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ABSTRACT
Aim: Multivariate spatio-temporal models are widely applicable, but specifying their structure is complicated and may inhibit 
wider use. We introduce the R package tinyVAST from two viewpoints: the software user and the statistician.
Innovation: From the user viewpoint, tinyVAST adapts a widely used formula interface to specify generalised additive models 
and combines this with arguments to specify spatial and spatio-temporal interactions among variables. These interactions are 
specified using arrow notation (from structural equation models) or an extended arrow-and-lag notation that allows simulta-
neous, lagged and recursive dependencies among variables over time. The user also specifies a spatial domain for areal (grid-
ded), continuous (point-count) or stream-network data. From the statistician viewpoint, tinyVAST constructs sparse precision 
matrices representing multivariate spatio-temporal variation, and parameters are estimated by specifying a generalised linear 
mixed model (GLMM). This expressive interface encompasses vector autoregressive, empirical orthogonal functions, spatial 
factor analysis and ARIMA models.
Main Conclusion: To demonstrate, we fit to data from two survey platforms sampling corals, sponges, rockfishes and flat-
fishes in the Gulf of Alaska and Aleutian Islands. We then compare eight alternative model structures using different as-
sumptions about habitat drivers and survey detectability. Model selection suggests that towed-camera and bottom trawl gears 
have spatial variation in detectability but sample the same underlying density of flatfishes and rockfishes and that rockfishes 
are positively associated with sponges while flatfishes are negatively associated with corals. We conclude that tinyVAST can 
be used to test complicated dependencies representing alternative structural hypotheses for research and real-world policy 
evaluation.
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1   |   Introduction

Multivariate spatio-temporal models are applicable to many 
questions throughout ecology, human health, econometrics and 
geosciences (Thorson and Kristensen 2024). For example, these 
models are used to study:

1.	 Community assembly when applying joint species distribu-
tion models to estimate how species traits and local environ-
mental conditions explain variation in density for multiple 
species across space and time (Ovaskainen et al. 2017);

2.	 Species and/or temporal ordination when identifying a re-
duced set of variables that can collectively explain biophys-
ical variation for many processes across space and time. 
When simplifying dynamics over time, estimated indices 
(and spatial responses) are often called ‘empirical orthogo-
nal functions’ (Wikle and Cressie 1999), although ordina-
tion can instead (or simultaneously) be applied to identify 
a small number of ‘species archetypes’. where density for 
each species is estimated as a weighted average of different 
archetypes (Latimer et al. 2009);

3.	 Species interactions, that is, estimating how species den-
sity for one species affects local productivity for other spe-
cies. Species interactions can be approximated by fitting a 
vector-autoregressive model to log-densities (Wootton and 
Emmerson 2005), and the estimated ‘community matrix’ 
then represents many important properties about commu-
nity stability (Ives et al. 2003).

In the following, we will use the term ‘multivariate spatio-
temporal models’ for this large family of analyses.

In the following, we introduce a new package, tinyVAST, for 
the R statistical environment (R Core Team 2023) that provides 
a simple and user-friendly interface for multivariate spatio-
temporal models and which builds upon a wide range of exist-
ing models and software (Table 1). We explain the model from 
two contrasting viewpoints: the software user (to view the user-
interface) and the statistician (to view the statistical machinery). 
We then introduce a case-study example involving data from 
two sampling programs for seafloor-associated fishes as well as 
biogenic habitat (sponges and corals). We outline eight alterna-
tive hypotheses regarding how these sampling programs might 
relate to one another, fit all models using tinyVAST and use con-
ventional model selection to identify a parsimonious description 
of habitat associations for these species.

2   |   Viewpoint #1: User-Interface and Feature Set

We aim to develop software that involves a minimal set of user-
level inputs, but which can still encompass a wide range of 
spatio-temporal model configurations. We specifically want a 
user interface that resembles existing regression software in R, 
e.g., glmmTMB for hierarchical models (Brooks et al. 2017) and 
mgcv for generalised additive models (Wood  2017). Similar to 
these well-known regression packages, tinyVAST requires a data 
frame ‘data’ that contains any combination of continuous and 
categorical variables, and then an argument ‘formula’ that iden-
tifies the response variables, some transformation of predictor 

variables and an offset variable. This regression interface allows 
new users to quickly fit a model and then interrogate model 
components using some combination of S3-generic functions, 
e.g., ‘predict’, ‘summary’, ‘simulate’, ‘residuals’, etc.

By itself, however, the well-known ‘formula’ interface for re-
gression packages is not sufficiently expressive, e.g., to repre-
sent dependencies among predictor variables that are relevant 
during mediation, instrumental variable, or attribution analysis 
(Pearl 2009). We, therefore, predict the mean of a response vari-
able as the sum of four different terms:

1.	 Spatial interactions among variables: The user can specify 
interactions among variables at a given site (or for spatially 
correlated latent variables) using ‘arrow’ notation derived 
from path analysis (Wright 1934), based on the interface 
from R package sem (Fox et al. 2020);

2.	 Temporal interaction among variables: The user can spec-
ify simultaneous and lagged interactions among variables 
over time using an expanded ‘arrow-and-lag’ notation that 
is derived from the R package dsem (Thorson et al. 2024), 
where these interactions construct the annual intercept for 
a given variable therefore apply uniformly for all locations.

3.	 Spatio-temporal interactions among variables: The user can 
specify simultaneous and lagged interactions among varia-
bles over time, where these interactions occur on a site-by-
site basis.

4.	 Generalised additive model: The user specifies a formula 
for a generalised additive model (GAM) that is interpreted 
by the R package mgcv. If other model components are 
missing, tinyVAST estimates parameters that are similar to 
mgcv, with small differences resulting from different meth-
ods for parameter estimation;

Combining these four terms results in a flexible and generic (‘ex-
pressive’) model structure, and each term is useful individually 
(or in combination) depending upon study goals.

2.1   |   Arrow Notation for Interactions Among 
Variables

Specifying spatial interactions among variables allows users to es-
timate one or more spatial variables that are constant over time, 
e.g., representing the long-term utilisation distribution that results 
from species interactions. To represent interactions among vari-
ables over time, we draw upon the existing notation for structural 
equation models and path analysis (Wright 1934). In its simplest 
form, this ‘arrow notation’ specifies a set of linear dependencies 
among variables and is written using multiple lines of text, where 
each line specifies a dependency (i.e., coefficient linking two vari-
ables or exogenous variance). Each line then includes three argu-
ments separated by commas. The first argument specifies which 
variables are involved, where a one-headed arrow indicates a slope 
parameter and a two-headed arrow indicates a variance or covari-
ance parameter. The second argument then defines a name for the 
parameter, and the (optional) third defines a starting value. This 
interface allows users to define multiple parameters with the same 
value (by using the same parameter name in multiple lines) or fix 
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parameters at a hypothesised value a priori (by naming the param-
eter NA and fixing it at the starting value).

For example, an analyst might envision a linear model with an in-
dependent variable X  and dependent variable Y , where variation 
in X  causes variation in Y . This is specified by defining a slope 
parameter �1 measuring how a change in X  causes a change in Y  
(using a one-headed arrow in first line of Equation 1), and then 
two variance parameters �X and �Y  (using two-headed arrows in 
the second and third lines):

This arrow notation specifies a linear model:

However, arrow notation can also be used to specify complex 
and recursive dependencies among variables. For example:

specifies an impact of X  on Y  with slope �1 (Equation 3 1st line) 
and an impact of Y  on Z with slope �2 (Equation  3 2nd line), 

such that X  has an indirect impact on Z with magnitude �1�2 . 
However, it also specifies a direct impact of X  on Z with slope 
�3 (Equation 3 3rd line), such that the total impact of X  on Z is 
�1�2 + �3. By default, the software also includes a variance pa-
rameter for each variable (in this case, �X, �Y  and �Z), such that 
it results in a set of linear models:

Importantly, this model can give useful insight about an exoge-
nous change in a mediator, where an exogenous change in Y  is 
expected to result in a change in response Z. We use this ‘arrow’ 
notation to specify interactions among variables that are con-
stant over time.

This structural model could be viewed using two interpretations:

1.	 Weak form: The analyst may use arrow notation as an ex-
pressive and general interface to specify the covariance 
among variables;

2.	 Strong form: The analyst may view the resulting model as 
a ‘structural causal model’ (Pearl 2009) and use it to make 
predictions about system responses to counterfactual 
scenarios.

We believe that the ‘weak form’ interpretation remains useful 
even in cases when the analyst has not validated (or otherwise 
believes) the strong-form interpretation.

(1)

X→Y ,beta1,1

X↔X ,sigmaX,1

Y ↔Y ,sigmaY,1

(2)
X ∼Normal

(
�X , �

2
X

)

Y ∼Normal
(
�Y +�1X , �

2
Y

)
.

(3)

X→Y , beta1

Y →Z, beta2

X→Z, beta3

(4)

X ∼Normal
(
�X , �

2
X

)

Y ∼Normal
(
�Y +�1X , �

2
Y

)

Z∼Normal
(
�Z +�2Y +�3X , �

2
Z

)

TABLE 1    |    List of model types and software functionality (rows) and R packages (columns), indicating what functionality is supported by each 
R package.

Model type

R package

sem mgcv dsem sdmTMB VAST tinyVAST

Available on CRAN X X X X X

No spatial or temporal correlations

Instrumental variables X X

Time-series correlations

Vector autoregressive model X X

Dynamic factor analysis X X

Spatio-temporal correlations

Spatial vector autoregressive model X X

Empirical orthogonal function analysis X X

Spatial factor analysis X X

Univariate species distribution model X X X X

Multivariate species distribution model X X X X

Smoothing spline response for covariates X X X

Multiple distribution/link functions for different partitions of data X X
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2.2   |   Arrow-and-Lag Notation for Interactions 
Among Variables Over Time

Specifying temporal or spatio-temporal interactions among 
variables over time allows tinyVAST to estimate short-term devi-
ations from long-term average conditions. However, arrow nota-
tion does not include any concept of time and cannot distinguish 
between simultaneous versus lagged effects. We therefore follow 
Thorson et al.  (2024) in defining an expanded ‘arrow-and-lag’ 
notation to allow users to specify interactions among variables 
over time using multiple lines of text. This text follows the same 
format as the ‘arrow notation’, except it adds an additional (sec-
ond) argument representing the lag involved and now involves 
three or four arguments per line.

For example, the analyst might approximate species interac-
tions by estimating a lagged impact of each species on per-capita 
productivity for every other species (Ives et al. 2003). This re-
quires specifying a bivariate vector autoregressive (a.k.a., cross-
lagged) model:

where this then specifies:

where �X and �Y  are intercepts for each species. This involves esti-
mating four cross-lagged interactions and can instead be written 
as 
(
Xt ,Yt

)
= B

(
Xt−1,Yt−1

)
+ �t where �t ∼MVN

(
0, diag

(
�2
X
, �2

Y

))
 

and B =

[
�xx �yx

�xy �yy

]
. This arrow-and-lag notation then allows 

the user to specify (among other models) a vector-autoregressive 
(VAR), autoregressive integrated moving average (ARIMA), 
dynamic factor analysis (DFA) and difference-in-differences 
model (Table 2).

2.3   |   Spatial objects

The user can specify an object supplied to the argument ‘spa-
tial_domain’ that is used to define a spatial precision matrix, 
Qdomain, where the matrix inverse Q−1

domain
 represents the cova-

riance among different sites within the spatial domain. Options 
include the following:

1.	 Continuous spatial domain: Using the R package fmesher 
(Lindgren  2023), the user can apply the stochastic partial 
differential equation (SPDE) approximation to a Matérn 
correlation function over a two-dimensional spatial domain 
(Lindgren et al. 2011). Package tinyVAST then uses fmesher 
to construct the projection matrices that apply bilinear inter-
polation to calculate random variables at any sampled or pre-
dicted location within the defined spatial domain.

2.	 Areal spatial domain: Using the R package igraph (Csardi 
and Nepusz 2006), the user can instead construct a graph 
representing polygons or other areal data. Package ti-
nyVAST constructs the adjacency matrix and applies a 

(5)

X→X , 1, betaxx, 0.1

X→Y , 1, betaxy, 0.1

Y →X , 1, betayx, 0.1

Y →Y , 1, betayy, 0.1

(6)
Xt ∼Normal

(
�X +�xxXt−1+�yxYt−1, �

2
X

)

Yt ∼Normal
(
�Y +�xyXt−1+�yyYt−1, �

2
Y

)
,

TABLE 2    |    Examples of common time-series models and their 
specification using ‘arrow-and-lag’ notation. We envision data are 
available for two variables X and Y for vector autoregressive models 
(VAR) and dynamic factor analysis (DFA), or one variable X for other 
models, and DFA and autoregressive integrated moving average 
(ARIMA) models involve estimating a latent variable F. All models are 
assumed to estimate an exogenous and independent variance for each 
variable by default. However, this default can be overridden by explicitly 
specifying a two-headed arrow where, for example, ‘X ↔ X, 0, NA, 0’ 
specifies that exogenous variance for variable X is fixed at 0 a priori. 
Note that the DFA, ARIMA(1,1,0) and ARIMA(0,0,1) specifications 
are all reduced rank (arising from variable X specified to have zero 
variance).

Model and specification 
using ‘arrow-and-lag’ 
notation Explanation for each line

Vector autoregressive model (VAR)

X → X, 1, b_xx First-order autoregression for 
X  (e.g., density dependence)

X → Y, 1, b_xy Lagged impact of Xt−1 on Yt
Y → X, 1, b_yx Lagged impact of Yt−1 on Xt
Y → Y, 1, b_yy First-order autoregression for 

Y  (e.g., density dependence)

Dynamic factor analysis (DFA)

F → F, 1, NA, 1 Random walk for factor F

F → X, 0, b_fx Loading of X  on factor F

F → Y, 0, b_fy Loading of Y  on factor F

F ↔ F, 0, NA, 1 Unit variance for factor F

X ↔ X, 0, NA, 0 Turn off process error for X

Y ↔ Y, 0, NA, 0 Turn off process error for Y

ARIMA(1,1,0)

F → F, 1, rho AR1 for factor F

X → X, 1, NA, 1 Random walk for time-series 
X  (integrated component)

F → X, 0, NA, 1 Fixed unit loadings for 
factor F on time-series X

X ↔ X, 0, NA, 0 Turn off additional process 
error for time-series X

ARIMA(0,0,1)

F → X, 0, NA, 1 Unit loadings for factor 
Ft on Xt in time t

F → X, 1, rho Estimated loadings for 
factor Ft−1 on Xt in time t

X ↔ X, 0, NA, 0 Turn off additional process 
error for time-series X
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simultaneous autoregressive (SAR) model to construct the 
spatial precision matrix (Ver Hoef et al. 2018). The user can 
specify an unconnected graph, which then eliminates any 
spatial correlation among modelled locations, resulting in 
a multivariate time-series model.

3.	 Stream network domain: Using the R package sfnetwork 
(van der Meer et al. 2023), the user can construct a graph 
representing locations along a stream network (Hoef 
et al. 2006). Package tinyVAST then constructs the preci-
sion matrix representing an Ornstein-Uhlenbeck process 
(Charsley et al. 2023).

If the user does not specify the argument ‘spatial_domain’, then 
tinyVAST assumes that all observations are from a single site 
and, therefore, reverts to a univariate time-series model (see 
summary of arguments in Table 3). Alternatively, the user can 
specify that all sites are independent using the package igraph, 
and this then reverts to a multivariate time-series model. A fit-
ted model can then be explored using standard S3-generic func-
tions (Table 4).

2.4   |   Formula Interface for Exogenous Covariates

To specify the GAM component of tinyVAST, we use the formula 
interface from package mgcv. This interface is appropriate for es-
timating how exogenous variables affect the specified response 
and allows the user to select from a wide range of nonlinear re-
sponse functions. The mgcv formula includes univariate splines, 
multivariate splines, random intercept and random-slope mod-
els, as well as standard functionality for polynomial basis expan-
sion of fixed effects. The most common options are supported 
within tinyVAST, and these options are well described elsewhere 
(Zuur et al. 2009; Wood 2017).

3   |   Viewpoint #2: Statistical Model Structure

Package tinyVAST fits a generalised linear mixed model 
(GLMM) where random effects are specified using Gaussian 
Markov random fields (GMRFs). This GLMM involves combin-
ing four model components (numbered at the beginning of sec-
tion Viewpoint #1: User-interface and feature set).

The first component is the ‘spatial interaction among variables’ 
represented using a spatial SEM. Given the arrow notation rep-
resenting interactions among C variables, tinyVAST constructs a 
sparse precision matrix Qspace_term with dimension C × C:

where P is the sparse C × C matrix of path coefficients (speci-
fied using one-headed arrows in the arrow notation) and � is 
the sparse C × C matrix of exogenous covariance parameters 
(two-headed arrows in arrow notation). Package tinyVAST then 
constructs a separable precision for a S × C matrix � of S sites 
and C variables:

This matrix � is then projected to the set of samples i ∈ I by mul-
tiplication with a I × S projection matrix.

The second component is the ‘temporal interaction among vari-
ables’, represented using a dynamic SEM. The arrow-and-lag 
notation representing interactions among variables over time is 
used to construct a sparse CT × CT precision matrix Qtime_term. 
This is used to specify a nonseparable precision for a C × T two-
dimensional matrix D across C variables and T times:

This matrix D contains the annual intercept dc,t for each variable 
and year.

The third component is the ‘spatio-temporal interaction among 
variables’, represented using a separable process that includes 
a DSEM (representing site-by-site interactions among variables 
over time) and the spatial process. Arrow-and-lag notation 
again specifies interactions among variables over time to con-
struct a sparse CT × CT precision matrix Qspacetime_term. This is 
then used to specify a separable precision for a S × C × T three-
dimensional array E across S sites, C variables and T times:

This array E is again projected to the set of samples i ∈ I by mul-
tiplication with a I × S projection matrix.

However, some specifications using ‘arrow notation’ for the 
space-variable interaction � or temporal interaction D, or using 
‘arrow-and-lag notation’ the space-variable-time interaction E 
will result in Qspace_term, Qtime_term and/or Qspacetime_term not being 
full rank (see Table 2 for example). In these cases, the covariance 
Q−1
space_term, Q−1

time_term
 and/or Q−1

dsem
 does not exist. The user can 

instead specify an alternative parametrization:

where IC is a C × C identity matrix such that IC ⊗Q−1
spatial

 has full 
rank (and a similar reparametrization is done for D or E). This 
‘projection’ parametrization ensures that, efficents �̃, D̃ and Ẽ 
are full rank, while their projected values �, D and E have the 
reduced-rank structure specified by the user.

The fourth component is the ‘generalised additive model’, repre-
senting additional nonlinear effects and interactions. The GAM 
term includes fixed effects � and random effects �, with design 
matrix X and Z, respectively. The formula interface is used to 
construct the I × J design matrix X for fixed effects, and the 
I × K design matrix Z for random effects, where random effects 
represent spline coefficients or other shrinkage priors. The de-
sign matrix for fixed effects can include an offset term (i.e., a 
column of X for which the slope � is fixed at 1 a priori), and can 

(7)Qspace_term =
(
I − Pt

)
�−t�−1

(I − P),

(8)vec(�) =MVN
(
0,Q−1

space_term ⊗Q−1
domain

)
.

(9)vec(D) =MVN
(
0,Q−1

time_term

)
.

(10)vec(E) =MVN
(
0,Q−1

spacetime_term ⊗Q−1
domain

)
.

vec
(
��
)
=MVN

(
0, IC⊗Q−1

spatial

)

(11)�=
(
I−Pt

)−1
�t�̃
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TABLE 3    |    List of all user-defined arguments passed to function ‘tinyVAST’ (the core function in package ‘tinyVAST’), including different user 
options when specifying these.

Argument 
name Object passed What it does

formula Formula defining response, exogenous predictors and offset variables Defines regression-style model, including 
nonlinear transformations

data Data frame containing response, predictor and offset variables Contains all sampling data

time_term Options:
1.  Character string parsed by ‘make_dsem_ram(.)’ internally

Output from ‘make_sem_ram(.)’

Defines interactions among variables over 
time (including lagged and simultaneous 

effects) that are constant across space

space_term Options:
2.  Character string parsed by ‘make_sem_ram(.)’ internally

3.  Output from ‘make_sem_ram(.)’

Defines interactions among variables that are 
constant over time. By default, tinyVAST uses 
‘arrow notation’ parsed by ‘make_sem_ram(.)’

spacetime_
term

Options:
1.  Character string parsed by ‘make_dsem_ram(.)’

2.  Output from ‘make_dsem_ram(.)’
3.  Output from ‘make_eof_ram(.)’

4.  Manually constructed ‘reticular action model’ representing 
associations among variables over time

Defines interactions among variables over time 
(including lagged and simultaneous effects). By 

default, tinyVAST uses ‘arrow-and-lag notation’ parsed 
by ‘make_dsem_ram(.)’. However, other models can 
instead be specified using alternative constructors, 
for example, empirical orthogonal functions (EOF)

family A standard R family object or a list with names matching elements of 
‘data’ corresponding to user-specified error distributions, where each 

element specifies a family and link function for those distributions

Allows models to be specified that fit multiple data 
types or a single data type but with different dispersion 

parameters associated with different samples (e.g., 
different variance for each modelled variable)

space_
columns

A character vector where ‘data[,space_columns]’ 
indicates the spatial coordinates for each sample

Matched against spatial coordinates or 
domain listed in ‘spatial_domain’

spatial_
domain

S3-object, where options include:
1.  Topology used by SPDE method to define spatial correlations in 2D 
spatial domain, constructed using fmesher package (Lindgren 2023)

2.  Topology used by Simultaneous Autoregressive (SAR) method 
to define spatial correlations for areal data (or independence for a 

multivariate time-series analysis), constructed using igraph package 
(Csardi and Nepusz 2006)

3.  Topology used by autoregressive stream-network model for 
network data, constructed using sfnetworks package (van der Meer 

et al. 2023)
4.  Missing, defining a time-series model (i.e., all samples are 

associated with a single site)

Defines spatial domain (extent and resolution) 
and resulting basis functions describing spatial 
correlations, where space-variable interactions 

arise as separable processes from ‘spatial_domain’ 
and ‘space_term’ and space–time-variable 

interactions arise as separable processes from 
‘spatial_domain’ and ‘spacetime_term’

variable_
column

A string where ‘data[,variable_column]’ 
indicates the variable for each sample

Matched against variables listed in ‘dsem’ and ‘sem’

variables Character vector that defines the set of model variables, included 
as a column of ‘data’ and indicated by ‘variable_column’

Defines the set of modelled variables (e.g., 
indicating species in a multispecies model).

time_column A string where ‘data[,time_column]’ 
indicates the time for each sample

Matched against lags specified in ‘dsem’

times Integer vector that defines the set of model times, included 
as a column of ‘data’ and indicated by ‘time_column’

Defines the temporal domain

control Tagged list defining advanced features, 
constructed by ‘tinyVASTcontrol(.)’

Allows detailed control over model 
specification and optimisation while avoiding 

argument clutter for casual users

delta_options List with elements formula, space_term, time_
term, spacetime_term, and spatial_varying

Allowing users to specify options when specifying 
a delta (hurdle) model via argument ‘family’

weights Vector of likelihood weights Allows some data to be passed but not fitted

spatial_
varying

Right-handed formula, listing variables for which a 
spatially varying coefficient (SVC) is estimated

Allows estimates of spatially nonstationary 
covariates, representing spatially varying 

detectability ratios or environmental responses
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include any set of intercepts, slope and interactions. Each block 
of random effects is specified to follow a multivariate normal 
distribution, which is constructed by package mgcv:

where Qgam is the precision matrix for the zth block of random 
effects �z and �k is the estimated wiggliness (inverse-variance) 
parameter for that block.

The expected value for sample i is then calculated by apply-
ing an inverse-link function to a linear predictor, which is 
calculated in turn by assembling all four components. Some 
distributions (e.g., delta models) require two linear predictors, 
so the user can provide a separate specification for linear pre-
dictor p1,i and p2,i:

where Ai is a vector of length S that projects a spatial variable 
(e.g., the spatial term �1,c[i] for the 1st linear predictor) to its 
value at the location of sample i.

tinyVAST allows the user to specify a different link function and 
distribution for different partitions of data, where e[i] indicates 

the (error) distribution for sample i, ge is the bivariate link func-
tion for distribution e and fe is the probability distribution func-
tion for that distribution:

There are two use cases worth noting. For clarity, we introduce 
these cases assuming that there's a single error distribution for 
all samples, such that we can suppress notation e[i] from the dis-
tribution f  and link function g.

1.	 Univariate distribution: The simplest and most widely 
used case involves a probability distribution function 
that uses a single linear predictor (e.g., a log-linked 
Poisson distribution). In this case, the user only specifies 
the first linear predictor p1,i = pi and ignores the second 
linear predictor p2,i = 0, such that mean �

(
Yi
)
= �i where 

�i = g−1
(
pi
)
;

2.	 Conventional delta models: Alternatively, the GLMM might 
be applied to biomass samples that are continuous and 
positive but which also include a set of 0 s (when a species 
was not encountered at all). In this case, the user specifies 
both linear predictors. The first linear predictor is typically 
transformed using a logistic function (i.e., logit-link), and 
the second linear predictor is typically transformed using 
an exponential function (i.e., log-link):

(12)�z ∼MVN
(
0, �−1z Q−1

gam

)
,

p1,i= X1,i�1+Z1,i�1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

GAM#1

+ Ai�1,c[i]
⏟⏟⏟

space_term#1

+ D1,c[i],t[i]
⏟⏞⏟⏞⏟
time_term#1

+ AiE1,c[i],t[i]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

spacetime_term#1

(13)

p2,i= X2,i�2+Z2,i�2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

GAM#2

+ Ai�2,c[i]
⏟⏟⏟

space_term#2

+ D2,c[i],t[i]
⏟⏞⏟⏞⏟
time_term#2

+ AiE2,c[i],t[i]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

spacetime_term#2,

(14A)Yi ∼ fe[i]

(
g−1e[i]

(
p1,i, p2,i

)
, �e[i]

)
,

�1,i=
ep1.i

1+ep1.i

(14B)�2,i= e
p2,i

TABLE 4    |    List of functions exported by tinyVAST, including their name and purpose.

Function name Purpose

tinyVAST Fit a tinyVAST model

make_sem_ram Construct a reticular action model (RAM) using ‘arrow notation’ to 
construct the precision matrix for a structural equation model

make_dsem_ram Construct a RAM using ‘arrow-and-lag notation’ to construct the 
precision matrix for a dynamic structural equation model

make_eof_ram Construct a RAM for an empirical orthogonal function (EOF) analysis

summary Summarise output for different model components

print User-friendly output from a fitted model

logLik The marginal log-likelihood, for example, to enable function AIC(.)

cAIC Calculate conditional AIC (Zheng et al. 2024)

predict Predictions in response or link-scale, or for link-scale for individual components

residuals Compute deviance or response residuals from a fitted model

simulate Simulate new data conditional upon fitted model, either with or without sampling from the 
predictive distribution of random effects (the latter being useful when assessing model residuals)

integrate_output Compute plug-in or epsilon bias-corrected estimator (Thorson and Kristensen 2016) for a quantity 
calculated via Monte Carlo integration across a user-specified set of sampling locations (and 
associated covariates) for a single time. This can then compute an area-weighted abundance 
index and measure distribution shifts, range expansion and spatial overlap among variables
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8 of 13 Global Ecology and Biogeography, 2025

These are then used to compute the delta distribution:

where f
(
Yi|�2,i, �

)
 is the user-specified distribution for 

positive samples, and �
(
Yi
)
 is the data likelihood including 

zeros and positive values for sample i.

3.	 Poisson-linked delta model: Finally, the user might spec-
ify a bivariate link function with two linear predictors 
representing areal samples of a marked point process 
(Thorson  2018). The first linear predictor is calculated 
using a complementary log–log link, while the second is 
defined such that �1,i�2,i = ep1,i ep2,i, where ep1,i is represents 
group-densities for the point process and ep2,i represents bi-
omass per group:

The data likelihood can then be computed similarly to the con-
ventional delta model (Equation 14C).

These use-cases can be combined in various ways, e.g., to specify 
a different link function and distribution for different partitions of 
the data, where each sample i is associated with partition e[i]. For 
example, Grüss and Thorson  (2019) combined presence-absence 
data using a cloglog link and a Bernoulli distribution, count data 
using a log link and Poisson distribution, and biomass data using 
a Poisson-linked delta model and a gamma distribution. In these 
data-integrated models, it is then often necessary to also include 
a factor representing survey in the GAM formula, to account for 
differences in detection probability relative to a reference survey.

Computing the joint log-likelihood for this GLMM is efficient 
given that Qspace_term, Qtime_term, Qspacetime_term, Qdomain and Qgam 
are all sparse. We use the R package TMB to apply the Laplace 
method to approximate the marginal likelihood and optimise 
the log-marginal likelihood using gradients computed using au-
tomatic differentiation (Kristensen et al. 2016). We then use a 
generalisation of the delta method to calculate standard errors 
(Kass and Steffey 1989), and the epsilon method to correct for 
skewness and retransformation bias of random effects (Thorson 
and Kristensen 2016).

4   |   Case Study: Habitat Associations in 
Data-Integrated Species Distribution Model

To illustrate the wide range of models that can be expressed 
with tinyVAST, we introduce an integrated species distribution 
model (SDM) that combines samples from two surveys: a towed 
camera that measures densities of flatfishes (Pleuronectiformes 
spp.), rockfishes (Sebastes spp.), corals and sponges, and a sep-
arate bottom trawl that measures densities of flatfishes and 
rockfishes. Individually, historical studies looking at species 

associations have often found positive correlations between 
rockfishes and corals and sponges in both trawl and camera 
data (Yoklavich et al. 2000; Laman et al. 2015). However, these 
two gears typically sample different types of substrates since 
trawling is limited to soft-bottom substrates and at different spa-
tial scales, since the area swept by an individual trawl haul is 
typically at least two orders of magnitude larger than a camera 
transect. So, it is unclear whether the strength of the positive 
impact on rockfish density is similar between the two gears. 
The opposite question is appropriate for flatfishes, which prefer 
soft-bottom sediments, are more likely to be effectively trawled, 
but are less likely to be observed with sponges and corals pres-
ent. Previous research has typically fitted an SDM to coral and 
sponge densities separately, predicted densities at the location of 
bottom trawls, and used those predictions as fixed covariates to 
explain flatfish and rockfish associations with biogenic habitats 
(Laman et al. 2018). By contrast, we seek to answer the follow-
ing questions:

1.	 Are the associations between fishes and biogenic habitats 
estimated to be the same in towed camera and bottom 
trawl sampling programmes?

2.	 Do the towed camera and bottom trawl measure sim-
ilar variations in density for fishes, or does one or the 
other tend to measure more or less fluctuation in den-
sity between high and low-density areas due to density-
dependent catchability for the bottom trawl (Kotwicki 
et al. 2014)?

The first set of data used in these analyses were from biennial 
(or triennial) bottom trawl surveys conducted from 1990 to 2019 
in the Gulf of Alaska and the Aleutian Islands (Siple et al. 2024). 
The surveys are designed to assess the abundance of commer-
cially important groundfishes and invertebrates in each ecosys-
tem using a stratified random sampling design covering an area 
from Dixon Entrance in Southeast Alaska to Stalemate Bank in 
the Aleutian Islands at depths from 35 to 1000 m in the GOA and 
35 to 500 m in the Aleutian Islands. Detailed sampling designs 
and protocols can be found in Stauffer (2004). In this analysis, 
catch and effort data from 14,877 research survey bottom trawl 
tows were used. The second set of data came from towed stereo-
camera surveys conducted from 2012 to 2017 in the central and 
western Gulf of Alaska and Aleutian Islands from Yakutat, 
Alaska to Stalemate Bank (including Bowers Ridge and Bank). 
These data were collected using standardised sampling protocols 
of 15 min of on-bottom time, where all fishes and benthic inver-
tebrates were identified and counted to the lowest possible taxo-
nomic level. The Aleutian Islands data were from 216 transects 
chosen using a stratified random survey design covering depths 
of ~15 to 850 m (Rooper et al. 2016). The Gulf of Alaska data were 
from 227 transects chosen using a random or haphazard design 
(Sigler et al. 2023). The total number of each species of fish and 
invertebrate observed, as well as the area of the seafloor viewed, 
were calculated for each transect using the methods outlined in 
Rooper et al. (2016). However, in the analysis, both trawl survey 
and camera data used high-level classification of fish to avoid 
potentially erroneous species identifications in the camera data.

To answer these questions, we specify a log-linked Tweedie 
GLMM, which involves a single linear predictor pi. We define a 

(14C)𝜋
(
Yi|𝜇1,i,𝜇2,i, 𝜃

)
=

{
1−𝜇1,i if Yi=0

𝜇1,i× f
(
Yi|𝜇2,i, 𝜃

)
if Yi>0

�1,i=1−e
−ep1,i

(14D)�2,i=
ep1,i

�1,i
ep2,i
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factor ‘Group’ with six levels: S, C, F, R (for sponges, corals, flat-
fishes and rockfishes in the drop camera), and S2 and R2 (for 
sponges and corals in the bottom trawl). We also include a factor 
‘Year’ (indicating the year of sampling), numeric ‘Area’ (for the 
area swept by a given bottom trawl or drop camera sample) and 

‘Count’ (for the count of a given sample). We then specify a GAM 
formula, ‘Count ~0 + interaction(Group, Year) + offset(log(Area))’. 
This specifies a separate intercept for every combination of Group 
and Year that is present in the data set. We also specify a spatial 
SEM using arrow notation:

where 
(
b1, b2, b3, b4

)
 is the effect of biogenic habitat (sponges and 

coral) on the portion of fish densities available to the drop cam-
era, 

(
a1, a2

)
 is the relationship between fish densities available to 

the drop camera relative to the bottom trawl and 
(
d1, d2, d3, d4

)
 

is the effect of biogenic habitat on the portion of fish densities in 
the bottom trawl after accounting for direct effects 

(
a1, a2

)
. This 

specification then results in the following structural equations:

where �S, �C, �F and �R are the modelled numerical density of 
sponges, corals, flatfishes and rockfishes in the towed camera, 
�F2 and �R2 are the modelled numerical densities of flatfishes 

(15)

C→F,b1

S→F,b2

C→R,b3

S→R,b4

F→F2,a1

R→R2,a2

C→F2,d1

S→F2,d2

C→R2,d3

S→R2,d4

log
(
�S

)
=�S+�S

log
(
�C

)
=�C+�C

log
(
�F

)
=�F +b1�C+b2�S+�F

log
(
�R

)
=�R+b3�C+b4�S+�R

log
(
�F2

)
=�F ,t+d1�C+d2�S+a1�F +�F2

(16)log
(
�R2

)
=�R,t+d3�C+d4�S+a2�R+�R2,

FIGURE 1    |    Visualising the hypothesised relationship among 
six variables (Towed camera: R = rockfish; F = flatfish; C = corals; 
S = sponges; Bottom trawl: R2 = rockfish; F2 = flatfish) using ‘tiny-
VAST::summary(.)’ to summarise path coefficients, and functions 
‘graph_from_data_frame(.)’ and ‘plot.igraph(.)’ in package igraph for 
plotting, where each arrows correspond to a specified path coefficient 
(P, see Equation 7). Estimated path coefficients list the parameter name, 
while path coefficients that are fixed a priori are shown without a name. 
We also show the marginal AIC relative to the most parsimonious mod-
el (bottom of each panel) and number of fixed effects (top of each panel), 
and all models include intercepts for each sampled combination of vari-
able and year (56 parameters), two dispersion parameters per variable 
(2 × 6 = 12 parameters), one variance per species (6 parameters) and an 
estimated decorrelation rate (1 parameter) that are not shown here.

FIGURE 2    |    Estimated path coefficients for the most parsimonious 
model (bottom-left of Figure 1), showing both maximum likelihood es-
timate and standard error (in parentheses), where standard error NA 
corresponds to parameters that are fixed a priori.
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10 of 13 Global Ecology and Biogeography, 2025

and rockfishes in the bottom trawl, �■ represents the intercept 
for each variable (which varies among years t  for the bottom 
trawl surveys but is constant for the drop-camera surveys) and 
�■ represents spatial variation in log-density for a given variable.

We then define a set of eight hypothesised relationships that 
arise as nested submodels. For example:

1.	 Biogenic habitat as covariates: We explore a model where 
sponges and corals are not linked to towed camera densities 
for fishes (b1 = b2 = b3 = b4 = 0). Instead, the sponges and 
corals are estimated as having a linear impact on bottom 

trawl estimates of fish densities (estimating d1 through d4
), and other parameters are eliminated (a1 = a2 = 0). This 
then corresponds to a joint SDM that imputes the biogenic 
habitat densities and simultaneously estimates their use as 
covariates for predicting bottom trawl data.

2.	 No link from drop camera and bottom trawl: Alternatively, we 
explore a model where there is no link connecting drop cam-
era and bottom trawl data (d1 = d2 = d3 = d4 = a1 = a2 = 0 ), 
while estimating habitat associations within the drop-
camera data set. This measures the fine-scale association 
between habitat and fishes in the towed camera survey.

FIGURE 3    |    Estimated log-densities (e.g., ‘Coral’ in top-left panel) and the standard error in log-density (e.g., ‘SE[Coral]’) for each of six modelled 
variables (Coral, S, Rock = rockfishes, and Flat = flatfishes in the drop camera, and Flat_trawl and Rock_trawl in the bottom trawl) showing the 
location of sampling data for that variable (green dots) on top of estimated standard errors. Here, we specifically show densities in Bower's Bank (a 
relatively shallow area north of the central Aleutian Islands that is not sampled by the bottom trawl survey) to show that drop camera samples can 
be predict densities from the bottom trawl.
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3.	 Linked and spatially varying catchability: Finally, we ex-
plore a model that assumes a priori that bottom trawl and 
drop camera samples are both measuring the same under-
lying variation in densities (i.e., a1 = a2 = 1), while also es-
timating residual variation in the detectability ratio (i.e., 
spatial variation in �F2 and �R2).

Other models are similarly formed via restrictions among pa-
rameters, which can be expressed using the ‘arrow notation’ for 
interactions among variables.

Results suggest that the ‘Linked and spatially varying catchabil-
ity’ model is the most parsimonious of our hypothesised models 
(Figure  1), although the saturated model and another candi-
date also receive some support (ΔAIC < 3). This parsimonious 
model estimates a significant impact of sponges on rockfishes 
(b4 = 0.59, SE = 0.10; Figure  2), i.e., where a 10% increase in 
sponge densities is associated with a nearly 6% increase in rock-
fish density, and also estimates a significant and negative impact 
of corals on flatfishes (b1 = − 0.26, SE = 0.05). Model selection 
also indicates that it is parsimonious to specify that spatial 
variation in fish density in the towed camera is proportional to 
spatial variation observed using the bottom trawl (a1 = a2 = 1). 

Finally, the model estimates an ‘indirect’ impact of corals and 
sponges on bottom-trawl fish densities via their estimated impact 
on towed-camera densities (b1 through b4) and the proportional 
relationship between the towed camera and bottom trawl fishes 
(a1 = a2 = 1) but also a ‘direct’ impact of biogenic habitats on bot-
tom trawl fishes (d1 through d4). These ‘direct’ impacts generally 
have a smaller magnitude than the indirect impacts, suggesting 
that the biogenic habitat has similar impacts for fish densities 
in both sampling programs. Finally, the model estimates spa-
tial variation in the rockfish and flatfish densities calibrated to 
the bottom trawl (i.e., R2 and F2) and uses the drop camera to 
estimate variable densities in Bower's Bank, where the bottom 
trawl survey does not occur (Figure 3). The bottom trawl is used 
to index density across space (to define essential fish habitat) and 
time (as input for stock assessments), so the estimated bottom-
trawl densities in Bower's Bank represent useful information for 
fisheries managers.

5   |   Discussion

In this paper, we introduce the R package tinyVAST to provide 
an expressive (general and flexible) interface for multivariate 

TABLE 5    |    Vignettes included in package tinyVAST, including what model structures are specified and whether results are compared with 
alternative packages.

Vignette What it demonstrates

tinyVAST model description Summarises model notation, equations and structure in a way 
that software users can copy when describing their model

Dynamic structural equation models Specifying a dynamic structural equation model (DSEM) 
and a comparison with package dsem (Thorson et al. 2024)

Comparison with mgcv Specifying a generalised additive models (GAMs) and 
a comparison with package mgcv (Wood 2017)

Empirical orthogonal function analysis Specifying an empirical orthogonal function (EOF) model, 
which cannot be represented using ‘arrow-and-lag’ notation 

and instead involves function ‘make_eof_ram(.)’

Simultaneous autoregressive process Specifying a simultaneous autoregressive (SAR) model 
and a comparison with a multivariate time-series model

Spatial modelling Specifying a spatial model in two-dimensional 
coordinates and a comparison with package mgcv

Spatial factor analysis Specifying a spatial factor analysis (SFA) model that 
estimates covariance among multiple variables

Stream network models Specifying a spatial model on a stream network

Vector autoregressive spatio-temporal models Specifying a univariate spatio-temporal model, including a 
comparison with VAST (Thorson 2019) and sdmTMB (Anderson 

et al. In press), and a bivariate vector-autoregressive model

Multiple data types Specifying an integrated species distribution model using 
presence/absence, count and biomass sampling data

Age composition analysis Specifying a multivariate SDM involving multiple ages, used to 
estimate age-composition using spatially unbalanced sampling

Condition and density Specifying a marked point process involving numerical 
density and physiological condition and estimating the 
abundance-weighted average for the population mark
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spatio-temporal models. This software includes functionality for 
a wide range of time-series and spatial models, including vector 
autoregressive, dynamic factor, empirical orthogonal function 
and joint species distribution models (see Table 1). This package 
is available via CRAN, and we envision it as a replacement for the 
package VAST (Thorson 2019) that is available via GitHub and 
is widely used in fisheries and marine sciences. It is ‘tiny’ com-
pared with VAST in that it uses Gaussian Markov random fields 
to represent all spatio-temporal variation, and thereby achieves 
a more condensed code base and a more familiar user interface. 
It has a similar interface to the package sdmTMB (Anderson 
et al.  In press) but includes additional options for multivariate 
analysis. It also includes package vignettes that demonstrate the 
user interface for a wide range of models (Table 5), and these 
vignettes compare results with alternative software, including 
sdmTMB (Anderson et al. In press), VAST (Thorson 2019), mgcv 
(Wood 2017) and dsem (Thorson et al. 2024). We hope that this 
simple yet expressive interface will expand access to multivari-
ate spatio-temporal models among applied ecologists.
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