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ABSTRACT

Aim: Multivariate spatio-temporal models are widely applicable, but specifying their structure is complicated and may inhibit
wider use. We introduce the R package tinyVAST from two viewpoints: the software user and the statistician.

Innovation: From the user viewpoint, tinyVAST adapts a widely used formula interface to specify generalised additive models
and combines this with arguments to specify spatial and spatio-temporal interactions among variables. These interactions are
specified using arrow notation (from structural equation models) or an extended arrow-and-lag notation that allows simulta-
neous, lagged and recursive dependencies among variables over time. The user also specifies a spatial domain for areal (grid-
ded), continuous (point-count) or stream-network data. From the statistician viewpoint, tinyVAST constructs sparse precision
matrices representing multivariate spatio-temporal variation, and parameters are estimated by specifying a generalised linear
mixed model (GLMM). This expressive interface encompasses vector autoregressive, empirical orthogonal functions, spatial
factor analysis and ARIMA models.

Main Conclusion: To demonstrate, we fit to data from two survey platforms sampling corals, sponges, rockfishes and flat-
fishes in the Gulf of Alaska and Aleutian Islands. We then compare eight alternative model structures using different as-
sumptions about habitat drivers and survey detectability. Model selection suggests that towed-camera and bottom trawl gears
have spatial variation in detectability but sample the same underlying density of flatfishes and rockfishes and that rockfishes
are positively associated with sponges while flatfishes are negatively associated with corals. We conclude that tinyVAST can
be used to test complicated dependencies representing alternative structural hypotheses for research and real-world policy
evaluation.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.
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1 | Introduction

Multivariate spatio-temporal models are applicable to many
questions throughout ecology, human health, econometrics and
geosciences (Thorson and Kristensen 2024). For example, these
models are used to study:

1. Community assembly when applying joint species distribu-
tion models to estimate how species traits and local environ-
mental conditions explain variation in density for multiple
species across space and time (Ovaskainen et al. 2017);

2. Species and/or temporal ordination when identifying a re-
duced set of variables that can collectively explain biophys-
ical variation for many processes across space and time.
When simplifying dynamics over time, estimated indices
(and spatial responses) are often called ‘empirical orthogo-
nal functions’ (Wikle and Cressie 1999), although ordina-
tion can instead (or simultaneously) be applied to identify
a small number of ‘species archetypes’. where density for
each species is estimated as a weighted average of different
archetypes (Latimer et al. 2009);

3. Species interactions, that is, estimating how species den-
sity for one species affects local productivity for other spe-
cies. Species interactions can be approximated by fitting a
vector-autoregressive model to log-densities (Wootton and
Emmerson 2005), and the estimated ‘community matrix’
then represents many important properties about commu-
nity stability (Ives et al. 2003).

In the following, we will use the term ‘multivariate spatio-
temporal models’ for this large family of analyses.

In the following, we introduce a new package, tinyVAST, for
the R statistical environment (R Core Team 2023) that provides
a simple and user-friendly interface for multivariate spatio-
temporal models and which builds upon a wide range of exist-
ing models and software (Table 1). We explain the model from
two contrasting viewpoints: the software user (to view the user-
interface) and the statistician (to view the statistical machinery).
We then introduce a case-study example involving data from
two sampling programs for seafloor-associated fishes as well as
biogenic habitat (sponges and corals). We outline eight alterna-
tive hypotheses regarding how these sampling programs might
relate to one another, fit all models using tinyVAST and use con-
ventional model selection to identify a parsimonious description
of habitat associations for these species.

2 | Viewpoint #1: User-Interface and Feature Set

We aim to develop software that involves a minimal set of user-
level inputs, but which can still encompass a wide range of
spatio-temporal model configurations. We specifically want a
user interface that resembles existing regression software in R,
e.g., glmmTMB for hierarchical models (Brooks et al. 2017) and
mgcv for generalised additive models (Wood 2017). Similar to
these well-known regression packages, tinyVAST requires a data
frame ‘data’ that contains any combination of continuous and
categorical variables, and then an argument ‘formula’ that iden-
tifies the response variables, some transformation of predictor

variables and an offset variable. This regression interface allows
new users to quickly fit a model and then interrogate model
components using some combination of S3-generic functions,
e.g., ‘predict’, ‘summary’, ‘simulate’, ‘residuals’, etc.

By itself, however, the well-known ‘formula’ interface for re-
gression packages is not sufficiently expressive, e.g., to repre-
sent dependencies among predictor variables that are relevant
during mediation, instrumental variable, or attribution analysis
(Pearl 2009). We, therefore, predict the mean of a response vari-
able as the sum of four different terms:

1. Spatial interactions among variables: The user can specify
interactions among variables at a given site (or for spatially
correlated latent variables) using ‘arrow’ notation derived
from path analysis (Wright 1934), based on the interface
from R package sem (Fox et al. 2020);

2. Temporal interaction among variables: The user can spec-
ify simultaneous and lagged interactions among variables
over time using an expanded ‘arrow-and-lag’ notation that
is derived from the R package dsem (Thorson et al. 2024),
where these interactions construct the annual intercept for
a given variable therefore apply uniformly for all locations.

3. Spatio-temporal interactions among variables: The user can
specify simultaneous and lagged interactions among varia-
bles over time, where these interactions occur on a site-by-
site basis.

4. Generalised additive model: The user specifies a formula
for a generalised additive model (GAM) that is interpreted
by the R package mgcv. If other model components are
missing, tinyVAST estimates parameters that are similar to
mgcv, with small differences resulting from different meth-
ods for parameter estimation;

Combining these four terms results in a flexible and generic (‘ex-
pressive’) model structure, and each term is useful individually
(or in combination) depending upon study goals.

2.1 | Arrow Notation for Interactions Among
Variables

Specifying spatial interactions among variables allows users to es-
timate one or more spatial variables that are constant over time,
e.g., representing the long-term utilisation distribution that results
from species interactions. To represent interactions among vari-
ables over time, we draw upon the existing notation for structural
equation models and path analysis (Wright 1934). In its simplest
form, this ‘arrow notation” specifies a set of linear dependencies
among variables and is written using multiple lines of text, where
each line specifies a dependency (i.e., coefficient linking two vari-
ables or exogenous variance). Each line then includes three argu-
ments separated by commas. The first argument specifies which
variables are involved, where a one-headed arrow indicates a slope
parameter and a two-headed arrow indicates a variance or covari-
ance parameter. The second argument then defines a name for the
parameter, and the (optional) third defines a starting value. This
interface allows users to define multiple parameters with the same
value (by using the same parameter name in multiple lines) or fix
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TABLE 1 | List of model types and software functionality (rows) and R packages (columns), indicating what functionality is supported by each

R package.

Model type

R package

sem mgcv dsem sdmTMB VAST tinyVAST

Available on CRAN

No spatial or temporal correlations
Instrumental variables

Time-series correlations

Vector autoregressive model

Dynamic factor analysis
Spatio-temporal correlations

Spatial vector autoregressive model
Empirical orthogonal function analysis
Spatial factor analysis

Univariate species distribution model
Multivariate species distribution model

Smoothing spline response for covariates

Multiple distribution/link functions for different partitions of data

X X X X X

o
X

T T B
o T T B B R S R

parameters at a hypothesised value a priori (by naming the param-
eter NA and fixing it at the starting value).

For example, an analyst might envision alinear model with an in-
dependent variable X and dependent variable Y, where variation
in X causes variation in Y. This is specified by defining a slope
parameter #, measuring how a change in X causes a change inY
(using a one-headed arrow in first line of Equation 1), and then
two variance parameters oy and o (using two-headed arrows in
the second and third lines):
X —Y,betal,1
X o X,sigmaX,1 (€))

Y & Y, sigmaY,1

This arrow notation specifies a linear model:

X ~Normal(uy, 0% )

@
Y ~Normal(uy +$, X, 0%).

However, arrow notation can also be used to specify complex
and recursive dependencies among variables. For example:
X —>Y,betal
Y — Z,beta2 3)
X — Z,beta3

specifies an impact of X on Y with slope g, (Equation 3 1st line)
and an impact of Y on Z with slope g, (Equation 3 2nd line),

such that X has an indirect impact on Z with magnitude g, §,.
However, it also specifies a direct impact of X on Z with slope
p; (Equation 3 3rd line), such that the total impact of X on Z is
p18, + B+ By default, the software also includes a variance pa-
rameter for each variable (in this case, oy, oy and ), such that
it results in a set of linear models:

X ~Normal(py, 0% )
Y ~Normal(uy + 8, X, 03) @)
Z ~Normal(uz +,Y +B;X, 07)

Importantly, this model can give useful insight about an exoge-
nous change in a mediator, where an exogenous change in Y is
expected to result in a change in response Z. We use this ‘arrow’
notation to specify interactions among variables that are con-
stant over time.

This structural model could be viewed using two interpretations:

1. Weak form: The analyst may use arrow notation as an ex-
pressive and general interface to specify the covariance
among variables;

2. Strong form: The analyst may view the resulting model as
a ‘structural causal model’ (Pearl 2009) and use it to make
predictions about system responses to counterfactual
scenarios.

We believe that the ‘weak form’ interpretation remains useful
even in cases when the analyst has not validated (or otherwise
believes) the strong-form interpretation.
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2.2 | Arrow-and-Lag Notation for Interactions
Among Variables Over Time

Specifying temporal or spatio-temporal interactions among
variables over time allows tinyVAST to estimate short-term devi-
ations from long-term average conditions. However, arrow nota-
tion does not include any concept of time and cannot distinguish
between simultaneous versus lagged effects. We therefore follow
Thorson et al. (2024) in defining an expanded ‘arrow-and-lag’
notation to allow users to specify interactions among variables
over time using multiple lines of text. This text follows the same
format as the ‘arrow notation’, except it adds an additional (sec-
ond) argument representing the lag involved and now involves
three or four arguments per line.

For example, the analyst might approximate species interac-
tions by estimating a lagged impact of each species on per-capita
productivity for every other species (Ives et al. 2003). This re-
quires specifying a bivariate vector autoregressive (a.k.a., cross-
lagged) model:

X —-X,1, betaxx, 0.1
X—-Y,1, betaxy,0.1

©)
Y —X,1, betayx,0.1
Y ->Y,1, betayy,0.1
where this then specifies:
X, ~Normal (py + o X, 1+ P Yi1,0%) ©

Y, ~Normal(uy + X, 1 +B,,Y, 1,07),

where uy and u, are intercepts for each species. This involves esti-
mating four cross-lagged interactions and can instead be written
as(X,,Y,) =B(X,_,,Y,_,) + ¢, where ¢, ~ MVN(0,diag(c%,06%))

ﬂ)oc ﬁyx
Pry By

the user to specify (among other models) a vector-autoregressive
(VAR), autoregressive integrated moving average (ARIMA),
dynamic factor analysis (DFA) and difference-in-differences
model (Table 2).

and B = [ } This arrow-and-lag notation then allows

2.3 | Spatial objects

The user can specify an object supplied to the argument ‘spa-
tial_domain’ that is used to define a spatial precision matrix,
Quomain» Where the matrix inverse Q) . represents the cova-
riance among different sites within the spatial domain. Options
include the following:

1. Continuous spatial domain: Using the R package fmesher
(Lindgren 2023), the user can apply the stochastic partial
differential equation (SPDE) approximation to a Matérn
correlation function over a two-dimensional spatial domain
(Lindgren et al. 2011). Package tinyVAST then uses fimesher
to construct the projection matrices that apply bilinear inter-
polation to calculate random variables at any sampled or pre-
dicted location within the defined spatial domain.

TABLE 2 | Examples of common time-series models and their
specification using ‘arrow-and-lag’ notation. We envision data are
available for two variables X and Y for vector autoregressive models
(VAR) and dynamic factor analysis (DFA), or one variable X for other
models, and DFA and autoregressive integrated moving average
(ARIMA) models involve estimating a latent variable F. All models are
assumed to estimate an exogenous and independent variance for each
variable by default. However, this default can be overridden by explicitly
specifying a two-headed arrow where, for example, ‘X < X, 0, NA, 0’
specifies that exogenous variance for variable X is fixed at 0 a priori.
Note that the DFA, ARIMA(1,1,0) and ARIMA(0,0,1) specifications
are all reduced rank (arising from variable X specified to have zero
variance).

Model and specification
using ‘arrow-and-lag’

notation Explanation for each line

Vector autoregressive model (VAR)

X—-X,1,b_xx First-order autoregression for
X (e.g., density dependence)
X-Y,1,b_xy Lagged impact of X;_; on Y,
Y—-X,1,b_yx Lagged impact of Y,_; on X,
Y-Y,1,b_yy First-order autoregression for

Y (e.g., density dependence)
Dynamic factor analysis (DFA)

F—F,1,NA,1 Random walk for factor F
F—X,0,b_fx Loading of X on factor F
F-Y,0,b_fy Loading of Y on factor F
F<F,0,NA, 1 Unit variance for factor F
X< X,0,NA,0 Turn off process error for X
Y<Y,0,NA, 0 Turn off process error for Y

ARIMA(1,1,0)

F—F,1,rho AR1 for factor F
X—-X,1,NA, 1 Random walk for time-series
X (integrated component)
F—X,0,NA, 1 Fixed unit loadings for
factor F on time-series X
X< X,0,NA,0 Turn off additional process
error for time-series X
ARIMA(0,0,1)
F—X,0,NA, 1 Unit loadings for factor
F,on X, in time ¢
F—X,1,rho Estimated loadings for
factor F,_, on X; in time ¢
X< X,0,NA,0 Turn off additional process

error for time-series X

2. Areal spatial domain: Using the R package igraph (Csardi
and Nepusz 2006), the user can instead construct a graph
representing polygons or other areal data. Package ti-
nyVAST constructs the adjacency matrix and applies a
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simultaneous autoregressive (SAR) model to construct the
spatial precision matrix (Ver Hoef et al. 2018). The user can
specify an unconnected graph, which then eliminates any
spatial correlation among modelled locations, resulting in
a multivariate time-series model.

3. Stream network domain: Using the R package sfnetwork
(van der Meer et al. 2023), the user can construct a graph
representing locations along a stream network (Hoef
et al. 2006). Package tinyVAST then constructs the preci-
sion matrix representing an Ornstein-Uhlenbeck process
(Charsley et al. 2023).

If the user does not specify the argument ‘spatial_domain’, then
tinyVAST assumes that all observations are from a single site
and, therefore, reverts to a univariate time-series model (see
summary of arguments in Table 3). Alternatively, the user can
specify that all sites are independent using the package igraph,
and this then reverts to a multivariate time-series model. A fit-
ted model can then be explored using standard S3-generic func-
tions (Table 4).

2.4 | Formula Interface for Exogenous Covariates

To specify the GAM component of tinyVAST, we use the formula
interface from package mgcv. This interface is appropriate for es-
timating how exogenous variables affect the specified response
and allows the user to select from a wide range of nonlinear re-
sponse functions. The mgcv formula includes univariate splines,
multivariate splines, random intercept and random-slope mod-
els, as well as standard functionality for polynomial basis expan-
sion of fixed effects. The most common options are supported
within tinyVAST, and these options are well described elsewhere
(Zuur et al. 2009; Wood 2017).

3 | Viewpoint #2: Statistical Model Structure

Package tinyVAST fits a generalised linear mixed model
(GLMM) where random effects are specified using Gaussian
Markov random fields (GMRFs). This GLMM involves combin-
ing four model components (numbered at the beginning of sec-
tion Viewpoint #1: User-interface and feature set).

The first component is the ‘spatial interaction among variables’
represented using a spatial SEM. Given the arrow notation rep-
resenting interactions among C variables, tinyVAST constructs a
sparse precision matrix Qgyyce_erm With dimension C X C:

Qspacefterm = (I - Pt)r_tr_l(l - P)’ (7)
where P is the sparse C x C matrix of path coefficients (speci-
fied using one-headed arrows in the arrow notation) and T is
the sparse C x C matrix of exogenous covariance parameters
(two-headed arrows in arrow notation). Package tinyVAST then
constructs a separable precision for a S X C matrix Q of S sites
and C variables:

VEC(Q) = MVN(O’ s_placefterm ® Q;;main) ° (8)

This matrix Qs then projected to the set of samplesi € I by mul-
tiplication with a I X S projection matrix.

The second component is the ‘temporal interaction among vari-
ables’, represented using a dynamic SEM. The arrow-and-lag
notation representing interactions among variables over time is
used to construct a sparse CT x CT precision matrix Qe rerm-
This is used to specify a nonseparable precision for a C x T two-
dimensional matrix D across C variables and T times:

vee(D) = MVN(0, Qi iom ) ©
This matrix D contains the annual intercept d,,, for each variable
and year.

The third component is the ‘spatio-temporal interaction among
variables’, represented using a separable process that includes
a DSEM (representing site-by-site interactions among variables
over time) and the spatial process. Arrow-and-lag notation
again specifies interactions among variables over time to con-
struct a sparse CT X CT precision matrix Qgacetime_term- L 1S iS
then used to specify a separable precision for a S x C x T three-
dimensional array E across S sites, C variables and T times:

_ -1 -1
VeC(E) - MVN(O’ Qspacetimefterm ® Qdomain) N (10)

This array E is again projected to the set of samplesi € I by mul-
tiplication with a I X S projection matrix.

However, some specifications using ‘arrow notation’ for the
space-variable interaction Q or temporal interaction D, or using
‘arrow-and-lag notation’ the space-variable-time interaction E
will result in Qspace_term’ Qtime,term and/or Qspacetime_term not bEing
full rank (see Table 2 for example). In these cases, the covariance

-1 -1 and/or Q. does not exist. The user can

space_term’ time_term
instead specify an alternative parametrization:

spatial

vec(()) =MVN(0, I.®Q-! )

Q=(I-P")"'T'Q an

whereI-is a C x C identity matrix such thatI, ® s‘pla i 128 full
rank (and a similar reparametrization is done for D or E). This
‘projection’ parametrization ensures that, efficents ﬁ, Dand E
are full rank, while their projected values Q, D and E have the

reduced-rank structure specified by the user.

The fourth component is the ‘generalised additive model’, repre-
senting additional nonlinear effects and interactions. The GAM
term includes fixed effects a and random effects y, with design
matrix X and Z, respectively. The formula interface is used to
construct the I xJ design matrix X for fixed effects, and the
I x K design matrix Z for random effects, where random effects
represent spline coefficients or other shrinkage priors. The de-
sign matrix for fixed effects can include an offset term (i.e., a
column of X for which the slope a is fixed at 1 a priori), and can
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TABLE 3 | List of all user-defined arguments passed to function ‘tinyVAST’ (the core function in package ‘tinyVAST’), including different user
options when specifying these.

Argument
name Object passed What it does
formula Formula defining response, exogenous predictors and offset variables Defines regression-style model, including
nonlinear transformations
data Data frame containing response, predictor and offset variables Contains all sampling data
time_term Options: Defines interactions among variables over
1. Character string parsed by ‘make_dsem_ram(.)’ internally time (including lagged and simultaneous
Output from ‘make_sem_ram(.)’ effects) that are constant across space
space_term Options: Defines interactions among variables that are
2. Character string parsed by ‘make_sem_ram(.)’ internally constant over time. By default, tinyVAST uses
3. Output from ‘make_sem_ram(.)’ ‘arrow notation’ parsed by ‘make_sem_ram(.)’
spacetime_ Options: Defines interactions among variables over time
term 1. Character string parsed by ‘make_dsem_ram(.)’ (including lagged and simultaneous effects). By
2. Output from ‘make_dsem_ram(.)’ default, tinyVAST uses ‘arrow-and-lag notation’ parsed
3. Output from ‘make_eof _ram(.)’ by ‘make_dsem_ram(.). However, other models can
4. Manually constructed ‘reticular action model’ representing instead be specified using alternative constructors,
associations among variables over time for example, empirical orthogonal functions (EOF)
family A standard R family object or a list with names matching elements of Allows models to be specified that fit multiple data
‘data’ corresponding to user-specified error distributions, where each  types or a single data type but with different dispersion
element specifies a family and link function for those distributions parameters associated with different samples (e.g.,
different variance for each modelled variable)
space_ A character vector where ‘data[,space_columns]’ Matched against spatial coordinates or
columns indicates the spatial coordinates for each sample domain listed in ‘spatial_domain’
spatial _ S3-object, where options include: Defines spatial domain (extent and resolution)
domain 1. Topology used by SPDE method to define spatial correlations in 2D and resulting basis functions describing spatial
spatial domain, constructed using fmesher package (Lindgren 2023) correlations, where space-variable interactions
2. Topology used by Simultaneous Autoregressive (SAR) method arise as separable processes from ‘spatial _domain’
to define spatial correlations for areal data (or independence for a and ‘space_term’ and space-time-variable
multivariate time-series analysis), constructed using igraph package interactions arise as separable processes from
(Csardi and Nepusz 2006) ‘spatial_domain’ and ‘spacetime_term’
3. Topology used by autoregressive stream-network model for
network data, constructed using sfnetworks package (van der Meer
et al. 2023)
4. Missing, defining a time-series model (i.e., all samples are
associated with a single site)
variable_ A string where ‘data[,variable_column]’ Matched against variables listed in ‘dsem’ and ‘sem’
column indicates the variable for each sample
variables Character vector that defines the set of model variables, included Defines the set of modelled variables (e.g.,

time_column

times

control

delta_options

as a column of ‘data’ and indicated by ‘variable_column’

A string where ‘data[,time_column]’
indicates the time for each sample

Integer vector that defines the set of model times, included
as a column of ‘data’ and indicated by ‘time_column’

Tagged list defining advanced features,
constructed by ‘tinyVASTcontrol(.)’

List with elements formula, space_term, time_
term, spacetime_term, and spatial_varying

indicating species in a multispecies model).

Matched against lags specified in ‘dsem’

Defines the temporal domain

Allows detailed control over model
specification and optimisation while avoiding
argument clutter for casual users

Allowing users to specify options when specifying
a delta (hurdle) model via argument ‘family’

weights Vector of likelihood weights Allows some data to be passed but not fitted
spatial _ Right-handed formula, listing variables for which a Allows estimates of spatially nonstationary
varying spatially varying coefficient (SVC) is estimated covariates, representing spatially varying
detectability ratios or environmental responses
60f13 Global Ecology and Biogeography, 2025
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TABLE 4 | Listof functions exported by tinyVAST, including their name and purpose.

Function name

Purpose

tinyVAST

make_sem_ram

make_dsem_ram

Fit a tinyVAST model

Construct a reticular action model (RAM) using ‘arrow notation’ to

construct the precision matrix for a structural equation model

Construct a RAM using ‘arrow-and-lag notation’ to construct the
precision matrix for a dynamic structural equation model

make_eof _ram

Construct a RAM for an empirical orthogonal function (EOF) analysis

summary Summarise output for different model components

print User-friendly output from a fitted model

logLik The marginal log-likelihood, for example, to enable function AIC(.)

cAIC Calculate conditional AIC (Zheng et al. 2024)

predict Predictions in response or link-scale, or for link-scale for individual components
residuals Compute deviance or response residuals from a fitted model

simulate Simulate new data conditional upon fitted model, either with or without sampling from the

predictive distribution of random effects (the latter being useful when assessing model residuals)

integrate_output

Compute plug-in or epsilon bias-corrected estimator (Thorson and Kristensen 2016) for a quantity

calculated via Monte Carlo integration across a user-specified set of sampling locations (and
associated covariates) for a single time. This can then compute an area-weighted abundance
index and measure distribution shifts, range expansion and spatial overlap among variables

include any set of intercepts, slope and interactions. Each block
of random effects is specified to follow a multivariate normal
distribution, which is constructed by package mgcv:

T ~ MVN(O’ A ng‘Jm) ; (12)

where Qj,, is the precision matrix for the zth block of random
effects vy, and 4, is the estimated wiggliness (inverse-variance)
parameter for that block.

The expected value for sample i is then calculated by apply-
ing an inverse-link function to a linear predictor, which is
calculated in turn by assembling all four components. Some
distributions (e.g., delta models) require two linear predictors,
so the user can provide a separate specification for linear pre-
dictor p,; and p,;:

D1i=X0,00+Z 7+ AQy i+ Dy + AiEcpinan

GAM#1 space_term#l  time_term#1  spacetime_term#1

P2 =X50,+Zy Yo+ Ay + Dy + AE i
—_— ) — ) —

GAM#2 space_term#2  time_term#2  spacetime_term#2,
13)
where A, is a vector of length S that projects a spatial variable
(e.g., the spatial term Q, .; for the 1st linear predictor) to its
value at the location of sample i.

tinyVAST allows the user to specify a different link function and
distribution for different partitions of data, where e[i] indicates

the (error) distribution for sample i, g, is the bivariate link func-
tion for distribution e and f, is the probability distribution func-
tion for that distribution:

Y ~ fori (ge_[il] (PrisP2i)> Oert )a (14A)

There are two use cases worth noting. For clarity, we introduce
these cases assuming that there's a single error distribution for
all samples, such that we can suppress notation e[i] from the dis-
tribution f and link function g.

1. Univariate distribution: The simplest and most widely
used case involves a probability distribution function
that uses a single linear predictor (e.g., a log-linked
Poisson distribution). In this case, the user only specifies
the first linear predictor p,; = p; and ignores the second
linear predictor p,; =0, such that mean E(Y;) = y; where
m=g"(pi):

2. Conventional delta models: Alternatively, the GLMM might
be applied to biomass samples that are continuous and
positive but which also include a set of 0s (when a species
was not encountered at all). In this case, the user specifies
both linear predictors. The first linear predictor is typically
transformed using a logistic function (i.e., logit-link), and
the second linear predictor is typically transformed using
an exponential function (i.e., log-link):

ePui
M= 1 o
;= ebai 14B
/"2,1 ( )
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These are then used to compute the delta distribution:

1—py, ifY;=0

v By 14C
7 (Y]t s Has 0) {”Lixf(Yilllz,i’g) itY;>0 e

where f(Y;| u,;,0) is the user-specified distribution for
positive samples, and #(Y; ) is the data likelihood including
zeros and positive values for sample i.

3. Poisson-linked delta model: Finally, the user might spec-
ify a bivariate link function with two linear predictors
representing areal samples of a marked point process
(Thorson 2018). The first linear predictor is calculated
using a complementary log-log link, while the second is
defined such that y, ;u,; = ePrieP2, where ePri is represents
group-densities for the point process and eP> represents bi-
omass per group:

pry=1—e"
ePui Da:
Hyi= Ze z'l (14D)
i

The data likelihood can then be computed similarly to the con-
ventional delta model (Equation 14C).

These use-cases can be combined in various ways, e.g., to specify
a different link function and distribution for different partitions of
the data, where each sample i is associated with partition e[i]. For
example, Griiss and Thorson (2019) combined presence-absence
data using a cloglog link and a Bernoulli distribution, count data
using a log link and Poisson distribution, and biomass data using
a Poisson-linked delta model and a gamma distribution. In these
data-integrated models, it is then often necessary to also include
a factor representing survey in the GAM formula, to account for
differences in detection probability relative to a reference survey.

Computing the joint log-likelihood for this GLMM is efficient
given that Qspacefterm’ Qtimefterm’ Qspacetimefterm’ Qdomain and anm
are all sparse. We use the R package TMB to apply the Laplace
method to approximate the marginal likelihood and optimise
the log-marginal likelihood using gradients computed using au-
tomatic differentiation (Kristensen et al. 2016). We then use a
generalisation of the delta method to calculate standard errors
(Kass and Steffey 1989), and the epsilon method to correct for
skewness and retransformation bias of random effects (Thorson
and Kristensen 2016).

4 | Case Study: Habitat Associations in
Data-Integrated Species Distribution Model

To illustrate the wide range of models that can be expressed
with tinyVAST, we introduce an integrated species distribution
model (SDM) that combines samples from two surveys: a towed
camera that measures densities of flatfishes (Pleuronectiformes
spp.), rockfishes (Sebastes spp.), corals and sponges, and a sep-
arate bottom trawl that measures densities of flatfishes and
rockfishes. Individually, historical studies looking at species

associations have often found positive correlations between
rockfishes and corals and sponges in both trawl and camera
data (Yoklavich et al. 2000; Laman et al. 2015). However, these
two gears typically sample different types of substrates since
trawling is limited to soft-bottom substrates and at different spa-
tial scales, since the area swept by an individual trawl haul is
typically at least two orders of magnitude larger than a camera
transect. So, it is unclear whether the strength of the positive
impact on rockfish density is similar between the two gears.
The opposite question is appropriate for flatfishes, which prefer
soft-bottom sediments, are more likely to be effectively trawled,
but are less likely to be observed with sponges and corals pres-
ent. Previous research has typically fitted an SDM to coral and
sponge densities separately, predicted densities at the location of
bottom trawls, and used those predictions as fixed covariates to
explain flatfish and rockfish associations with biogenic habitats
(Laman et al. 2018). By contrast, we seek to answer the follow-
ing questions:

1. Are the associations between fishes and biogenic habitats
estimated to be the same in towed camera and bottom
trawl sampling programmes?

2. Do the towed camera and bottom trawl measure sim-
ilar variations in density for fishes, or does one or the
other tend to measure more or less fluctuation in den-
sity between high and low-density areas due to density-
dependent catchability for the bottom trawl (Kotwicki
et al. 2014)?

The first set of data used in these analyses were from biennial
(or triennial) bottom trawl surveys conducted from 1990 to 2019
in the Gulf of Alaska and the Aleutian Islands (Siple et al. 2024).
The surveys are designed to assess the abundance of commer-
cially important groundfishes and invertebrates in each ecosys-
tem using a stratified random sampling design covering an area
from Dixon Entrance in Southeast Alaska to Stalemate Bank in
the Aleutian Islands at depths from 35 to 1000m in the GOA and
35 to 500m in the Aleutian Islands. Detailed sampling designs
and protocols can be found in Stauffer (2004). In this analysis,
catch and effort data from 14,877 research survey bottom trawl
tows were used. The second set of data came from towed stereo-
camera surveys conducted from 2012 to 2017 in the central and
western Gulf of Alaska and Aleutian Islands from Yakutat,
Alaska to Stalemate Bank (including Bowers Ridge and Bank).
These data were collected using standardised sampling protocols
of 15min of on-bottom time, where all fishes and benthic inver-
tebrates were identified and counted to the lowest possible taxo-
nomic level. The Aleutian Islands data were from 216 transects
chosen using a stratified random survey design covering depths
of ~15 to 850 m (Rooper et al. 2016). The Gulf of Alaska data were
from 227 transects chosen using a random or haphazard design
(Sigler et al. 2023). The total number of each species of fish and
invertebrate observed, as well as the area of the seafloor viewed,
were calculated for each transect using the methods outlined in
Rooper et al. (2016). However, in the analysis, both trawl survey
and camera data used high-level classification of fish to avoid
potentially erroneous species identifications in the camera data.

To answer these questions, we specify a log-linked Tweedie
GLMM, which involves a single linear predictor p;, We define a
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factor ‘Group’ with six levels: S, C, F, R (for sponges, corals, flat-
fishes and rockfishes in the drop camera), and S2 and R2 (for
sponges and corals in the bottom trawl). We also include a factor
“Year’ (indicating the year of sampling), numeric ‘Area’ (for the
area swept by a given bottom trawl or drop camera sample) and

No link

R2 Params =79 F2 R2

S
b4 b2
b3 bl

Missing covariate
Params = 79 F2
d4.__ d2
a3  dl

C

F R

R AIC =108.1 AIC =170.4 F

Same response Spatial Q

R2 Params =79 F2 R2

Params =79 F2

b4 b2 S
b3/ bl
b4 _ b2 b4 _ b2
b3 bl b3 bl
R AlC =559 F R AIC=92 F
H)g;:;?;zllgle Diff. response
R2 Params = 81 F2 R2 Params = 83 F2
d4.__ d2
S
d3/ dl
b4 b2 b4 b2
a2 C al
b3 bl b3 bl
R AlC=24 F R AIC =498 F
Spatial Q Hyperstable spatial Q
| diff "
R2 Params = 83 F2 R2 Params = 85 F2
44 d2 a4, 47
d37 dl a3/ d1
b4 _ b2 b4 _ b2
a2 C al
b3 bl b3 bl
R AIC=0 F R AlIC=03 o

FIGURE 1 | Visualising the hypothesised relationship among
six variables (Towed camera: R=rockfish; F=flatfish; C=corals;
S=sponges; Bottom trawl: R2=rockfish; F2=flatfish) using ‘tiny-
VAST:summary(.)’ to summarise path coefficients, and functions
‘graph_from_data_frame(.)’ and ‘plot.igraph(.)’ in package igraph for
plotting, where each arrows correspond to a specified path coefficient
(P, see Equation 7). Estimated path coefficients list the parameter name,
while path coefficients that are fixed a priori are shown without a name.
We also show the marginal AIC relative to the most parsimonious mod-
el (bottom of each panel) and number of fixed effects (top of each panel),
and all models include intercepts for each sampled combination of vari-
able and year (56 parameters), two dispersion parameters per variable
(2 x 6 = 12 parameters), one variance per species (6 parameters) and an
estimated decorrelation rate (1 parameter) that are not shown here.

‘Count’ (for the count of a given sample). We then specify a GAM
formula, ‘Count ~0 +interaction(Group, Year)+ offset(log(Area))’.
This specifies a separate intercept for every combination of Group
and Year that is present in the data set. We also specify a spatial
SEM using arrow notation:
C—-F,bl
S—F,b2
C—-R,b3
S—R,b4
F—F2al
1s)
R—R2,a2
C->F2,d1
S—F2,d2
C—-R2,d3

S—R2,d4

where (bl, b,, b, b,) is the effect of biogenic habitat (sponges and
coral) on the portion of fish densities available to the drop cam-
era, (a,,a,)is the relationship between fish densities available to
the drop camera relative to the bottom trawl and (d,,d,, d;, d,)
is the effect of biogenic habitat on the portion of fish densities in
the bottom trawl after accounting for direct effects (a,, a, ). This
specification then results in the following structural equations:

log(us) =as+wg
log(uc) =ac+oc
log(up) =ap+bywc+bws+wp
log(ug) =ag+bwc+b,m5+wy
log(up,) =ap, +dioc +d,05+a,0p + o,

log(pgy) =ag, +ds00+d,05 +a,0p + @p,, 16)

where pg, uc, pp and uy are the modelled numerical density of
sponges, corals, flatfishes and rockfishes in the towed camera,
Hp, and pg, are the modelled numerical densities of flatfishes

R2 E2

-0.02 0.04
(0.12) (0.05)
-0.17 S 0.08

(0.09) (004)

1.00  0.60 C -0.03  1.00

(NA)  (0.1) (0.05) (NA)
20.13 -0.26
(0.07) (0.05)

R F

FIGURE 2 | Estimated path coefficients for the most parsimonious
model (bottom-left of Figure 1), showing both maximum likelihood es-
timate and standard error (in parentheses), where standard error NA
corresponds to parameters that are fixed a priori.
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and rockfishes in the bottom trawl, ag represents the intercept
for each variable (which varies among years ¢ for the bottom
trawl surveys but is constant for the drop-camera surveys) and
g represents spatial variation in log-density for a given variable.

We then define a set of eight hypothesised relationships that
arise as nested submodels. For example:

1. Biogenic habitat as covariates: We explore a model where
sponges and corals are not linked to towed camera densities
for fishes (b, = b, = by = b, = 0). Instead, the sponges and
corals are estimated as having a linear impact on bottom

Coral SE[ Coral ]
11.39

&

1.96

Rock_trawl SE[ Rock_trawl ]
9.54

&

-5.31

9.93

7.37

trawl estimates of fish densities (estimating d, through d,
), and other parameters are eliminated (a, = a, = 0). This
then corresponds to a joint SDM that imputes the biogenic
habitat densities and simultaneously estimates their use as
covariates for predicting bottom trawl data.

. No link from drop camera and bottom trawl: Alternatively, we

explore a model where there is no link connecting drop cam-
eraand bottom trawldata(d; =d, =d; =d, =a; =a, =0),
while estimating habitat associations within the drop-
camera data set. This measures the fine-scale association
between habitat and fishes in the towed camera survey.

Sponge SE[ Sponge ]

&

SE[ Flat ]
1.2

r

Flat_trawl SE[ Flat_trawl ]

1.29
- ﬁrc
0.21

FIGURE3 | Estimated log-densities (e.g., ‘Coral’ in top-left panel) and the standard error in log-density (e.g., ‘SE[Coral]’) for each of six modelled
variables (Coral, S, Rock =rockfishes, and Flat =flatfishes in the drop camera, and Flat_trawl and Rock_trawl in the bottom trawl) showing the
location of sampling data for that variable (green dots) on top of estimated standard errors. Here, we specifically show densities in Bower's Bank (a

relatively shallow area north of the central Aleutian Islands that is not sampled by the bottom trawl survey) to show that drop camera samples can

be predict densities from the bottom trawl.
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3. Linked and spatially varying catchability: Finally, we ex-
plore a model that assumes a priori that bottom trawl and
drop camera samples are both measuring the same under-
lying variation in densities (i.e., a; = a, = 1), while also es-
timating residual variation in the detectability ratio (i.e.,
spatial variation in wg, and wg,).

Other models are similarly formed via restrictions among pa-
rameters, which can be expressed using the ‘arrow notation’ for
interactions among variables.

Results suggest that the ‘Linked and spatially varying catchabil-
ity’ model is the most parsimonious of our hypothesised models
(Figure 1), although the saturated model and another candi-
date also receive some support (AAIC < 3). This parsimonious
model estimates a significant impact of sponges on rockfishes
(b, =0.59, SE =0.10; Figure 2), i.e., where a 10% increase in
sponge densities is associated with a nearly 6% increase in rock-
fish density, and also estimates a significant and negative impact
of corals on flatfishes (b; = — 0.26, SE = 0.05). Model selection
also indicates that it is parsimonious to specify that spatial
variation in fish density in the towed camera is proportional to
spatial variation observed using the bottom trawl (a; = a, = 1).

Finally, the model estimates an ‘indirect’ impact of corals and
sponges on bottom-trawl fish densities via their estimated impact
on towed-camera densities (b, through b,) and the proportional
relationship between the towed camera and bottom trawl fishes
(a, = a, = 1) but also a ‘direct’ impact of biogenic habitats on bot-
tom trawl fishes (d, through d,). These ‘direct’ impacts generally
have a smaller magnitude than the indirect impacts, suggesting
that the biogenic habitat has similar impacts for fish densities
in both sampling programs. Finally, the model estimates spa-
tial variation in the rockfish and flatfish densities calibrated to
the bottom trawl (i.e., R2 and F2) and uses the drop camera to
estimate variable densities in Bower's Bank, where the bottom
trawl survey does not occur (Figure 3). The bottom trawl is used
to index density across space (to define essential fish habitat) and
time (as input for stock assessments), so the estimated bottom-
trawl densities in Bower's Bank represent useful information for
fisheries managers.

5 | Discussion

In this paper, we introduce the R package tinyVAST to provide
an expressive (general and flexible) interface for multivariate

TABLE 5 | Vignettes included in package tinyVAST, including what model structures are specified and whether results are compared with

alternative packages.

Vignette

What it demonstrates

tinyVAST model description

Dynamic structural equation models

Comparison with mgcv

Empirical orthogonal function analysis

Simultaneous autoregressive process

Spatial modelling

Spatial factor analysis

Stream network models

Vector autoregressive spatio-temporal models

Multiple data types

Age composition analysis

Condition and density

Summarises model notation, equations and structure in a way
that software users can copy when describing their model

Specifying a dynamic structural equation model (DSEM)
and a comparison with package dsem (Thorson et al. 2024)

Specifying a generalised additive models (GAMs) and
a comparison with package mgcv (Wood 2017)

Specifying an empirical orthogonal function (EOF) model,
which cannot be represented using ‘arrow-and-lag’ notation
and instead involves function ‘make_eof _ram(.)’

Specifying a simultaneous autoregressive (SAR) model
and a comparison with a multivariate time-series model

Specifying a spatial model in two-dimensional
coordinates and a comparison with package mgcv

Specifying a spatial factor analysis (SFA) model that
estimates covariance among multiple variables

Specifying a spatial model on a stream network

Specifying a univariate spatio-temporal model, including a

comparison with VAST (Thorson 2019) and sdmTMB (Anderson

et al. In press), and a bivariate vector-autoregressive model

Specifying an integrated species distribution model using
presence/absence, count and biomass sampling data

Specifying a multivariate SDM involving multiple ages, used to

estimate age-composition using spatially unbalanced sampling

Specifying a marked point process involving numerical
density and physiological condition and estimating the
abundance-weighted average for the population mark
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spatio-temporal models. This software includes functionality for
a wide range of time-series and spatial models, including vector
autoregressive, dynamic factor, empirical orthogonal function
and joint species distribution models (see Table 1). This package
isavailable via CRAN, and we envision it as a replacement for the
package VAST (Thorson 2019) that is available via GitHub and
is widely used in fisheries and marine sciences. It is ‘tiny’ com-
pared with VAST in that it uses Gaussian Markov random fields
to represent all spatio-temporal variation, and thereby achieves
a more condensed code base and a more familiar user interface.
It has a similar interface to the package sdmTMB (Anderson
et al. In press) but includes additional options for multivariate
analysis. It also includes package vignettes that demonstrate the
user interface for a wide range of models (Table 5), and these
vignettes compare results with alternative software, including
sdmTMB (Anderson et al. In press), VAST (Thorson 2019), mgcv
(Wood 2017) and dsem (Thorson et al. 2024). We hope that this
simple yet expressive interface will expand access to multivari-
ate spatio-temporal models among applied ecologists.
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