

Core Ideas

- Pasture and rangeland (grazing land) conditions tend to deteriorate from May through October in the U.S.
- Grazing land conditions are the least optimal on average across the southwestern domain of the U.S.
- Grazing land conditions have deteriorated in the West but improved in the East since 1995.

United States Pasture and Rangeland Conditions: 1995-2022

Abbreviations: CCIndex, Crop Condition Index

ABSTRACT

12 USDA National Agricultural Statistics Service pasture and rangeland condition data were
13 used to establish a novel spatiotemporal climatology of condition ratings across the conterminous
14 United States for the May–October grazing season over the 1995–2022 study period. On
15 average, the coverage of grazing land that provides adequate or excess feed underwent a
16 significant reduction during a typical season. Spatially, the southwestern United States exhibited
17 the poorest grazing land conditions on average, with over twenty years below the national mean
18 condition rating. At the national aggregated level, conditions degraded during the 28-year study
19 period, and the most significant trends were observed for grazing lands considered to have poor
20 or very poor condition coverage, which increased. Robustly increasing trends in poor and very
21 poor condition coverage were most apparent across the western half of the United States, which
22 is predominantly rangeland. Meanwhile, the eastern half of the United States, which is mostly
23 pastureland, generally experienced condition improvements. Overall, continued regional climatic
24 changes that may result in increasing temperatures, variable precipitation totals, and subsequent
25 soil moisture declines leading to increased drought instances will continue to impose challenges

26 for grazing land managers. Grazing land condition declines can result in increased feed supply
27 demand and reduced grazing capacity. Should these trends continue, there will be a growing
28 need for flexible livestock, forage, and grazing management strategies in the coming decades to
29 adapt to climate change-induced impacts on water-sensitive ecosystems.

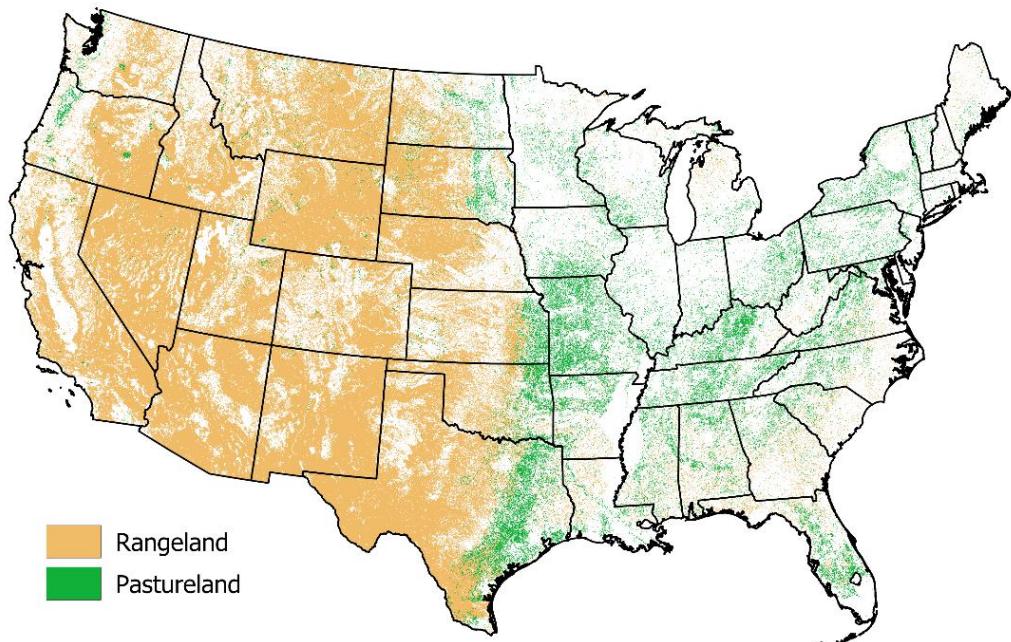
30 **1 INTRODUCTION**

31 Pasture and rangeland systems across the United States serve as critical resources in
32 various ecosystems that include habitat for livestock and wildlife, cropping systems, and energy
33 production (White et al., 2000; Lund, 2007; Briske et al., 2015; McFeeley et al., 2017;
34 Fernández-Giménez et al., 2019; Ojima et al., 2020). These lands encompass more than one-third
35 of the U.S. land area, spanning over 2.1 million km² (USDA, 2019). They also comprise a
36 similar global extent, serving as the backbone for operations associated with farming and
37 ranching, conservation, and recreational enterprises, reflecting an active socio-ecological system
38 (Havstad et al., 2007; Hruska et al., 2017; McCollum et al., 2017). Pastures are defined as land
39 used for herbaceous forage crops that are highly managed and cultivated, while rangelands are an
40 area of shrub and/or natural grass ecosystems primarily used for extensive livestock production
41 (FAO, 2023). As the demand for livestock production increases alongside population growth,
42 there will be increased stress on pastures and rangelands (grazing lands) from both land use
43 intensification and climate change (Stanimirova et al., 2019). There is general agreement that
44 climatic conditions have resulted in changes to biodiversity, ecosystem processes, and the overall
45 quality and productivity of grasslands across the United States (Polley et al., 2013; Ojima et al.,
46 2020). Therefore, decreasing environmental impacts on grazing lands while sustaining the
47 demand for meat and dairy products will depend on sensitivity to climate and adaptive livestock

48 management (Sauchyn & Kulshreshtha, 2008; Bestelmeyer & Briske, 2012; McCollum et al.,
49 2017; Fernández-Giménez et al., 2019; Hanberry et al., 2019; Stanimirova et al., 2019).

50 The profound effects of climate change on grazing lands and subsequent livestock
51 operations will vary by region, vegetation community, and livestock type (Briske et al., 2015;
52 Joyce et al., 2013; McCollum et al., 2017; Bolster et al., 2023). Many aspects of the grazing
53 system ecology (e.g., forage—biomass that is potential food for livestock) are determined by the
54 spatiotemporal distribution of precipitation and the resulting impacts on soil water availability
55 (Campbell et al., 1997; Knapp et al., 2001; Morgan, 2005). Therefore, the onset of drought and
56 extreme rainfall events, in addition to warmer summers, land fragmentation, and invasive non-
57 native species, will continue to have negative impacts on grazing systems across the United
58 States (Polley et al., 2013; Archer et al., 2017; Bestelmeyer et al., 2018). While these lands
59 encompass a large share of the agricultural landscape in the United States, their productivity and
60 resilience to climate change have received comparatively less attention than croplands
61 (Ramankutty et al., 2002; Foley et al., 2011; Izaurrealde et al., 2011). Due to the significance
62 grazing lands have in ecological systems and on local and global economies (ERS, 2023), the
63 insufficient comprehension of the vulnerabilities to climate is a key knowledge gap in the field
64 (Stanimirova et al., 2019). The condition, or quality, and overall success of grazing operations
65 are based on the seasonal distribution and quantity of forage, interannual reliability of forage
66 production, and forage nutritional value (e.g., Wu & Rykiel, 1986; Sollenberger & Vanzant,
67 2011). Hence, there is an inherent need to study and actively monitor both pastures and
68 rangelands continuously throughout the year, along with furthering the understanding of
69 processes and thresholds that lead to deteriorating conditions (Keesstra et al., 2016). There is
70 also a literature gap regarding the generalized base state of pasture and rangeland conditions and

71 how these conditions have trended over time under the influence of climate change. Observed
72 gradual changes and future changes in climate can induce sudden shifts in vegetation quality and
73 quantity to less-than-optimal conditions where recovery may be irreversible (Briske et al., 2005,
74 2006; Bestelmeyer et al., 2009). Threshold statistics—or, in the case of this research,
75 climatologies—play a vital role in assessing the resilience of ecosystems to climate change and
76 provide insights into the necessity and timing of potential management intervention (Standish et
77 al., 2014). Therefore, a baseline grazing land condition climatology and comprehensive analysis
78 of condition trends across the United States are essential in furthering the understanding for land
79 managers, researchers, and other stakeholders with novel information to assist with in-season
80 production and future decisions regarding sustainability.


81 Established qualitative and quantitative methods to monitor pasture and rangeland quality
82 at relevant scales do exist (e.g., Pyke et al., 2002; Mitchell, 2010; McCollum et al., 2017).
83 However, to date, none have explored the comprehensive USDA National Agricultural Statistics
84 Service (NASS) general crop condition dataset, which consists of subjective weekly pasture and
85 rangeland condition ratings by U.S. state. USDA NASS general crop condition data have been
86 used more recently in literature to quantify agricultural market reactions to crop condition
87 changes (Lehecka, 2014; Bain & Fortenberry, 2016), seasonal tendencies and condition
88 spatiotemporal trends (Irwin & Good, 2017a, 2017b; Irwin & Hubbs, 2018; Bundy & Gensini,
89 2022; Bundy et al., 2024), and how crop conditions react to extreme weather perils (Bundy et al.,
90 2023). For the first time, this research establishes a state and national baseline grazing land
91 climatology by 1) quantifying pasture and rangeland condition tendencies for the May–October
92 grazing season, 2) quantifying seasonal averages and variability for each state, and 3)
93 quantifying spatiotemporal trends in conditions throughout the conterminous United States for

94 the 1995–2022 period (28 years) using USDA NASS condition data. Pastures and rangelands
95 are undeniably complex and require adaptive management approaches (Bestelmeyer & Briske,
96 2012; McCollum et al., 2017; McNeeley et al., 2017; Fernández-Giménez et al., 2019), which
97 include, but are not limited to, grazing with multiple paddocks, frequent livestock rotation,
98 longer rest periods for forage recovery, optimizing herd sizes, and strategic water distribution.
99 Thus, these new findings will appeal to land managers and policymakers by providing novel
100 material to help foster informed decision-making on a weekly basis, prompt adaptation and
101 management strategies, promote investigating the multitude of available insurance programs, and
102 help to address environmental changes and land use demands to ensure a sustainable future.

103 2 MATERIALS AND METHODS

104 2.1 Data background

105 The USDA NASS Crop Progress and Condition (CPC) report provides subjective data
106 collected by extension agents and Farm Service Agency staff, who are asked on a weekly basis
107 (week ending on Sunday) from April through November to report estimates of crop progress and
108 conditions based on USDA standard definitions (USDA, 2019). In addition to crops, as noted in
109 Section 1, the survey covers pastures and rangelands across the conterminous United States
110 (**Figure 1**). Surveys are quality-controlled by NASS by performing careful comparisons with
111 previous weeks, historical averages, and data from other counties. NASS then takes these raw
112 data and summarizes from county to state level and are weighted using pasture acreage and/or
113 livestock inventories from the most recent Census of Agriculture (USDA, 2023b).

114

115 **Figure 1.** Land cover of pastures and rangelands at 30-meter spatial resolution for the
116 conterminous United States based on the National Land Cover Database 2021 (USGS, 2023).

117

118 Confidentiality is conserved for the producers whose operations cover much of the production in
119 a county (Rosales, 2021). Thereafter, state-level estimates are quality-controlled by comparing
120 with surrounding states and historical averages, and then computed at the national level by
121 weighting each state by its respective acreage and/or livestock inventories.

122 For the conditions portion of the CPC report, reporters are asked to estimate the percent
123 of their operation in excellent, good, fair, poor, or very poor condition. While the dataset does
124 consist of both pastures and rangelands, the USDA QuickStats database uses the term
125 "pastureland" to simplify. General pastureland condition categories defined by the USDA are as
126 follows (USDA, 2016):

- *Excellent*: Pastures are supplying feed in excess of what is normally expected at the current time of year.
- *Good*: Pastures are providing adequate feed supplies for the current time of year.
- *Fair*: Pastures are providing generally adequate feed but are still less than normal for the time of year.
- *Poor*: Pastures are providing only marginal feed for the current time of year. Some supplemental feeding is required to maintain livestock conditions.
- *Very Poor*: Pastures provide very little or no feed considering the time of year. Supplemental feeding is required to maintain livestock conditions.

The USDA-defined Crop Condition Index (CCIndex) was calculated for each report through the following (Rosales, 2021):

$$CCIndex = (5 * Excellent + 4 * Good + 3 * Fair + 2 * Poor + Very Poor) / 100 \quad (1)$$

This weighted index provides a rating summarizing the current state of weekly conditions for the five categories. The CCIndex ranges from 1 to 5, with an index rating of 5 corresponding to 100% of the surveyed crop being reported in excellent condition, and an index rating of 1 corresponding to 100% of the crop being reported in very poor condition (Rosales, 2021). While there are other ways to summarize each condition category (e.g., Irwin & Good, 2017a, 2017b;

Irwin & Hubbs, 2018; Bundy & Gensini, 2022), the USDA-defined index was used for consistency with Bundy et al. (2024), where ten major field crop conditions were examined using the USDA NASS crop condition dataset. Therefore, the results of this analysis (pasture and rangeland conditions) can effectively be compared with CCIndex results for crop conditions from Bundy et al. (2024). Results for each condition category (excellent, good, fair, poor, and very poor) along with the CCIndex were also examined and provided as a supplemental file.

150 The USDA NASS condition dataset does have its limitations, one of which is the state-
151 level spatial resolution given that multiple states have both pastures and rangelands (e.g., the
152 Great Plains region). The data are subjective estimates of conditions, which means there is the
153 possibility for human error and biased interpretation, leading to the potential for spatial and
154 temporal biases. While spatiotemporal trends in USDA NASS condition data may significantly
155 be influenced by climate change, it is important to recognize that changes over time and
156 variations between states may also be related to possible changes in the methodology of
157 estimating conditions (Irwin & Good, 2017b). It is also speculated that changes in the make-up
158 of crop observers through time may also contribute to any observed changes in conditions (Irwin
159 & Good, 2017b).

160 Regardless of these limitations, previous literature has noted that, despite the potential for
161 spatial and temporal biases, the CPC report containing these condition data has the capability to
162 capture the complexities of assessing near real-time conditions better than any other product
163 (Begueria & Maneta, 2020). This is due to the condition rating data encapsulating the expert
164 knowledge from the thousands of extension agents and Farm Service Agency staff, creating an
165 elaborate network of “people as sensors” that provide ground truth for real-time crop and grazing
166 conditions (Begueria & Maneta, 2020). Additionally, strong correlations have been observed
167 between state condition data and climate variables (temperatures, precipitation, soil moisture),
168 validating the use of these data in research and in practice (Bundy & Gensini, 2022; Bundy et al.,
169 2024). Overall, this network of people who curate the USDA NASS condition data has proven
170 valuable in previous literature that have used the data to accurately forecast yield with statistical
171 significance (Irwin & Good, 2017a, 2017b; Irwin & Hubbs, 2018; Bundy et al., 2022, Bundy et

172 al., 2024), forecast market movements (Lehecka, 2014; Bain & Fortenberry, 2016), and
173 understand condition reactions to weather and climate perils (Bundy et al., 2023).

174 **2.2 Data collection**

175 Weekly pasture and rangeland, henceforth referred to as “grazing land,” condition data
176 were collected from USDA NASS for the 1995–2022 period from May through October at state
177 and national-aggregated levels (USDA, 2023b). April and November were discarded from the
178 analysis due to incomplete and inconsistent data availability. From calendar weeks 18 through 43
179 (26 weeks), each state contained a full 28 years of condition data during each week. While some
180 weeks overlap at the end and beginning of a month (and can vary annually), weeks were
181 assembled into the respective months as follows: weeks 18–21, May; weeks 22–25, June; weeks
182 26–30, July; weeks 31–34, August; weeks 35–39, September; and weeks 40–43, October. Since
183 the study period does not cover the entire year, the verbiage “warm season” is used herein when
184 discussing the entirety of the May–October period.

185 **2.3 Methods**

186 Statistical methods of this research follow Bundy et al. (2024). A spatiotemporal grazing
187 land condition analysis was generated using weekly condition category and CCIndex ratings,
188 monthly-averaged ratings, and warm-season-averaged ratings from national and state
189 perspectives. State and national averages were generated using the weekly condition data by
190 calculating the monthly mean for each year using the following:

$$191 \quad \overline{CCIndex}_{m,y} = \frac{1}{n_{m,y}} \sum_{w=1}^{n_{m,y}} CCIndex_w \quad (2)$$

192 where m is the specific month and y is the year of interest, n is the total number of weeks within
193 the month and year, and $CCIndex_w$ is the CCIndex rating within that week. Then, to compute the

194 monthly mean CCIndex ratings over the 1995–2022 period, the means for a specific month were
195 summed across all years and divided by the total number of years (28 years):

196

$$\overline{CCIndex}_m = \frac{1}{28} \sum_{y=1995}^{2022} CCIndex_{m,y} \quad (3)$$

197 Equations 2 and 3 were both used to calculate the monthly state averages for each of the
198 categorical conditions (excellent, good, fair, poor, and very poor). To calculate the warm-season
199 mean CCIndex ratings, the same approach was used when calculating the monthly mean, as the
200 CCIndex rating was summed for each week within a specific year and divided by the total
201 number of weeks (26 weeks). Then, these annual values were summed and divided by the total
202 number of years. Along with condition averages, standard deviations were computed to assess
203 the variability of conditions from warm season to warm season. Monthly standard deviations for
204 each year were computed using the following with the same variables as defined in Equations 2
205 and 3:

206

$$\sigma_{m,y} = \frac{1}{n_{m,y}} \sum_{w=1}^{n_{m,y}} (CCIndex_{w,m,y} - \overline{CCIndex}_{m,y}) \quad (4)$$

207 To get the monthly CCIndex standard deviation over the 1995–2022 period, the monthly
208 standard deviations for a specific month were summed across all years and divided by the total
209 number of years (28 years):

210

$$\bar{\sigma}_m = \frac{1}{28} \sum_{y=1995}^{2022} \sigma_{m,y} \quad (5)$$

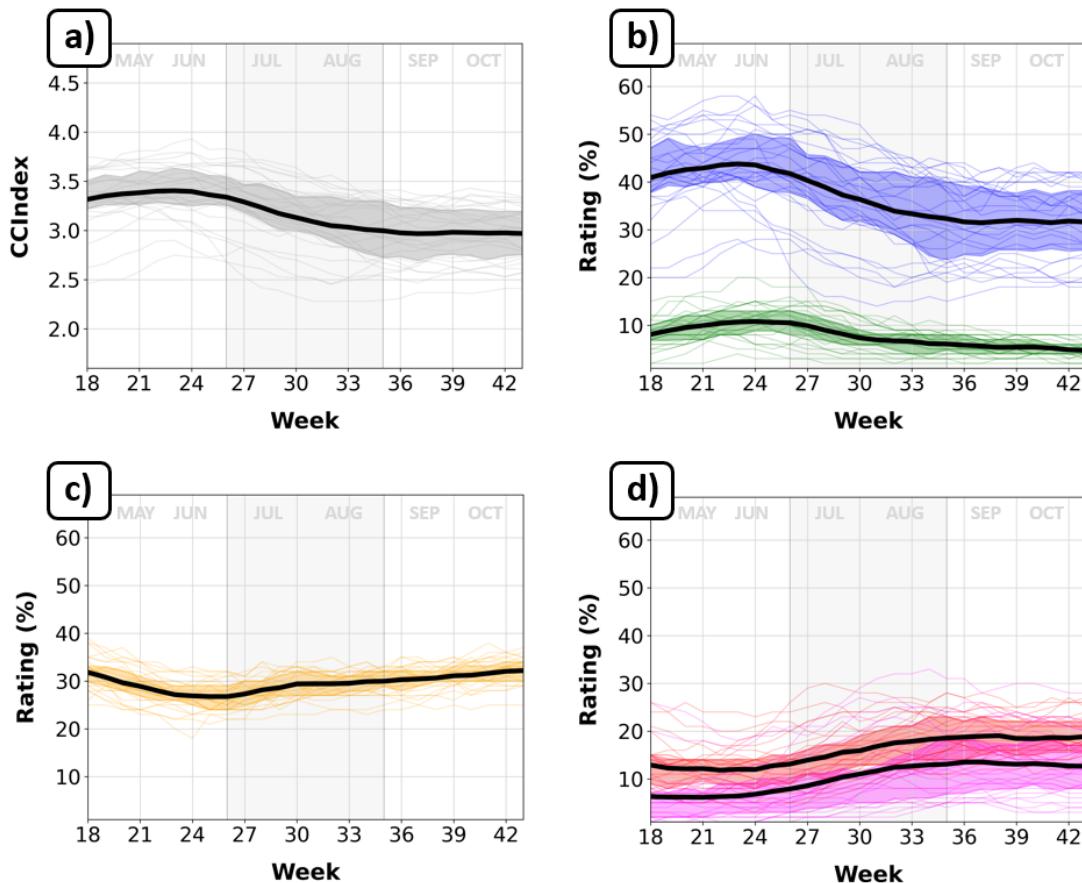
211 Using the generated weekly, monthly, and warm-season averages, trends were calculated at state
212 and national levels using Theil-Sen's slope due to its insensitivity to outliers and robust
213 computation when compared to other linear regression models (Wilcox, 2010). Statistical

214 significance of Theil-Sen's slope was assessed using Kendall's τ statistic at a 95% significance
215 level (p -value <0.05).

216 **3 RESULTS**

217 **3.1 Condition climatology**

218 **3.1.1 National level**


219 During the warm season over the 1995–2022 study period, on average, 45% of U.S.
220 grazing land acreage was in favorable condition where these lands provided adequate or an
221 excess of feed (excellent or good condition), whereas the remaining 55% of acreage was in a
222 less-than-ideal condition that required some extent of supplemental feeding to maintain livestock
223 (fair, poor, or very poor; **Figure 2**). Grazing land conditions at the national-aggregated level
224 from weeks 18–43 deteriorated on average, with a total CCIndex change of -0.35 (**Figure 2a**).
225 This deterioration in conditions corresponded to a 14% total decline in excellent or good
226 conditions, consequently resulting in a 1% increase in fair conditions and a 13% increase in poor
227 or very poor conditions (**Figure 2b–d**). While early-season (May through mid-June) and late-
228 season (September through October) conditions tended to remain steady or even slightly
229 improve, robust grazing land condition changes occurred from mid-June through August.
230 Moreover, coverage of excellent and good-conditioned grazing lands combined for a 1–2%
231 decline per week on average, whereas poor and very poor conditions combined for an increase in
232 coverage of 2–3% per week during the mid-June through August epoch. By the end of the
233 season, poor or very poor conditions covered nearly one-third of the U.S. grazing land from the
234 one-fifth coverage at week 18. Additionally, deterioration in grazing land conditions throughout

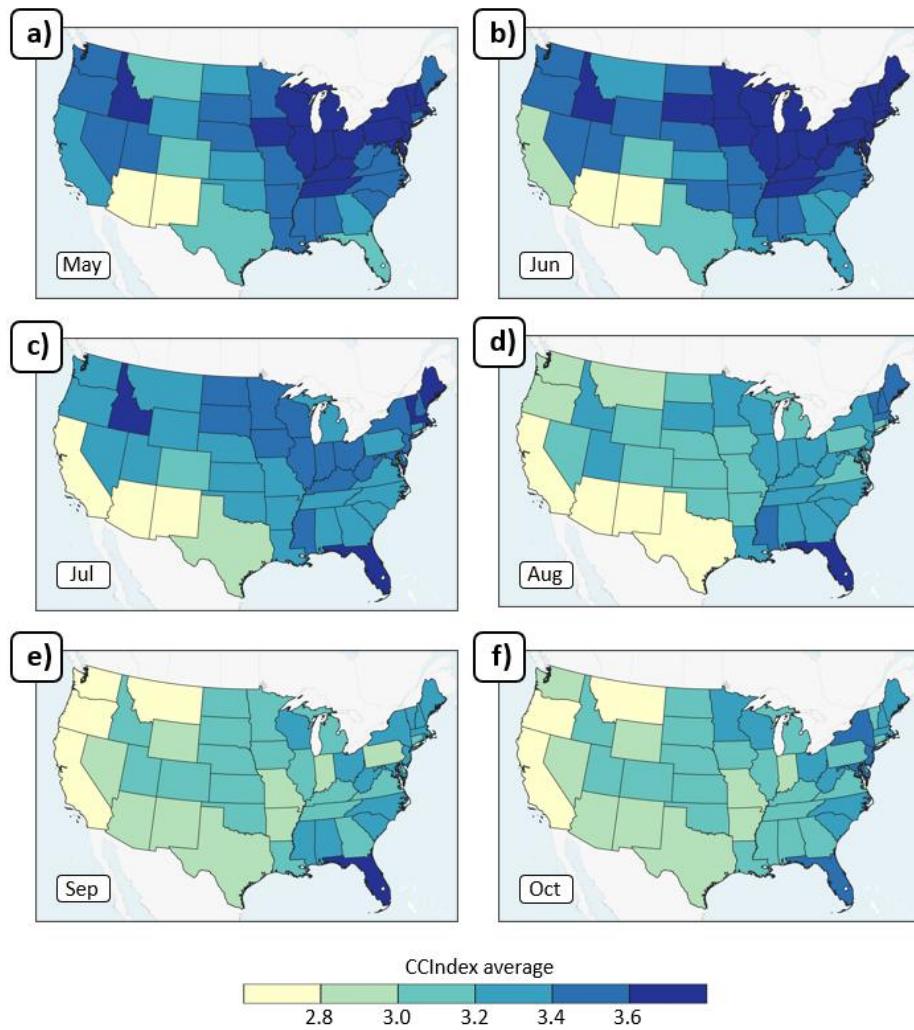
235 the season resulted in only a 4–6% difference between excellent/good and poor/very poor
236 conditions in September and October as compared to the 30–36% difference in May and June.

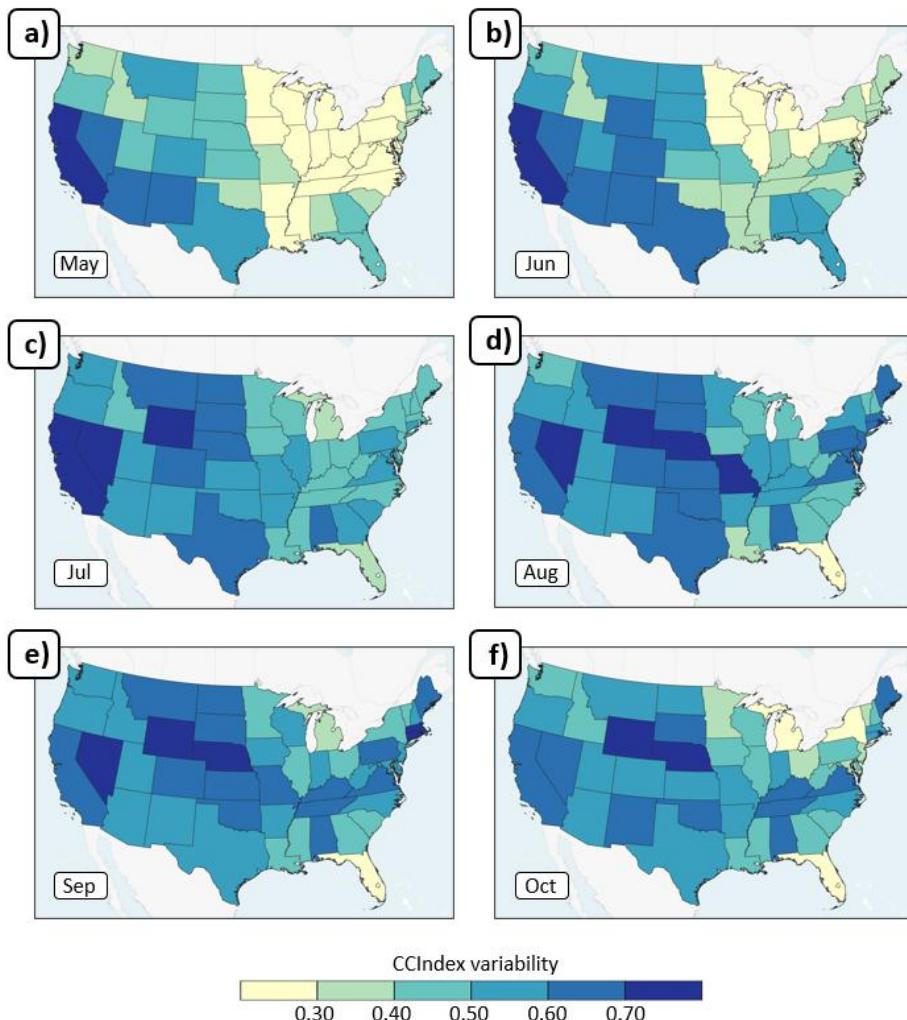
237 In addition to assessing weekly averages, examining historical variability in grazing land
238 condition coverage is essential to further the understanding when conditions are most, or least,
239 sensitive to seasonal fluctuations. Overall, conditions were most variable during July and
240 August, when conditions declined the most (**Figure 2**). Standard deviations for excellent/good
241 conditions combined during weeks 26–35 ranged 11–14% while poor/very poor conditions
242 ranged 10–13%, both of which were seasonal highs in variability. High variability can be
243 characterized by years during the study period where conditions deviated substantially from
244 average. For example, during July and August of 2012, 80% of U.S. land area and nearly 75% of
245 livestock experienced some degree of drought condition (UNL, 2023). Further, seventeen of the
246 twenty worst (lowest) weekly national grazing land conditions occurred in 2012. Across these
247 seventeen weeks, only 19% of grazing land acreage was in excellent or good condition on
248 average (25% below normal), while 57% of acreage was in poor or very poor condition (31%
249 above normal).

250 Despite 2012 having some of the lowest weekly grazing land conditions on record, 2022
251 exhibited the worst warm-seasonal grazing land conditions across the United States in the 1995–
252 2022 study period (2012 was the second worst, 2021 was the third worst). Meanwhile, eight of
253 the ten best (highest) weekly grazing land conditions were in 1995, where excellent/good
254 combined condition coverage averaged 73% (poor/very poor coverage only at 6%), which was
255 29% above the national warm-season excellent/good average. Thus, both extremes have occurred
256 historically, and intraseasonal grazing land variability was found to be higher than several field

257 crops, including barley, corn, cotton, oats, peanuts, rice, soybeans, and winter wheat at the
258 seasonal and national level (Bundy et al., 2024).

259
260 **Figure 2.** Weekly U.S. pasture and rangeland (grazing land) average ratings (black lines) by a
261 CCIIndex rating (gray); b) excellent (green) and good condition (blue); c) fair condition (yellow);
262 and d) poor (red) and very poor condition (magenta). Interquartile ranges are represented by the
263 shading of the condition's respective color, and each of the week's condition rating values are
264 plotted for each year in the study period (1995–2022) by the condition's respective color. Gray
265 shaded area represents weeks within July and August, while the first white area is May and June,
266 and the second white area is September and October.

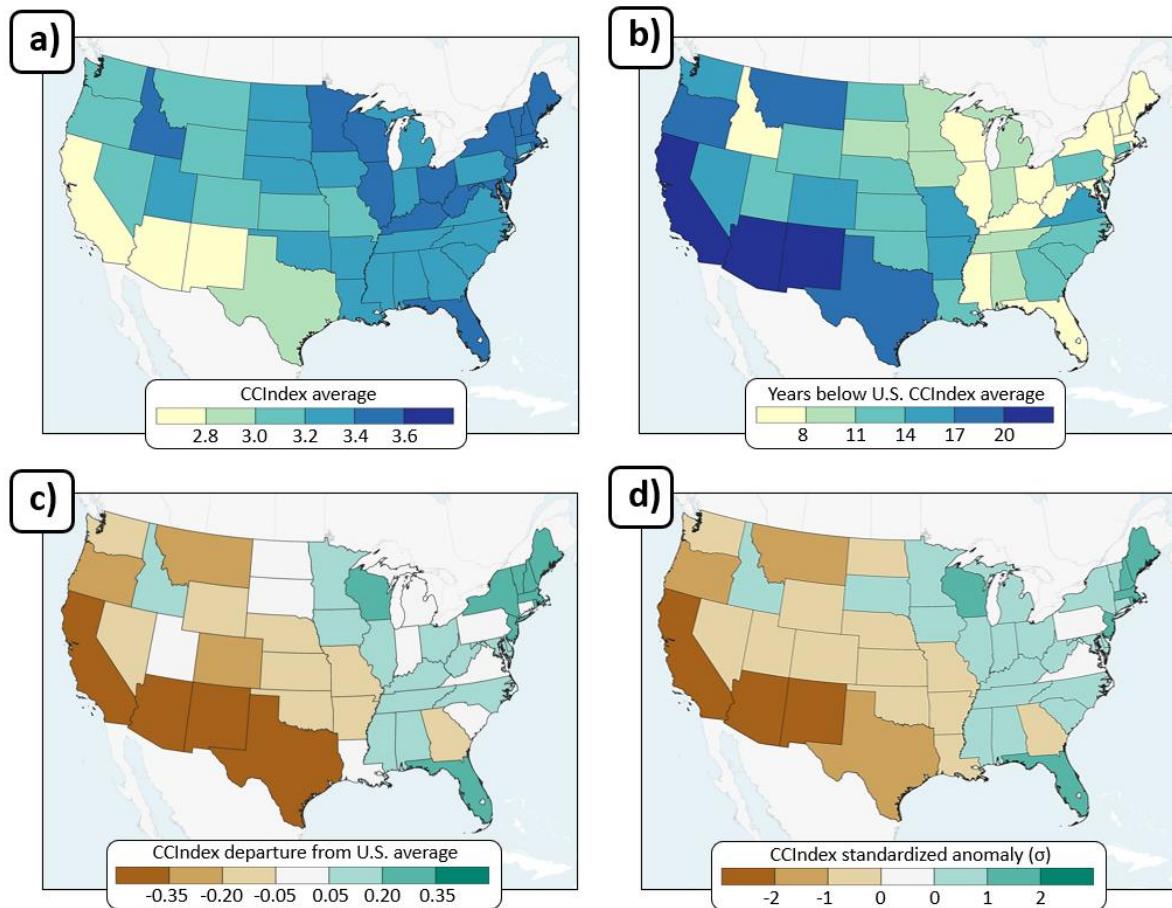

267


268 **3.1.2 State level**

269 At the monthly aggregated interval, grazing land condition averages exhibited a
270 correlation coefficient of -0.59 with monthly standard deviations. Essentially, higher monthly
271 averages in the CCIndex, or better overall grazing land conditions, generally reflect lower
272 intermonthly variability (**Figures 3 and 4**). Specific state averages and standard deviations by
273 month and condition category (excellent, good, fair, poor, very poor) were examined but will not
274 be discussed here for brevity (**Supplemental Tables S1 and S2**). Grazing land conditions during
275 May and June were most optimal across the eastern North-Central and Northeast U.S. regions,
276 with CCIndex ratings exceeding 3.60 (**Figure 3a, 3b**). Only seven states recorded a CCIndex
277 rating lower than the seasonal national average of 3.29 in May or June—New Mexico, Arizona,
278 Texas, Florida, Colorado, Montana, California, and Georgia. However, Florida, New Mexico,
279 and Arizona were the only three states to improve in grazing land condition averages as the
280 season progressed, with net increases in CCIndex ratings of >0.20 (**Figure 3c–f**). Therefore, all
281 other states experienced a deterioration of grazing land condition averages throughout the warm
282 season, with the most substantial declines observed in California and Oregon (CCIndex rating
283 changes of -1.16 and -0.88, respectively), across the Midwest in Indiana and Illinois (CCIndex
284 rating changes of -0.81 and -0.76, respectively), and, more broadly, across much of the northern
285 half of the United States (~north of 35° N latitude).

286 In addition to experiencing some of the lowest monthly grazing land conditions, the
287 southwestern U.S. region also experienced higher-than-normal variability over the 1995–2022
288 study period during all warm season months (**Figure 4**). States within the southwestern U.S.
289 region and adjacent areas of the West—California, Arizona, Nevada, New Mexico, Colorado,
290 Texas, and Montana—were the only states to obtain a standard deviation above the national

291 seasonal CCIndex standard deviation of 0.49 in all six months. Meanwhile, variability across the
292 eastern North-Central region as well as the Mississippi Delta and Northeast U.S. regions was on
293 the lower side (<0.49) through May and June. For the remainder of the warm season, variability
294 was higher across these regions, contributing to the general deterioration of grazing land
295 conditions through the warm season in the eastern half of the United States. The only states to
296 decrease in grazing land condition variability from May through October were Florida,
297 California, and Arizona, with CCIndex standard deviation changes of <-0.10.



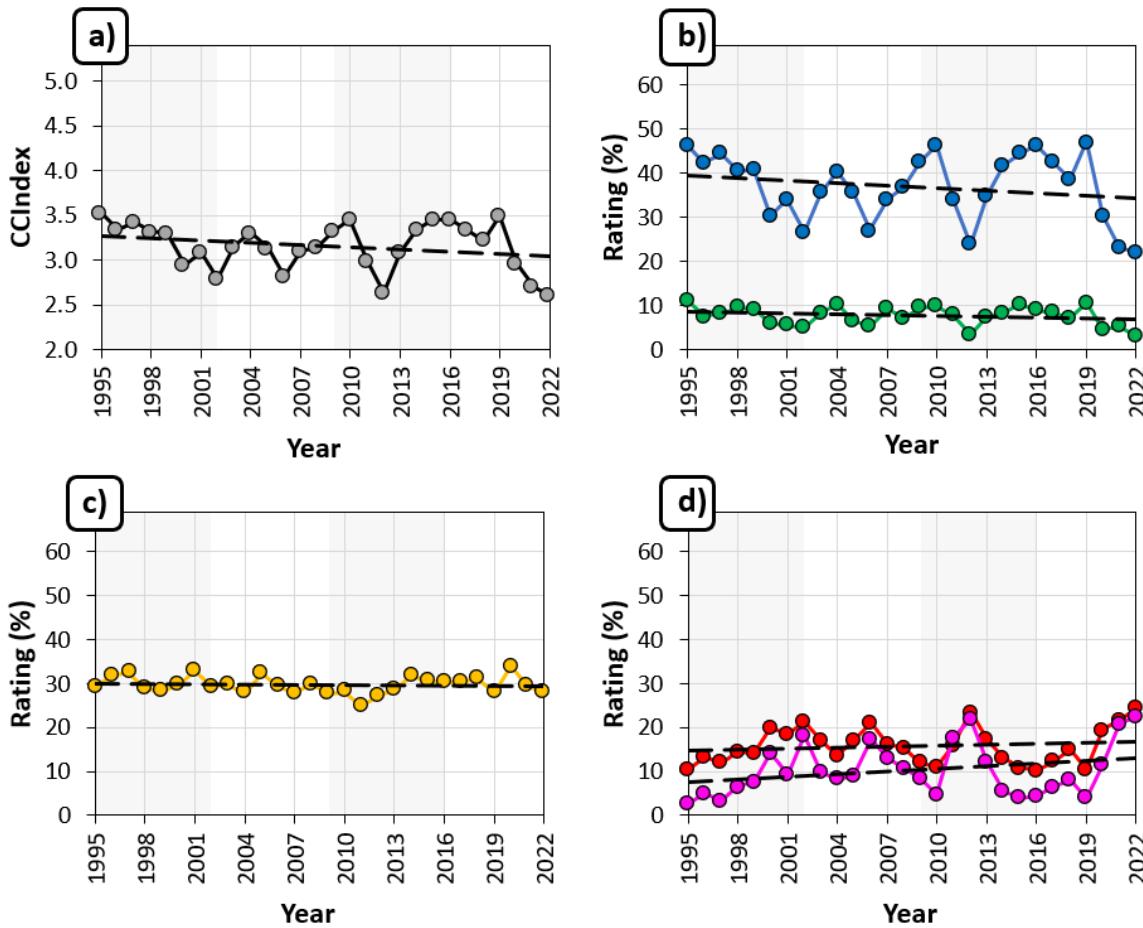
303 **Figure 4.** Monthly variability from warm season to warm season (May–October; 1995–2022)

304 measured by standard deviation of pasture and rangeland CCIndex ratings by U.S. state.

306 Overall, there were notable differences in grazing land condition averages when
 307 comparing the eastern and western halves of the United States. All warm-season metrics using
 308 the CCIndex, including rating averages (Figure 5a), number of years below the national warm
 309 season average (Figure 5b), departure from the national seasonal average (Figure 5c), and
 310 standardized anomalies from the national average (Figure 5d), suggest conditions across the

311 southwestern United States and, more broadly, the western United States were suboptimal when
312 compared to the rest of the country. California, Arizona, and New Mexico were three states of
313 note where grazing land CCIndex ratings averaged below 2.80 on a warm-seasonal basis (<-0.35
314 below normal; <-2.0 standard deviations below normal), which was the result of 24 of the 28
315 years in the historical record registering below the national average.

316
317 **Figure 5.** Warm season summaries by U.S. state of pasture and rangeland a) CCIndex rating
318 averages; b) number of warm seasons below the U.S. CCIndex rating average; c) CCIndex rating
319 departures from the U.S. average; and d) standardized anomalies from the U.S. average (1995–
320 2022).


321

322 California, Arizona, and New Mexico were the only three states to have a higher percentage of
323 grazing land in poor or very poor condition than in excellent or good condition for at least four of
324 the six warm-season months (**Supplemental Table S1**). Arizona and New Mexico were also the
325 only states to have higher variability in poor or very poor condition than excellent or good
326 condition in each warm-season month (**Supplemental Table S2**).

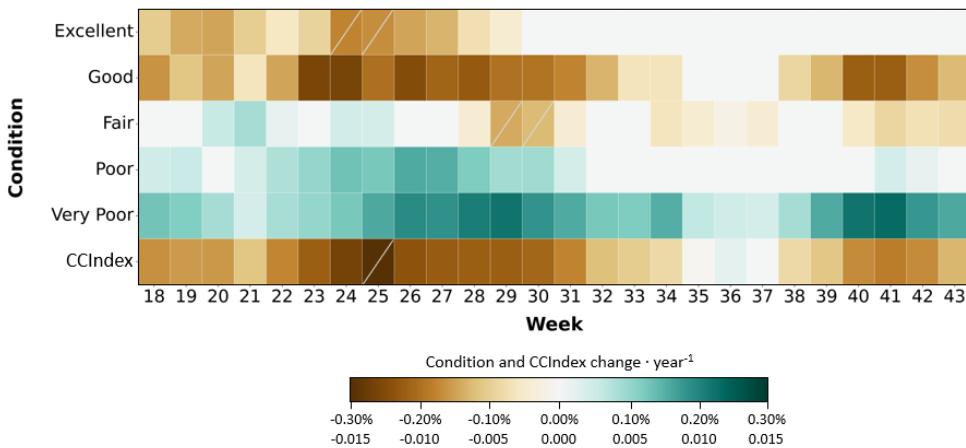
327 **3.2 Condition trends**

328 **3.2.1 National level**

329 Over the 28-year study period, at the national warm-seasonal average level, grazing land
330 conditions have deteriorated statistically insignificantly, with a CCIndex rating change of -0.007
331 $\cdot \text{yr}^{-1}$ (**Figure 6a**). Excellent and good condition coverage has subtly declined nationally by
332 $0.06\% \cdot \text{yr}^{-1}$ and $0.17\% \cdot \text{yr}^{-1}$, respectively, which was not statistically significant to the 95%
333 significance level (**Figure 6b**). These trends from 1995 through 2022 equated to a 2% decrease
334 in excellent condition coverage and a 5% decrease in good condition coverage for grazing lands
335 across the United States, consequently requiring more supplemental feed supply to maintain
336 livestock conditions. For fair conditions, which are considered a less-than-normal condition for
337 the time of year, coverage trends were the lowest of all conditions at $-0.03\% \cdot \text{yr}^{-1}$, equating to
338 only a 1% change over the 28-year period (**Figure 6c**). Poor condition coverage increased by
339 $0.05\% \cdot \text{yr}^{-1}$,

340

341 **Figure 6.** Warm-seasonal average U.S. pasture and rangeland ratings by a) CCIndex rating
 342 (gray); b) excellent (green) and good condition (blue); c) fair condition (yellow); and d) poor
 343 (red) and very poor condition (magenta). The black dashed line represents the Theil-Sen slope,
 344 and the gray sections separate four equal epochs within the study period (1995–2022).


345

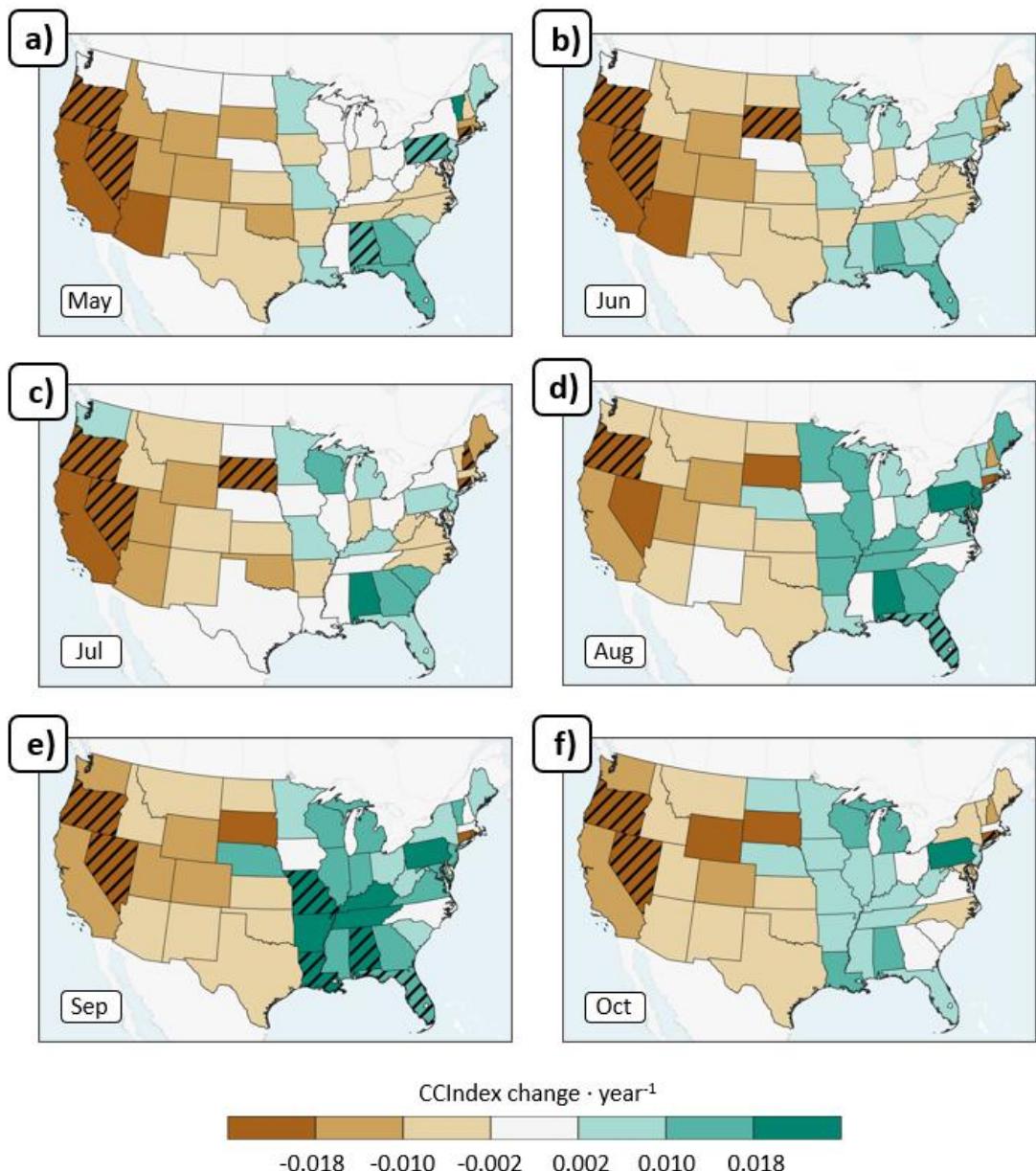
346 which represented a 1% increase over time. While not statistically significant, the most robust
 347 trend was in the increase in very poor conditions, with a seasonal increase of $0.21\% \cdot \text{yr}^{-1}$
 348 equating to a 6% increase in coverage (Figure 6d). Therefore, grazing lands that were
 349 considered in good, excellent, or fair condition were more often being downgraded to poor or
 350 very poor condition over time.

351 Much of these overall negative trends for grazing lands have come from conditions in
352 recent times. 2022 was the only year in the USDA NASS historical record of grazing land
353 conditions where there was a higher coverage of poor conditions than excellent and good
354 coverage, and a higher coverage of very poor conditions than excellent and good coverage. 2021
355 was also suboptimal, as poor or very poor condition coverage was 14% higher (42% of acreage)
356 than the combined excellent or good condition coverage (28% of acreage). Conversely, national
357 grazing land conditions have never been more optimal than 1995 (warm-season CCIndex rating
358 of 3.52), which is the beginning of the historical record, as the combined excellent/good
359 conditions covered 57% of national acreage and poor/very poor conditions represented a
360 historically low 13% of acreage.

361 Also of importance, rapid fluctuations in grazing land conditions in recent times
362 contribute to the trend in interseasonal variability. When separating the 28-year study period into
363 four equal epochs (1995–2001; 2002–2008; 2009–2015; 2016–2022), standard deviations have
364 increased over time for each condition category along with the CCIndex. For the CCIndex at the
365 warm-season and national level, the standard deviation in the first period increased from 0.19 to
366 0.36 by the final 7-year period. Variability within the 7-year periods was comparable between
367 excellent/good and poor/very poor conditions, as the standard deviation for these condition
368 combinations went from 7% in 1995–2001 to nearly doubling at 13% in 2016–2022. The
369 increasing variability and statistically insignificant national condition trends can be attributed to
370 the observed 3–5-year cyclic patterns in seasonal-averaged grazing land conditions (**Figure 6**).
371 Though, a thorough investigation of the causes of the cyclic nature of national-level grazing
372 lands and potentially state-level conditions goes beyond the scope of this research.

373 At the national aggregated level, grazing land condition coverage trends were also
 374 investigated at the highest temporal interval (weekly) between May and October (**Figure 7**).
 375 Overall, deteriorating grazing land trends have occurred within a majority of warm-season
 376 weeks, as there were only two weeks that did not display a decreasing CCIndex trend—weeks 36
 377 and 37 in mid-September. While 24 of the 26 examined weeks underwent a deteriorating trend in
 378 grazing land conditions, only one of these weeks was statistically significant at the 95%
 379 significance level (week 25 in late June). This coincides with when the most robust negative
 380 trends occurred, which, more broadly, was between week 23 and week 30, encompassing late
 381 June and all of July. During the late June through July period, excellent condition coverage
 382 declined by as much as $-0.17\% \cdot \text{yr}^{-1}$, while good condition coverage decreased by as much as $-0.30\% \cdot \text{yr}^{-1}$. These trends corresponded to a 5% and 8% total decrease, respectively, over the 28-
 383 year study period within the weeks in late June and July.
 384

385
 386 **Figure 7.** Theil-Sen slope results of interweekly trends in U.S. pastureland condition ratings
 387 (1995–2022). Slope units for condition categories are percent increases or decreases in condition
 388 coverage per year (first row under color bar), and slope units for CCIndex ratings are increases
 389 or decreases in CCIndex per year (second row). Hatching signifies statistical significance at the
 390 95% confidence level using Kendall's Tau statistic.

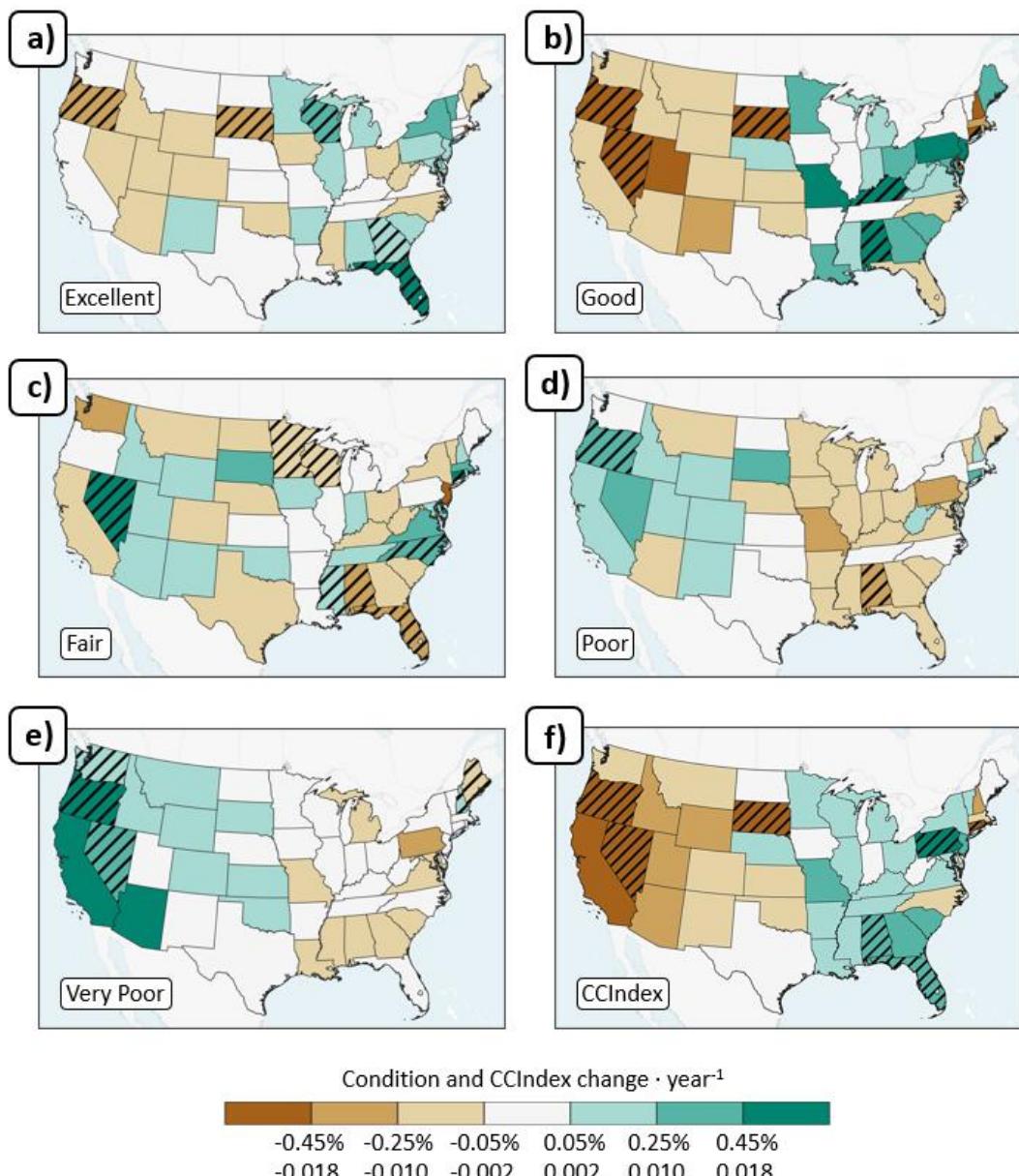

391

392 Furthermore, coverage in poor and very poor conditions during the late June through July
393 window increased by as much as $0.24\% \cdot \text{yr}^{-1}$, which equated to a 7% increase in coverage over
394 the 28-year study period within these weeks. Prior to this period, trends in optimal grazing land
395 conditions in May were also in a declining mode, with excellent and good condition coverage
396 decreases ranging from $-0.12\% \cdot \text{yr}^{-1}$ to $-0.18\% \cdot \text{yr}^{-1}$. While the late June through July period
397 displayed the most robust trends for grazing land conditions across the United States, weeks 35
398 through 37 (early September) displayed only subtle changes or no trends at all before switching
399 back to the declining mode for the remainder of the warm season. Though, these trends represent
400 the United States, and thus, statewide trends need to also be assessed to further understand the
401 changing pasture and rangeland condition landscape.

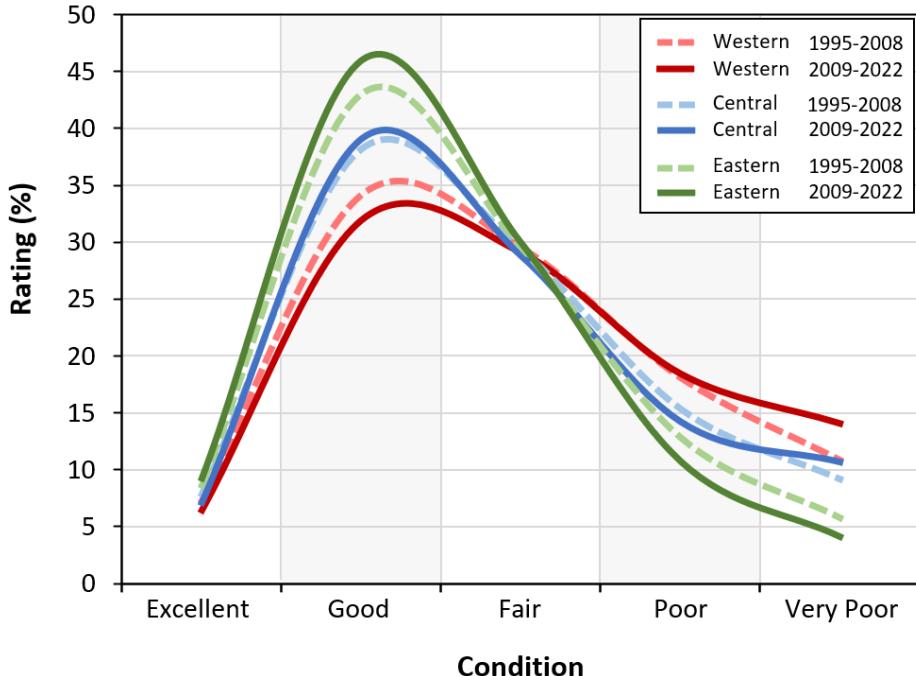
402 **3.2.2 State level**

403 Using the CCIndex, distinct spatiotemporal trends in grazing land conditions were
404 observed across the United States at the intermonthly interval (**Figure 8**). Specific condition
405 category trends by state and month can be examined in **Supplemental Table S3**. In each month,
406 much of the western United States underwent a decline in grazing land conditions over the 1995–
407 2022 period; Nevada and Oregon were the only two U.S. states to display a statistically
408 significant trend in at least five of the six warm season months. Both states experienced a
409 decreasing CCIndex trend lower than $-0.03 \cdot \text{yr}^{-1}$, and both states were in the top-five for
410 declining grazing land condition trends over the 28-year study period. Washington was the only
411 state in the western United States to have experienced an improvement, albeit statistically
412 insignificant, in grazing land conditions over the study period during at least one of the months
413 (July). More broadly, at least 30 of the 48 states (63%) displayed a decreasing trend in grazing

414 land conditions in May, June, and July (Figure 8a–c), while less than half the states underwent a
415 decreasing trend in August, September, and


416
417 **Figure 8.** Theil-Sen slope results for intermonthly trends (May–Oct) in pasture and rangeland
418 CCIIndex ratings by U.S. state (1995–2022). Slope units are in percent increase or decrease in
419 CCIIndex per year. Hatching signifies statistical significance at the 95% confidence level using
420 Kendall's Tau statistic.

421


422 October (**Figure 8d–f**). Meanwhile, in general, the eastern half of the United States experienced
423 an improvement in grazing land conditions, primarily in August, September, and October. The
424 most robust improvements occurred in the Mississippi Delta and adjacent southeastern U.S.
425 regions, where six states in these regions during September displayed statistically significant
426 CCIndex rating trends upwards of $0.03 \cdot \text{yr}^{-1}$. These improving grazing land conditions collocate
427 with where field crop conditions have significantly improved through the USDA NASS crop
428 condition historical record (Bundy et al., 2024).

429 When aggregated to the warm-seasonal level and examined by condition category, the
430 eastern/western United States divide in condition trends was also apparent (**Figures 9 and 10**),
431 which follows suite with the divide between rangelands (predominantly in the western United
432 States) and pastures (predominantly in the eastern United States). That is, excellent and good
433 conditions have decreased most substantially in the western United States, with declines in
434 Nevada and Oregon for good condition coverage worse than $-1.0\% \cdot \text{yr}^{-1}$ —the only two states to
435 have any trend be worse than $-1.0\% \cdot \text{yr}^{-1}$. Perhaps the most notable of these trends were the
436 widespread statistically significant increases in very poor conditions in the western half of the
437 United States (**Figure 9e**). Very poor condition coverage trends had the greatest number of states
438 (six total) with a statistically significant increasing trend. Arizona, California, and Oregon
439 underwent the most robust increases in very poor condition coverage, with increases greater than
440 $0.45\% \cdot \text{yr}^{-1}$, equating to almost a 13% increase in grazing land coverage that provided little or
441 no feed within each of these states. From a categorical coverage change standpoint, the largest
442 changes were good conditional coverage being downgraded in the western United States to poor
443 or very poor condition, while poor or very poor conditions improved in the eastern United States

444 to at least a good condition (**Figure 10**). Meanwhile, trends in the central United States were
445 mixed, with a subtle increase in good condition coverage but also an increase in very poor
446 condition coverage.

447
448 **Figure 9.** Theil-Sen slope results for interwarm season trends (1995–2022) in pasture and
449 rangeland condition ratings by U.S. state. Slope units are same as in Figure 7.

450

451 **Figure 10.** U.S. regional and warm season-averaged pasture and rangeland condition coverage
 452 averaged in two 14-year epochs (1995–2008, 2009–2022). Western United States is defined as
 453 states west of the 105th meridian; Eastern United States is defined as states east of the 95th
 454 meridian; and Central United States is defined as states between the 95th and 105th meridian.

455

4 DISCUSSION

456

4.1 Explanatory factors

457 Grazing land condition changes, including intraseasonal variability across states and
 458 spatiotemporal trends over time, are explained by both abiotic and biotic influences. Observed
 459 declines in grazing land conditions, on average, at the national level through the warm season
 460 (**Figure 2**) are in large part driven by vegetation response-time variability to precipitation (or
 461 lack thereof) and weather in general (Arnone et al., 2008; Wu et al., 2015). Precipitation timing
 462 and duration are the dominant climatic regulators of non-irrigated grazing land productivity

463 (Knapp & Smith, 2001; Sala et al., 2012; Bunting et al., 2017; White et al., 2023), and this, in
464 conjunction with temperatures, ultimately controls soil moisture availability for plants (Sala et
465 al., 2012; Wilcox et al., 2017). Whether it be pasture or rangeland, evidence from field-based
466 studies have quantified that mean annual precipitation can account for up to 90% in aboveground
467 net primary production of grasslands (Del Grosso et al., 2008; Guo et al., 2012).

468 In addition to precipitation, temperatures, and soil moisture, another climate variable that
469 plays a non-trivial role in the climatology of grazing land conditions is evapotranspiration—the
470 process by which water is transferred from land to the atmosphere by evaporation from soil and
471 by transpiration from plants. Furthermore, evapotranspiration is the main driver of energy
472 balance in the hydrological cycle, making it an essential component when developing strategies
473 to improve agricultural water use (Bezerra et al., 2012). An example of how these factors control
474 the state of grazing land conditions is by comparing the southwestern and northeastern U.S.
475 domains. Annually, precipitation accumulation across the southwestern United States is
476 significantly less (ranging 120–170 cm less) than the northeastern United States, on average, and
477 average temperatures register 10°C or greater in the southwestern region than in the northeastern
478 United States (NOAA, 2023). As a result, the estimated fraction of precipitation lost to
479 evapotranspiration is greater than 80% in the southwestern United States, while it less than 40%
480 in the northeastern United States on an annual basis (Sanford & Selnick, 2013). Therefore, the
481 arid and semi-arid climates of the southwestern United States, and greater western United States,
482 leads to grazing conditions to display lower quality grazing conditions than that of the sub-humid
483 and humid eastern half of the nation (**Figures 3, 4, 5, 10**). As such, grazinglands across the
484 western United States have a lower resilience to interannual precipitation deficits, or droughts
485 (Stanimirova et al., 2019). In other words, vegetation adjustment rates to precipitation

486 fluctuations can be low in the southwestern United States, which means lower resilience and a
487 slower return of the grazing system to equilibrium (Stanimirova et al., 2019). This slower return
488 is why recent droughts in the western and central portions of the United States have continued to
489 cause grazing lands in recent years to be historically low (**Figure 6**), further impacting the
490 climatological average and interseasonal variability of condition ratings (**Figures 3–5**) as well as
491 the long-term condition trends (**Figures 8–10**).

492 Additionally, condition responses are also impacted by biotic factors such as grazing
493 capacity, which can influence both the short- and long-term productivity of a pasture or
494 rangeland (Illius & O'Connor, 1999; Fuhlendorf et al., 2001; Briske et al., 2003). Hence, if a
495 pasture or rangeland is overgrazed, a decline in condition may be observed in the weekly data.
496 Declining grazing land conditions during September and October can have major ramifications
497 for the following seasons, especially if overgrazed—forage production can be reduced by over
498 50% in some states (NDSU, 2023). Thus, it is the combination of abiotic and biotic factors that
499 makes the use of the USDA NASS condition data valuable. Moreover, the condition indices
500 reflect the timing of degrading and improving conditions more accurately than solely examining
501 weather, climate, and other abiotic and biotic variables alone to determine condition trends. This
502 attributes to the high-quality network of extension agents and Farm Service Agency staff who
503 can accurately assess the status of a field during critical periods of anomalous conditions.

504 **4.2 Climate trends**

505 Changing grazing land conditions on a weekly basis and over time can be linked with
506 regional climatic changes across the United States. Furthermore, while short-term climatic events
507 are important drivers of weekly grazing land condition changes and ecological transitions

508 (Smith, 2011), it is equally important to place extreme events within the context of long-term
509 climate cycles and trends (Harris et al., 2018; Peters et al., 2021).

510 Since 1970, the rate of warming temperatures in the United States has been 60% faster
511 than the rest of Earth (Marvel et al., 2023), and this has had implications for other components of
512 the climate system, consequently impacting grazing land condition trends. These trends have
513 been extensively observed across the western United States, where many states experienced a
514 statistically significant increase in temperatures (e.g., Joyce et al., 2013; Reeves et al., 2014;
515 Hanberry et al., 2019; McIntosh et al., 2019) and a general decline in accumulated precipitation
516 (e.g., Easterling et al., 2017; Marvel et al., 2023). There is high confidence that heatwaves have
517 become more common and severe across the western United States since the 1980s, and there is
518 very high confidence that drought risk—linked with long-term aridification trends (Overpeck &
519 Udall, 2020)—has increased over the past century; at the same time, precipitation has become
520 more extreme in recent decades (Marvel et al., 2023).

521 Also of note, the 2000–2021 period in the southwestern United States contained the driest
522 soil moisture of any period of the same length over the past 1,200 years (Williams et al., 2022),
523 which can explain, in large part, why this region had grazing land conditions during at least 70%
524 of warm-seasons below the national CCIndex average (**Figure 5**). Previous literature has
525 demonstrated that arid and semi-arid global grazing lands possess nontrivial sensitivity to
526 precipitation variation and, therefore, are vulnerable to climate change (Stanimirova et al., 2019).
527 Drought conditions have decreased forage quality, availability, and productivity, affecting
528 livestock operations, habitat for other species (Winford & Lee, 2021), and long-term soil
529 integrity (Archer & Predick, 2008); this is reflected in the intermonthly and interseasonal

530 spatiotemporal trends in grazing land conditions across the western half of the nation (**Figures**
531 **8–10**).

532 It is important to note that these long-term climate patterns, and patterns in seasonal
533 grazing land conditions, can be associated with multi-year and multi-decadal climate
534 teleconnection patterns (Christensen et al., 2023). For example, both the El Niño Southern
535 Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) influence wet-dry cyclic patterns,
536 directly impacting the spatiotemporal distribution of precipitation and consequently impacting
537 vegetation productivity across the globe (e.g., Detsch et al., 2016; Chen et al., 2017; Bathiany et
538 al., 2018; Jiao et al., 2021). This is particularly true for the southwestern domain, as previous
539 literature has quantified the significant relationship between the PDO and perennial grass cover
540 within the region (Christensen et al., 2023). For example, over the 1995–2022 period, the PDO
541 transitioned from a warm to a cool phase (warmer-than-normal sea surface temperatures became
542 anomalously cooler along coastal North America), which resulted in a decrease in perennial
543 grass cover (Christensen et al., 2023), which is likely a direct result of the observed declines in
544 grazing land conditions across the southwestern United States (**Figures 8 and 9**). Therefore,
545 while this research established the monotonic trend in grazing land conditions over the 28-year
546 period, the evident cyclic patterns in seasonal-averaged condition ratings (**Figure 6**) reveal the
547 need for future research to continue exploring the correlation between grazing land conditions,
548 grassland coverage, and climate teleconnection patterns like ENSO and PDO.

549 In addition, large fires on western U.S. grazing lands have also increased more than
550 fivefold during the 1984–2017 epoch (Li et al., 2021)—driven in part by increases in invasive
551 grass cover (e.g., woody plant encroachment, Russian olive) from precipitation changes—that
552 ultimately alter the condition of grazing lands (Archer & Predick, 2008; DiTomaso, 2000;

553 Archer et al., 2017; Breshears et al., 2016; Bestelmeyer et al., 2018; Archer et al., 2017; Archer
554 et al., 2023). Alongside climate change impacts, there has been a significant shift to exurban
555 development, especially in Nevada, Arizona, and New Mexico (Archer & Predick, 2008). These
556 arid lands are exposed to new levels of environmental pressure, including increased air pollution,
557 atmospheric nitrogen deposition, motorized off-road vehicles, feral pets, and non-native plants
558 (Archer & Predick, 2008).

559 Meanwhile, a majority of the eastern half of the United States has experienced an
560 increase in precipitation totals (Easterling et al., 2017; Marvel et al., 2023), likely contributing to
561 general improvements in grazing land conditions (**Figures 8–10**). Average annual precipitation
562 in the 2002–2021 period was 5%–15% higher relative to the 1901–1960 average across the
563 central and eastern United States, a trend attributable to climate change (Knutson & Zeng, 2018).
564 Furthermore, hydrological droughts have become less frequent in the eastern United States due
565 to increases in precipitation that compensate for warming-driven increases in evapotranspiration
566 (McCabe et al., 2017).

567 **4.3 Implications, adaptation, and future work**

568 The resulting grazing land condition changes across the United States has had, and will
569 continue to have, major ramifications on the livestock industry. In the United States, cattle
570 production is among the most important as it consistently accounts for the largest share of total
571 cash receipts for agricultural commodities—it is forecast to represent about 17% of the 520
572 billion USD in total cash receipts in 2023 (ERS, 2023). This is especially important in the
573 southwestern United States —where grazing land conditions have declined and are rated the
574 lowest on average amongst the entire United States —as livestock production is the dominant use
575 of agricultural land, accounting for about one-third of agricultural revenue (Havstad et al., 2018).

576 As a result of drought conditions in recent years, producers have been forced to reduce
577 their livestock capacity and increase labor demands for feeding (McPherson et al., 2023), which
578 has reduced the nation's total supply of cattle and corresponding beef products (ERS, 2023).
579 Consequently, the decline in supply has resulted in an increase in cattle and beef prices over time
580 (ERS, 2023). In addition to inventory declines and market price fluctuations since 1980 (ERS,
581 2023), producers are also faced with increasingly challenging management decisions from
582 increasing feed costs and rising land values (Augustine, 2010; Derner & Augustine, 2016; Shrum
583 et al., 2018). The growing list of consequences accelerates the need for useful indicators and
584 metrics to monitor near-real-time conditions, such as the USDA NASS pasture and rangeland
585 condition dataset, to support adaptive management practices (Bestelmeyer & Briske, 2012;
586 Derner et al., 2012; Derner & Augustine, 2016; McCollum et al., 2017).

587 Although climatic impacts vary depending on pasture and rangeland types and
588 management strategies already in place (e.g., irrigation, insurance), the likely result of future
589 climate trends are a continuation of deteriorating grazing land conditions for some regions.
590 Overall, the response of grazing land productivity to climate change will be influenced by
591 grazing management and the willingness to implement adaptation strategies (Izaurrealde et al.,
592 2011). One of the applications of this research is to use these results to assist with longer-term
593 managerial decisions for grazing land sustainability. For example, in states with a declining trend
594 in grazing land conditions, land managers might need to provide additional forage or
595 supplemental feed to support operations, which increases the cost of production and perhaps
596 reduces herd size. If land managers decide to leave livestock on grazing lands for longer periods,
597 there will be increased stress on the land, creating a risk of further degradation. In states where

598 increases in grazing land conditions were observed, land managers may choose to increase herd
599 size, resulting in additional economic activity (McCollum et al., 2017).

600 Of course, strategy implementation and needs will vary, and there is not a single solution
601 to totally mitigate the threat of climate change on grazing conditions. For example, some
602 livestock producers may be able to quickly adapt by implementing new strategies for dealing
603 with declining carrying capacity, but due to ongoing drought conditions, others may be incapable
604 of doing so because their lands are already overgrazed and cannot recover (Lengnick, 2015;
605 Stanimirova et al., 2019). Examples of grazing land management practices include flexible
606 stocking rates, grazing with multiple paddocks, longer rest periods for forage recovery, varied
607 seasons of grazing, optimizing herd size and composition, employing livestock bred for arid
608 environments, identifying reserve forage, strategic distribution of water, proactive vegetation
609 management, erosion control, identification of alternate forage supplies, conversion to integrated
610 crop-livestock farming systems, and changes in enterprise structure (Russelle et al., 2007;
611 Gonzalez et al., 2018).

612 Additionally, a strategy to improve ranch resilience is drought planning (Lessa et al.,
613 2020; Haigh et al., 2021), which focuses on identifying critical weeks for monitoring conditions
614 (Smart et al., 2021) and can be used in parallel with USDA NASS weekly pasture and rangeland
615 condition data to make informed decisions. For example, if 1) state-level grazing land conditions
616 have declined in recent week and display a similar trend to what has been observed in at the field
617 level within that state, 2) grazing land conditions are below average for the current week in a
618 particular state, and 3) if the precipitation forecast in the weeks ahead suggest below average
619 totals, then these factors may prompt the land manager to implement drought strategies. These
620 responses may involve adjusting the number of cattle, the timing of grazing, and the length of

621 grazing time in pastures and rangelands that is data-driven and supported by precipitation
622 departures from normal, vegetation growth (Wilmer et al., 2018), and the grazing land condition
623 climatology and current spatiotemporal trends established in this research.

624 Arguably, something that may be most important in sustainability, and something to
625 expand upon in future research using the USDA NASS condition data, is obtaining a financial
626 safety net through agricultural insurance. Grazing and the lack of yield measurements makes
627 insuring pastures and rangelands with traditional insurance products generally impractical
628 (Vroege et al., 2019). Index insurance programs rely on an endogenous index that is highly
629 correlated to grazing land production, and can also be used in conjunction with the USDA NASS
630 pasture and rangeland condition dataset. Another application of this research is to promote the
631 use of these programs, including the Pasture, Rangeland, Forage (PRF) Program; Livestock
632 Forage Disaster Program (LFP); and the Conservation Reserve Program (CRP) Grasslands, as
633 these programs are designed to mitigate financial risk during times of unfavorable weather
634 conditions. Therefore, given the state-level results from this research, producers should
635 investigate the various programs available and see which can be of particular use.

636 Future work may involve using USDA NASS data and the newly established
637 spatiotemporal grazing land condition climatology to continue bridging the knowledge between
638 pasture and rangeland ecosystems to the effects of climate and livestock production. This may
639 involve further investigating trends within each state and pinpointing the exact causes of the
640 trends. This may also involve quantifying the specific correlation coefficients between weather
641 and climate variables such as precipitation, temperature, and evapotranspiration with grazing
642 land condition data to improve the predictability of condition changes on a weekly basis.
643 Additionally, future research may involve examining pasture and rangeland plant communities,

644 conducting a more in-depth analysis regarding the observed state-level trends, and comparing the
645 various trends with different plant types. Finally, and as noted earlier, future research may
646 involve examining the relationship between grazing land conditions and the short- and long-term
647 cyclic patterns that may be correlated with teleconnection climate patterns to improve the
648 predictability of conditions on an interannual basis.

649 **5 CONCLUSIONS**

650 With over one-third of the U.S. land area encompassed by grazingland, a cohesive
651 understanding and establishment of the baseline climatology of pastures and rangelands is
652 critical for advancing management operations under a changing climate. This research used data
653 from the USDA NASS general crop condition database, which has generally been overlooked in
654 the literature until recently (e.g., Irwin & Good, 2017a, 2017b; Irwin & Hubbs, 2018; Begueria
655 & Maneta, 2020; Bundy & Gensini, 2022; Bundy et al., 2023, 2024), to quantify grazing land
656 condition tendencies from May through October, quantify seasonal averages and variability for
657 each state, and quantify spatiotemporal trends in conditions in the conterminous United States for
658 the 1995–2022 study period.

659 During a given season, grazing land conditions tended to deteriorate as the amount of
660 land providing adequate or an excess of feed (excellent or good condition) decreased by 14% on
661 average. By the end of the warm season in October, nearly 33% of land needed supplemental
662 feeding to maintain livestock conditions. Spatially, the southwestern United States retained the
663 lowest conditions on average due to having at least twenty years below the U.S. average
664 condition rating. At the national aggregated level, conditions have degraded during the 28-year
665 study period, as the most significant trends were observed for poor or very poor condition
666 coverage, with a total increase of 7% ($0.26\% \cdot \text{yr}^{-1}$). These robust increasing trends in poor and

667 very poor condition coverage were most apparent across the western half of the United States
668 (west of the 105th meridian), which is predominantly rangeland. Meanwhile, the eastern half of
669 the United States (east of the 95th meridian), which is mostly pastureland, generally experienced
670 an improvement in conditions.

671 Overall, continuing regional climatic shifts that have resulted in increasing temperatures,
672 variable precipitation totals, and subsequent soil moisture declines leading to increased drought
673 instances will impose new challenges for resource managers. Grazing land declines can result in
674 increased feed supply demand and reduced grazing capacity; therefore, the need for flexible
675 livestock, forage, and grazing management strategies will be critical in the coming decades to
676 adapt to the impacts of climate change on water-sensitive ecosystems. These new findings will
677 appeal to land managers and policymakers by providing material to help foster informed
678 decision-making, prompt adaptation and management strategies, and address environmental
679 changes and land-use demands. Additionally, these results suggest the pasture and rangeland
680 condition data released weekly in the USDA NASS CPC report should be monitored to assist
681 with real-time decision-making to detect degradation and encourage targeted interventions to
682 support livestock production.

683 **SUPPLEMENTAL MATERIAL**

684 Supplemental material provides specific pasture and rangeland condition percentages for
685 each general condition category (excellent, good, fair, poor, very poor).

686 **DATA AVAILABILITY**

687 Data from <https://quickstats.nass.usda.gov/>

REFERENCES

689 Archer, D., Toledo, D., Blumenthal, D. M., Derner, J., Boyd, C., Davies, K., Hamerlynck, E.,
690 Sheley, R., Clark, P., Hardegree, S., Pierson, F., Clements, C., Newingham, B., Rector,
691 B., Gaskin, J., Wonkka, C. L., Jensen, K., Monaco, T., Vermeire, L. T., & Young, S. L.
692 (2023). Invasive annual grasses—reenvisioning approaches in a changing climate.
693 *Journal of Soil and Water Conservation*, 78(2), 95–103.
694 <https://doi.org/10.2489/jswc.2023.00074>

695 Archer, S. R., & Predick, K. I. (2008). Climate change and ecosystems of the southwestern
696 United States. *Rangelands*, 30(3), 23–28. [https://doi.org/10.2111/1551-501X\(2008\)30\[23:CCAEOT\]2.0.CO;2](https://doi.org/10.2111/1551-501X(2008)30[23:CCAEOT]2.0.CO;2)

697 Archer, S. R., Andersen, E. M., Predick, K. I., Schwinnning, S., Steidl, R. J., & Woods, S. R.
698 (2017). Woody plant encroachment: causes and consequences. *Rangeland Systems:
699 Processes, Management and Challenges*, 25–84. https://doi.org/10.1007/978-3-319-46709-2_2

700 Arnone, J. A., Verburg, P. S., Johnson, D. W., Larsen, J. D., Jasoni, R. L., Lucchesi, A. J., &
701 Schimel, D. S. (2008). Prolonged suppression of ecosystem carbon dioxide uptake after
702 an anomalously warm year. *Nature*, 455(7211), 383–386.
703 <https://doi.org/10.1038/nature07296>

704 Augustine, D. J. (2010). Spatial versus temporal variation in precipitation in a semiarid
705 ecosystem. *Landscape Ecology*, 25(6), 913–925. <https://doi.org/10.1007/s10980-010-9469-y>

706 Bain, R., & Fortenberry, T. R. (2016). Impact of crop condition reports on national and local
707 wheat markets. *Journal of Agricultural and Applied Economics*, 49(1), 97–119.
708 <https://doi.org/10.1017/aae.2016.31>

709 Bathiany, S., Scheffer, M., Van Nes, E. H., Williamson, M. S., & Lenton, T. M. (2018). Abrupt
710 climate change in an oscillating world. *Scientific Reports*, 8, 5040.
711 <https://doi.org/10.1038/s41598-018-23377-4>

712 Beguería, S., & Maneta, M. P. (2020). Qualitative crop condition survey reveals spatiotemporal
713 production patterns and allows early yield prediction. *Proceedings of the National
714 Academy of Sciences*, 117(31), 18317–18323. <https://doi.org/10.1073/pnas.1917774117>

715 Bestelmeyer, B. T., & Briske, D. D. (2012). Grand challenges for resilience-based management
716 of rangelands. *Rangeland Ecology & Management*, 65(6), 654–663.
717 <https://doi.org/10.2111/REM-D-12-00072.1>

718 Bestelmeyer, B. T., Peters, D. P., Archer, S. R., Browning, D. M., Okin, G. S., Schooley, R. L.,
719 & Webb, N. P. (2018). The grassland–shrubland regime shift in the southwestern United
720 States: Misconceptions and their implications for management. *BioScience*, 68(9), 678–
721 690. <https://doi.org/10.1093/biosci/biy065>

722 Bestelmeyer, B. T., Tugel, A. J., Peacock Jr, G. L., Robinett, D. G., Shaver, P. L., Brown, J. R.,
723 & Havstad, K. M. (2009). State-and-transition models for heterogeneous landscapes: a
724 strategy for development and application. *Rangeland Ecology & Management*, 62(1), 1–
725 15. <https://doi.org/10.2111/08-146>

726 Bezerra, B. G., da Silva, B. B., Bezerra, J. R., Sofiatti, V., & dos Santos, C. A. (2012).
727 Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi
728 Plateau semiarid lands of Brazil. *Agricultural Water Management*, 107, 86–93.
729 <https://doi.org/10.1016/j.agwat.2012.01.013>

733 Bolster, C. H., Mitchell, R., Kitts, A., Campbell, A., Cosh, M., Farrigan, T. L., Franzluebbers, A.
734 J., Hoover, D. L., Jin, V. L., Peck, D. E., Schmer, M. R., & Smith, M. D. (2023). *Chapter*
735 *11: Agriculture, Food Systems, and Rural Communities. Fifth National Climate*
736 *Assessment.* <https://doi.org/10.7930/nca5.2023.ch11>

737 Breshears, D. D., Knapp, A. K., Law, D. J., Smith, M. D., Twidwell, D., & Wonkka, C. L.
738 (2016). Rangeland responses to predicted increases in drought
739 extremity. *Rangelands*, 38(4), 191–196. <https://doi.org/10.1016/j.rala.2016.06.009>

740 Briske, D. D., Fuhlendorf, S. D., & Smeins, F. E. (2003). Vegetation dynamics on rangelands: A
741 critique of the current paradigms. *Journal of Applied Ecology*, 40(4), 601–614.
742 <https://doi.org/10.1046/j.1365-2664.2003.00837.x>

743 Briske, D. D., Fuhlendorf, S. D., & Smeins, F. E. (2005). State-and-transition models, thresholds,
744 and rangeland health: A synthesis of ecological concepts and perspectives. *Rangeland
745 Ecology & Management*, 58, 1–10. [https://doi.org/10.2111/1551-5028\(2005\)58%3C1:SMTARH%3E2.0.CO;2](https://doi.org/10.2111/1551-5028(2005)58%3C1:SMTARH%3E2.0.CO;2)

746 Briske, D. D., Fuhlendorf, S. D., & Smeins, F. E. (2006). A unified framework for assessment
747 and application of ecological thresholds. *Rangeland Ecology & Management*, 59(3), 225–
748 236. <https://doi.org/10.2111/05-115R.1>

749 Briske, D. D., Joyce, L. A., Polley, H. W., Brown, J. R., Wolter, K., Morgan, J. A., & Bailey, D.
750 W. (2015). Climate-change adaptation on rangelands: linking regional exposure with
751 diverse adaptive capacity. *Frontiers in Ecology and the Environment*, 13(5), 249–256.
752 <https://doi.org/10.1890/140266>

753 Bundy, L. R., & Gensini, V. A. (2022). An assessment of USDA corn condition ratings across
754 the US Corn Belt. *Agronomy Journal*, 114(1), 601–617.
755 <https://doi.org/10.1002/agj2.20973>

756 Bundy, L. R., Gensini, V. A., & Van Den Broeke, M. S. (2023). Tropical cyclone impacts on
757 crop condition ratings and yield in the Coastal Southern United States, *Agricultural and
758 Forest Meteorology*, 340, 109599. <https://doi.org/10.1016/j.agrformet.2023.109599>

759 Bundy, L. R., Gensini, V. A., Ashley, W. S., Haberlie, A. M., & Changnon, D. (2024). United
760 States crop conditions, *Agronomy Journal*, 116(3), 1397–1416.
761 <https://doi.org/10.1002/agj2.21558>

762 Bunting, E. L., Munson, S. M., & Villarreal, M. L. (2017). Climate legacy and lag effects on
763 dryland plant communities in the southwestern U.S. *Ecological Indicators*, 74, 216–229.
764 <https://doi.org/10.1016/j.ecolind.2016.10.024>

765 Campbell, B. D., Stafford Smith, D. M., & McKeon, G. M. (1997). Elevated CO₂ and water
766 supply interactions in grasslands: a pastures and rangelands management
767 perspective. *Global Change Biology*, 3(3), 177–187. <https://doi.org/10.1046/j.1365-2486.1997.00095.x>

768 Chen, M., Parton, W. J., Del Grosso, S. J., Hartman, M. D., Day, K. A., Tucker, C. J., & Gao, W.
769 (2017). The signature of sea surface temperature anomalies on the dynamics of semiarid
770 grassland productivity. *Ecosphere*, 8(12). <https://doi.org/10.1002/ecs2.2069>

771 Christensen, E. M., James, D. K., Randall, R. M., & Bestelmeyer, B. T. (2023). Abrupt
772 transitions in a southwest USA desert grassland related to the pacific decadal oscillation.
773 *Ecology*, 104(7). <https://doi.org/10.1002/ecy.4065>

774 Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., & Prince, S. (2008). Global
775 potential net primary production predicted from vegetation class, precipitation, and
776 temperature. *Ecology*, 89(8), 2117–2126. <https://doi.org/10.1890/07-0850.1>

777

778

779 Derner, J. D., & Augustine, D. J. (2016). Adaptive management for drought on
780 rangelands. *Rangelands*, 38(4), 211–215. <https://doi.org/10.1016/j.rala.2016.05.002>

781 Derner, J. D., Augustine, D. J., Ascough II, J. C., & Ahuja, L. R. (2012). Opportunities for
782 increasing utility of models for rangeland management. *Rangeland Ecology &*
783 *Management*, 65(6), 623–631. <https://doi.org/10.2111/REM-D-11-00122.1>

784 Detsch, F., Otte, I., Appelhans, T., Hemp, A., & Nauss, T. (2016). Seasonal and long-term
785 vegetation dynamics from 1-km GIMMS-based NDVI time series at Mt. Kilimanjaro,
786 Tanzania. *Remote Sensing of Environment*, 178(1), 70–83.
787 <https://doi.org/10.1016/j.rse.2016.03.007>

788 DiTomaso, J. M. (2000). Invasive weeds in rangelands: species, impacts, and management. *Weed*
789 *Science*, 48(2), 255–265. [https://doi.org/10.1614/0043-1745\(2000\)048\[0255:IWIRSI\]2.0.CO;2](https://doi.org/10.1614/0043-1745(2000)048[0255:IWIRSI]2.0.CO;2)

790 Easterling, D. R., Arnold, J. R., Knutson, T., Kunkel, K. E., LeGrande, A. N., Leung, L. R.,
791 Vose, R. S., Waliser, D. E., & Wehner, M. F. (2017). Ch. 7: *Precipitation Change in the*
792 *United States. Climate Science Special Report: Fourth National Climate Assessment,*
793 *Volume I.* <https://doi.org/10.7930/j0h993cc>

794 ERS. (2023). *Cattle & beef sector at a glance*. USDA. <https://www.ers.usda.gov/topics/animal-products/cattle-beef/sector-at-a-glance/>

795 FAO. (2023). *What are grassland and rangelands?* Food and Agriculture Organization of the
796 United Nations. <https://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/scpi-home/managing-ecosystems/management-of-grasslands-and-rangelands/grasslands-what/en/>

797 Fernández-Giménez, M. E., Augustine, D. J., Porensky, L. M., Wilmer, H., Derner, J. D., Briske,
798 D. D., & Stewart, M. O. (2019). Complexity fosters learning in collaborative adaptive
799 management. *Ecology and Society*, 24(2). <https://doi.org/10.5751/ES-10963-240229>

800 Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., &
801 Zaks, D. P. (2011). Solutions for a cultivated planet. *Nature*, 478(7369), 337–342.
802 <https://doi.org/10.1038/nature10452>

803 Fuhlendorf, S. D., Briske, D. D., & Smeins, F. E. (2001). Herbaceous vegetation change in
804 variable rangeland environments: The relative contribution of grazing and climatic
805 variability. *Applied Vegetation Science*, 4(2), 177–188. <https://doi.org/10.1111/j.1654-109X.2001.tb00486.x>

806 Garfin, G. M., Gonzalez, P., Breshears, D., Brooks, K., Brown, H. E., Elias, E., Gunasekara, A.,
807 Huntly, N., Maldonado, J. K., Mantua, N. J., Margolis, H. G., McAfee, S., Middleton, B.
808 R., & Udall, B. (2018). *Chapter 25: Southwest. Impacts, Risks, and Adaptation in the*
809 *United States: The Fourth National Climate Assessment, Volume II.*
810 <https://doi.org/10.7930/nca4.2018.ch25>

811 Guo, Q., Hu, Z., Li, S., Li, X., Sun, X., & Yu, G. (2012). Spatial variations in aboveground net
812 primary productivity along a climate gradient in Eurasian temperate grassland: Effects of
813 mean annual precipitation and its seasonal distribution. *Global Change Biology*, 18(12),
814 3624–3631. <https://doi.org/10.1111/gcb.12010>

815 Haigh, T.R., M. Hayes, J. Smyth, L. Prokopy, C. Francis, & M. Burbach. (2021). Ranchers' use
816 of drought contingency plans in protective action decision making. *Rangeland Ecology &*
817 *Management*, 74(1), 50–62. <https://doi.org/10.1016/j.rama.2020.09.007>

818 Hanberry, B., Reeves, M. C., Brischke, A., Hannemann, M., Hudson, T., Mayberry, R., &
819 Rangwala, I. (2019). Managing effects of drought in the Great Plains. *Effects of drought*

820

821

822

823

824

825 *on forests and rangelands in the United States: Translating science into management*
826 *responses. General technical report WO-98*, 141–164.
827 https://www.fs.usda.gov/research/publications/gtr/gtr_wo98/gtr_wo98_chapter7.pdf

828 Harris, R. M., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A., Perkins-Kirkpatrick,
829 S. E., Mitchell, P. J., Nicotra, A. B., McGregor, S., Andrew, N. R., Letnic, M., Kearney,
830 M. R., Wernberg, T., Hutley, L. B., Chambers, L. E., Fletcher, M.-S., Keatley, M. R.,
831 Woodward, C. A., Williamson, G., ... Bowman, D. M. (2018). Biological responses to
832 the press and Pulse of Climate Trends and extreme events. *Nature Climate Change*, 8(7),
833 579–587. <https://doi.org/10.1038/s41558-018-0187-9>

834 Havstad, K. M., Brown, J. R., Estell, R., Elias, E., Rango, A., & Steele, C. (2016).
835 Vulnerabilities of southwestern U.S. rangeland-based animal agriculture to climate
836 change. *Climatic Change*, 148(3), 371–386. <https://doi.org/10.1007/s10584-016-1834-7>

837 Havstad, K. M., Peters, D. P., Skaggs, R., Brown, J., Bestelmeyer, B., Fredrickson, E., & Wright,
838 J. (2007). Ecological services to and from rangelands of the United States. *Ecological
839 Economics*, 64(2), 261–268. <https://doi.org/10.1007/s10584-016-1834-7>

840 Hruska, T., Huntsinger, L., Brunson, M., Li, W., Marshall, N., Oviedo, J. L., & Whitcomb, H.
841 (2017). Rangelands as social–ecological systems. *Rangeland Systems: Processes,
842 Management and Challenges*, 263–302. https://doi.org/10.1007/978-3-319-46709-2_8

843 Illius, A. W., & O'Connor, T. G. (1999). On the relevance of nonequilibrium concepts to arid and
844 semiarid grazing systems. *Ecological Applications*, 9(3), 798–813.
845 [https://doi.org/10.1890/1051-0761\(1999\)009\[0798:OTRONC\]2.0.CO;2](https://doi.org/10.1890/1051-0761(1999)009[0798:OTRONC]2.0.CO;2)

846 Irwin, S., & Good, D. (2017a). When should we start paying attention to crop condition ratings
847 for corn and soybeans? *Farmdoc Daily*, 7, 96.
848 [https://farmdocdaily.illinois.edu/2017/05/when-start-paying-attention-crop-condition-
ratings.html](https://farmdocdaily.illinois.edu/2017/05/when-start-paying-attention-crop-condition-
849 ratings.html)

850 Irwin, S., & Good, D. (2017b). How should we use within-season crop condition ratings for corn
851 and soybeans? *Farmdoc Daily*, 7, 96. [https://farmdocdaily.illinois.edu/2017/06/how-to-
use-within-season-crop-condition-ratings.html](https://farmdocdaily.illinois.edu/2017/06/how-to-
852 use-within-season-crop-condition-ratings.html)

853 Irwin, S., & Hubbs, T. (2018). Measuring the accuracy of forecasting corn and soybean yield
854 with good and excellent crop condition ratings. *Farmdoc Daily*, 8, 118.
855 [https://farmdocdaily.illinois.edu/2018/06/measuring-the-accuracy-of-forecasting-corn-
and-soybean-yield.html](https://farmdocdaily.illinois.edu/2018/06/measuring-the-accuracy-of-forecasting-corn-
856 and-soybean-yield.html)

857 Izaurrealde, R. C., Thomson, A. M., Morgan, J. A., Fay, P. A., Polley, H. W., & Hatfield, J. L.
858 (2011). Climate impacts on agriculture: implications for forage and rangeland production.
859 *Agronomy Journal*, 103(2), 371–381. <https://doi.org/10.2134/agronj2010.0304>

860 Jiao, C., Yu, G., Yi, X., Zhao, W., Xing, L., He, F. & Luo, J. (2021). The impact of
861 teleconnections on the temporal dynamics in aboveground net primary productivity of the
862 Mongolian Plateau grasslands. *International Journal of Climatology*, 41(15), 6541–6555.
863 <https://doi.org/10.1002/joc.7211>

864 Joyce, L. A., Briske, D. D., Brown, J. R., Polley, H. W., McCarl, B. A., & Bailey, D. W. (2013).
865 Climate change and North American rangelands: Assessment of mitigation and
866 adaptation strategies. *Rangeland Ecology & Management*, 66(5), 512–528.
867 <https://doi.org/10.2111/REM-D-12-00142.1>

868 Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L.,
869 Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S.,
870 Mol, G., Jansen, B., & Fresco, L. O. (2016). The significance of soils and soil science

871 towards realization of the United Nations Sustainable Development Goals. *SOIL*, 2(2),
872 111–128. <https://doi.org/10.5194/soil-2-111-2016>

873 Knapp, A. K., & Smith, M. D. (2001). Variation among biomes in temporal dynamics of
874 aboveground primary production. *Science*, 291(5503), 481–
875 484. <https://doi.org/10.1126/science.291.5503.481>

876 Knapp, A. K., Briggs, J. M., & Koelliker, J. K. (2001). Frequency and extent of water limitation
877 to primary production in a mesic temperate grassland. *Ecosystems*, 4(1), 19–28.
878 <https://doi.org/10.1007/s100210000057>

879 Knutson, T. R., & Zeng, F. (2018). Model assessment of observed precipitation trends over land
880 regions: Detectable human influences and possible low bias in model trends. *Journal of*
881 *Climate*, 31(12), 4617–4637. <https://doi.org/10.1175/jcli-d-17-0672.1>

882 Lassa, M. J., Wilmer, H., Boone, M., Brown, Z., Derner, J. D., Peck, D. E., Thissen, C., &
883 Marlow, C. (2020). How to talk with ranchers about drought and climate resilience:
884 Lessons from knowledge exchange workshops in Montana. *Journal of Extension*, 58(5),
885 18. <https://www.fs.usda.gov/treesearch/pubs/61765>

886 Lehecka, G. V. (2014). The value of USDA crop progress and condition information: Reactions
887 of corn and soybean futures markets. *Journal of Agriculture and Research Economics*,
888 39(1), 88–105. <https://www.jstor.org/stable/44131316>

889 Lengnick, L. (2015). *Resilient Agriculture: Cultivating Food Systems for a Changing Climate*
890 (pp 368). New Society Publishers. <https://newsociety.com/books/r/resilient-agriculture-second-edition>

891 Li, Z., Angerer, J. P., & Wu, X. B. (2021). Temporal patterns of large wildfires and their burn
892 severity in rangelands of Western United States. *Geophysical Research Letters*, 48(7).
893 <https://doi.org/10.1029/2020gl091636>

894 Lund, H. G. (2007). Accounting for the world's rangelands. *Rangelands*, 29(1), 3–10.
895 [https://doi.org/10.2111/1551-501X\(2007\)29\[3:AFTWR\]2.0.CO;2](https://doi.org/10.2111/1551-501X(2007)29[3:AFTWR]2.0.CO;2)

896 Marvel, K., Su, W., Delgado, R., Aarons, S., Chatterjee, A., Garcia, M. E., Hausfather, Z.,
897 Hayhoe, K., Hence, D. A., Jewett, E. B., Robel, A., Singh, D., Tripathi, A., & Vose, R. S.
898 (2023). *Chapter 2: Climate Trends. Fifth National Climate Assessment*.
899 <https://doi.org/10.7930/nca5.2023.ch2>

900 McCabe, G. J., Wolock, D. M., & Austin, S. H. (2017). Variability of runoff-based drought
901 conditions in the conterminous United States. *International Journal of Climatology*,
902 37(2), 1014–1021. <https://doi.org/10.1002/joc.4756>

903 Mccollum, D. W., Tanaka, J. A., Morgan, J. A., Mitchell, J. E., Fox, W. E., Maczko, K. A.,
904 Hidinger, L., Duke, C. S., & Kreuter, U. P. (2017). Climate change effects on rangelands
905 and rangeland management: Affirming the need for monitoring. *Ecosystem Health and*
906 *Sustainability*, 3(3). <https://doi.org/10.1002/ehs2.1264>

907 McIntosh, M. M., Holechek, J. L., Spiegel, S. A., Cibils, A. F., & Estell, R. E. (2019). Long-term
908 declining trends in Chihuahuan Desert forage production in relation to precipitation and
909 ambient temperature. *Rangeland Ecology & Management*, 72(6), 976–987.
910 <https://doi.org/10.1016/j.rama.2019.06.002>

911 McNeeley, S. M., Even, T. L., Gioia, J. B., Knapp, C. N., & Beeton, T. A. (2017). Expanding
912 vulnerability assessment for public lands: The social complement to ecological
913 approaches. *Climate Risk Management*, 16(1), 106–119.
914 <https://doi.org/10.1016/j.crm.2017.01.005>

916 McPherson, R. A., Fay, P. A., Alvarez, S. G., Bertrand, D., Broadbent, T. L., Bruno, T., Fares,
917 A., McCullough, B., Moore, G. W., Moorhead, B., Patiño, L., Petersen, A. "Sascha,"
918 Smith, N. G., Steiner, J. L., Taylor, A., & Warziniack, T. (2023). *Chapter 26: Southern*
919 *Great Plains. Fifth National Climate Assessment.* <https://doi.org/10.7930/nca5.2023.ch26>

920 Mitchell, J. E. (2010). *Criteria and indicators of sustainable rangeland management* (p. 242). J.
921 E. Mitchell (Ed.). Laramie, WY, USA: University of Wyoming, Cooperative Extension
922 Service. <http://www.sustainablerangeland.org/pdf/SM56.pdf>

923 Morgan, J. A. (2005). Rising atmospheric CO₂ and global climate change: Management
924 implications for grazing lands. In S.G. Reynolds and J. Frame (Ed.), *Grasslands:*
925 *Developments opportunities perspectives*, (pp. 245–272). Science Publications.

926 NDSU. (2023). *Fall grazing use influences spring forage production.* Extension and Ag
927 Research News. <https://www.ag.ndsu.edu/news/newsreleases/2023/october/fall-grazing-use-influences-spring-forage-production>

928 [dataset] NOAA. (2023). *Palmer drought severity & crop moisture indices.* National Weather
929 Service: Climate Prediction Center.
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/palmer_drought/

930 Ojima, D. S., Aicher, R., Archer, S. R., Bailey, D. W., Casby-Horton, S. M., Cavallaro, N., &
931 Washington-Allen, R. A. (2020). A climate change indicator framework for rangelands
932 and pastures of the USA. *Climatic Change*, 163(1), 1733–1750.
<https://doi.org/10.1007/s10584-020-02915-y>

933 Overpeck, J. T. & Udall, B. (2020). Climate change and the aridification of North America.
934 *Proceedings of the National Academy of Sciences*, 117(22), 11856–11858.
<https://doi.org/10.1073/pnas.2006323117>

935 Peters, D. P., Savoy, H. M., Stillman, S., Huang, H., Hudson, A. R., Sala, O. E., & Vivoni, E. R.
936 (2021). Plant Species Richness in Multiyear Wet and Dry Periods in the Chihuahuan
937 Desert. *Climate*, 9(8), 130. <https://doi.org/10.3390/cli9080130>

938 Polley, H. W., Briske, D. D., Morgan, J. A., Wolter, K., Bailey, D. W., & Brown, J. R. (2013).
939 Climate change and North American rangelands: trends, projections, and implications.
940 *Rangeland Ecology & Management*, 66(5), 493–511. <https://doi.org/10.2111/REM-D-12-00068.1>

941 Pyke, D. A., Herrick, J. E., Shaver, P., & Pellatt, M. (2002). Rangeland health attributes and
942 indicators for qualitative assessment. *Journal of Range Management*, 55(6), 584.
<https://doi.org/10.2307/4004002>

943 Ramankutty, N., Foley, J. A., Norman, J., & McSweeney, K. (2002). The global distribution of
944 cultivable lands: Current patterns and sensitivity to possible climate change. *Global*
945 *Ecology and Biogeography*, 11(1), 377–392. <https://doi.org/10.1046/j.1466-822x.2002.00294.x>

946 Reeves, M. C., Moreno, A. L., Bagne, K. E., & Running, S. W. (2014). Estimating climate
947 change effects on net primary production of rangelands in the United States. *Climatic*
948 *Change*, 126(4), 429–442. <https://doi.org/10.1007/s10584-014-1235-8>

949 Rosales, A. (2021). *Crop progress and condition layers.* USDA.
https://www.nass.usda.gov/Research_and_Science/Crop_Progress_Gridded_Layers/Crop_ProgressDescription.pdf#:~:text=Crop%20Progress%20and%20Condition%20Layers%20are%20gridded%20geospatial,at%20a%20weekly%20cadence%20during%20the%20gr owing%20season

961 Russelle, M. P., Entz, M. H., & Franzluebbers, A. J. (2007). Reconsidering integrated crop–
962 livestock systems in North America. *Agronomy Journal*, 99(2), 325–334.
963 <https://doi.org/10.2134/agronj2006.0139>

964 Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbagy, E., & Peters, D. (2012). Legacies of
965 precipitation fluctuations on primary production: theory and data synthesis. *Philosophical
966 Transactions of the Royal Society, B: Biological Sciences*, 367(1606), 3135–3144.
967 <https://doi.org/10.1098/rstb.2011.0347>

968 Sanford, W. E., & Selnick, D. L. (2013). Estimation of evapotranspiration across the
969 conterminous United States using a regression with climate and land-cover data. *Journal
970 of the American Water Resources Association*, 49(1), 217–230.
971 <https://doi.org/10.1111/jawr.12010>

972 Sauchyn D., Kulshreshtha, S. (2008) Prairies. In: Lemmen D. S., Warren E. J., Lacroix J., Bush
973 E. (Eds.) *From impacts to adaptation: Canada in a changing climate 2007* (pp 275–328).
974 Government of Canada, Ottawa.

975 Shrum, T. R., Travis, W. R., Williams, T. M., & Lih, E. (2018). Managing climate risks on the
976 ranch with limited drought information. *Climate Risk Management*, 20(1), 11–26.
977 <https://doi.org/10.1016/j.crm.2018.01.002>

978 Smart, A. J., Harmoney, K., Scasta, J. D., Stephenson, M. B., Volesky, J. D., Vermeire, L. T.,
979 Mosley, J. C., Sedivec, K., Meehan, M., Haigh, T., Derner, J. D., & McClaran, M. P.
980 (2021). Forum: Critical decision dates for drought management in Central and Northern
981 Great Plains Rangelands. *Rangeland Ecology & Management*, 78, 191–200.
982 <https://doi.org/10.1016/j.rama.2019.09.005>

983 Sollenberger, L. E., & Vanzant, E. S. (2011). Interrelationships among forage nutritive value and
984 quantity and individual animal performance. *Crop Science*, 51(2), 420–432.
985 <https://doi.org/10.2135/cropsci2010.07.0408>

986 Standish, R. J., Hobbs, R. J., Mayfield, M. M., Bestelmeyer, B. T., Suding, K. N., Battaglia, L.
987 L., & Thomas, P. A. (2014). Resilience in ecology: Abstraction, distraction, or where the
988 action is? *Biological Conservation*, 177(1), 43–51.
989 <https://doi.org/10.1016/j.biocon.2014.06.008>

990 Stanimirova, R., Arévalo, P., Kaufmann, R. K., Maus, V., Lesiv, M., Havlík, P., & Friedl, M. A.
991 (2019). Sensitivity of global pasturelands to climate variation. *Earth's Future*, 7(12),
992 1353–1366. <https://doi.org/10.1029/2019EF001316>

993 UNL. (2023). *U.S. agricultural commodities in drought*. National Drought Mitigation Center.
994 <https://agindrought.unl.edu/Home.aspx>

995 USDA. (2016). *National agricultural statistics service: Crop progress/crop weather terms and
996 definitions*.
997 https://www.nass.usda.gov/Publications/National_Crop_Progress/terms_definitions

998 USDA. (2019). *2017 Census of agriculture*. NASS.
999 [https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapte
r_1_US/usv1.pdf](https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapte)

1000 USDA. (2023a). *Crop progress*. National Agricultural Statistics Service.
1001 <https://usda.library.cornell.edu/concern/publications/8336h188j?locale=en>

1002 [dataset] USDA. (2023b). *Quick stats tools*. National Agricultural Statistics Service.
1003 https://www.nass.usda.gov/Quick_Stats/

1004 USGS. (2023). *National land cover database*. EROS.
1005 <https://www.usgs.gov/centers/eros/science/national-land-cover-database>

1007 Vroege, W., Dalhaus, T., & Finger, R. (2019). Index insurances for grasslands—A review for
1008 Europe and North America. *Agricultural Systems*, 168(1), 101–111.
1009 <https://doi.org/10.1016/j.agsy.2018.10.009>

1010 White, D. D., Elias, E. H., Thomas, K. A., Bradatan, C. E., Brunson, M. W., Chischilly, A. M.,
1011 Enquist, C. A. F., Fisher, L. R., Froehlich, H. E., Koebele, E. A., Méndez, M., Ostoja, S.
1012 M., Steele, C., & Vanos, J. K. (2023). *Chapter 28: Southwest. Fifth National Climate
1013 Assessment*. <https://doi.org/10.7930/nca5.2023.ch28>

1014 White, R. P., Murray, S., Rohweder, M., Prince, S. D., & Thompson, K. M. (2000). *Grassland
1015 ecosystems* (p. 81). Washington, DC, USA: World Resources Institute.
1016 <https://netedu.xauat.edu.cn/sykc/hjx/content/ckzl/5/10.pdf>

1017 Wilcox, K. R., Shi, Z., Gherardi, L. A., Lemoine, N. P., Koerner, S. E., Hoover, D. L., Bork, E.,
1018 Byrne, K. M., Cahill, J., Collins, S. L., Evans, S., Gilgen, A. K., Holub, P., Jiang, L.,
1019 Knapp, A. K., LeCain, D., Liang, J., Garcia-Palacios, P., Peñuelas, J., ... Luo, Y. (2017).
1020 Asymmetric responses of primary productivity to precipitation extremes: A synthesis of
1021 grassland precipitation manipulation experiments. *Global Change Biology*, 23(10), 4376–
1022 4385. <https://doi.org/10.1111/gcb.13706>

1023 Wilcox, R. R. (2010). *Fundamentals of modern statistical methods: Substantially improving
1024 power and accuracy*. Springer.

1025 Williams, A. P., Cook, B. I., & Smerdon, J. E. (2022). Rapid intensification of the emerging
1026 southwestern North American megadrought in 2020–2021. *Nature Climate Change*,
1027 12(3), 232–234. <https://doi.org/10.1038/s41558-022-01290-z>

1028 Wilmer, H., Augustine, D. J., Derner, J. D., Fernández-Giménez, M. E., Briske, D. D., Roche, L.
1029 M., Tate, K. W., & Miller, K. E. (2018). Diverse management strategies produce similar
1030 ecological outcomes on ranches in western Great Plains: Social-ecological assessment.
1031 *Rangeland Ecology & Management*, 71(5), 626–636.
1032 <https://doi.org/10.1016/j.rama.2017.08.001>

1033 Winford, E. & K. Lee. (2021). Rangelands report. In: Idaho Climate-Economy Impacts
1034 Assessment. James A. and Louise McClure Center for Public Policy Research, University
1035 of Idaho, Boise, ID. [https://www.uidaho.edu/president/direct-reports/mccclure-
center/iceia/land](https://www.uidaho.edu/president/direct-reports/mccclure-
1036 center/iceia/land)

1037 Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., & Zhao, W. (2015). Time-lag effects
1038 of global vegetation responses to climate change. *Global Change Biology*, 21(9), 3520–
1039 3531. <https://doi.org/10.1111/gcb.12945>

1040 Wu, H. I., & Rykiel Jr., E. J. (1986). Analysis of parameters in a biophysical model of animal
1041 performance versus forage availability. *Agriculture, Ecosystems & Environment*, 17(4),
1042 187–198. [https://doi.org/10.1016/0167-8809\(86\)90042-3](https://doi.org/10.1016/0167-8809(86)90042-3)