowski, W. J., and Coauthors, 2020: The ongoing need for high-resolution regional climate models:
528 Process understanding and stakeholder information. *Bull. Amer. Meteor. Soc.*, **101**, E664–E683,
529 <https://doi.org/10.1175/BAMS-D-19-0113.1>.

530 Haberlie, A. M., 2020: ahaberlie/Future_Snow. Zenodo, (<https://doi.org/10.5281/zenodo.3674139>

531 Hawcroft, M., E. Walsh, K. Hodges, and G. Zappa, 2018: Significantly increased extreme precipitation
532 expected in Europe and North America from extratropical cyclones. *Environ. Res. Lett.*, **13**, 12,
533 <https://doi.org/10.1088/1748-9326/aae8e0>.

534 Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere
535 precipitation is associated with extratropical cyclones? *Geophys. Res. Lett.*, **39**, L24708,
536 <https://doi.org/10.1029/2012GL053866>.

537 Held, I. M., and B. J. Soden, 2006: Robust Responses of the Hydrological Cycle to Global Warming. *J.*
538 *Climate*, **19**, 5686–5699, <https://doi.org/10.1175/JCLI3990.1>.

539 Huntington, T. G., G. A. Hodgkins, B. D. Keim, and R. W. Dudley, 2004: Changes in the proportion of
540 precipitation occurring as snow in New England (1949–2000). *J. Climate*, **17**, 2626–2636,
541 [https://doi.org/10.1175/1520-0442\(2004\)017<2626>2.0.CO;2](https://doi.org/10.1175/1520-0442(2004)017<2626>2.0.CO;2).

542 Ikeda, K., Rasmussen, R., Liu, C. *et al.*, Snowfall and snowpack in the Western U.S. as captured by
543 convection permitting climate simulations: current climate and pseudo global warming future
544 climate. *Clim Dyn* **57**, 2191–2215 (2021). <https://doi.org/10.1007/s00382-021-05805-w>

545 Ines, A. V. M., and J. W. Hansen, 2006: Bias correction of daily GCM rainfall for crop simulation studies.
546 *Agric. For. Meteor.*, **138**, 44–53, <https://doi.org/10.1016/j.agrformet.2006.03.009>.

547 IPCC, 2021: *Climate Change 2021: The Physical Science Basis*. Contribution of Working Group I to the
548 Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P.
549 Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K.
550 Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)].
551 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press,
552 <https://doi.org/10.1017/9781009157896>.

553 Janoski, T. P., A. J. Broccoli, S. B. Kapnick, and N. C. Johnson, 2018: Effects of Climate Change on Wind-
554 Driven Heavy-Snowfall Events over Eastern North America. *J. Climate*, **31**, 9037–
555 <https://doi.org/10.1175/JCLI-D-17-0756.1>.

556 Kapnick, S. B., and T. L. Delworth, 2013: Controls of global snow under a changed climate. *J. Climate*, **26**,

557 Krasting, J. P., A. J. Broccoli, K. W. Dixon, and J. R. Lanzante, 2013: Future Changes in Northern
558 Hemisphere Snowfall. *J. Climate*, **26**, 7813–7828, <https://doi.org/10.1175/JCLI-D-12-00832.1>.

559 Knowles, N., M. D. Dettinger, and D. R. Cayan, 2006: Trends in snowfall versus rainfall in the western
560 United States. *J. Climate*, **19**, 4545–4559.

561 Kunkel, K. E., M. Palecki, L. Ensor, K. G. Hubbard, D. Robinson, K. Redmond, and D. Easterling, 2009:
562 Trends in Twentieth-Century U.S. Snowfall Using a Quality-Controlled Dataset. *J. Atmos. Oceanic
563 Technol.*, **26**, 33–44, <https://doi.org/10.1175/2008JTECHA1138.1>.

564 Kunkel, K. E., D. A. Robinson, S. Champion, and Coauthors, 2016: Trends and extremes in Northern
565 Hemisphere snow characteristics. *Curr. Clim. Change Rep.*, **2**, 65–73, [https://doi.org/10.1007/s40641-016-0036-8](https://doi.org/10.1007/s40641-
566 016-0036-8).

567 Lee, J.-Y., J. Marotzke, G. Bala, et al., 2021: Future global climate: Scenario-based projections and near-
568 term information. *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to
569 the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, V. Masson-Delmotte,
570 and Coauthors, Eds., Cambridge University Press, 553–672,
571 <https://doi.org/10.1017/9781009157896.006>.

572 Liu, C., K. Ikeda, R. Rasmussen, M. Barlage, et al., 2017: Continental-scale convection-permitting
573 modeling of the current and future climate of North America. *Climate Dyn.*, **49**, 71–95,
574 <https://doi.org/10.1007/s00382-016-3327-9>. Lombardo, K., B. A. Colle, and Z. Zhang, 2015: Evaluation of
575 Historical and Future Cool Season Precipitation over the Eastern United States and Western Atlantic
576 Storm Track Using CMIP5 Models. *J. Climate*, **28**, 451–467, <https://doi.org/10.1175/JCLI-D-14-00343.1>.

577 Liu, Z., X. He, W. Ma, and Y. Wang, 2020: Robust increases in extreme Pacific North American events
578 under greenhouse warming. *Geophys. Res. Lett.*, **47**, e2019GL086309,
579 <https://doi.org/10.1029/2019GL086309>.

580 Liu, Z., Z. Jian, K. Yoshimura, N. H. Buenning, C. J. Poulsen, and G. J. Bowen, 2015: Recent contrasting
581 winter temperature changes over North America linked to enhanced positive Pacific-North American
582 pattern. *Geophys. Res. Lett.*, **42**, 7750–7757.

583 Lute, A. C., J. T. Abatzoglou, and K. C. Hegewisch, 2015: Projected changes in snowfall extremes and
584 interannual variability of snowfall in the western United States. *Water Resour. Res.*, **51**, 960–972.

585 Mankin, J., D. Vivioli, D. Singh, A. Hoekstra, and N. Diffenbaugh, 2015: The potential for snow to supply
586 human water demand in the present and future. *Environ. Res. Lett.*, **10**, 114016.

587 McCray, C. D., G. A. Schmidt, D. Paquin, M. Leduc, Z. Bi, M. Radiyat, C. Silverman, M. Spitz, and B. R.
588 Brettschneider, 2023: Changing nature of high-impact snowfall events in Eastern North America. *J.
589 Geophys. Res. Atmos.*, **128**, <https://doi.org/10.1029/2023JD038804>.

590 McCrary, R. R., and L. O. Mearns, 2019: Quantifying and diagnosing sources of uncertainty in midcentury
591 changes in North American snowpack from NARCCAP. *J. Hydrometeor.*, **20**, 2229–2252,
592 <https://doi.org/10.1175/JHM-D-18-0248.1>.

593 McCrary, R. R., S. McGinnis, and L. O. Mearns, 2017: Evaluation of Snow Water Equivalent in NARCCAP
594 Simulations, Including Measures of Observational Uncertainty. *J. Hydrometeor.*, **18**, 2425–
595 2452, <https://doi.org/10.1175/JHM-D-16-0264.1>.

596 McCrary, R. R., L. O. Mearns, M. Hughes, S. Biner, and M. S. Bukovsky, 2022: Projections of North
597 American snow from NA-CORDEX and their uncertainties, with a focus on model resolution. *Climatic
598 Change*, **170**, 20, <https://doi.org/10.1007/s10584-021-03294-8>.

599 McDonald, R. E., 2010: Understanding the impact of climate change on Northern Hemisphere extra-
600 tropical cyclones. *Clim. Dyn.*, **37**, 1399–1425, <https://doi.org/10.1007/s00382-010-0916-x>.

601 Newman, A. J., and Coauthors, 2015: Gridded ensemble precipitation and temperature estimates for the
602 contiguous U.S. *J. Hydrometeorol.*, **16**, 2481–2500.

603 Ning, L., and R. S. Bradley, 2015: Snow occurrence changes over the central and eastern United States
604 under future warming scenarios. *Sci. Rep.*, **5**, 17073, <https://doi.org/10.1038/srep17073>.

605 Notaro, M., D. Lorenz, C. Hoving, and M. Schummer, 2014: Twenty-First-Century Projections of Snowfall
606 and Winter Severity across Central-Eastern North America. *J. Climate*, **27**, 6526–
607 6550, <https://doi.org/10.1175/JCLI-D-13-00520.1>.

608 Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model simulations of
609 the life cycle of an intense mesoscale snowband over the northeastern United States. *Mon. Wea. Rev.*,
610 **136**, 1433–1456, <https://doi.org/10.1175/2007MWR2233.1>.

611 Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band environments
612 within the comma head of northeast U.S. cyclones. *Mon. Wea. Rev.*, **138**, 2354–2374,
613 <https://doi.org/10.1175/2010MWR3219.1>.

614 Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An observational study of cold
615 season–banded precipitation in northeast U.S. cyclones. *Wea. Forecasting*, **19**, 993–1010,
616 <https://doi.org/10.1175/815.1>.

617 NSIDC, 2024: Data Assimilation System (SNODAS) Data Products at NSIDC, Version 1. National Snow and
618 Ice Data Center, <https://doi.org/10.7265/N5TB14TC>.

619 O'Gorman, P. A., 2014: Contrasting responses of mean and extreme snowfall to climate change. *Nature*,
620 **512**, 416–418.

621 O'Gorman, P. A., 2015: Precipitation extremes under climate change. *Curr. Clim. Change Rep.*, **1**, 49–59,
622 <https://doi.org/10.1007/s40641-015-0009-3>.

623 Pall, P., M. R. Allen, and D. A. Stone, 2006: Testing the Clausius–Clapeyron constraint on changes in
624 extreme precipitation under CO₂ warming. *Clim. Dyn.*, **28**, 351–363.

625 Parsons, D. B., 2003: The changing character of precipitation. *Bull. Amer. Meteor. Soc.*, **84**, 1205–1218,
626 <https://doi.org/10.1175/BAMS-84-9-1205>.

627 Plante, M., S.-W. Son, E. Atallah, J. Gyakum, and K. Grise, 2014: Extratropical cyclone climatology across
628 eastern Canada. *Int. J. Climatol.*, **34**, 3035–3050, <https://doi.org/10.1002/joc.4170>.

629 Prein, A. F., and A. J. Heymsfield, 2020: Increased melting level height impacts surface precipitation
630 phase and intensity. *Nat. Clim. Change*, **10**, 771–776, <https://doi.org/10.1038/s41558-020-0825-x>.

631 Prein, A. F., and Coauthors, 2017: Continental-scale convection permitting modeling of the current and
632 future climate of North America. *Clim. Dyn.*, **49**(1–2), 71–95, <https://doi.org/10.1007/s00382-016-3327-9>.

633 Priestley, M. D. K., and J. L. Catto, 2022: Future changes in the extratropical storm tracks and cyclone
634 intensity, wind speed, and structure. *Weather Clim. Dyn.*, **3**, 337–357, <https://doi.org/10.5194/wcd-3-337-2022>.

635 Pulliainen, J., K. Luojus, C. Derksen, and Coauthors, 2020: Patterns and trends of Northern Hemisphere
636 snow mass from 1980 to 2018. *Nature*, **581**, 294–298, <https://doi.org/10.1038/s41586-020-2258-0>.

637 Quante, L., S. N. Willner, R. Middelanis, and Coauthors, 2021: Regions of intensification of extreme
638 snowfall under future warming. *Sci. Rep.*, **11**, 16621, <https://doi.org/10.1038/s41598-021-95979-4>.

639 Räisänen, J., 2008: Warmer climate: Less or more snow? *Climate Dynamics*, **30**, 307–319,
640 <https://doi.org/10.1007/s00382-007-0289-y>.

641 Rhoades, A. M., P. A. Ullrich, and C. M. Zarzycki, 2018: Projecting 21st century snowpack trends in
642 western USA mountains using variable-resolution CESM. *Clim. Dyn.*, **50**, 261–288,
643 <https://doi.org/10.1007/s00382-017-3606-0>.

644 Shi, S., and G. Liu, 2021: The latitudinal dependence in the trend of snow event to precipitation event
645 ratio. *Sci. Rep.*, **11**, 18112, <https://doi.org/10.1038/s41598-021-97451-9>.

646 Suriano, Z. J., and D. J. Leathers, 2015: Twenty-first century snowfall projections within the eastern
647 Great Lakes region: Detecting the presence of a lake-induced snowfall signal in GCMs. *Int. J. Climatol.*,
648 **36**, 4583–4602, <https://doi.org/10.1002/joc.4488>.

649 Tamarin-Brodsky, T., and Y. Kaspi, 2017: Enhanced poleward propagation of storms under climate
650 change. *Nature Geosci.*, **10**, 908–913, <https://doi.org/10.1038/s41561-017-0001-8>.

651 Tedesche, M., T. Dahl, and J. Giovando, 2023: Changing snow regime classifications across the
652 contiguous United States. *Authorea Preprints*,
653 <https://doi.org/10.22541/essoar.167340718.86199797/v1>. Trenberth, K. E., A. Dai, R. M. Rasmusson, and
654 USGCRP, 2023: *Fifth National Climate Assessment*. A. R. Crimmins, C. W. Avery, D. R. Easterling, K. E.
655 Kunkel, B. C. Stewart, and T. K. Maycock, Eds. U.S. Global Change Research Program, Washington, DC,
656 USA, <https://doi.org/10.7930/NCA5.2023>.

657 Willett, K. M., N. P. Gillett, P. D. Jones, and P. W. Thorne, 2007: Attribution of observed surface humidity
658 changes to human influence. *Nature*, **449**, 710–712, <https://doi.org/10.1038/nature06207>.

659 Zarycki, C., 2018: Projecting Changes in Societally Impactful Northeastern U.S. Snowstorms. *Geophys.*
660 *Res. Lett.*, **45**(12), 67–75, <https://doi.org/10.1029/2018GL079820>.

661 Zeng, X., P. Broxton, and N. Dawson, 2018: Snowpack change from 1982 to 2016 over conterminous
662 United States. *Geophys. Res. Lett.*, **45**(23), 12,940–12,947, <https://doi.org/10.1029/2018GL079621>.

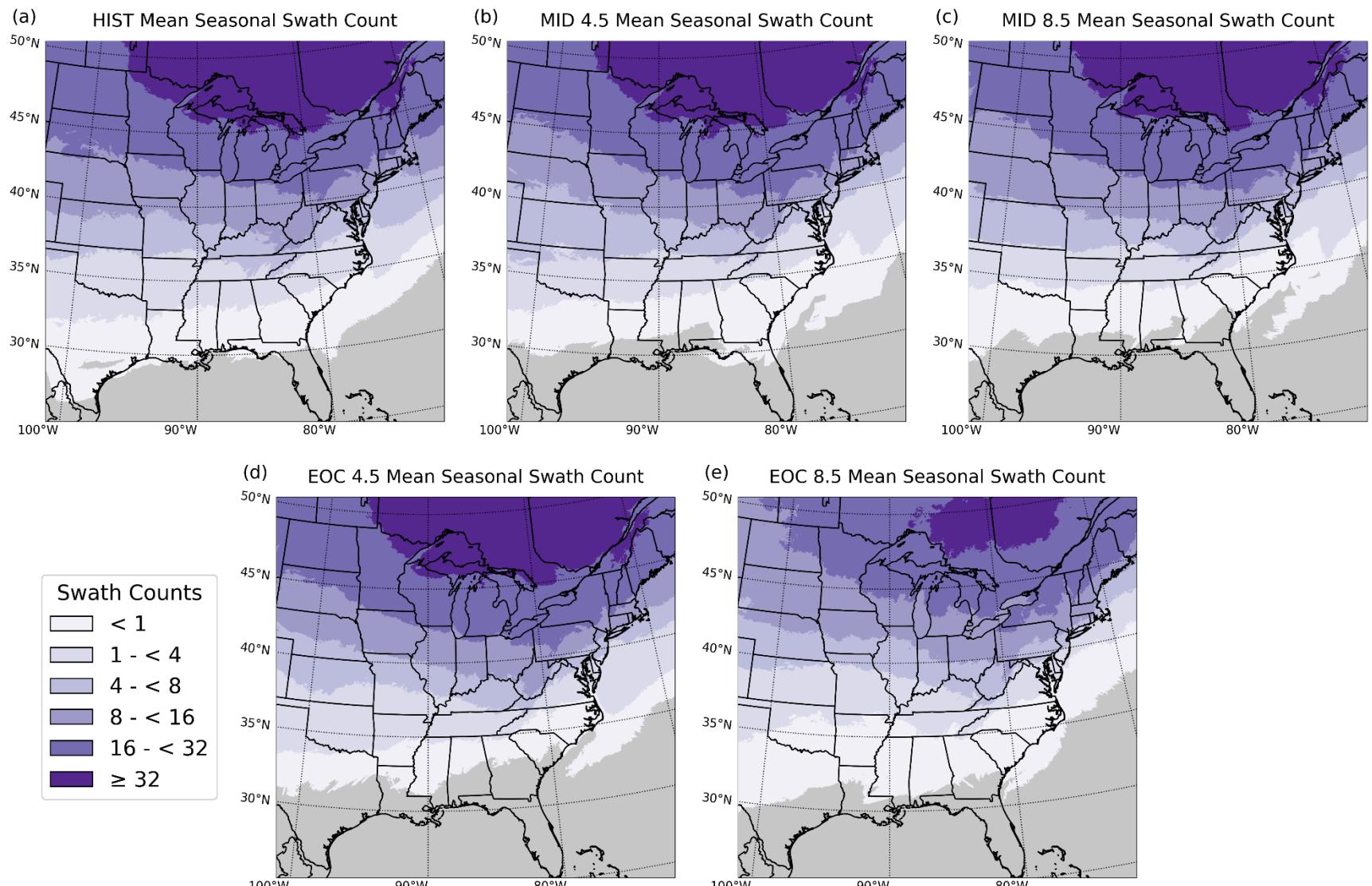


Figure 1. Snowstorm frequency as represented by mean annual swath counts for a) HIST, b) MID4.5, c) MID8.5, d) EOC4.5, and e) EOC8.5. The areas in grey experienced no qualifying swaths during the study period.

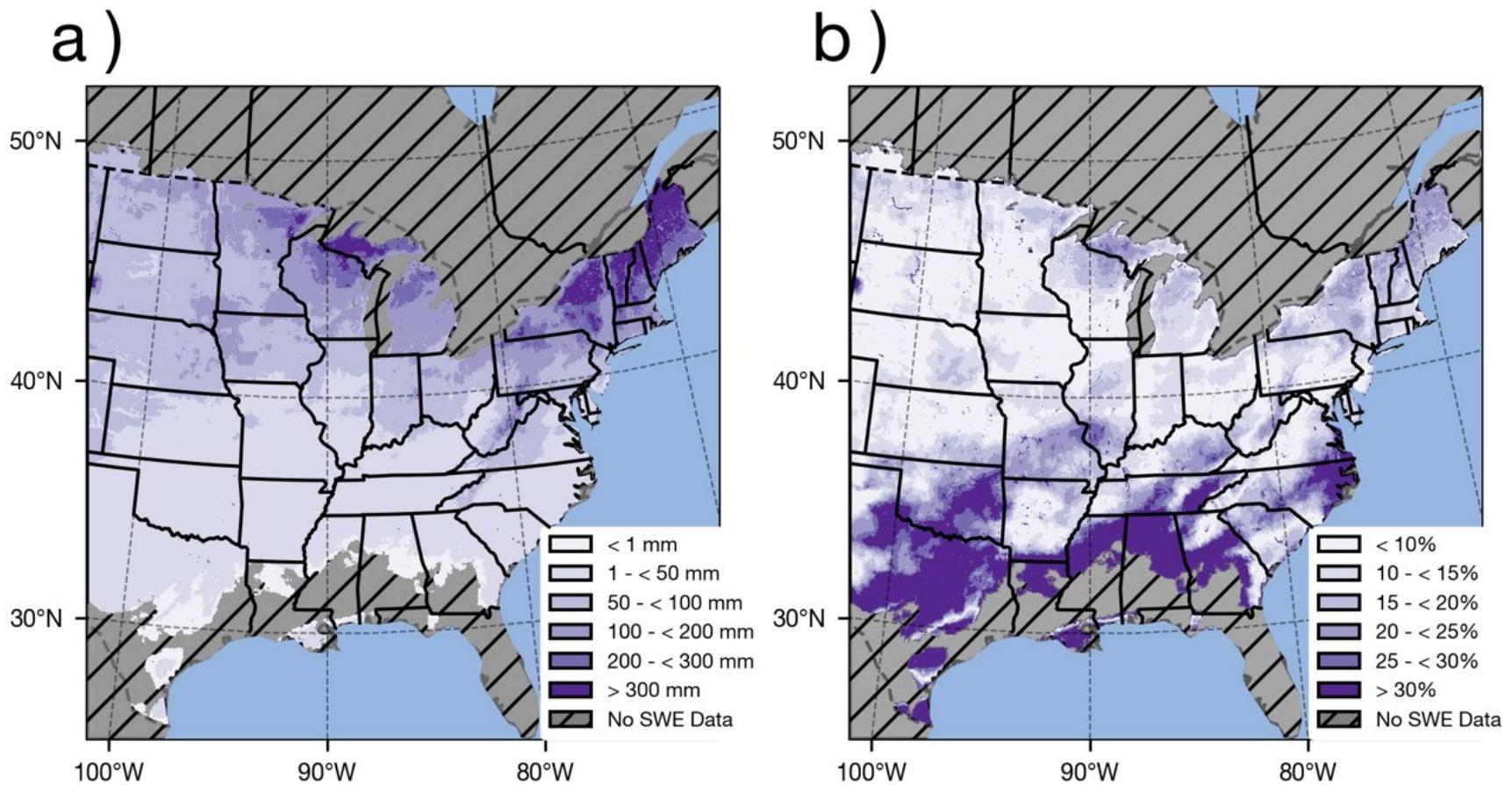


Figure 2. a) October 1 – April 1 2003–2013 SNODAS mean SWE (mm) and b) the percent difference between WRF-BCC HIST (1990–2005) and SNODAS October 1 – April 1 mean SWE. Hatched areas on both figures indicate locations where SNODAS data were not available or both WRF-BCC HIST and SNODAS did not record any SWE.

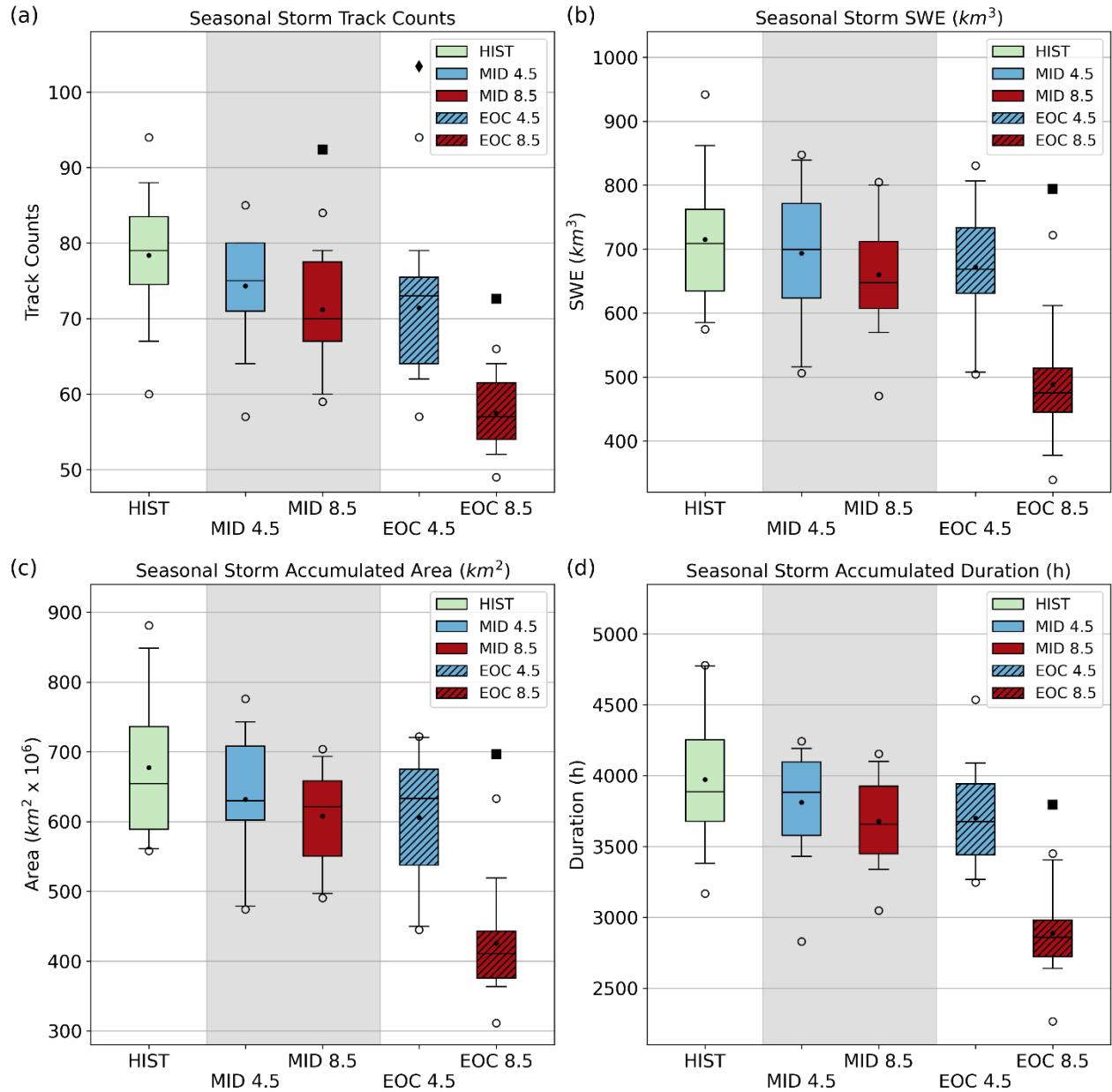


Figure 3. Box-and-whisker plots revealing seasonal comparisons between HIST, MID4.5, MID8.5, EOC4.5, and EOC8.5. Seasonal variability over the study period for select snowstorm swath statistics: a) total counts, b) SWE accumulation, c) storm accumulated area, and d) sum of durations. Means are denoted by black dots and medians are denoted by the black lines. The boxes illustrate the interquartile range, the whiskers represent the 5th and 95th percentiles, and the clear circles denote outliers. Significant differences (using Mann-Whitney U at 95% confidence level) between epochs are identified as squares (diamonds) for differences between HIST and RCP8.5 (RCP4.5).

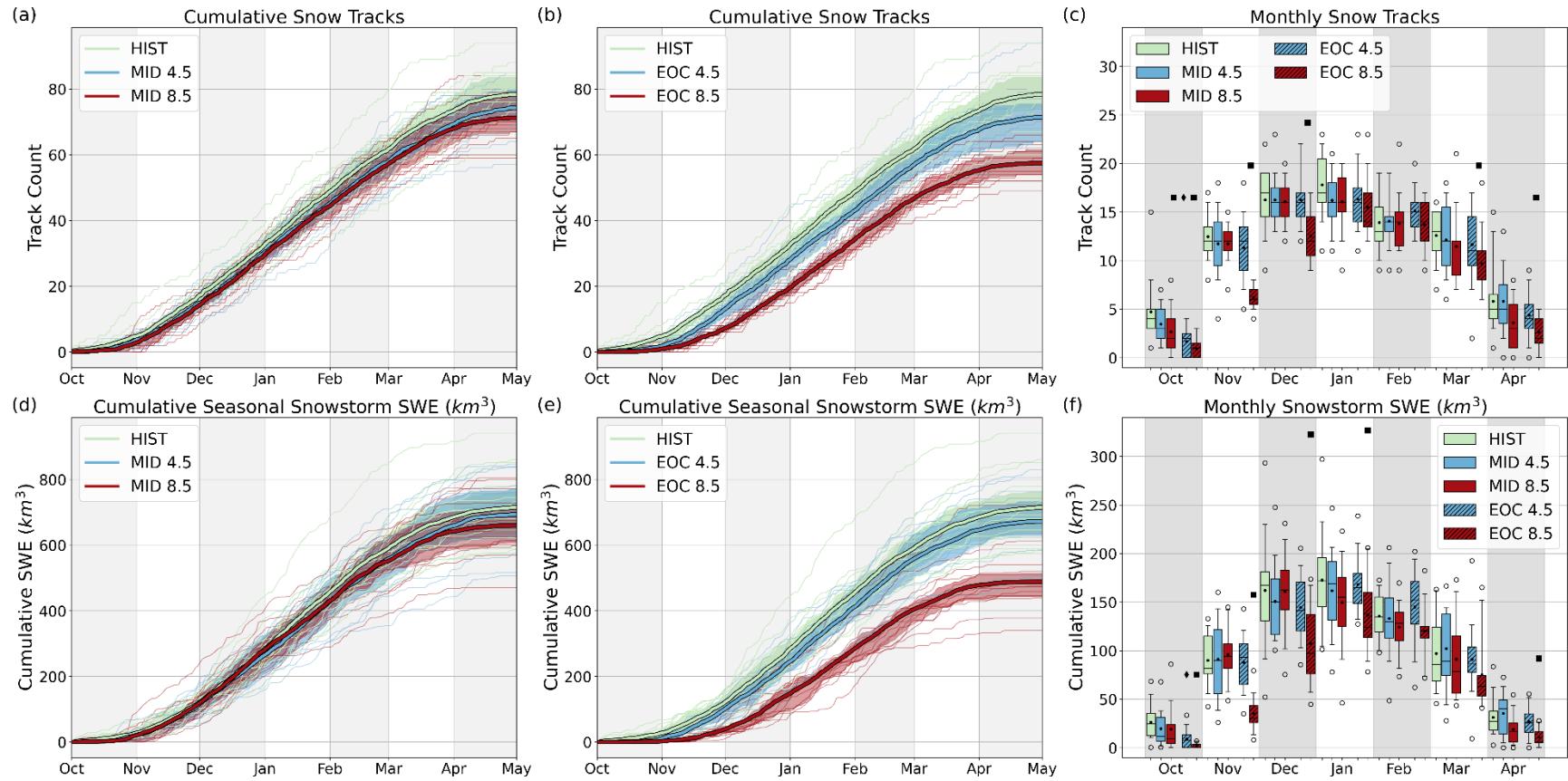


Figure 4. Cumulative frequency diagrams of snowstorm event counts for a) HIST, MID4.5, and MID8.5 and b) HIST, EOC4.5, and EOC8.5 and cumulative seasonal snowstorm SWE (in km³) for d) HIST, MID4.5, and MID8.5 and e) HIST, EOC4.5, and EOC8.5. c) and f) represent box-and-whiskers of monthly snow event counts and monthly snowstorm SWE, respectively. Box-and-whisker detail and significance test labeling as in Figure 3.

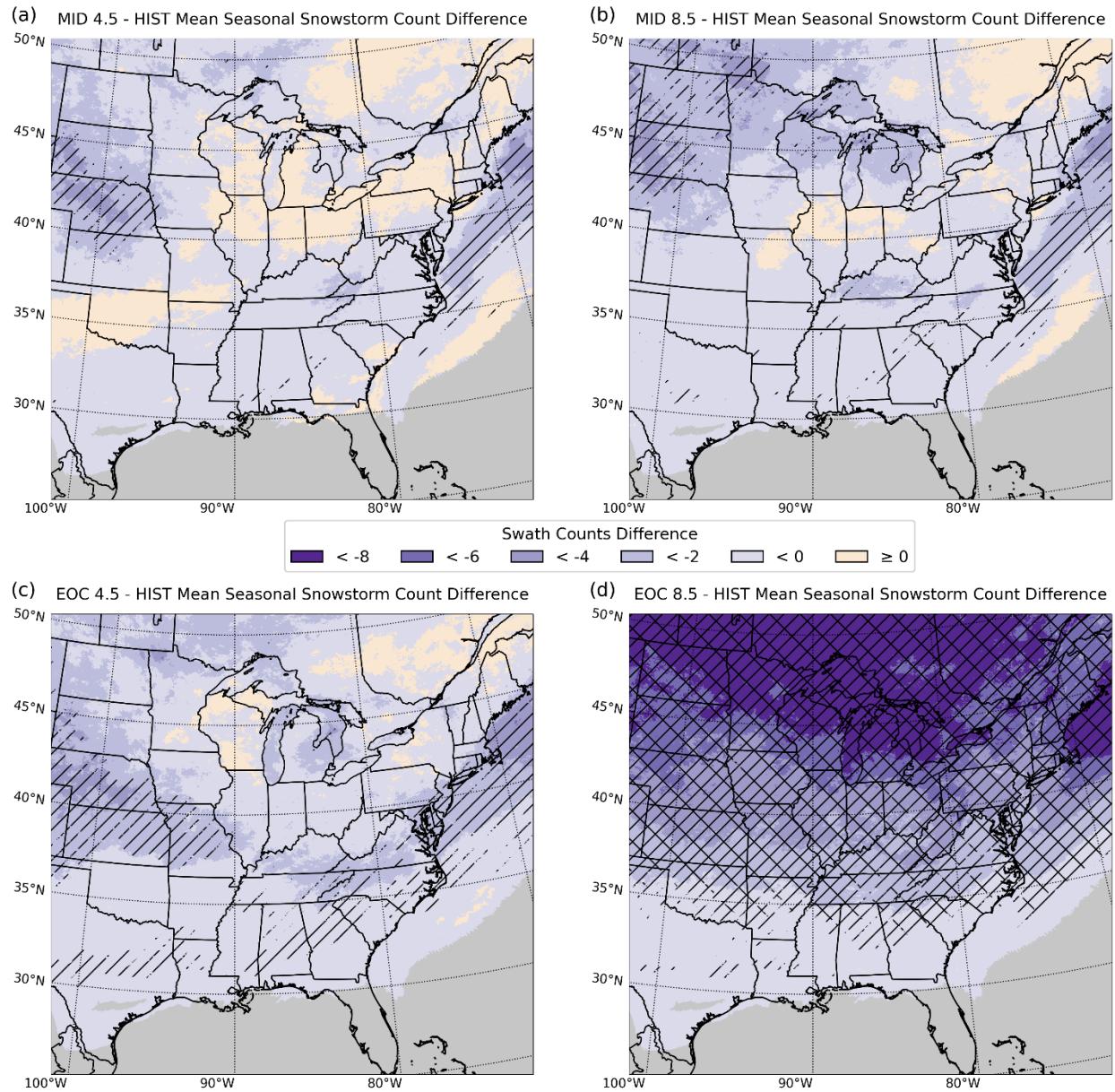


Figure 5. Differences in snowstorm frequency as represented by mean annual swath count difference for a) MID4.5 vs. HIST, b) MID8.5 vs. HIST, c) EOC4.5 vs. HIST, and d) EOC8.5 vs. HIST. Areas in grey experienced no qualifying swaths during the study period. Stippling indicates statistical significance at the 95% confidence level using a Mann–Whitney U test for the medians; double hatched is significant with implementation of a field significance false discovery rate of $\alpha = 0.1$.

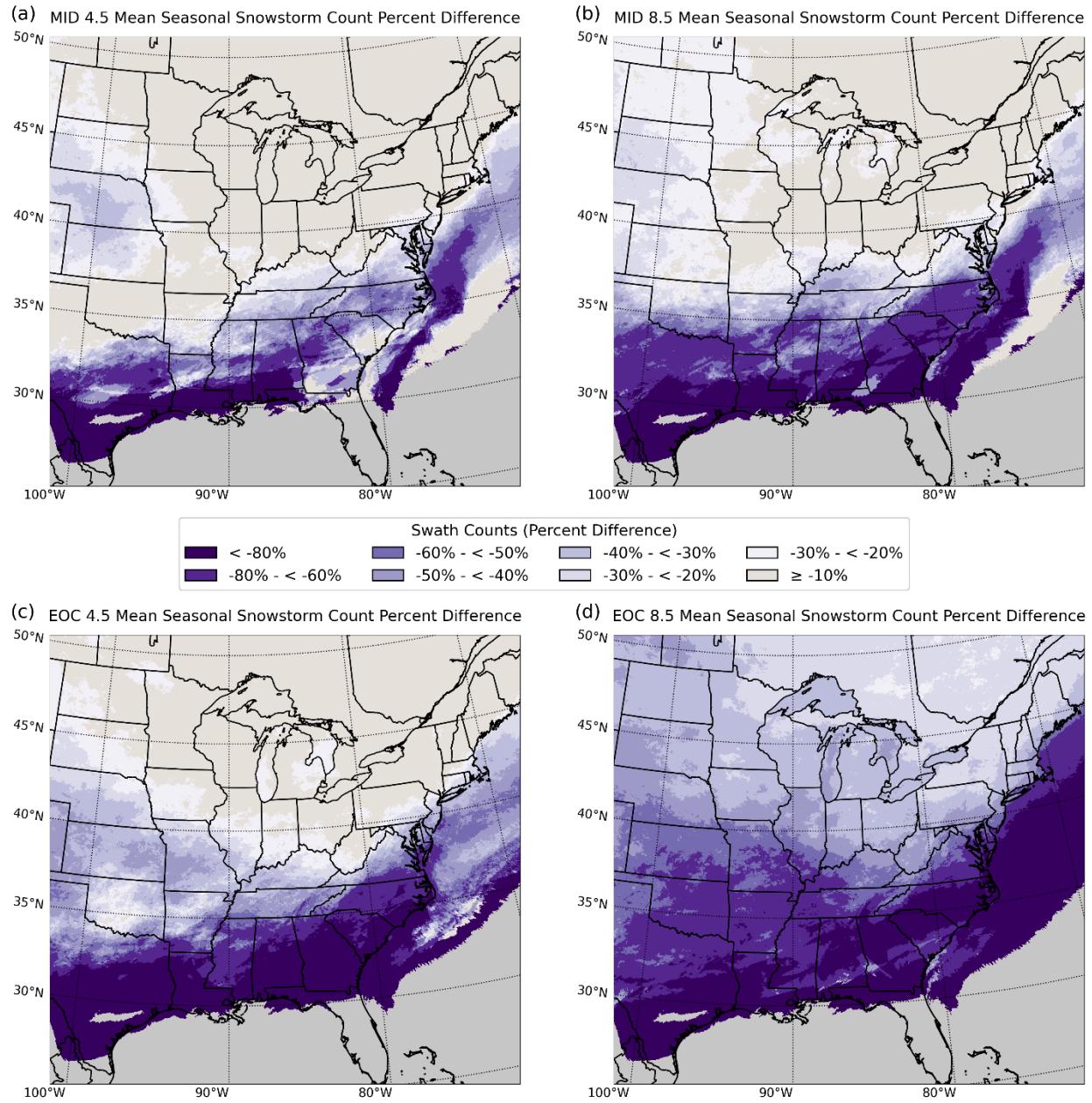


Figure 6. Differences in snowstorm frequency as represented by mean annual swath count percent difference between a) MID4.5 and HIST, b) MID8.5 and HIST, c) EOC4.5 and HIST, and d) EOC8.5 and HIST. The areas in grey experienced no qualifying swaths during the study period.

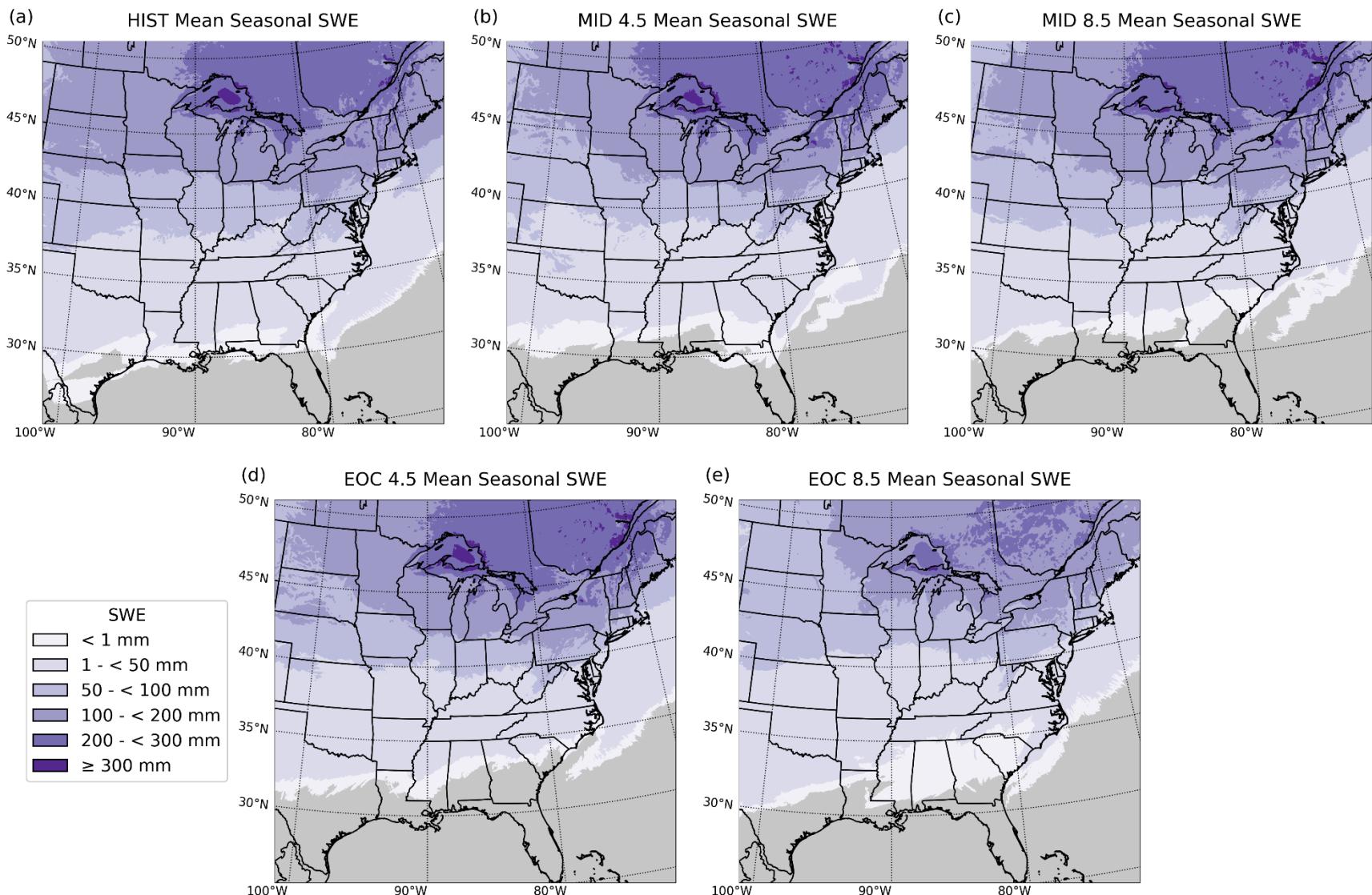


Figure 7. As in Figure 1, except for mean annual snowstorm SWE.

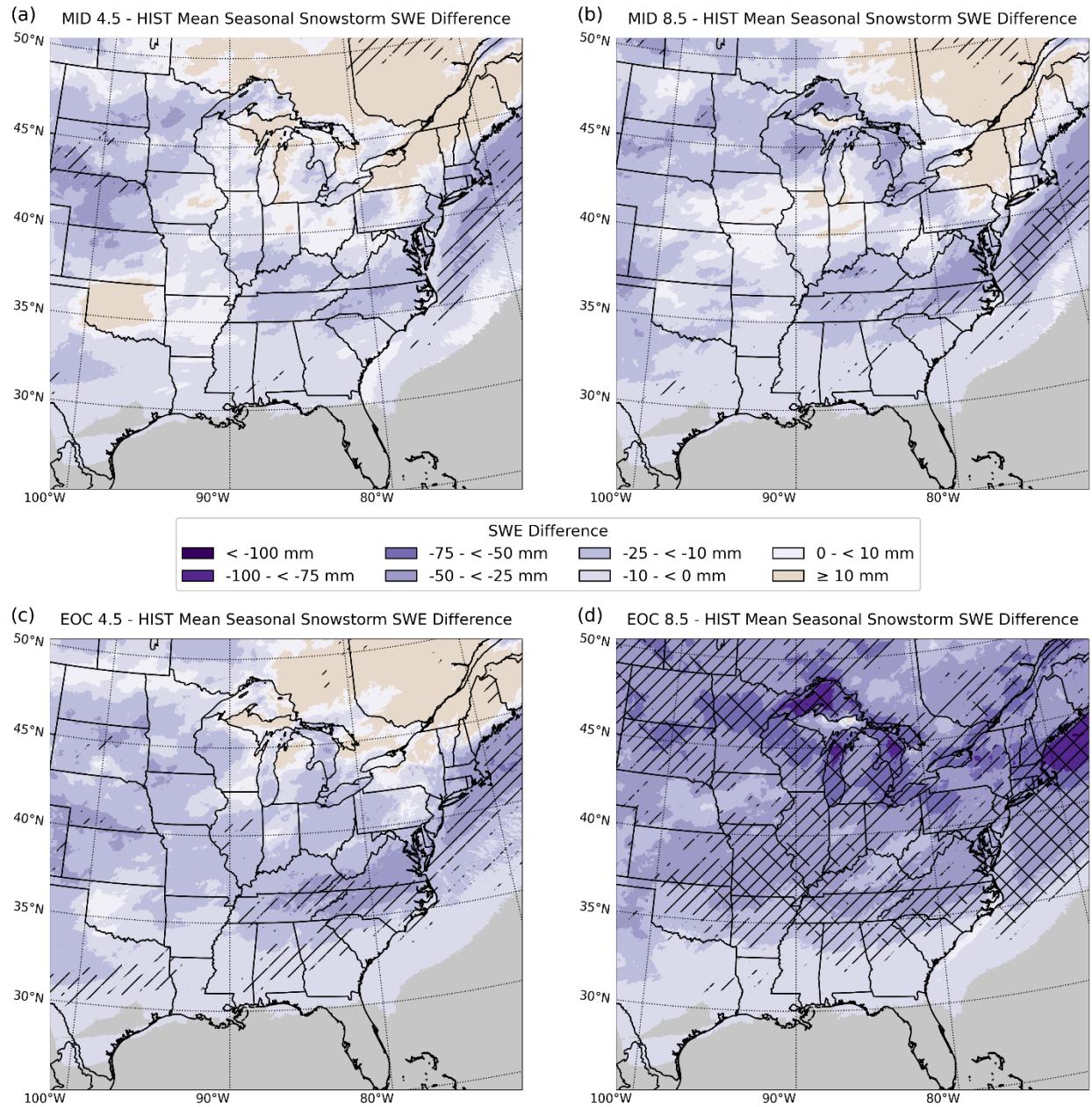


Figure 8. As in Figure 5, except for mean annual snowstorm SWE difference.

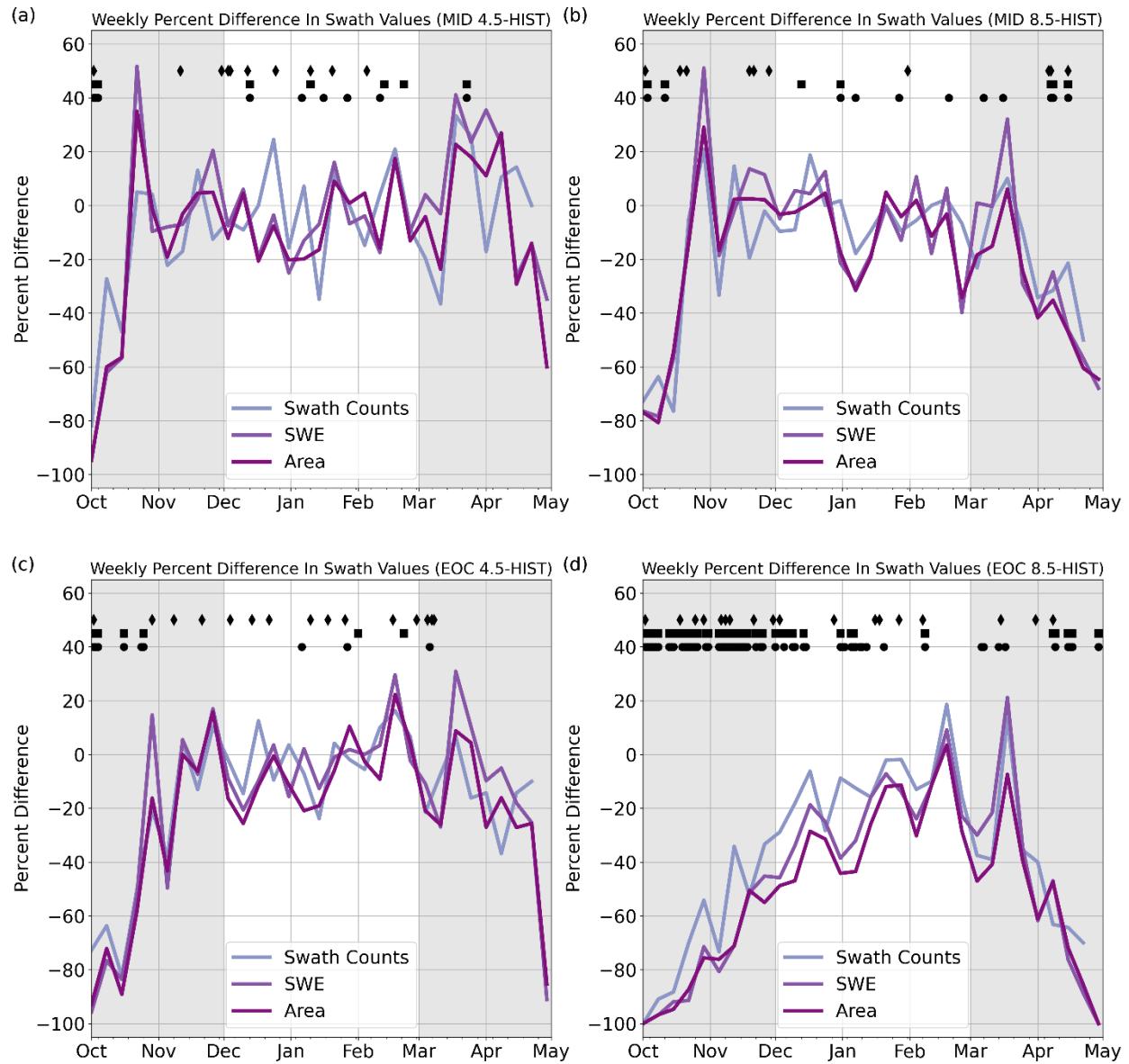


Figure 9. Weekly percent difference for snowstorm metrics between HIST and a) MID4.5, b) MID8.5, c) EOC4.5, and d) EOC8.5. Weekly significantly different (using Mann-Whitney U at 95% confidence level) percent changes between epochs are labeled for swath count (diamonds), SWE (squares), and area (circles).

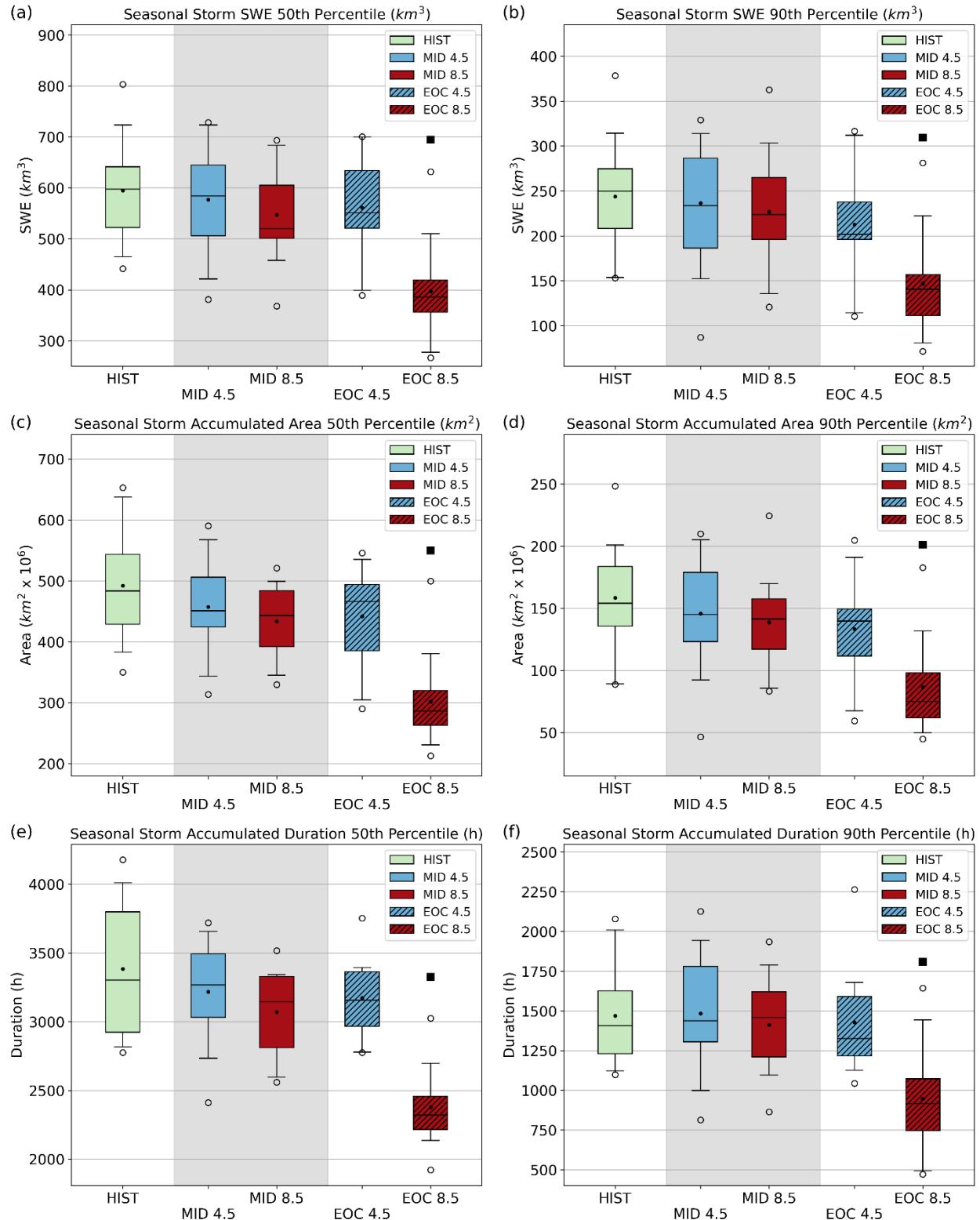


Figure 10. Box-and-whisker plots revealing seasonal comparisons between HIST, MID4.5, MID8.5, EOC4.5, and EOC8.5 for 50th (left) and 90th (right) percentile snowstorm attributes, including SWE (top), accumulated area (middle) and duration (bottom). Both event accumulated area and duration are based on 50th and 90th SWE. Box-and-whiskers and significance testing as in Figure 3.

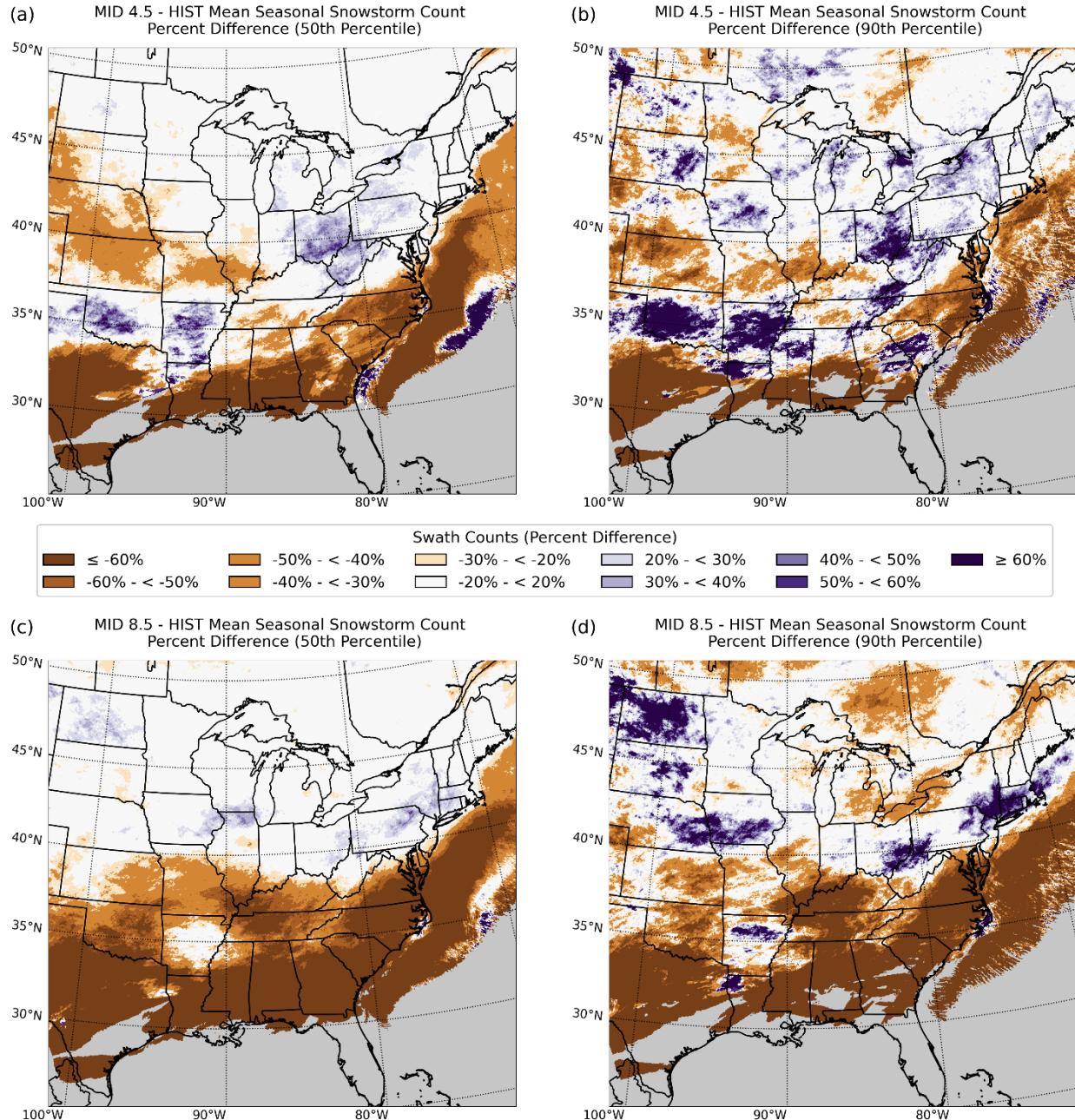


Figure 11. Differences in 50th and 90th percentile snowstorm events as represented by mean annual 50th and 90th percentile swath count percent difference between a) MID4.5 and HIST at 50th percentile, b) MID4.5 and HIST at 90th percentile, c) MID8.5 and HIST at 50th percentile, and d) MID8.5 and HIST at 90th percentile. The areas in grey experienced no qualifying swaths during the study period.

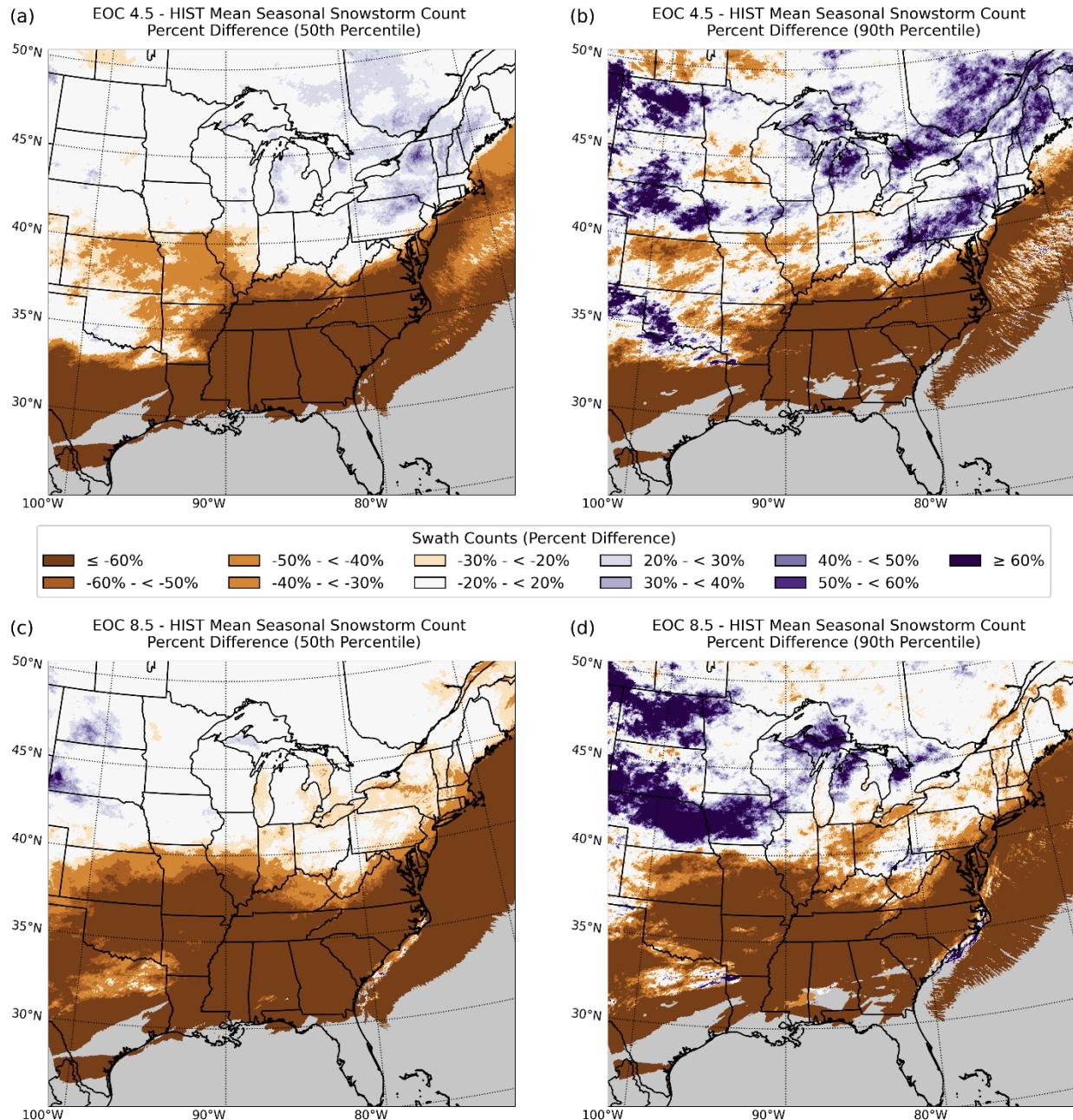


Figure 12. As in Figure 11, except for EOC vs. HIST.

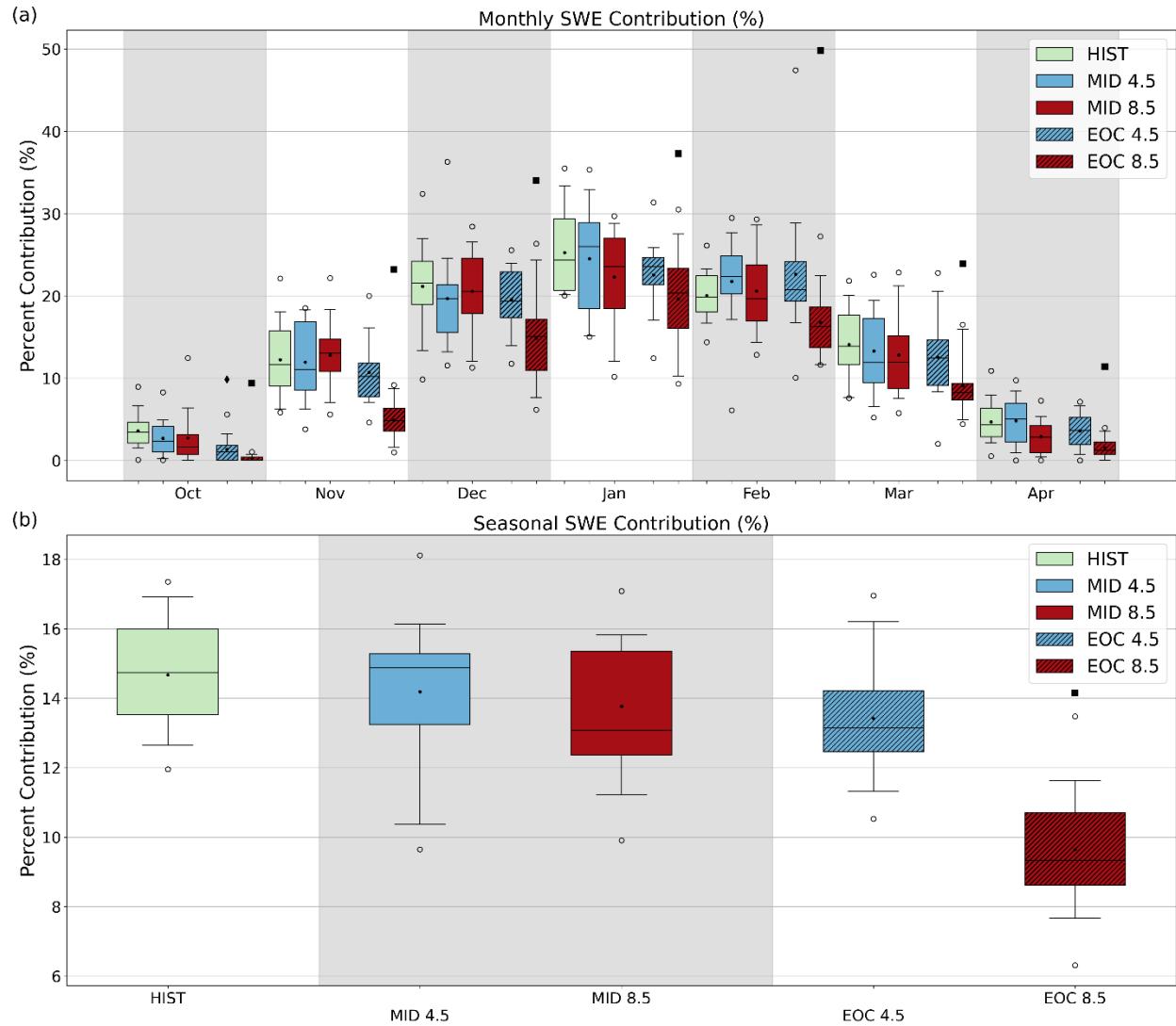


Figure 13. a) Monthly percent contributions of SWE to total precipitation across the domain for all epochs and b) total seasonal (Oct-Apr) contributions of SWE to total precipitation for all epochs. Box-and-whiskers and significance testing as in Figure 3.

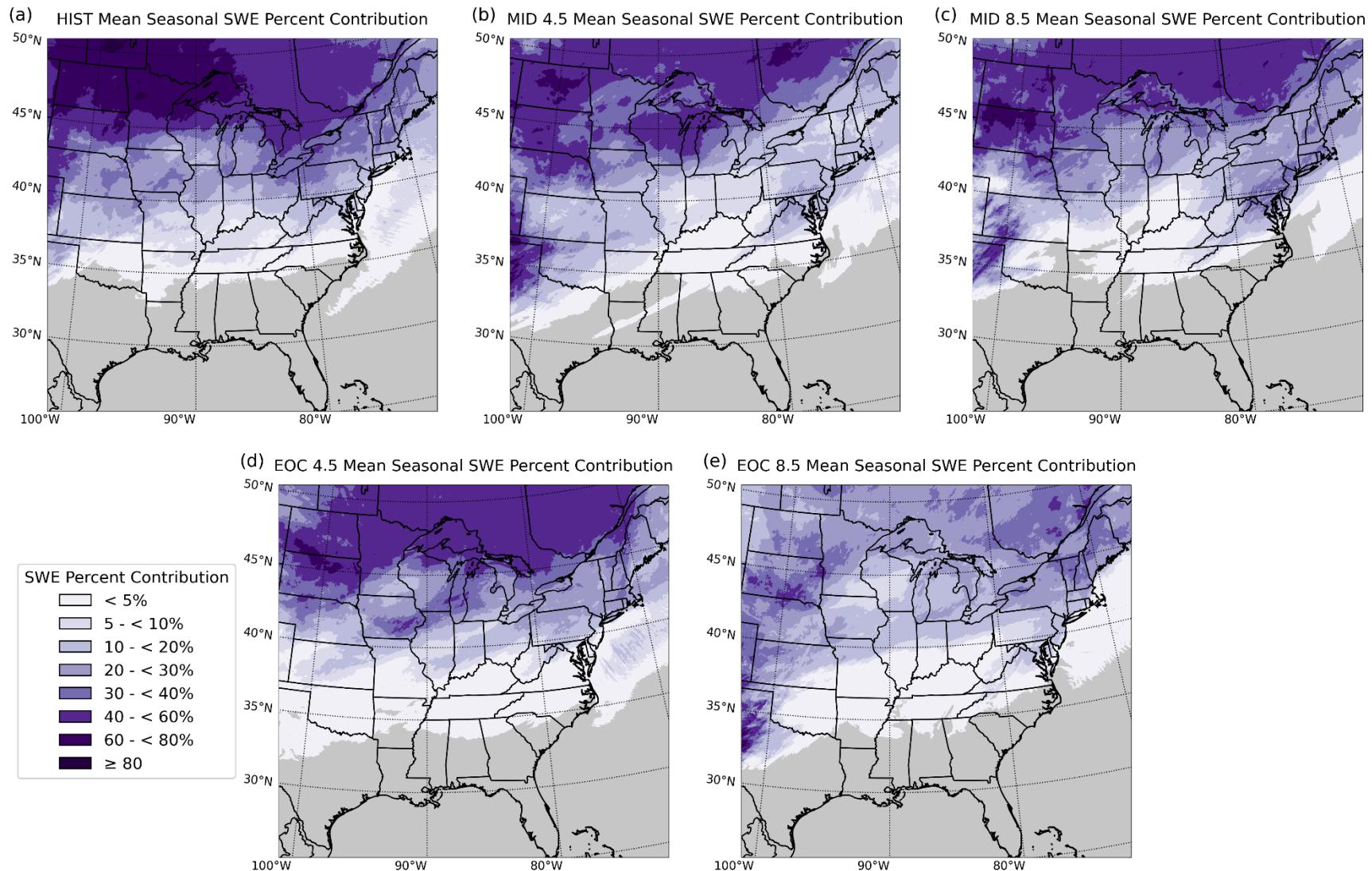


Figure 14. As in Figure 1, except for mean seasonal SWE percent contribution to total precipitation.

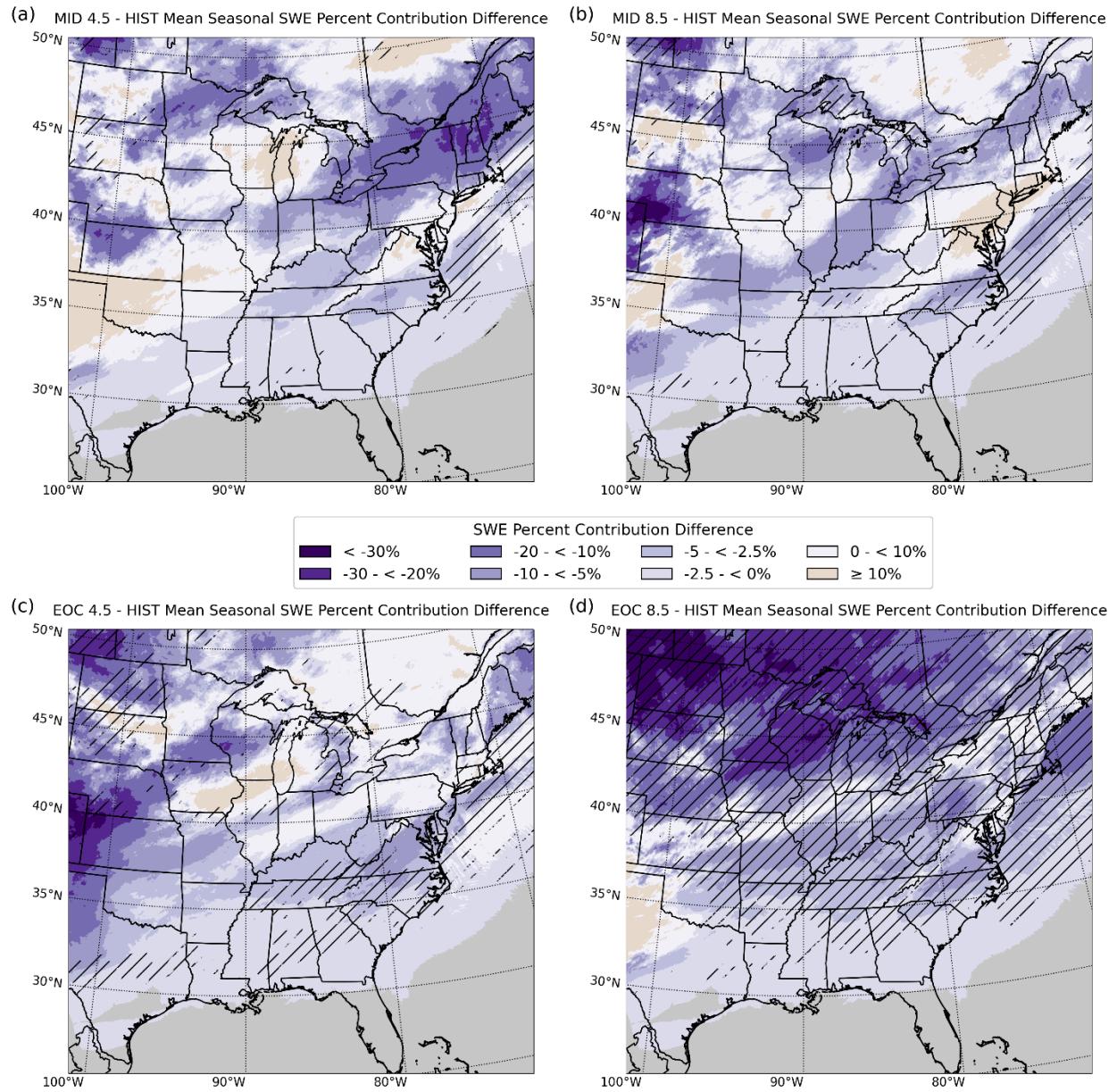


Figure 15. As in Figure 5, except for snow contribution to total seasonal precipitation.

Figure legends

Figure 1. Snowstorm frequency as represented by mean annual swath counts for a) HIST, b) MID4.5, c) MID8.5, d) EOC4.5, and e) EOC8.5. The areas in grey experienced no qualifying swaths during the study period.

Figure 2. a) October 1 – April 1 2003–2013 SNODAS mean SWE (mm) and b) the absolute difference between WRF-BCC HIST (1990–2005) and SNODAS mean for October 1 – April 1 SWE shown as a percent of the total mean SNODAS SWE. Hatched areas on both figures indicate locations where SNODAS data were not available or both WRF-BCC HIST and SNODAS did not record any SWE.

Figure 3. Box-and-whisker plots revealing seasonal comparisons between HIST, MID4.5, MID8.5, EOC4.5, and EOC8.5. Seasonal variability over the study period for select snowstorm swath statistics: a) total counts, b) SWE accumulation, c) storm accumulated area, and d) sum of durations. Means are denoted by black dots and medians are denoted by the black lines. The boxes illustrate the interquartile range, the whiskers represent the 5th and 95th percentiles, and the clear circles denote outliers. Significant differences (using Mann-Whitney U at 95% confidence level) between epochs are identified as squares (diamonds) for differences between HIST and RCP8.5 (RCP4.5).

Figure 4. Cumulative frequency diagrams of snowstorm event counts for a) HIST, MID4.5, and MID8.5 and b) HIST, EOC4.5, and EOC8.5 and cumulative seasonal snowstorm SWE (in km³) for d) HIST, MID4.5, and MID8.5 and e) HIST, EOC4.5, and EOC8.5. c) and f) represent box-and-whiskers of monthly snow event counts and monthly snowstorm SWE, respectively. Box-and-whisker detail and significance test labeling as in Figure 3.

Figure 5. Differences in snowstorm frequency as represented by mean annual swath count difference for a) MID4.5 vs. HIST, b) MID8.5 vs. HIST, c) EOC4.5 vs. HIST, and d) EOC8.5 vs. HIST. Areas in grey experienced no qualifying swaths during the study period. Stippling indicates statistical significance at the 95% confidence level using a Mann–Whitney U test for the medians; double hatched is significant with implementation of a field significance false discovery rate of $\alpha = 0.1$.

Figure 6. Differences in snowstorm frequency as represented by mean annual swath count percent difference between a) MID4.5 and HIST, b) MID8.5 and HIST, c) EOC4.5 and HIST, and d) EOC8.5 and HIST. The areas in grey experienced no qualifying swaths during the study period.

Figure 7. As in Figure 1, except for mean annual snowstorm SWE.

Figure 8. As in Figure 5, except for mean annual snowstorm SWE difference.

Figure 9. Weekly percent difference for snowstorm metrics between HIST and a) MID4.5, b) MID8.5, c) EOC4.5, and d) EOC8.5. Weekly significantly different (using Mann-Whitney U at 95% confidence level) percent changes between epochs are labeled for swath count (diamonds), SWE (squares), and area (circles).

Figure 10. Box-and-whisker plots revealing seasonal comparisons between HIST, MID4.5, MID8.5, EOC4.5, and EOC8.5 for 50th (left) and 90th (right) percentile snowstorm attributes, including SWE (top), accumulated area (middle) and duration (bottom). Both event accumulated area and duration are based on 50th and 90th SWE. Box-and-whiskers and significance testing as in Figure 3.

Figure 11. Differences in 50th and 90th percentile snowstorm events as represented by mean annual 50th and 90th percentile swath count percent difference between a) MID4.5 and HIST at 50th percentile, b) MID4.5 and HIST at 90th percentile, c) MID8.5 and HIST at 50th percentile, and d) MID8.5 and HIST at 90th percentile. The areas in grey experienced no qualifying swaths during the study period.

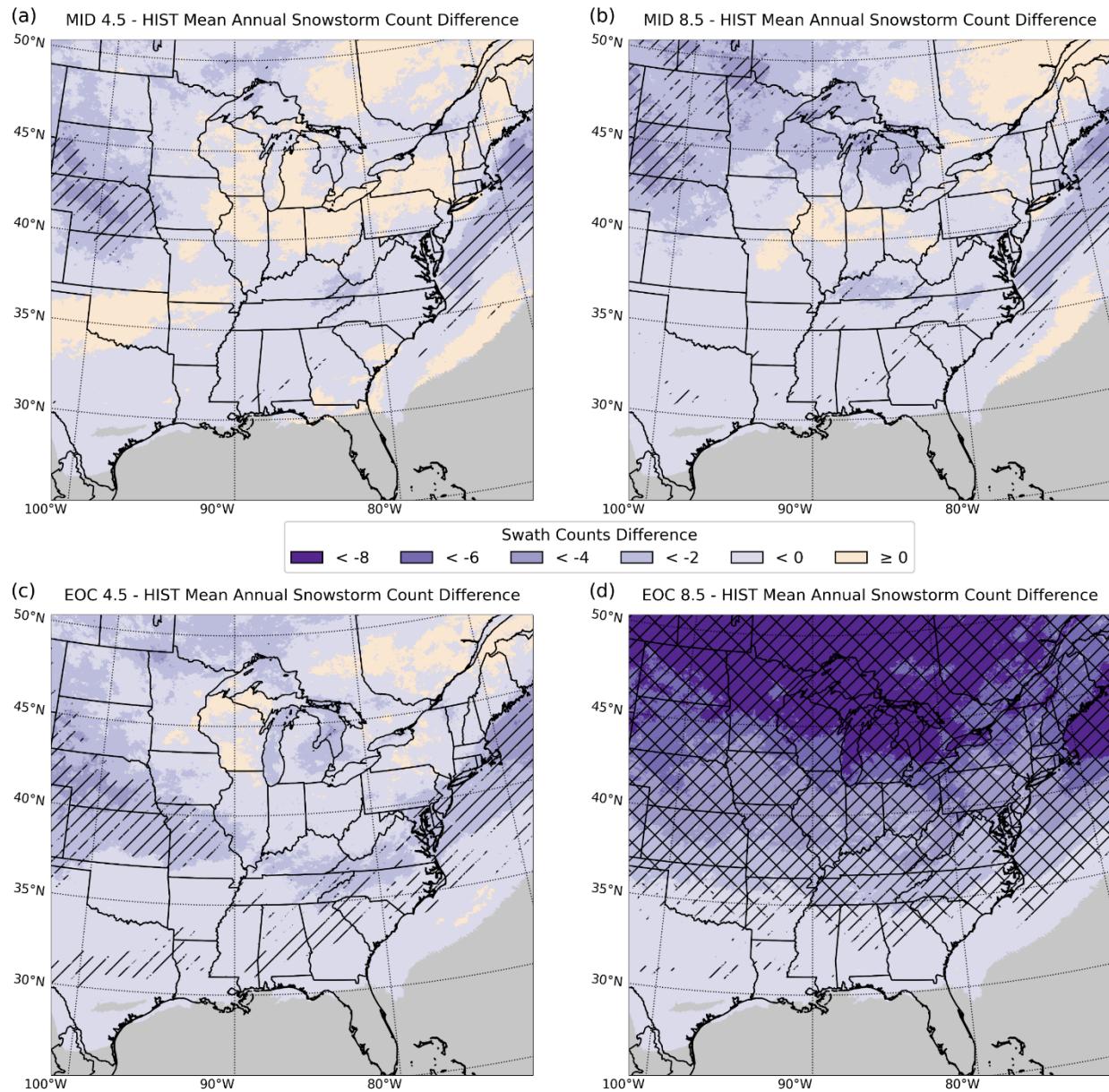
Figure 12. As in Figure 11, except for EOC vs. HIST.

Figure 13. a) Monthly percent contributions of SWE to total precipitation across the domain for all epochs and b) total seasonal (Oct-Apr) contributions of SWE to total precipitation for all epochs. Box-and-whiskers and significance testing as in Figure 3.

Figure 14. As in Figure 1, except for mean seasonal SWE percent contribution to total precipitation.

Figure 15. As in Figure 5, except for snow contribution to total seasonal precipitation.

Graphical Abstract



Title: The Future of Snowstorms in Central and Eastern North America

Authors: Walker S. Ashley*, Aaron Zeeb, Alex M. Haberlie, Vittorio A. Gensini, and Allison Michaelis

80-word Statement: The frequency, placement, and intensity of snowstorms are projected to change across North America during the twenty-first century. Changes are most dramatic for the pessimistic climate pathway, where significant declines are projected for various snowstorm attributes, including frequency, SWE, area, and duration. The two most notable future changes are the significant declines in shoulder season snowstorms and the poleward shift in the latitude that demarcates steady snowstorm counts to the north and reduced, or elimination of, snowstorms to the south.