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Abstract

We investigate the changing snowstorm landscape in eastern North America using dynamically
downscaled regional climate simulations that compare the late-twentieth century against mid- and late-
twenty-first-century epochs for two climate pathways that include moderate and pessimistic warming.
By identifying, tracking, and cataloging snowstorms, we illustrate how the frequency, snow water
equivalent, and other features of these events may change. Results suggest changes in snowstorm
characteristics are most significant for the pessimistic pathway, especially toward the late twenty-first
century. There is similar event frequency between the historical period and mid-twenty-first-century
projections but declines of 3 to 10% are still projected for snowstorm counts, hours, cumulative area,
and snow water equivalent. By the late twenty-first century, snowstorm attributes have losses of 6 to
37% versus the historical period, revealing a projected acceleration in loss from the mid to late century.
Spatially, snowstorm reduction is most dramatic along and south of the Ohio River Valley as the latitude
that separates steady snowstorm counts to the north and reduced snowstorms to the south migrates
poleward in the future. Similarly, extreme snowstorms decline to the south, with some northern regions
experiencing increase in counts and snow water equivalent, affirming prior research theorizing that
some snowfall may intensify as increasing moisture in a warming climate interacts with environments
with temperatures still supportive of snowfall. Significant reductions in early and late cool-season
snowstorms are projected across all future epochs, revealing a shrinking season. These results provide a
set of perspectives on how a dominant cryospheric input—the snowstorm—will change across eastern

North America in the future.
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1. Introduction

Snowstorms produce a myriad of effects on the climate system, environment, and society, from
impacts on hydrology and water storage, energy balance, agriculture, transportation, hydropower,
sports and tourism, to snow-sensitive flora and fauna found in the extratropics. As the climate system
undergoes change (IPCC 2021; USGCRP 2023), the timing, placement, and magnitude of snowstorms and
their resulting snowfall and cover are evolving (Krasting et al., 2013; Diffenbaugh et al., 2013; Danco et
al., 2016; Ashley et al., 2020). Considering the significance of snowstorms on natural and human
systems, it is important to project how they may evolve in the future so that constituents impacted and

dependent on this cryospheric input are informed of their potential change.

Prior climatological research on snow has focused on changes in snowfall (Knowles et al., 2006;
Feng and Hu 2007; Krasting et al., 2013; Kapnick and Delworth 2013; O’Gorman 2014; Danco et al.,
2016; Demaria et al., 2016), snowpack or mass (Dyer and Mote 2006; Notaro et al., 2014; Rhoades et al.,
2017; Zeng et al., 2018; Pulliainen et al., 2020; Tedesche et al., 2023), and snow melt (Diffenbaugh et al.,
2013; Mankin et al., 2015). Much of this work finds observed (Kunkel et al., 2009, 2016) and projected
(Krasting et al., 2013; Lute et al., 2015; Ning and Bradley 2015; Demaria et al., 2016) declines in
climatological snow metrics across North America, except for the most extreme snow days, which are
predicted to have smaller fractional changes compared to mean snowfall in many regions (O’Gorman
2014; Janoski et al., 2018) and/or possibly intensify (Chen et al., 2020; Quante et al., 2021).
Comparatively, little work has examined the primary drivers of climatological character of snow in the
extratropics—the snowstorm—principally due to the challenges presented by observed data and
classification of those data (Kunkel et al., 2013), as well as the relatively coarse resolution of GCMs or
regional climate models (RCMs) used to project the future of these events that are driven by processes,
and are most impactful, at the mesoscale (Suriano and Leathers 2015; Giorgi 2019; Gutowski et al.,
2020). Most studies that have examined snow characteristics on shorter time scales have examined
snow days (Danco et al., 2016; Janoski et al., 2018; Chen et al., 2020; Quante et al., 2021; McCray et al.,
2023; Browne and Chen 2023) and not specific events, or storms, likely due to the difficulty in defining
and tracking events, especially in relatively coarse model data that does not correspond to the scale
needed to delineate storms (Ashley et al., 2020). However, recent work has explored the use of high-
resolution RCMs to reveal the characteristics of snowstorms (Zarycki 2018; Ashley et al., 2020; Chen et
al., 2021; McCray et al., 2023). Conclusions from these limited RCM efforts reveal broad declines in

snowstorms and snow/precipitation ratios across the central and eastern CONUS.



Herein we employ a snowstorm tracking algorithm developed by Ashley et al. (2020) on high-
resolution, dynamically downscaled RCM output to evaluate the potential change in these events in the
central and eastern CONUS and adjacent parts of southern Canada for the twenty-first century.
Specifically, we use the Gensini et al. (2023) simulations to explore how snowstorms in the mid- (2040-
2055) and late- (2085-2100) twenty-first century compare to their late-twentieth-century (1990-2005)
counterparts. Two greenhouse gas concentration trajectories representing intermediate and pessimistic
climate pathways are explored for the twenty-first-century epochs, providing two perspectives on the
future of snowstorms in North America. The novelty of this work compared to our prior effort (Ashley et
al., 2020) is that the present study includes: a set of mid- and late-twenty-first-century simulations;
intermediate and pessimistic climate pathways for each epoch; and the inclusion of thermodynamic as
well as large-scale dynamic changes (i.e., changes in general circulation and modes of climate variability)
to the climate system unlike a pseudo-global warming (PGW) approach (Liu et al., 2017; lkeda et al.,
2021; Chen et al., 2021; Chen et al., 2023; Brogli et al., 2023) that solely modifies the boundary
conditions of a control RCM. Results reveal robust spatiotemporal changes in the characteristics of
snowstorms across the domain under both climate projections. While computational, storage, and
processing expenses generally limit RCM experiments, the RCM output and epoch comparisons herein
provide an initial set of views on the potential changes of these impactful events, while also providing a

structure for additional simulations and future research.
2. Data and methods
2.1 Data

We use dynamically downscaled RCM output generated by Gensini et al. (2023) to explore the
changing snowstorm landscape in a domain that covers most of the central and eastern CONUS and
adjacent parts of Canada (Figure 1). The Gensini et al. (2023) dataset was generated using bias-corrected
output from NCAR’s Community Earth System Model (CESM; Hurrel et al., 2013; Bruyére et al., 2014)
CMIP phase 5 (CMIP5; Taylor et al., 2012) GCM as initial and lateral boundary conditions for WRF-ARW
v.4.1.2 (Skamarock et al., 2019). Bias correction reduces errors produced by GCMs that, in turn, may be
passed to WRF during the dynamical downscaling process, effectively improving performance and
accuracy (Ines and Hansen 2006; Christensen et al., 2008; Gensini et al., 2023). The RCM was used in a
convection-permitting configuration characterized by horizontal grid spacing of 3.75 km, 51 vertical
levels, and data output intervals as frequent as 15 minutes. Gensini et al. (2023) refer to their RCM

simulations as WRF-BCC (WRF-Bias Corrected CESM).
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2.2 WRF-BCC verification

Gensini et al. (2023) compared the WRF-BCC historical 15-year period to Parameter-elevation
Regressions on Independent Slopes Model (PRISM; Daly et al., 1994) and a gridded ensemble dataset
based on 12,000 surface observation stations (Newman et al., 2015) to assess the potential temperature
and precipitation bias in the simulations. Details of those comparisons and simulation verification are
provided in Gensini et al. (2023), but are summarized as the following: The WRF-BCC closely recreated
the spatial patterns of temperature and precipitation across the domain at monthly, seasonal, and
annual timescales; biases included 2-m maximum temperature that were too cool across seasons and
most locations, while an annual precipitation bias was generally restricted to the southeastern and
eastern CONUS where WRF-BCC conditions were too dry; and, relevant for this study, simulations had a
wet bias in the northern High Plains during the Dec-Feb period. Overall, monthly climatologies of
temperature and precipitation found few locations that were outside of observational spread of

uncertainty, providing confidence in the simulations’ ability to replicate the historical climate.

To define and assess changes in snowstorms, we used the “AFWA_SNOW” variable generated
from the Air Force Weather Agency (AFWA) diagnostics described in Creighton et al. (2014).
AFWA_SNOW, which is the accumulation of liquid-equivalent snow, uses a precipitation type algorithm
that is calculated at every model time step and is determined empirically, independent of the
microphysics scheme. We compared the AFWA_SNOW variable—or, as we label, WRF-BCC snow water
equivalent (SWE)—against NOAA National Operational Hydrologic Remote Sensing Center’s SNOw Data
Assimilation System (SNODAS) data (Barret 2003; NSDIC 2024). Assimilating both remote sensing and in
situ data, SNODAS has several snow variables—including SWE—that are used to provide the best
possible modeled estimates of snow cover in support of simulations and analysis (NSDIC 2024). Daily
SNODAS SWE output for October 1-April 1 2003—2013 were used as for comparison with daily HIST
WRF-BCC output for 1990-2005 (Figure 2). While years do not overlap wholly since SNODAS data only
exist since 2003, this comparative analysis provides a perspective on the validity of WRF-BCC output for
the historical period. Annual SWE means for SNODAS and WRF-BCC were generated, with absolute
difference values between the two datasets used to express similarities, differences, and possible
biases. We caution that SNODAS is a model dataset and not “ground truth” since there is immense
difficulty and uncertainty—or, as McCrary et al. (2022) describe, insufficiency—in snow observations

and accurately representing snow derived variables such as SWE. The considerable uncertainties of



snow in assimilated and simulation datasets are well described and illustrated in Clow et al. (2012) and

McCrary et al. (2017, 2022).

The percentage difference illustrates that the areal SWE mean totals from WRF-BCC are
generally representative of the assimilated SNODAS dataset, especially in climatologically high-SWE
regions. There is strong agreement between the datasets in the central and northern Great Plains,
Midwest, Ohio Valley, Mid-Atlantic, and, to a lesser extent, the Northeast and upper Great Lakes; in the
latter two regions, WRF-BCC contains a low SWE bias. In regions where snow is rare—generally along
and south of 352N parallel, and especially along the far southern gradient of areas that experience
snow—there are larger percentage differences, similar to the difference found between SNODAS and Liu
et al. (2017) PGW simulation SWE output evaluated in Ashley (2020). In these southern regions, snow is
relatively rare, illustrated by the order of magnitude difference in SWE compared to regions to the
north. The rarity, low magnitude (<10 mm SWE annually), and intermittent spatial variability of
snowstorms in this region, especially for relatively short 15-year epochs, are likely causes of these
seemingly large differences. Further, differences in how SNODAS and WRF-BCC are derived and their
sensitivity to very small SWE accumulations could be an additional reason for the disparities. Despite
these apparent biases, the objective of this study is to generate and compare deltas—or “apples to
apples” comparison—between WRF-BCC epochs, not to uncover reasonings and provide corrections for

SWE between SNODAS and the Gensini et al. (2023) simulations.
2.3 Snowstorm tracking methods

This research employs the same snowstorm-tracking algorithm described in Ashley et al. (2020)
and provided by Haberlie (2020). Algorithm details and schematic examples are provided in Ashley et al.
(2020; cf. their Extended data Fig. 2) and are summarized herein. The algorithm uses SWE output, which
provides a reasonable representation of spatial distribution and intensity of snow. We do not use snow
accumulation proxies in the algorithm due to the variability in snow-to-liquid ratios, which are highly

dynamic spatially and temporally across both seasons and individual storm events (Baxter et al., 2005).

Initially, the algorithm detects 3-hourly “slices” of potential snow events, where a slice is a
collection of connected grid points that meet or exceed 0.1 mm of SWE for a 3-hr period that is greater
than ~100 km?. Slices are concatenated to produce a “swath” and, thereafter, tested for spatiotemporal
overlap to assure the representation of a spatial outline of a potential snow event. All swath, or snow-

event, candidates are further tested to confirm that the first and last slices in the concatenated swath



have an area of at least 1 X 10°km? and exceed 24 hours between the first and last slice. These swaths
are considered snow events and are tracked across a domain that includes most of the central and
eastern CONUS and adjacent regions of Canada that are roughly less than 1500 m elevation east of the
Continental Divide. Some meso-f3 and y events may not be captured by the algorithm purposely; this
includes lake-effect snow cases that are not affiliated with migratory extratropical cyclones across the

Great Lakes (Ashley et al., 2020) and do not meet the spatial criterion minimum.

The historical epoch (HIST; 1990-2005) is compared against two future periods that are characterized by
RCP 4.5 and 8.5, which represent intermediate and pessimistic anthropogenic climate change
trajectories, respectively. The two future epochs include mid-twenty-first-century (MID; 2040-2055) and
end-of-twenty-first-century (EOC; 2085-2100) projections.

Like Ashley et al. (2020), we calculated the 50" and 90*" percentiles for 3-hour SWE
accumulations for the HIST period. These were calculated by gathering all HIST pixels greater than or
equal to 0.1 mm within the tracked snowstorms across the central and eastern CONUS domain during
the October—April period. The HIST 50" and 90™" percentile values, representing moderate and extreme
snowfall intensities, are 0.35 mm and 1.18 mm, respectively. These serve as thresholds for comparing
historical conditions to future epochs to assess whether these intensities occur more frequently in a
changing climate. We also compare the totality of SWE across the domain for monthly and seasonal

periods to assess how the ratio of snow-to-total precipitation may potentially change.

Statistical significance tests are performed on counts and means between HIST and respective
future epochs using the Mann-Whitney U test with a p-value of less than 0.05. We caution that
confidence in these significance tests is relatively low due to small sample size between epochs (n = 15)
and may be influenced by interannual variability as much as, or more than, anthropogenic climate
change (McCray et al., 2023) and difficulty in quantifying uncertainty due to a singular RCM approach
(McCrary et al., 2017; McCrary and Mearns 2019; McCrary et al., 2022). Similarly, percentage change
calculations may be influenced by small sample size, which is a common issue for current convective

permitting RCM experiments.
3. Results
3.1 Changes in cumulative snowstorm attributes

All four future epochs are projected to have fewer cool-season snowstorms than HIST, which

averaged 78.4 seasonal events across the domain with a maximum of 94 and minimum of 60 events per
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season during the 15-year epoch (Figure 3a, Table S1). The percent change differences in mean counts
are relatively small for MID4.5 (-5.19%), MID8.5 (-9.18%), and EOCA4.5 (-8.9%) but robust for EOC8.5 (-
26.7%); both 8.5 projections, as well as the EOC4.5, are significantly different from HIST. The percentage
decline in EOC8.5 is similar to Ashley et al. (2020), who found a decline of 28% snowstorms in Liu et al.,’s
(2017) PGW simulations, which compared similar time periods and used the same RCP. Visualizing
changes with another perspective, seasonal cumulative frequency of snowstorms reveals large overlap
with a slight decrease between midcentury RCPs compared to HIST, but with increasing spread and

significant reduction in events toward the end of the century compared to HIST (Figure 4a-b).

SWE also declines across all future epochs (Figure 3b), but there is considerable central
tendency overlap and relatively small percentage change differences for MID4.5 (-3.0%), MID8.5 (-7.7%),
and EOCA4.5 (-6.0%). Only the EOC8.5 is significantly different than HIST, with a nearly 32% reduction in
SWE, or roughly 227 km?3 reduction in mean seasonal domain SWE compared to HIST’s 715 km?3; this
percentage change is nearly the same for that found in Ashley et al. (2020). The character of these
trends is further revealed using seasonal cumulative SWE (Figure 4d-e), with notable overlap in SWE for
midcentury between epochs and a modest decline for EOC4.5 and significant decline of EOC8.5
compared to HIST. A similar declining pattern from HIST to future epochs is found for other snowstorm
attributes, including seasonal cumulative snowstorm swath spatial extent, or area, and swath hours
(Figure 3c-d). The most notable attribute change is cumulative snowstorm area, which has percent
change declines ranging from 6.7% for MIDA4.5 to roughly 10% for both MID8.5 and EOC4.5 to a robust,
and significantly different, reduction of 37.2% for EOC8.5. Though varying, the overall decline in these
attributes suggests that the reduction in SWE is caused by fewer snowstorms and, collectively, smaller

snowstorm footprints.
3.2 Spatial changes

Consistent with the overall snowfall climatology (Durre et al., 2013), there is a strong latitudinal
gradient in snowstorm events across the domain (Figure 1). All epochs illustrate a snowstorm maximum
in southeast Canada, with more than 32 snowstorm tracks per season—or, on average, 1.2 storms a
week—from the northern Great Lakes to Hudson Bay, generally north of the St. Lawrence River.
Equatorward from this maximum, the northern CONUS Plains through the Northeast experience 16 to
32 events per season, with a slowly waning frequency toward the Mid-South, where less than one event

per season is expected. Snowstorm climatology is consistent with the overall maximum in extratropical



cyclones, which drive most winter precipitation events (Hawcroft et al., 2012) across the domain (Plante

et al., 2014; Lombardo et al., 2015; Eichler 2020).

Future epochs versus HIST generally show declining snowstorm counts (Figure 5 and 6) and SWE
(Figures 7 and 8) across the domain, especially across the central and northern CONUS Plains—
consistent with GCM-based research that has shown a decrease in future blizzards in this region
(Browne and Chen 2023)—and some parts of the Tennessee and southern Ohio River Valleys,
Cumberland Plateau, into the Mid-Atlantic. There are a few areas of slight increase in snowstorm
frequency and SWE in MID4.5, MID8.5, and EOC4.5. The most dramatic spatial change is found in
EOC8.5, where snowstorm frequency is found to decline 25 to 50% across most areas that experience
events (Figure 6b,d). Across all epochs, the southern fringe of the domain—from Texas to the southern
Mid-Atlantic—may see a near removal of snowstorms in the future, which is consistent with the
expected increasing temperatures under future anthropogenic climate change scenarios (Almazroui et
al., 2021; Gensini et al., 2023 (cf. their Fig. 8b); USGCRP 2023) affecting those events that have lower
tropospheric and surface temperatures that are marginal to produce winter precipitation (Krasting et al.,
2013; Liu et al., 2016; Danco et al., 2016). The trend toward more rain-dominated or transitional (rain
and snow) precipitation climate regimes along the equatorward edge of regions that experience snow,
which is leading to an overall poleward shift in snow-affected areas, has already been established in
observed data over the last 40 years (Tedesche et al., 2023); WRF-BCC projections suggest that this

trend will continue.
3.3 Seasonal, monthly, and weekly changes

Similar to Ashley et al. (2020), the greatest temporal change in the character of snowstorms
across the domain occurs during the shoulder seasons (Table S1, Figures 4c,f) where temperatures, as
discussed, are generally marginal to produce snowfall and the partition of snowfall-to-rainfall is
susceptible to warming due to interannual variability and anthropogenic climate change (Huntington et
al., 2004; Knowles et al., 2006; Feng and Hu 2007; Krasting et al., 2013; Danco et al., 2016; Chen et al.,
2020; Prein and Heymsfield 2020; Shi and Liu et al., 2021). Though overall numbers are low, the early-
season month of October has notable decreases in event counts, ranging from -26.2% for MID4.5 to -
80.1% for EOC8.5. Similar, but generally smaller, percentage change departures in snowstorm counts
from HIST are found for November, March, and April. Interestingly, January has notable percent change
departures for all future epochs—ranging from -7.3% to -10.2%; conversely, December and February

reveal little departure in percent changes in snowstorm counts. Broadly, the percent changes in



snowstorm counts for future epochs versus HIST are found in other snowstorm attributes, including
total SWE, cumulative swath hours, and cumulative swath area. The latter attribute, though variable,
shows the greatest percent change, suggesting that the extent of snowstorm footprints will be smaller in

the future under most scenarios and months.

Providing another perspective, weekly-calculated percent changes of snowstorm counts, SWE,
and snowstorm area for future epochs versus HIST reveal the dramatic change in the shoulder seasons,
with many weekly departures for MID4.5 and MID8.5 exceeding -40% and EOC4.5 and EQC8.5 exceeding
-60% (Figure 9). The most notable change in the character of the season is found in EOC8.5, with a
significant departure in percent change found across the entire season except in late February and parts
of March. Overall, these results suggest a shortening of the snowstorm season, which is consistent with

prior research that has examined daily snowfall using GCMs (Danco et al., 2016; Chen et al., 2020).
3.4 Changes in moderate and intense areas of accumulation

Research using GCMs and relatively coarse RCMs suggests that there may be smaller fractional
changes, or even increases, in future intense, or heavy, snowfall days in regions where mean seasonal
snowfall is projected to broadly decrease (O’Gorman 2014; Danco et al., 2016; Chen et al., 2020; Quante
et al., 2021; McCray et al., 2023). This dichotomy is likely due to climate warming leading to more rain
than snow when thermal conditions are marginal (McCray et al., 2023), whereas slight decreases or
increases in extreme snowfalls may be due to increasing moisture (i.e., specific humidity) in
environments with temperatures still supportive of snowfall (O’Gorman 2014; Quante et al., 2020)
and/or shifting storm tracks and intensification of extratropical cyclones projected across parts of the
domain (Colle et al., 2013; Eichler 2020; Browne and Chen 2023). O’Gorman (2014, 2015) theorizes that
extreme snowfall situations occur in a range of temperatures that are, for the most part, insensitive to

warming temperatures due to anthropogenic climate change.

To assess the more intense areas in swaths identified and tracked in this study, we gathered
SWE pixels within each swath that exceeded the HIST 50" and 90" percentiles for 3-hour accumulations
(cf. Extended data Fig. 2 in Ashley et al. (2020)); these percentiles represent the spatial extent of
moderate and extreme intensities within each corresponding swath, respectively, and provide a point of
comparison to studies that have examined extremes using daily snowfalls from GCM or coarse RCM
output. WRF-BCC'’s high spatial and temporal resolution is particularly suited for this analysis since it can

resolve banded, meso-3 snow events (Novak et al., 2004; Baxter and Schumacher 2017; McCrary 2022)
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driven by low-to-mid-level frontogenesis (Novak et al., 2008, 2010; Ganetis et al., 2018) that are

responsible for high snowfall rates and notable impacts to society (Changnon and Changnon 2011).

Overall, various measures of central tendency for total SWE, accumulated area, and duration for
both 50t and 90" SWE percentile events for MID and EOC have small declines or broad overlap with
HIST, except for RCP 8.5 (Figure 10). Percentage changes between 50" SWE percentile events for future
epochs and HIST generally show small decreases of 4 to 9% for 50" percentile swath counts except for
EOC8.5, which decreased by nearly 24% (Table S2). Percentage changes for 90" SWE percentile swath
counts are mixed, with slight increases or decreases, except for, again, EOC8.5 (Table S3). This
percentage change pattern for 50" and 90" SWE percentiles is generally replicated for other variables
such as total SWE, accumulated area, and duration. Beyond the significantly different RCP 8.5 scenarios,
the relative overlap across all variables suggests that changes in moderate and intense events will be
subtle; though, some of this overlap between HIST and the future epochs is likely caused by the
capturing of deltas across the entirety of the domain. Latitudinally, these changes appear more robust

(Figures 11 and 12).

In related manner, spatially, the most pronounced change signal in both the MID and EOC
epochs versus HIST are across the southern part of the domain, where both 50" and 90™ percentile
events have notable declines, which is consistent with the trend found for overall snowstorm counts.
There is a sharp gradient to the changes in moderate and extreme events, which moves poleward during
the EOC climate pathways. There are regions of increase in extreme events poleward of the relative
sharp gradient of increase/decrease in these events. Percent change increases are most prominent in
the 90" percentile compared to the 50" percentile and overall snowstorm counts. This finding
suggesting that climate warming induces more rain than snow in areas to the south with marginal
thermal profiles supportive of snow, while increasing moisture in a warming climate (Held and Soden
2006; Willett et al., 2007; Lombardo et al., 2015; Coffel et al., 2018) leads to enhanced snowfall rates
and more extreme events where temperatures remain sufficient for snowfall production to the
immediate north. Spatially, this finding corresponds with the O’Gorman (2014, 2015) theory discussed
above and reinforced by others (Krasting et al., 2013; Danco et al., 2016; Chen et al., 2020; Quante et al.,
2021; McCray et al., 2023).

3.5 Changes in snow/precipitation ratio
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Prior research suggests that the ratio of snowfall to overall precipitation across most of North
America has decreased during the last century (Feng and Hu 2007; Shi and Liu 2021) and is projected to
continue to decrease in the twenty-first century (Raisdnen 2008; Krasting et al., 2013). We use these
prior results as a basis to examine the change in the fraction of liquid equivalent that falls as snow in the

Gensini et al. (2023) simulations during the cool season (Figure 13).

Roughly 14.7% of the October through April liquid-equivalent precipitation across the domain is
snow in the HIST epoch. By mid-century, the percentage of precipitation that falls as snow drops to
14.2% under the intermediate scenario (3.3% percent change from HIST) and 13.8% under the
pessimistic scenario (6.6% percent change). By the end of the century, the percentage decreases to
13.4% for intermediate (8.6% percent change from HIST) and 9.6% for pessimistic (34.3% percent
change) scenarios. Though the EOC8.5 is the only change that is significantly different from the historical
epoch, the proportion of precipitation that falls as snow during the cool season is, on average, projected
to decrease across all future epochs. Monthly, the EOC epochs reveal the largest decreases in that
proportion of precipitation that is snow, with significant decreases compared to HIST for all months for
EOC8.5. Projected MID changes are mixed, but most months still show declines in the snow-to-total-

precipitation ratio.

Spatially, the percentage contribution of snow to the overall cool-season precipitation, as
expected, reveals a strong latitudinal gradient, with the highest SWE contributions—exceeding 60% in
HIST—across the northern Plains into the Great Lakes (Figure 14). Percentage changes in snow
contribution to overall precipitation from HIST to MID are projected to be variable across the study
domain; broad declines are interspersed with some local increases. Significantly different changes in
SWE contributions for the MID epochs are restricted to areas off the Mid-Atlantic and Northeast coast
and intermittent parts of the Great Plains (Figure 15). Percent contribution differences for the EOC
epochs are more notable, with significant decreases far more widespread than MID, with nearly the
entirety of the domain that experiences snow expected to have statistically significant declines in the

snow-to-total-precipitation ratio in the EOC8.5 scenario.

The snow-rain partitioning is driven by thermodynamic changes in the climate system, with
broad increases in surface and lower tropospheric temperatures leading to changes in the precipitation
that falls as snow due to higher melting layer heights (Feng and Hu 2007; Lemke et al., 2007; Raisdnen
2008; Krasting et al., 2013; Almazroui et al., 2021; Gensini et al., 2024). This is particularly the case for

regions that have temperatures marginal for snowfall and, temporally, during the shoulder, or

12



transition, months (Knowles et al., 2006; Krasting et al., 2013). Per the Clausius-Clapeyron relationship
(Trenberth et al., 2003; Pall et al., 2007), as temperatures increase, higher evaporation rates lead to
greater atmospheric moisture available for snowstorms and, therefore, higher precipitation rates and
extremes (Donat et al., 2016; Lee et al., 2021). Therefore, regions that retain surface and tropospheric
temperatures suitable for snow may see minimal decreases, or even slight increases, in snow totals and

extremes (O’Gorman 2014; Quante et al., 2020).
4. Discussion and conclusion

Snowfall and related accumulations produce considerable impacts to society and modify energy
and hydrologic cycles. Assessing how snow will evolve under future climates is essential for
understanding changes in the earth-atmospheric system, environment, and society. While it is
established that anthropogenic climate change will modify and likely intensify precipitation events (IPCC
2021; USGCRP 2023), how snow will change in a future climate state is complex as snow is particularly
attuned to subtle—and difficult to gauge—changes in lower tropospheric and surface temperatures that

must be sufficient to produce snow at the ground (0’Gorman 2015).

Even though overall snowfall and snow-to-total-precipitation ratios may decrease in future due
to a warming climate (Diffenbaugh et al., 2013; Kapnick and Delworth 2013; Krasting et al., 2013; Notaro
et al., 2014; McCrary et al., 2022; McCray et al., 2023), high-end events may not decrease at the same
rate as mean seasonal snowfall and may shift climatologically poleward (O’Gorman 2014; McCray et al.,
2023). This persistence and/or even enhancement of heavy daily snowfalls is theorized to occur because
of the increasing availability of moisture in a warming climate that overlaps an optimal temperature
range (~-4 to -22C) for extreme snowfall (O’Gorman 2014, 2015; Quante et al., 2021; McCray et al.,
2023). Conversely, research by Browne and Chen (2023) suggests that blizzard-like events may decline in
the Northern Plains and Upper Midwest and Ashley et al. (2020) project significant decreases in the
frequency and size of snowstorms, including intense storms under a pessimistic climate pathway.
Adding to the complexity, projections suggest that extratropical cyclones that produce a majority of
central and eastern CONUS snowfall (Hawcroft et al., 2012) may, on the mean, intensify and shift
poleward (McDonald 2010; Tamarin-Brodsky and Kaspi 2017; Hawcroft et al., 2018; Eichler 2020);
though, other research suggests a reduction in cyclone numbers across North America (Catto et al.,
2011), but dichotomous intensity results (Priestley and Catto 2022). Unquestionably, the changing snow

landscape across North America is complex and uncertain.

13



Our work complements the limited body of research that has focused on the primary producer
of snowfall and snowpack: the snowstorm. This method differs from most research on the topic, which
has generally employed daily or longer periods to measure and evaluate changes in snowfall using
coarse GCMs or ~12-25 km grid spacing RCMs (Notaro et al., 2014; O’Gorman 2014; Danco et al., 2016;
Janoski et al., 2018; Zarzycki 2018; Chen et al., 2020; Quante et al., 2021; McCray 2023). Our use of an
RCM at 3.75 km grid spacing permits the capturing of meso-3 snow bands within storms that are
frequently the cause of significant accumulations (Novak et al., 2004; Changnon and Changnon 2011;
Baxter and Schumacher 2017; McCrary 2022), resolves important physiographic and orographic effects,
and enables the identification, tracking, and cataloging of snowstorms at high spatiotemporal resolution
(Ashley et al., 2020). Further, we used a non-PGW method to promote the inclusion of both
thermodynamic and large-scale dynamic changes to the climate system and explore two separate

climate pathways for mid- and late-twenty-first-century periods.

Our results reveal that the frequency, placement, and intensity of snowstorms are projected to
change across the central and eastern CONUS and adjacent regions of southern Canada during the
twenty-first century. Changes are most dramatic for the pessimistic climate pathway toward the end-of-
the-twenty-first century, where significant declines are projected for various snowstorm attributes,
including frequency, SWE, area, and duration. Mid-twenty-first-century changes for all epochs and
climate pathways are more muted, but all snowstorm variables still show average percent change
declines of 3 to 10% from the HIST epoch. The two most notable changes in all future epochs are the
significant declines in shoulder season snowstorms and the poleward shift in the latitude that
demarcates steady snowstorm counts to the north and reduced, or elimination of, snowstorms to the
south. The latter occurs with moderate (50 percentile SWE) and intense (90™" percentile SWE) events,
as well, with intense events illustrating areas of increase poleward of the sharp drop off in snowstorms
along and south of the Arkansas, Tennessee, and Ohio River Valleys. This lack of decline and, in some
regions, increases in high-end events reaffirms results from prior research by O’Gorman (2014) and
McCray et al. (2023). The partitioning of snow and rain is projected to change, with the ratio of snow to
total precipitation across the study domain expected to decline from 13.4% to 34.3% by the end of the
twenty-first century. Such changes have implications for energy and moisture budgets, water storage

and balance, flood risk, and, overall, environmental and societal systems dependent on water.

Our research, while providing an initial set of perspectives on the changing snowstorm

landscape, has several limitations. The narrow ensemble envelope (RCP 4.5 and 8.5) and relatively short
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period of record in each epoch (15 years) constrains explanatory power and retains uncertainty when
examining extreme events. With such short temporal windows, fully assessing the individual and
collective contribution of large-scale climate modes and variability (e.g., Ghatak et al., 2010; Liu et al.,
2015, 2020) versus anthropogenic climate change to the alterations uncovered is unknown. While
expansion of scenarios and analysis periods is always desirable, computing resources, data storage, data
egress, and post-processing are restrictive. As these constraints ease in the future as computational and
storage capabilities improve, research groups and programs should collectively strive to increase the
RCM populations by exploring variations in grid spacing, model physics and parameterization schemes,
dynamical cores, additional GCM inputs and shared socioeconomic pathways, bias corrections, and
perturbations during model initialization (Gensini 2021; Ashley et al., 2023). This ensemble framework
will improve explanatory power and reduce uncertainty in our understanding of snowstorms and how

they change in the future (McCray et al., 2023).
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Figure 1. Snowstorm frequency as represented by mean annual swath counts for a) HIST, b) MID4.5, c) MID8.5, d) EOC4.5, and e) EOC8.5. The
areas in grey experienced no qualifying swaths during the study period.
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Figure 2. a) October 1 — April 1 2003—2013 SNODAS mean SWE (mm) and b) the percent difference between WRF-BCC HIST (1990-2005) and
SNODAS October 1 — April 1 mean SWE. Hatched areas on both figures indicate locations where SNODAS data were not available or both WRF-
BCC HIST and SNODAS did not record any SWE.
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(a) Seasonal Storm Track Counts (b) Seasonal Storm SWE (km?3)
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Figure 3. Box-and-whisker plots revealing seasonal comparisons between HIST, MID4.5, MID8.5, EOCA4.5,
and EOC8.5. Seasonal variability over the study period for select snowstorm swath statistics: a) total
counts, b) SWE accumulation, c) storm accumulated area, and d) sum of durations. Means are denoted
by black dots and medians are denoted by the black lines. The boxes illustrate the interquartile range,
the whiskers represent the 5th and 95th percentiles, and the clear circles denote outliers. Significant
differences (using Mann-Whitney U at 95% confidence level) between epochs are identified as squares
(diamonds) for differences between HIST and RCP8.5 (RCP4.5).
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Figure 4. Cumulative frequency diagrams of snowstorm event counts for a) HIST, MID4.5, and MID8.5 and b) HIST, EOC4.5, and EOC8.5 and
cumulative seasonal snowstorm SWE (in km3) for d) HIST, MID4.5, and MID8.5 and e) HIST, EOC4.5, and EOC8.5. c) and f) represent box-and-

whiskers of monthly snow event counts and monthly snowstorm SWE, respectively. Box-and-whisker detail and significance test labeling as in
Figure 3.
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(@) MID 4.5 - HIST Mean Seasonal Snowstorm Count Difference (b)  MID 8.5 - HIST Mean Seasonal Snowstorm Count Difference
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Figure 5. Differences in snowstorm frequency as represented by mean annual swath count difference
for a) MID4.5 vs. HIST, b) MID8.5 vs. HIST, c) EOC4.5 vs. HIST, and d) EOC8.5 vs. HIST. Areas in grey
experienced no qualifying swaths during the study period. Stippling indicates statistical significance at
the 95% confidence level using a Mann—Whitney U test for the medians; double hatched is significant
with implementation of a field significance false discovery rate of a =0.1.
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(@) MID 4.5 Mean Seasonal Snowstorm Count Percent Difference (b) MID 8.5 Mean Seasonal Snowstorm Count Percent Difference
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Figure 6. Differences in snowstorm frequency as represented by mean annual swath count percent

difference between a) MID4.5 and HIST, b) MID8.5 and HIST, ¢) EOC4.5 and HIST, and d) EOC8.5 and
HIST. The areas in grey experienced no qualifying swaths during the study period.
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Figure 7. As in Figure 1, except for mean annual snowstorm SWE.
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(a) Weekly Percent Difference In Swath Values (MID 4.5-HIST) (b) Weekly Percent Difference In Swath Values (MID 8.5-HIST)
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Figure 9. Weekly percent difference for snowstorm metrics between HIST and a) MID4.5, b) MID8.5, c)
EOC4.5, and d) EOC8.5. Weekly significantly different (using Mann-Whitney U at 95% confidence level)
percent changes between epochs are labeled for swath count (diamonds), SWE (squares), and area
(circles).
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Figure 10. Box-and-whisker plots revealing seasonal comparisons between HIST, MID4.5, MID8.5,
EOC4.5, and EOC8.5 for 50th (left) and 90th (right) percentile snowstorm attributes, including SWE (top),
accumulated area (middle) and duration (bottom). Both event accumulated area and duration are based
on 50" and 90t SWE. Box-and-whiskers and significance testing as in Figure 3.
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(a) MID 4.5 - HIST Mean Seasonal Snowstorm Count (b) MID 4.5 - HIST Mean Seasonal Snowstorm Count
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Figure 11. Differences in 50th and 90" percentile snowstorm events as represented by mean annual 50"
and 90™ percentile swath count percent difference between a) MID4.5 and HIST at 50*" percentile, b)
MIDA4.5 and HIST at 90" percentile, c) MID8.5 and HIST at 50" percentile, and d) MID8.5 and HIST at 90"
percentile. The areas in grey experienced no qualifying swaths during the study period.
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(a) EOC 4.5 - HIST Mean Seasonal Snowstorm Count (b) EOC 4.5 - HIST Mean Seasonal Snowstorm Count
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Figure 12. As in Figure 11, except for EOC vs. HIST.
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(a) Monthly SWE Contribution (%)
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Figure 13. a) Monthly percent contributions of SWE to total precipitation across the domain for all
epochs and b) total seasonal (Oct-Apr) contributions of SWE to total precipitation for all epochs. Box-

and-whiskers and significance testing as in Figure 3.
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As in Figure 1, except for mean seasonal SWE percent contribution to total precipitation.
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Figure 15. As in Figure 5, except for snow contribution to total seasonal precipitation.
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Figure legends

Figure 1. Snowstorm frequency as represented by mean annual swath counts for a) HIST, b) MID4.5, c)
MID8.5, d) EOC4.5, and e) EOC8.5. The areas in grey experienced no qualifying swaths during the study
period.

Figure 2. a) October 1 — April 1 2003—2013 SNODAS mean SWE (mm) and b) the absolute difference
between WRF-BCC HIST (1990-2005) and SNODAS mean for October 1 — April 1 SWE shown as a percent
of the total mean SNODAS SWE. Hatched areas on both figures indicate locations where SNODAS data
were not available or both WRF-BCC HIST and SNODAS did not record any SWE.

Figure 3. Box-and-whisker plots revealing seasonal comparisons between HIST, MID4.5, MID8.5, EOCA4.5,
and EOC8.5. Seasonal variability over the study period for select snowstorm swath statistics: a) total
counts, b) SWE accumulation, c) storm accumulated area, and d) sum of durations. Means are denoted
by black dots and medians are denoted by the black lines. The boxes illustrate the interquartile range,
the whiskers represent the 5th and 95th percentiles, and the clear circles denote outliers. Significant
differences (using Mann-Whitney U at 95% confidence level) between epochs are identified as squares
(diamonds) for differences between HIST and RCP8.5 (RCP4.5).

Figure 4. Cumulative frequency diagrams of snowstorm event counts for a) HIST, MID4.5, and MID8.5
and b) HIST, EOC4.5, and EOC8.5 and cumulative seasonal snowstorm SWE (in km3) for d) HIST, MID4.5,
and MID8.5 and e) HIST, EOCA4.5, and EOC8.5. c) and f) represent box-and-whiskers of monthly snow
event counts and monthly snowstorm SWE, respectively. Box-and-whisker detail and significance test
labeling as in Figure 3.

Figure 5. Differences in snowstorm frequency as represented by mean annual swath count difference
for a) MIDA4.5 vs. HIST, b) MID8.5 vs. HIST, c) EOC4.5 vs. HIST, and d) EOC8.5 vs. HIST. Areas in grey
experienced no qualifying swaths during the study period. Stippling indicates statistical significance at
the 95% confidence level using a Mann—Whitney U test for the medians; double hatched is significant
with implementation of a field significance false discovery rate of a =0.1.

Figure 6. Differences in snowstorm frequency as represented by mean annual swath count percent
difference between a) MID4.5 and HIST, b) MID8.5 and HIST, ¢) EOC4.5 and HIST, and d) EOC8.5 and
HIST. The areas in grey experienced no qualifying swaths during the study period.

Figure 7. As in Figure 1, except for mean annual snowstorm SWE.
Figure 8. As in Figure 5, except for mean annual snowstorm SWE difference.

Figure 9. Weekly percent difference for snowstorm metrics between HIST and a) MID4.5, b) MID8.5, c)
EOCA4.5, and d) EOC8.5. Weekly significantly different (using Mann-Whitney U at 95% confidence level)
percent changes between epochs are labeled for swath count (diamonds), SWE (squares), and area
(circles).

Figure 10. Box-and-whisker plots revealing seasonal comparisons between HIST, MID4.5, MID8.5,
EOC4.5, and EOC8.5 for 50th (left) and 90th (right) percentile snowstorm attributes, including SWE (top),
accumulated area (middle) and duration (bottom). Both event accumulated area and duration are based
on 50th and 90th SWE. Box-and-whiskers and significance testing as in Figure 3.
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Figure 11. Differences in 50th and 90th percentile snowstorm events as represented by mean annual
50th and 90th percentile swath count percent difference between a) MID4.5 and HIST at 50th
percentile, b) MID4.5 and HIST at 90th percentile, c) MID8.5 and HIST at 50th percentile, and d) MID8.5
and HIST at 90th percentile. The areas in grey experienced no qualifying swaths during the study period.

Figure 12. As in Figure 11, except for EOC vs. HIST.

Figure 13. a) Monthly percent contributions of SWE to total precipitation across the domain for all
epochs and b) total seasonal (Oct-Apr) contributions of SWE to total precipitation for all epochs. Box-
and-whiskers and significance testing as in Figure 3.

Figure 14. As in Figure 1, except for mean seasonal SWE percent contribution to total precipitation.

Figure 15. As in Figure 5, except for snow contribution to total seasonal precipitation.
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Graphical Abstract
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Title: The Future of Snowstorms in Central and Eastern North America
Authors: Walker S. Ashley®, Aaron Zeeb, Alex M. Haberlie, Vittorio A. Gensini, and Allison Michaelis

80-word Statement: The frequency, placement, and intensity of snowstorms are projected to change
across North America during the twenty-first century. Changes are most dramatic for the pessimistic
climate pathway, where significant declines are projected for various snowstorm attributes, including
frequency, SWE, area, and duration. The two most notable future changes are the significant declines in
shoulder season snowstorms and the poleward shift in the latitude that demarcates steady snowstorm
counts to the north and reduced, or elimination of, snowstorms to the south.
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