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22 Abstract  

As a result of implementation of nutrient management following the binational        Great Lakes  

Water Quality Agreement in 1972, the ecosystems within the Laurentian Great Lakes were            

gradually transforming to lower trophic regimes.        This transformation dramatically accelerated     

in the late 1980s after the introduction of two invasive species of filter            -feeding mussels of the     

genus Dreissena.   We performed a detailed analysis of spatial       and temporal   patterns of this    

transformation using remotely sensed surface chlorophyll-     a  concentration ( Chl-a) from the    

multi-satellite long-term Ocean Colour Climate Change Initiative (OC-CCI) dataset as a proxy of            

ecosystem state. We analyzed 25 years (1997-2022) of monthly composites covering most of             

the Great Lakes’ area detecting regime shifts in       Chl-a  employing an integrated approach     

combining Seasonal-Trend decomposition (STL) and Sequential       T-test Analysis of Regime Shifts     

(STARS). The results identified the timings (shift points) when         Chl-a  stabilized at new lower    

trophic regimes, the magnitudes of      Chl-a  decrease  across various lake regions and depths, and        

the changes in    Chl-a  seasonal  cycles. In Lakes Michigan, Huron and Ontario, the timings and           

magnitudes of regime shifts and vanishing of spring phytoplankton bloom suggest that           

dreissenid mussel   presence was a primary driving factor of the observed transformation. We           

demonstrate that the OC-CCI dataset is a reliable source of information that enables the          

detection of these regime shifts in major lakes, with only minor effects of inconsistencies               

resulting from the biases between different satellites collecting data during different time          

periods.  
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1.  Introduction  

46 Decreases in phytoplankton biomass and productivity in the Laurentian Great Lakes over the             

past decades demonstrate a cumulative    effect of significant reduction of nutrient loads and the       

introduction of invasive species   .  Since  European settlement through to the early 1980s, the        

Great Lakes experienced progressive eutrophication (Stoermer et al., 1990), with phosphorus as           

the major nutrient limiting primary production (Schelske et al., 1974).          In response to the     

deteriorating state of water quality in the      se lakes,   the binational   Great Lakes Water Quality    

Agreement (GLWQA), a commitment between the US     and Canada to provide a framework for      

identifying binational   priorities to improve and protect water quality, was signed in 1972           

(International  Joint Commission, 1972).    As a result of the control     programs, phosphorus   

loadings to the lakes substantially decreased during the 1970s and 1980s (Bunnell             et al., 2014) , 

resulting in significant lake  -wide reductions in phytoplankton biomass (Stevens and N       eilson,  

1987; Millard et al., 1996)   .  

The decrease of phytoplankton biomass in the Great Lakes dramatically accelerated in the             

1990s  after the colonization of the lakes by two species of filter          -feeding mussels:  Dreissena 

polymorpha  (Pallas, zebra mussel) and    D. rostriformis buge  nsis  (Andrusov, quagga mussel),   

hereafter referred to collectively as “dreissenids”. As suspension filter        -feeders, the magnitude    

of their impact on pelagic ecosystems results from their ability to filter massive volumes of               

water (K ryger and Riisgård, 1988; Horgan and Mills, 1997; Diggins, 2001)         .   A little selection of     

particle size or quality is performed during filtration, so more water is filtered than would be                 

required to feed an individual, and not all        filtered particles are consumed. Excess food and        

particles that are too large or are of low food quality are bound in mucus and expelled as                  

pseudofeces (Padilla et al., 1996).    As a result, these mussels affect pelagic ecosystems through        

both top-down control    by feeding on planktonic organisms and bottom-up control         by  

sequestering phosphorus that otherwise would be available to phytoplankton (Bunnell          et al.,  

2014).   The total   impact of an individual    mollusk on the planktonic community is, therefore,        

much greater than the impact of the same biomass of other predators (e.g., zooplankton).               
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72 The effect of zebra and quagga mussels on the Great Lake ecosystem included an increase in             

water transparency (Binding et al., 2015; Yousef et al., 2017; Son and Wang, 2019), a decrease              

in the biomass/abundance of phytoplankton and chlorophyll-      a  (Fahnenstiel  et al., 2010;   

Vanderploeg et al., 2010; Reavie et al., 2014), decline in zooplankton (K         erfoot et al., 2010;   

Barbiero et al., 2011; Pothoven and Fahnenstiel, 2015; K       ovalenko et al., 2018) and prey fish       

(Bunnell  et al., 2014; Madenjian et al., 2015), and changes in the structure of the nearshore              

benthic community   (Pillsbury et al., 2002; Hecky et al., 2004; N      alepa et al., 2009) .  

It is unclear whether the reduction in phytoplankton biomass and increase in water clarity              

result primarily from the regulation of nutrient discharge or the heterotrophic pressure of            

mussels on phytoplankton biomass plays a dominating role in the observed transformation in             

the Great Lakes. The effect of nutrient regulation is expected to result in a gradual           decrease of   

phytoplankton biomass over most of the lakes’ area. In contrast, the effect of mussel             feeding is   

expected to be correlated with the steps of colonization of the lakes by dreissenids               

documented in previous studies (N    alepa et al.,  2010, 2009; K aratayev and Burlakova, 2022   ; 

Karatayev et al., 2021)  .  

The details of the transformation of the pelagic ecosystems of the Great Lakes to new lower                

trophic regimes are described in numerous publications based on field sampling            (Fahnenstiel  et 

al., 2010; Mida et al., 2010; Bunnell      et al., 2014; Madenjian et al., 2015; K     ovalenko et al., 2018;    

Pothoven and Vanderploeg, 2020) and satellite radiometry        (Yousef et al.,   2017, 2014; Rowe et   

al., 2015; Fahnenstiel    et al., 2016; Son and Wang,      2020, 2019).  Binding et al. (2015) used an      

empirical  algorithm relating water clarity (Secchi      disk depth) to reflectance measured in the        

green bands of Coastal     Zone Color Scanner (   CZCS), Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS), and Moderate Resolution Imaging Spectroradiometer       on Aqua platform (MODIS-  

Aqua), and showed a long-term increase (up to 62%) in water transparency comparable to the               

changes in   Chl-a  as reported in this study.       However, most published results were focused      

either on separate lakes or over relatively short time periods, and many provided assessments              

averaged over an entire lake and/or depth zone. Furthermore, most published works conclude             

that this transformation is ongoing (N    alepa et al.,  2010, 2009; Reavie et al., 2014; Rowe et al.,       
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2017, 2015).   It is thus unknown if phytoplankton biomass has stabilized to new lower trophic             

regimes and what the final     magnitude of that decrease was.       

The questions of “when and where       trophic status changes are occurring    ” can be addressed     

using estimates of surface chlorophyll-    a  concentration derived from visible measurements      

collected by Earth-observing satellites.      Remotely-sensed water color represents a unique      

source of information for quantitative assessment of interannual        variations of large  -scale  

aquatic ecosystems (including ocean and large lakes), especially in the regions where detailed              

monitoring based on field surveys is unavailable        (Calamita et al., 2024).    However, combining   

the data collected by different satellites into one time series may introduce abrupt shifts and             

inconsistencies resulting from the differences in accuracy and resolution (spatial, temporal, and             

spectral) between satellite sensors.       

The merged dataset produced by the Ocean Colour Climate Change Initiative (OC          -CCI) project  

includes data corrected for the biases between the reflectances measured by different satellite            

sensors (Sathyendranath et al., 2019).     The most recent version (v.6.0) of the OC-CCI dataset      

covers >25 years (1997-2022) of continuous global        observations and can be used to analyze        

long-term i nterannual  variations in differ  ent aquatic re gions.   It is impor tant to k eep  in mind   

that the early stages of the oligotrophication process in the Great Lakes are not quantified in              

this study. The OC-CCI dataset started more than two decades after the beginning of nutrient             

discharge regulation and several     years after the first reports of the introduction of dreissenids.            

This study provides a detailed analysis of spatial        and temporal   variations of remotely  -sensed 

chlorophyll-a  concentration ( Chl-a) in the five N    orth American Laurentian Great Lakes     

(Superior, Michigan, Huron, Erie, and Ontario) using a consistent methodology         for  detecting  

regime shifts. We performed a quantitative assessment of regime shifts based on           Chl-a,  thus  

enabling estimation of the timing of shift points between the regimes and the differences              

between the mean levels of the regime indicator.          The objectives of our study include: 1)        

addressing the question of whether the biases between the data collected during different            

periods by different satellites can be misinterpreted as regime shifts; 2) estimating the timings              

(shift points) when different regions of the lake ecosystems stabilized at new lower trophic            
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128 regimes; 3) quantifying the magnitudes of the        Chl-a  decrease in different geographic and     

bathymetric zones of the lakes; and 4) analyzing the effect of regime shift on             Chl-a  seasonal  

cycles in different parts of the lakes.        The paper is organized as follows: Section 2 describes the           

study area; Section 3 describes the steps of colonization of dreissenids in the Great Lakes;               

Section 4 details the OC-CCI dataset and statistical       methods of data processing and regime shift      

detection; Section 5 presents the results of the study, and is followed by discussions in Section                 

6 and conclusions in Section 7.        

129 

131 

132 

133 

134 

136 2.   The study region: The Laurentian Great Lakes        

The Laurentian Great Lakes (Figure 1) is one of the largest freshwater systems in the world, with                

a total  lake surface area of 244,   000 km 2  and a catchment area of approximately 1 million km     2. 

The lakes contain 22,   000 km 3  of water, which is 84% of N      orth America’ s surface fresh water and      

21% of the world’   s surface fresh water supply (Sterner et al., 2017), with the lowest nutrient           

loads in mass per unit time entering Lake Superior and the largest nutrient load entering Lake              

Erie  (Sterner, 2021).    The Great Lakes basin is home to almost 40 million people, or roughly 10%             

of the US    and 32% of Canada’   s population (Méthot et al., 2015). The lakes differ in size (from           

18,960 km2  for Lake Ontario to 82,    100 km 2  for Lake Superior (Bunnell     et al., 2014)), mean depth     

(from 7 m for western Lake Erie to 147 m for Lake Superior (Bunnell               et al., 2014; Sterner,    

2021)), hydraulic residence time (from about 200 years for Lake Superior to about three years              

for Lake Erie    (Quinn, 1992)), and levels of primary production (from the ultra-oligotrophic Lake           

Superior to the periodically hypereutrophic waters of western Lake Erie           (Bunnell  et al., 2014;   

Dove and Chapra, 2015)   ).  

Biogeochemical  properties of the Great Lakes vary over a broad range of temporal           and spatial   

scales (Sterner, 2021). Among the features potentially encouraging the colonization by            

dreissenids are relatively high pH and dissolved inorganic carbon (DIC) resulting from a high             

abundance of limestone and carbonate weathering in all         lakes except for Lake Superior     (Lin and   

Guo, 2016), a factor supporting the growth of invasive mussels (Hincks and Mackie, 1997)           . On 
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the other hand, a negative factor affecting benthic organisms is hypolimnetic hypoxia, which is              

a regular seasonal   event in some shallow embayments (Sterner, 2021), as well         as the central    

basin of Lake Erie, where hypoxia sometimes extended up to 60% of the surface area              (Zhou et  

al., 2013). The spatial     distribution of dreissenids in Lake Erie has been clearly connected to the             

occurrence of hypoxia (K  aratayev et al., 2018b)  .  

Because of their large size, the five lakes are often considered “inland seas”, requiring a               

scientific approach with attributes similar to those of oceanography          (Sterner et al., 2017)  .  One  

of these approaches is using satellite remote      -sensing imagery, providing regular synoptic      

coverage and the opportunity for comprehensive assessment of lake       -wide water quality and     

robust determination of spatial    and temporal   trends (Binding et al., 2015)   .  
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166 3.  Colonization  of  the Great Lakes    by dr eissenids  

The  introduction and expansion of zebra and quagga mussels in the Great Lakes has been well             

documented and represents one of the most dramatic and impactful          colonizations of invasive    

species in modern times (Ricciardi      and MacIsaac, 2000; Evans et al., 2011; Lower et al., 2024)        . 

These small   (maximum size 50 mm) mollusks were introduced with the release of ballast waters             

from commercial   vessels (Ricciardi   and MacIsaac, 2000).     The first  occurrence  of zebra mussels   

was noted between    April and N  ovember 1986 i  n the weste  rn  basin of Lak  e Er ie  (Carlton, 2008) , 

followed by its formal     (i.e., published) discovery on 1 June 1988 in Lake St. Clair, a small             lake  

between Lakes Huron and Erie      (Hebert et al., 1989) . The zebra mussel   extended its distribution    

beyond Lake Erie and was found in 1989 in three           other lakes: Michigan, Huron, and Ontario      

(Griffiths et al., 1991; K   aratayev et al., 2021)  . 1989 also marked the first record of the quagga        

mussel  in N orth America when a single specimen was found in Lake Erie          (Benson, 2014). The  

discovery of quagga mussels in Lake Ontario followed soon after in 1990            (Benson, 2014).  In  

1997, quagga mussels appeared in northern Lake Michigan and eastern Lake Huron (K           aratayev  

et al., 2021) .  Zebra mussels and then quagga mussels were discovered in Lake Superior proper           
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181 in the early 2000’   s (Grigorovich et al.,    2008, 2003), but marginal  calcium levels have dampened     

their expansion (Trebitz et al., 2019)   .  

The process of colonization and the dynamic between the two dreissenid species is              influenced 

by how  their differing physiologies react to environmental      conditions. Zebra mussels have    

lower filtration rates    (Diggins, 2001)  and assimilation efficiencies (Baldwin et al., 2002)     , as well   

as higher respiration rates (Stoeckmann, 2003; K      aratayev et al., 2015) when compared to       

quagga mussels. Quagga mussels are capable of spawning       at colder temperatures (Roe and     

MacIsaac, 1997; Claxton and Mackie, 1998) and can adapt to soft substrate           (Karatayev and   

Burlakova, 2022) . Accordingly, zebra mussels are better equipped for warmer, more productive         

nearshore environments, while quagga mussels can readily inhabit cold, deep waters          

(Karatayev et al., 2015; Strayer et al., 2019)     .  

Lake morphometry largely dictates the outcome of dreissenid mussel          composition and   

distribution (Strayer et al., 2019; K    aratayev et al., 2021)  . In shallow, productive regions such as       

the Western Basin of Lake Erie and Saginaw Bay in Lake Huron, zebra mussels peaked by the                 

early 1990’ s and then have been able to persist after quagga mussels arrived, albeit at lower            

densities (K aratayev et al., 2021)  . In contrast, quagga mussels are competitively superior to        

zebra mussels in deeper, oligotrophic waters (N     alepa et al., 2010) . In  Lake Ontario,   Lake Hur on,  

and Lake Michigan, quagga mussels virtually displaced zebra mussels by 1997, 2003, and 2005,             

respectively, all   within 8 years of their arrival (K      aratayev et al., 2021)  .  Further, the biomass    

attained by quagga mussels in these three lakes in 2018, 2017, and 2015 was more than ten                 

times the maxima attained by zebra mussels in 1995, 2000, and 2000, respectively            (Karatayev  

et al.,  2022, 2021).  As a result, the quagga mussel     invasion waves caused stronger lake    -wide 

ecosystem impacts compared to the more limited nearshore impacts of zebra mussels            

(Karatayev et al., 2022)  . The steps of colonization by both quagga and zebra mussels in shallow            

and deep basins of the Great Lakes are clearly illustrated in maps produced by              Karatayev et al.   

(2021), which have been reproduced in Supplementary Figures S        1a  and S1b for ease of      

reference.  
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209 4.  Data and Methods    

4.1.  Ocean Colour Climate Change Initiative (OC-CCI) datase      t  

Surface chlorophyll- a  concentration ( Chl-a) is a proxy for phytoplankton biomass and one of the           

most widely used satellite ocean color products that are monitored by Earth-orbiting satellites            

(IOCCG, 2008).    Multiple studies have used     Chl-a  to identify global    trends and regime shifts in      

aquatic ecosystems (Behrenfeld et al., 2006; Chavez et al., 2011) and to monitor ecosystem            

health due to its direct link to aquatic net primary productivity and biomass            (Wang and   

Convertino, 2023).    Historical  importance and availability of multi-decade      Chl-a  records  

motivated including it into the list of Essential       Climate Variables (ECV), a limited set of variables       

deemed critical   to the characterization of Earth’    s climate   (GCOS, 2011; Bojinski    et al., 2014) .   

The Ocean Colour Climate Change Initiative (OC-CCI) project of the European Space Agency             

(ESA) provides a consistent, long   -term continuous dataset of merged ocean-color products       

created by integrating remote sensing reflectances (      Rrs) from individual    sensors (Table 1) and     

retrieving various ocean-color parameters via selected in-water algorithm (Lavender et al.,          

2015; Sathyendranath et al., 2019)   .   

As different ocean color sensors often measure radiances at different wavebands, the input          

radiometric measurements were band-shifted to a common set of bands corresponding to t          he  

Medium Resolution Imaging Spectrometer (MERIS) on EN      VISAT platform. The non-   reference 

sensors of SeaWiFS, MODIS, VIIRS      and OLCI (though OLCI already contains the MERIS       bands so   

this was not required) were band shifted to the six main MERIS            bands (412, 443, 490, 510, 560,       

665nm) by computing Quasi-Analyti   cal  algorithm (QAA ) (Lee et al., 2002) Inherent Optical      

Properties (IOP) and back computing the       Rrs  bands using a high-resolution spectral     model  

(European Space Agency, 2022). Then, ove     rlapping data were used    to cor rect for mean biases    

between sensors, the corrected     Rrs  were merged by averaging all      available data at every pixel    

with equal   weight given to each available sensor, and the blended         Chl-a  algorithm (Jack son et  

al., 2017) was applied to the merged data to generate maps of chlorophyll             concentration. The   
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merged products were validated against a global      data set comprising  in situ   measurements  

collected from multiple sources (Valente et al., 2022)      .  

Monthly  Chl-a  data at 4 km spatial    resolution of the latest OC-CCI version 6.0 (September 1997–       

December 2022) were obtained from the OC-CCI dataset       

(https://climate.esa.int/en/projects/ocean-colour/).  

In 2002, SeaWiFS    had been operational    for five years when MODIS-Aqua and MERIS       were  

launched, and the total     number of collected images dramatically increased. From 2012 to 2013,           

MERIS  ceased operations, and Visible Infrared Imaging Radiometer Suite on the Suomi            National  

Polar-orbiting Partnership platform (VIIRS -SN    PP) was launched (Table 1).       Starting in 2020,    

MODIS-Aqua and VIIRS-SN PP were not used in the OC-CCI dataset due to sensor degradation          

problems.   Inter-mission differences in the merged OC-CCI      Chl-a  dataset may not have been    

completely corrected and may consequently be misinterpreted as trends and abrupt shifts            

(Mélin et al., 2017; Mélin, 2016; Hammond et al., 2018; Yu et al., 2023).            

To evaluate if any spurious artifacts were introduced during merging, we compared OC-CCI             Chl-

a  time series to the single    -mission  Chl-a  time series of SeaWiFS, MERIS      and MODIS-Aqua  

obtained from the Ocean Biology Processing Group at N       ASA Goddard Space Flight Center     

archive ( https://oceandata.sci.gsfc.nasa.gov/). Monthly Level-3 Standard Mapped Image (SMI)        

Chl-a  products with spatial    resolutions at 4 km for MERIS      (April  2002 to April    2012) and MODIS  -

Aqua (July 2002 to December 2022), and 9 km for SeaWiFS           (September 1998 to December     

2010) were examined. The     Chl-a  products in these datasets were derived using a combined         Chl-

a  algorithm of OC3/OC4 (OCx) band ratio (O'Reilly and Werdell, 2019) and the color index (CI)                

algorithms (Hu et al., 2019). Al    l satelli te data were   subsampled for the Great Lakes region (41.0     -

49.0N, 92.5-76.0W) and remapped    with the standar  d  cylindrical  projection on 4  -km resolution   

grids.   For increased computational    efficiency during statistical    analysis, the resolution of all      4-

km grids was reduced by a factor of three in each direction with a resulting cell               represented as   

3x3 median value (hereafter called 12     -km grid  cells).  
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261 Although many authors have questioned the absolute accuracy of the standard N           ASA  Chl-a  

retrievals in the Great Lakes (Bergmann et al., 2004; Budd and Warrington, 2004; Watkins,             

2009; Mouw et al.,    2017, 2013; Moore et al., 2017; Sayers et al., 2019), other studies have           

indicated that the default iterative atmospheric correction is adequate for all          the Great Lakes   

(Shuchman et al., 2013) and standard N     ASA band-ratio algorithms produce chlorophyll      

estimates that are linearly related to the       Chl-a  concentrations measured in the field (Lesht et      

al., 2013). Also, most of the areas analyzed in this study (excluding Lake Erie) are optically deep,                 

therefore waters where the band-r    atio me thod may be compromised by the presence of         

confounding substances (primarily embayments and shallow waters) constitute         a comparatively  

small  fraction of the Great Lakes (Lesht et al.,      2013; Shuchman   et al., 2013).    Nevertheless, it is   

likely that increased uncertainty exists in the OC      -CCI Chl-a  particularly in turbid or eutrophic      

conditions and the nearshore, relative to other algorithms specifically tuned to optically             

complex waters. Utilizing the OC-CCI dataset for detecting regime shits in the Great Lakes’            

ecosystems, we therefore focus on relative temporal        (interannual  and seasonal) variations of     

remotely sensed   Chl-a  rather than assessment of the     Chl-a  absolute values.    
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277 4.2.  Statistical  methods of data analysis     

This study focused on quantitative analyses of the ecosystem’        s regime transformation in the      

Great Lakes, both from a whole lake and spatially explicit perspective.          To quantify these    

changes, we applied the statistical      method detecting a breakpoint between two periods: an       

early period characterized by a continuous stepwise decrease of         Chl-a  followed by a period of     

stable or increasing    Chl-a. For this purpose, we selected the method that can evaluate two basic             

metrics of   Chl-a  decrease: 1) the timing (shift point) when the transformation from one regime            

to another is completed, and 2) the magnitude of this transformation (Figure 2c).               The model   is  

based on our understanding that oligotrophication was a dominant process over most of the           

Great Lakes.   The selected model, however, may not apply to some regions for two reasons.             

First, some regions may not be affected by oligotrophication. Second, the process of regime              

transformation, which started in the late 1980s in some areas, could be completed earlier than                
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300

305

310

315

289 the OC-CCI dataset starte d  in S eptember 1997.    The e xamples ar e Lake S  uperior,  whose tr ophic  

status did not change    (Binding et al., 2015; Fahnenstiel     et al., 2016), and Lake Erie, which has        

undergone a period of re   -eutrophication (Scavia et al.,   2014; Watson et al., 2016)   .  

The Sequential   T-test Analysis of Regime Shifts (STARS; Rodionov, 2004) identifies timing(s)          

when a system attribute    – in our study,     Chl-a  –   undergoes a persistent change.    The basic   

constraint regulating the durations of the detected regimes is the regimes           cut-off length , the  

parameter similar to the cut-off point in low-pass filtering.          In this study, the regimes      cut-off 

length was determined through practical      testing as 5 years (60 months). STARS        sequentially  

analyzes each observation in the time series by testing whether it is statistically different from              

the current regime by calculating a Regime Shift Index (RSI) based on the Student’          s t -test to  

confirm or reject the existence of a regime change        (Rodionov and Overland, 2005; Rodionov,      

2004). Many authors used this method for detecting abrupt changes in paleoecological            records  

(Espinoza et al., 2022), climate (Marty, 2008; Reid et al., 2016), marine ecosystems (Tian et al.,             

2008; Conversi   et al., 2010; Möllmann and Diekmann, 2012; Möllmann et al., 2009; Greene et           

al., 2013) and many other studies.        

Before applying STARS, seasonal     variability was removed from each analyzed time series of          Chl-

a using the Seasonal-Trend decomposition using LOESS       (STL) method (Cleveland et al., 1990)    .  

This filtering procedure decomposes a time series into the three components           – trend, seasonal,    

and remainder – by extracting smoothed estimates of each component using a locally            

estimated scatterplot smoothing (LOESS) method based on local        polynomial  regressions.   A  

salient feature of STL is that it allows amplitude variation in the seasonal           component for a given   

period (e.g., annual), which helps capture a more significant portion of total           variance than   

amplitude alone   (Vantrepotte and Mé  lin,  2009). We did not use the “pre     -whitening”  approach  

recommended  by Rodionov (2006) because preliminary analysis revealed that in the monthly          

data examined, the components generated by stationary red noise processes were not           

misinterpreted as “climatic regimes”. Instead, we focused on removing seasonal           variations,  

which contributed substantially to the variability and hindered the identification of statistically             

significant shift points.   For this, each time series (an example in Figure 2a) was decomposed by              
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325

330

335

340

317 STL into trend (blue line in Figure 2c), seasonal          (Figure 2b) and remainder (residual)      

components and then residuals were added to the trend, and the resulting “deseasonalized”              

time series (black line in Figure 2c) was analyzed by STARS. Each             Chl-a  time series was log-   

transformed prior to STL and STARS       analysis and the outputs were inverse     -transformed  

because  the  Chl-a  values vary over several     orders of magnitude    and because   log-transformed  

Chl-a  is more normally distributed than the untransformed data (Campbell, 1995).           

We applied the integrated STL-STARS      algorithm to the time series of median        Chl-a  for individual   

lakes and each 12-km grid cell       within each lake with at least 120 monthly observations, i.e.,         

twice the regimes    cut-off length, the parameter regulating minimum regime duration in STARS           

algorithm.   In each location, transformation to a lower trophic regime was typically a gradual            

process that took several    years and, as such, the STARS       method detected a cascade of regime      

shifts (Figure 2c). For individual      lakes and grid cells, the STARS       method identified the timings     

when the cell    experienced its ‘  initial’ and ‘  final’ decreasing regime shifts.      The ‘ final’ shift timing   

is when Chl-a  stabilized (saturated) at its ’   final’ concentration, after which no other decreasing        

shift in  Chl-a was de tected.   Two parame ters we re documente d fr om the ‘  initial’ and ‘  final’  

regimes: 1) the year of the ’      final’ regime shift, i.e.,     ecosystem stabilization (months were     

ignored); and 2) the magnitude of       Chl-a  decrease during the regime transformation, which was        

calculated as the percentage difference between the chlorophyll         concentrations of the ‘   initial’  

and ‘ final’ regimes (Figure 2c).      

The relationship between detected regime shifts and lake depth was analyzed using             

bathymetric data of the Great Lakes obtained from the N       OAA N ational  Centers for   

Environmental  Information (N CEI) Marine Geology and Geophysics online archive        

https://www.ngdc.noaa.gov/mgg/greatlakes.   The grids of scale 1:250,    000 were reprojected to     

12-km resolution similar to the resampled OC-CCI and single       -mission satellite data.     

The an nual  cycles of monthly median     Chl-a  were e xamined in each location during the ‘      starting’  

(1998-2002) and ‘e  nding’ (2018- 2022) five-year per iods of the 25-ye   ar OC-CCI time series.     The  

timings of   Chl-a  monthly maxima were estimated from the five     -year medians of monthly     

medians either in entire lakes or in spatially explicit (i.e., 12         -km grid cells) perspective during      
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345

350

355

360

365

370

the ‘ starting’ and ‘  ending’ five -year periods.    The timings of monthly     Chl-a  maxima were  

computed using the “centroid”     method to yield a center of gravity in polar coordinates.           Using  

the center of gravity (and viewing the results in polar coordinates) is deemed a better estimate                

for this purpose than other estimates, such as a simple average or a center of gravity in linear                 

coordinates (Colebrook, 1979; Edwards and Richardson, 2004; Meis et al., 2009). Figure 3 is an               

example of this estimation for the grid cell         located farthest from shore in the southern part of        

Lake Michigan (Figure 1M). The center of gravity (Figure 3b) of maximum average monthly               

median  Chl-a  was estimated to be mid-March (month 3.5) for the period from 1998 to 2002               

and late October (month 10.8) for the last 5-year period (2018-2022), which were similar              

though not exactly the same as the       Chl-a  maxima assessed visually (Figure 3a).      It is worth   

mentioning that although we operate monthly data (i.e., the times are integers), the resulting             

assessments of the centers of gravity can include decimal          fraction leading to conclusions at     sub-

monthly time scale  .   
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359 5. Results  

5.1.       Inter-mission artifact or shift to    a different trophic state?  

Although the potential    of discontinuities of    Chl-a  (and other derived bio-optical     properties) and   

incorrectly detecting them as regime shifts in        Chl-a  was higher when satellite sensors changed       

or merged (Supplementary Figure S2), the analysis of the individual           mission  Chl-a  time series   

collected by the three satellites operating during the beginning of the observed period, i.e.,               

SeaWiFS, MODIS-Aqua, and MERIS, and used in the creation of OC-CCI, revealed decreasing              

trends and successive regime shifts similar to those detected in the merged OC            -CCI dataset.   

This is particularly evident in Lakes Michigan and Huron (Figure 4).            Furthermore, in most time    

series collected by single satellite sensors, regime shifts were detected in 2005 (Figure 4), when                

sources of data from satellite sensors in OC-CCI dataset did not change         (Supplementary Figure   

S2a).   
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371 As the trends and shifts observed in chlorophyll         concentrations of the OC   -CCI dataset are  

similar to those observed in the single satellite missions, we conclude that they are real               and not  

artifacts introduced during the creation of the OC-       CCI  dataset.   

372 

373 

374 

5.2. Timings and magnitude   s of r  egime shifts in Chl-a      

The median concentrations of     Chl-a  in Lakes Michigan, Huron, and Ontario gradually decreased         

during 1997-2012 (Figure 5). In Lakes Michigan       and Hur on,  the i ntegrated  STL-STARS  method  

detected a cascade of three regime shifts to a lower trophic state followed by a small              shift to  

higher trophic state between 2014    -2016 (Figure 5M, H). In Lake Ontario, a cascade of two           

regime shifts to lower trophic state was detected (Figure 5O). N          o decrease of    Chl-a  was  

observed in Lakes Superior and Erie (Figure 5S, E), though small            but significant increases of   Chl-

a  were detected in Lake Erie in 2002 and in Lake Superior in 2014.               

The year when chlorophyll     concentration reached its ‘   final’ stable levels, i.e.,     Chl-a  no longer  

declined, differed  regionally within and between each of the Great Lakes (Figures 6 and 7). In              

Lakes Michigan, Huron, and Ontario,      Chl-a  decreased between 2002 and 2020 over most of the         

lake’s areas. In Lake Superior, only the western portion of the lake experienced a decrease in                

Chl-a during the first decade of the observed OC-CCI time series (2002-        2008; Figure 6S).  The 

majority of Lake Erie also exhibited limited shifts in          Chl-a,  occurring along its western Canadian      

shore early in the OC-CCI time series and along the Michigan shore and in Lake St. Clair during                  

the latter part of the dataset (Figure 6E). In Lake Huron, a lower trophic regime was achieved               

earlier (in 2002-2005) in the Georgian Bay than in the northeast, then in the southern and                 

northwestern nearshore zones and along the Alpena-Amberley Ridge (marked in Figure 1H).             

Circa 2012,  Chl-a decreased to its ‘   final’ level   in the remaining open parts of the lake (Figure          

6H). Over most of Lake Ontario, the process to the new regime was slow.               Over most of the    

lake, the   Chl-a  achieved a stable regime as late as 2015      -2020 (Figure 6O). Only the small       

central-eastern region of the lake experienced the regime shift earlier (2002).           
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415

420

397 In Lake Michigan, the     Chl-a  level  stabilized first in the nearshore regions north of 44°N (Figure          

6M).   From 2010 to 2012, a new regime was established offshore in the northern part of the               

lake and started spreading to its southern part, first along the western and eastern shores and                

then offshore. Offshore in the southern portion of the lake, the level             of  Chl-a  stabilized as late    

as 2020.   

Similar to the timing, the magnitude of the reduction in           Chl-a  between its ‘  initial’ and ‘  final’  

stabilized concentrations also varied regionally within and between each of the Great Lakes. In              

Lakes Superior and Erie, where regime shifts were rarely found, the magnitudes of detected               

regime shifts were typically below 10% (Figure 7S, E). In Lake Michigan,             Chl-a  decreased 10- 25% 

north of 44°N and 35-45% in the south (Figure 7M).            Both the timing (Figure 6M) and magnitude        

of Chl-a  decrease indicate that to the north of 44      °N transformation of ecosystem from      

eutrophic to oligotrophic state started before the start of the OC         -CCI dataset in 1997 and was     

completed few years earlier than in the south and a substantial           part of this process was not     

captured in our anal   ysis.   In Lake Hur  on, the re  duction in   Chl-a varied betwee n 20%-40%, with a    

maximum in its deeper southern portion (Figure 7H). Lastly, in Lake Ontario, the magnitude of                

Chl-a  reduction was about 10% in the eastern part of the lake and 20          -30% in its western part     

(Figure 7O).   

The relationship between the timing (year) when        Chl-a reached stable levels and lake      

bathymetry showed no apparent pattern (not shown), whereas the difference in its magnitude            

did (Figure 8). In Lake Superior, the difference in          Chl-a  between the ‘  initial’ and ‘  final’ regimes   

clearly decreased with increasing depth until       it exceeded ~100 m. In Lakes Michigan and Huron,         

the lakes that exhibited the most evident regime shifts, the difference in          Chl-a  was most  

pronounced in water between 30 and 100 meters deep.           No clear -cut relationship was   

observed in Lakes Erie and Ontario, the former likely due to its limited depth range.                 
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425

430

435

440

445

423 Analyzing seasonal   cycles of   Chl-a  in the Great Lakes based on OC-CCI data,       we have to be   ar i n  

mind that the number of images collected during winter was much lower as compared to other                

seasons due to data gaps associated with cloud and         ice  coverage (see   Supplementary Figure   

S3).   The number of images acquired during December      -January was low over all      five lakes,   

especially over the Lakes Superior and Huron (Supplementary Figure S3S, H).              

Significant changes in seasonal    cycles of   Chl-a  over the entire lake areas were observed in Lakes          

Michigan (Figure 9M, 10M1, M2) and Huron (Figure 9H, 10H1, H2). In Lake Michigan during                

1998-2002, two maxima of median     Chl-a  were  observed in April-June and August (Figure 9M)    ; 

the plot of the timings of      Chl-a  seasonal  maxima demonstrates that these two maxima were     

observed in different parts of the lake: maximum in         April-June in the southern part and     

maximum in August in the northern part (Figure 10M1).         In 2018-2022, the timing of seasonal     

maximum changed to October     over the entire lake     (Figure 9M, 10M2). In Lake Huron during       

1998-2002,  the median (averaged over the entire lake)        Chl-a  maximum was in winter-   spring  

(March-June; Figure 9H);  a spatially explicit view revealed winter maximum in nearshore parts         

of the lake and spring maximum in open waters (Figure 10H1).             By  2018-2022, the timing   of 

seasonal  maximum changed to fall     (October-December). In both Lakes Michigan and Huron, t      he  

changes in the timings of seasonal       maxima occurred between 2002 and 2004 (Figure       9a).  

We speculate that a seasonal    maximum in the northern Lake Michigan may not have been          

observed in spring (in contrast to its southern part; Figure 10M1) because, during the beginning               

of the OC-CCI dataset, local     ecosystems had already undergone most, if not all        of the regime    

transformation.   This explanation agrees with early stabilization and low magnitude of regime            

shifts observed there (Figures 6M and Figure 7M).         

In Lake Superior, the timing of       Chl-a  maximum (October-December) did not change, but its      

magnitude substantially decreased (Figure 9S, O).        The differences in the timing and magnitude        

of winter maximum in Lake Superior in 1998-2002 (fall          maximum in its northern part and winter       

maximum in the south; strong maximum in 1998-2002 vs. small           maximum in 2018-2022) can be      

attributed to flaws in OC-CCI data resulting from very low number of satellite images acquired              
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450 over Lake Superior during winter seasons 1998-      2002 when the maxima were detected and only       

one satellite (SeaWiFS) collected data.       

In Lake Erie,    Chl-a  maximum in 1998-2002 was observed in winter        (Figure 10E1), and its timing     

did not change by the end of the observed period (Figure 1          0E2). Similarly, in Lake Ontario, the       

timing of   Chl-a  summer  maximum remained unchanged    (June-September;  Figure  9O, 10O1, 

O2).  

During the ‘  ending’ (2018- 2022) 5-year period, we see an almost complete disappearance of a         

spring bloom, typical    of temperate waters, replaced with an autumn bloom.          In 2018 -2022, 

seasonal  Chl-a  cycles in four lakes (Superior, Michigan, Huron, and Ontario) were characterized            

by a maximum in late fall      (October-December; Figure 10S2, M2, H2, O2).        The vanishing of    

spring maxima can be explained by the strong effect of mussel          filtration on phytoplankton in     

the entire water column, including the near      -surface layer, during spring when the water column         

is well   mixed (see details in Discussion).         
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464 6.  Discussion  

To our knowledge, this is the first study to analyze a relatively long          -term continuous and    

internally consistent time series of satellite    -derived chlorophyll   concentration to identify    

statistically significant, abrupt changes of chlorophyll      concentration in a spatially explicit    

manner in all    of the Laurentian Great Lakes during the same period.          This approach permits us     

to examine inter  - and i ntra-lake differences in the timing and magnitude of changes in           

chlorophyll  concentration, and explore potential     factors related to these changes.      
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472 6.1.  Transformations to lowe  r trophic re gimes in the Gre   at Lakes  

The spatial   and temporal   features of regime transformation in the Great Lakes described in this           

paper agree with the previously published information about the proliferation of dreissenid            
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480

485

490

495

500

mussels, supporting the hypothesis that colonization of the lakes by dreissenids was a primary             

driver of this transformation. A shift to the lower trophic state was evident in three initially               

mesotrophic deep lakes (Michigan, Huron, and Ontario) and small          or absent in the consistently     

oligotrophic Lake Superior and regionally eutrophic Lake Erie.          These results do not deny the      

role of nutrient management in improving water clarity in the Great Lakes,          but indicate that  

mussel  presence was an important driving factor of this oligotrophication.          
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482 6.1.1. Lake Superior  

The magnitudes of regime shifts detected in Lake Superior were small            compared to the other     

three deep lakes (Michigan, Huron, and Ontario).         These assessments agree with the      

information that dreissenid mussels invaded Lake Superior in very low numbers (Grigorovich et            

al., 2008; K  aratayev and Burlakova, 2022).      Also, even before the dreissenid invasion, Lake        

Superior was characterized as the clearest of the Great Lakes, in terms of water transparency              

(Binding et al., 2015), phytoplankton/chlorophyll/primary production      (Vollenweider et al.,   

1974)  and zooplankton biomass (Barbiero et al., 2012).        As a result, no differences between pre     -

mussel  and post-mussel   periods were found in water clarity       (Binding et al., 2015; Yousef et al.,      

2017), phytoplankton (Reavie et al., 2014; K     ovalenko et al., 2018), zooplankton (K    ovalenko et  

al., 2018) , chlorophyll  (Barbiero et al., 2012; Fahnenstiel     et al., 2016), and total     phosphorus  

concentrations (Bunnell   et al., 2014) .   

At the same time, small     magnitudes of regime shifts detected in Lake Superior may be a result           

of less accurate (as compared with other deep lakes)          Chl-a  detection by the algorithms utilized      

in OC-CCI dataset. Mouw et al. (   2017, 2013) indicated that in Lake Superior band-ratio       

algorithms significantly overestimate    Chl-a  because  light absorption in its waters i    s domi nated  

by CDOM, while very small   contribution of phytoplankton and non-algal      particles to overall    

absorption poses a challenge to deriving these parameters from reflectance spectra          (Mouw et  

al.,  2017, 2013), making the conclusions about temporal      (seasonal  and interannual) variations    

of Chl-a  in that lake less reliable.      
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525

502 Recent observations in western Lake Superior documented cyanobacterial        blooms in the    

narrow nearshore zone, a phenomenon never observed before 2012 (Sterner et al., 2020)          . 

These blooms may result in a positive regime shift in median         Chl-a  averaged over the entire     

lake including the nearshore (Figure 5S). Some authors attribute these recent changes in Lake              

Superior to atmospheric and lake warming (Reavie et al., 2014) extending its short (as             

compared to other lakes) period of summer stratification (Fahnenstiel          et al., 2016) .  
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509 6.1.2.  Lake Michigan   

The details of regime transformation revealed by our spatially explicit analysis agree with the              

introduction and spread of dreissenids described in numerous publications (N         alepa et al.,  2010, 

2009; Evans et al., 2011; Madenjian et al., 2015; Rowe et al., 2015). Specifically, a significant            

number of dreissenids were first recorded in the northern nearshore regions in about 2000. By              

2005, they had spread to the south nearshore, and by 2010, they had colonized offshore                

regions that resulted in a decrease in phytoplankton/chlorophyll       biomass and an increase in      

water clarity.    By 2015, however, maximum concentrations of dreissenids in the shallow regions            

slightly decreased (from 10   4-105  to 10 3-104  mussels m-2  (Karatayev et al., 2021)  ).  

In the northern basin,     Reavie et al . (2014) noted that a decline in spring phytoplankton        

occurred by 2002, followed by no statistically significant long       -term trend, while in the southern       

basin, a significant drop in phytoplankton biovolume occurred between 2004 and 2005.           

Fahnenstiel  et al. (2010) demonstrated in the southern basin small         or no decreases in     Chl-a, 

phytoplankton biomass, and water column primary productivity between 1983–1987 and           

1995–1998, followed by their substantial      decrease by 2007–2008.     In  the same area,    Chl-a  

decreased by 50% between 1995–2000 and 2007–      2011 (Pothoven and Fahnenstiel, 2013)   .  

Yousef et al. (  2017, 2014)  reported a decrease in the diffuse attenuation coefficient (a proxy of         

water clarity based on SeaWiFS      and MODIS-Aqua ocean color data) during 1998-2012 in the         

central  part of the southern basin and no changes in the northern part of the lake. At the same                
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550

528 time,  Sayers et al. (2020)    found no increasing or decreasing linear trends in remotely-      sensed 

Chl-a  in all  five  Laurentian Great Lakes   during  2003-2018.   

Comparison between the results mentioned above and our assessments demonstrate the            

advantage of the approach used in this study, i.e., detecting a breakpoint between a decreasing             

trend followed by a stable regime, over the trend-detection method based on a linear model.              

The latter approach revealed significant changes in water clarity only in the offshore southern              

basin where, according to our results,       Chl-a  was decreasing during most of the OC-CCI period.        

Also, no linear trend was detected in the northern part of the lake and in the southern basin                  

nearshore, where, according to our results, transformation took place during the initial             part of  

the observed period until     a stable regime was achieved.     
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539 6.1.3.  Lake Huron   

Lakes Huron and Michigan experienced significant expansion of dreissenid populations, so it is            

not surprising that there are some similarities in their phytoplankton changes (Reavie et al.,            

2014). Previous studies documented a significant increase in water clarity associated with the            

deepening of the mean euphotic depth (from 41 m in 1998          -2002 to 51 m in 2003-     2010), which  

continued increasing in deeper (>30 m) regions (Yousef et al., 2017).            In 2003, a dramatic    

reduction in the size of the spring phytoplankton maximum was reported in the entire lake                

(Barbiero et al., 2011; Reavie et al., 2014)     .   

The decline in Lake Huron's spring phytoplankton biovolume occurred earlier and was more              

severe than that in Lake Michigan despite a faster and more abundant dreissenid invasion in             

the latter   (Reavie et al., 2014). One possible reason for a lower density of mussels having a             

larger impact is that Lake Huron had a lower phytoplankton abundance prior to quagga mussel            

colonization and it is shallower than Lake Michigan (Yousef et al., 2017).           
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553 6.1.4.  Lake Erie  
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554 Lake Erie is very different from other Great Lakes in terms of its shallow bathymetry (mean               

depth 7 m to 24 m from west to east (Bunnell          et al., 2014)), mineral    turbidity, and high    

bioproductivity, especially in its western basin (Vollenweider et al., 1974; Reavie et al., 2014;             

Allinger and Reavie, 2013).      No regime shift to lower trophic state was detected in that lake.            

Several  studies documented a significant decrease in phytoplankton/chlorophyll      concentration  

in some regions of Lake Erie within a few years of the establishment of large populations of                

zebra mussels (Holland, 1993; Makarewicz et al., 1999; N     icholls et al., 1999; Allinger and Reavie,       

2013), yet this transformation may have occurred prior to the pe         riod compr ising the OC-CCI   

dataset and hence could not be detected in this study.         

During the two most recent decades of the OC-CCI time series examined, phytoplankton           

biomass in Lake Erie remained high and even increased,          attributable primarily due to blooms of       

blue-green  algae (cyanobacte ria) obser ved in both    nearshore and open parts of the lake        (Twiss 

et al., 2012; Reavie et al., 2014; Yuan et al., 2021).          These blooms can be explained by increasing        

phosphorus loading to the western basin resulting in         re-eutrophication of the lake     (Michalak et  

al., 2013; Scavia et al., 2014; Watson et al., 2016)      .  These  blooms dramatically compromise   

optical  signal, because cyanobacteria often exhibit unique backscatter and absorption features         

due to the presence of gas vacuoles, variable pigmentation        , or colonial  aggregation into floating    

mats (Moore et al., 2017; Binding et al., 2019).         These  unique optical   properties lead to several   -

fold underestimation of    Chl-a  by standard blue to green ratio-based algorithms (Stumpf et al.,          

2016, 2012; Binding et al., 2019; Wynne et al., 2021), especially during summer when blooms             

are most abundant (Wynne and Stumpf, 2015; Stumpf et al., 2012; Son and Wang, 2019)           .  The  

peak chlorophyll   observed in winter in this study is nevertheless in agreement with the            

extremely high biomass diatom blooms observed in Lake Erie during the winter             (Binding et al.,   

2012b; Twiss et al., 2012), outside of the summer cyanobacteria bloom monitoring period            

typically reported on using satellite observations of the lake. However, given the known              

uncertainties of ratio-based    Chl-a  retrieval  algorithms in highly turbid waters,      the se asonal  

cycles  of Chl-a  obtained by the OC-CCI products may also reflect seasonal        variability in mineral    

sediments rather than chlorophyl   l  concentration (Binding et al.,    2019, 2012a) with maximum in     

winter and minimum in summer. It is there      fore impor tant to conside r fur ther y ear-round  
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583 validation of the OC-CCI    Chl-a  retrievals in these optical     extremes in order to provide      

confidence in results in the case of the turbid eutrophic waters of Lake Erie.                584 

586 6.1.5.  Lake Ontario   

Over most areas of Lake Ontario, the process of transformation to lower trophic regime              

detected by the integrated STL-STARS      method continued until    the end of the OC    -CCI dataset 

(2020-2022).   These assessme nts are corroborate  d  by the concl  usion that colonizati on of Lake    

Ontario by dreissenid mussels was slow as compared to the other Great Lakes. One reason               

could be that a high proportion of Lake Ontario is         deep (>90 m) and mussels at greater depths       

exhibit very slow growth rates (Elgin et al., 2022b)      .  Karatayev et al. (2022) noted that the lake     -

wide biomass of dreissenids continued increasing since its arrival          (1989 for zebra mussels and     

1990 for quagga mussels) and reached an all-time high in 2018 (the most recent whole           -lake  

data available at this time  ).   Our assessments agree with the conclusion of K       aratayev et al.   

(2022)  that the ecological   effects of quagga mussels in Lake Ontario will        likely continue into the     

foreseeable future.     

A slow rate of regime transformation in Lake Ontario detected by the integrated STL-STARS               

method applied to OC-CCI data agrees with the data reported by         Reavie et al. (2014)  , who  

noted little overall    change in total    algal  abundance during 2001  -2011 with some changes taking      

place in the composition of the phytoplankton assemblages.           
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603 6.2.  Effect of dre issenid filtration in diffe   rent depth zone s  

This study supports the hypothesis that the impact of dreissenid filter        -feeding on pelagic    

ecosystems depends on lake bathymetry, and this effect is nonlinear, with a maximum in the              

mid-depth range (about 30-100 m) and a smaller effect in shallower and deeper waters.             Similar  

conclusions were reached earlier by several       studies using a variety of approaches: by       

Vanderploeg et al. (2010), estimating the clearance rates of quagga mussels; by           Kerfoot et al.  
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609 (2010)  and Yousef et al. (2014) from their assessments of decreasing rates of remotely           -sensed 

Chl-a  in southern Lake Michigan; and by       Karatayev and Bur  lakova (2022) in their review of      

dreissenid mussel   biology in the Great Lakes.      

The comparatively small    impact of dreissenid mussels in the shallow zone is explained by their            

lower density resulting from unstable sandy substrate, physical         disturbance by waves and     

currents, thermal   instability, and fish predation (N    alepa et al., 2010; Vanderploeg et al., 2010;      

Glyshaw et al., 2015).    

In deeper waters, the impact of dreissenid mussels on phytoplankton biomass is            reduced  by 

vertical  extension of the water column, i.e., greater biomass of dreissenids is required to filter               

the same fraction of the water column due to greater volume per unit bottom habitat, and                

slower rates of mussel     filtration associated with low temperature and limited food availability.           

At temperatures typical   of shallow water, the filtration rates of dreissenids measured in           

experiments achieved 400 mL h    -1  mussel-1  (about 10 L day  -1  mussel-1) (Kryger and Riisgård,    

1988; Horgan and Mills, 1997; Diggins, 2001)      .   However, the filtration activity of mussels       

significantly (2-  to 10-fold) decreases at lower temperatures (Vanderploeg et al., 2010; Xia et         

al., 2021), reducing the volume of food consumed by mussels.            Low food concentrations also     

negatively affect dreissenid filtering activity     (Malkin et al., 2012; K   aratayev et al., 2018c; Xia et    

al., 2021).    Furthermore, during summer, the upper euphotic layer where phytoplankton is           

concentrated is isolated by seasonal      stratification from the hypolimnion affected by mussel        

filtration.   The effect of thermal    stratification limiting the impact of filtration by benthic        

organisms on the pelagic community in the Great Lakes was highlighted by several             authors  

(Fahnenstiel  et al., 2010; Vanderploeg et al., 2010; Malkin et al., 2012; K        aratayev et al., 2021)  .  

Although the filter  -feeding activity of dreissenids is most prominent in the mid-depth zone, it          

also impacts offshore regions by reducing the amount of phytoplankton biomass transported            

from the nearshore zone (Hecky et al., 2004; K       erfoot et al., 2010; Pothoven and Vanderploeg,      

2020; Vanderploeg et al., 2010), where phytoplankton growth is stimulated by seasonal           

tributary inputs and resuspension of nutrients (Vanderploeg et al., 2007; Johengen et al., 2008;             

Rowe et al., 2017). At the beginning of regime transformation, dreissenids were concentrated            
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637 in the shallow zone and nutrients (primarily phosphorus) from allochthonous sources were             

retained in the nearshore, thus impacting offshore pelagic communities through “nearshore            

phosphorus shunt”   (Hecky e t al., 2004).    The shift in the bulk of mussels from the nearshore to           

the mid-depth zone    (30-50 m) resulted in the    fraction of the water column cleared at       mid-

depth greatly exceed  ing  phytoplankton growth, while the rates of seston uptake ne        arshore and   

offshore were lower  (Vanderploeg et al., 2010).     This pattern of seston uptake at different      

depths affected not only the mid-depth region, but also the offshore region “downstream”            of  

the mid-depth zone  , suggesting a new “mid-depth carbon and phosphorus sink”         hypothesis  

(Vanderploeg et al., 2010). Further expansion of mussels to deep regions and declining density              

and biomass in the shallowest zone resulted in the “offshore carbon and phosphorus sink”              

hypothesis (K aratayev and Burlakova, 2022)   .   
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649 6.3.  Effect of dre issenids filtration on phytoplankton phe    nology (se asonal  cycles)  

The disappearance of spring     Chl-a  maximum in Lakes Huron and Michigan corresponds closely         

with the dreissenid invasion, and argues strongly for top-down control           through filtration.    

Bottom-up control   through the reduction of nutrient input from the watershed and its          

sequestration nearshore may have contributed to this, as well          as climate changes, though we      

cannot ascertain this in our study.        

Climate change is an important factor affecting aquatic food webs          (Edwards and Richardson,    

2004; Behrenfeld et al., 2006; Adams et al., 2022); however, the timings of ecosystem             

transformations observed in the Great Lakes do not appear to be a direct consequence of            

global  warming.   Although previous studies indicated that since 1985 water temperature in the           

Great Lakes was increasing even more rapidly than regional         air temperature   (Austin and   

Colman, 2008; Schneider and Hook, 2010; O'Reilly et al., 2015), most abrupt warming occurred            

from 1997 to 1998 (Van Cleave et al., 2014; Gronewold et al., 2015; Zhong et al., 2016)             , i.e., in  

the beginning of the period analyzed in this study.           The 1997/1998 warming started with an       

anomalously warm El    Niño winter over the northern US (Assel        et al., 2000; K  umar et al., 2001)    
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664 followed by a long-term shift toward a negative phase of the Pacific Decadal           Oscillation (PDO)   

associated with an abnormally cold eastern Pacific Ocean and warm western-central            North  

Pacific Ocean (Mantua et al., 1997; Zhang et al., 1997; N       ewman et al., 2016)  .   

Warming of the upper layer results in an earlier onset of springtime stratification in the Great               

Lakes (Zhong e  t al., 2016; Fichot et al  ., 2019; Cal  amita et al.,  2021; K ayastha et al., 2023) .  

Under pressure by dreissenid mussels, the role of seasonal          stratification is different from the     

role it usually plays in phytoplankton phenology.        Typically, stratification retains phytoplankton     

cells in the euphotic zone where production by photosynthesis is balanced by loss processes,               

sinking and heterotrophic grazing.      With shallowing of the seasonal      thermocline in spring,    

phytoplankton receive more solar energy while nutrient concentrations are still          high; as a   

result, photosynthetic growth exceeds loss processes producing a spring (‘        vernal’)  

phytoplankton bloom (Sverdrup, 1953; Siegel      et al., 2002).    In the regions where the abundance       

of filter -feeding mussels is high and the water column is well           mixed (e.g., in winter   -spring 

before the formation of seasonal      thermocline), intensive heterotrophic pressure in the near      -

bottom layer reduces net primary production in the entire water column and, as a result, a              

spring maximum is not formed (Fahnenstiel      et al., 2010; K  erfoot et al., 2010; Vanderploeg et al.,     

2010; Reavie et al., 2014; Rowe et al., 2015)      .   

In summer, when nutrients in the upper mixed layer are depleted, the thermocline plays the                

role of a barrier between the subsurface euphotic layer and deep waters rich in nutrients, often                

resulting in the formation of deep chlorophyll        maximum (DCM), regularly observed in the Great       

Lakes (Fahnenstiel   and  Scavia,  1987; Barbi ero and Tuchman, 2004; Mal    kin et al., 2012; Scofield     

et al., 2020; Fraker et al., 2021).       With seasonal   decrease in solar heating, erosion of the        

thermocline increases nutrient supply to the upper mixed layer resulting in autumn            

phytoplankton maximum observed in remotely    -sensed Chl-a  imagery. However, in the waters      

affected by dreissenids, summer stratification not only retains photosynthetic algae in the            

euphotic layer and controls vertical      nutrient flux but also separates phytoplankton from benthic       

filter-feeders (Fahnenstiel  et al., 2010; Rowe et al.,     2017, 2015; K aratayev et al.,   2021, 2018a).  
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691 As such, erosion of stratification is expected to produce both positive (by nutrient supply) and               

negative (by grazing) effects on phytoplankton dynamics.            

It is unclear why in the Great Lakes, in fall, when the           seasonal  thermocline is eroding, a positive     

effect of nutrient flux to the euphotic zone o      utweighs the negative effect of filter    -feeders.  A  

possible explanation is that an increase of near      -surface  Chl-a  concentration in fall    may result  

from shoaling DCM rather than phytoplankton growth associated with increased nutrient flux           

to the euphotic layer.       
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693 
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696 
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698 

699 6.4.  OC-CCI dataset as a source for re    gime shifts de  tection   

The OC-CCI Chl-a  dataset appears to be a suitable source of information for detecting trends           

and regime shifts in aquatic regions when transformations are as dramatic as those observed in                

the Great Lakes. This is corroborated by Henson et al. (        2016, 2010), who estimated that the     

minimum length of a time series required to detect        Chl-a  trends in the open ocean was 15      -60 

years based on the amplitude of trend to natural          variability. The present duration of the OC     -CCI 

dataset (25 years) is clearly within these limits and the magnitude of observed changes in               Chl-a  

are much larger than those in the open ocean driven by global             warming.      

Unfortunately, the OC-CCI dataset only begins in 1997 when regular satellite        -derived estimates   

of Chl-a  are available and we are unable to analyze changes in           Chl-a  during the previous two     

decades when nutrient discharge regulation began and before the dreissenid mussel           invasion in   

the Great Lakes started in 1988.       Previous studies based on reflectances measured by satellite         

sensors  operating during that period,    such as the    Advanced Very High Resolution Radiometer      

(AVHRR, operating since 1981) and Coastal       Zone Color Scanner (CZCS; 1978-    1986) 

demonstrated a significant increase in water clarity of the Great Lakes         (Budd et al., 2001;    

Binding et al., 2015).     Unfortunately, estimates of    Chl-a  from AVHRR imagery used by Budd et      

al. (2001) are unreliable because it does not possess the         required wavebands used to derive      

Chl-a; it possesses only one visible (630 nm) channel (Stumpf and Pennock,            1991,1989; 

Woodruff et al., 1999)  .  The “proof-of-concept”  CZCS  mission (1978-1986) onboard the N    imbus-
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718 7 satellite was focused on estimates of ocean color, including assessments of             Chl-a  (Hovis et al.,   

1980). However, the attempts to compare       Chl-a  derived from CZCS    to the more recent    

dedicated ocean color sensors resulted in ambiguous conclusions (Gregg et al., 2003; Antoine et             

al., 2005; Martinez et al., 2009) and the lack of overlap between CZCS            and SeaWiFS   prevented  

including CZCS   in the OC-CCI   Chl-a  time series.    

Other merged ocean color satellite datasets are available and could potentially be used to               

detect Chl-a  trends.   Of these, the most prominent i   s the Coper  nicus Mar ine Environme ntal  

Monitoring Service (CMEMS) GlobColour processor (Maritorena et al., 2010; Garnesson et al.,          

2019)  where the continuous data set of     Chl-a  was generated by combining     Chl-a  products  

computed for each sensor using different algorithms.        We chose not to use the GlobColour       

dataset because it was not explicitly bias-corrected and revealed higher discontinuities as          

compared with OC-CCI (Hammond et al., 2018)    .  

OC-CCI is a developing project whose future versions will       comprise additional   satellite  

information, including reprocessed VIIRS     SNPP after 2020, and two new VIIRS        sensors onboard   

NOAA-20 (launched N  ovember 2017) and N   OAA-21 (launched N  ovember 2022).    These and   

other datasets with improved correction of inter      -mission differences (Yu et al., 2023)    will  

provide advanced possibilities to detect trends and regime shifts in different aquatic regions            

effectively.   
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737 6.5.  Potential  Issues  

We cannot be entirely certain that all      biases introduced by the merging of observations        

collected by different satellite sensors were completely removed from the OC         -CCI Chl-a  dataset 

and hence could be misinterpreted by the STARS         method as regime shifts. Yet any artifacts       

resulting from the compilation are likely minimal        and did not affect the assessments of the       

timings and magnitudes of this transformation; the same trends and timing of shifts in               

chlorophyll  concentration observed in the individual      sensor data were also detected in the OC      -

CCI dataset.  
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Overall, we think that STARS     is a good and appropriate method to detect and quantify the          

timings of regime shifts. We assume the        regime  cut-off length parameter we set to 5 years (60         

months) was sufficient. Stirnimann et al. (2019), using the experiments with synthetic time             

series including artificial    change points (APs), demonstrated that STARS      detected regime shifts    

within a temporal   range of ±12 time units (months) from (typically 1-3 time units before) AP              

and recommended caution to be used in the intra        -annual  (phenological  scale) interpretations of    

the results when monthly time series is used. This recommendation agrees with the accuracy               

we used in this study, analyzing the calendar years of regime shifts and ignoring the months               .  

As stated previously, though we analyzed the longest time series of           Chl-a  currently available,   

the lakes have undoubtedly undergone changes prior to the 25 years comprising the OC             -CCI 

dataset. For instance, the oligotrophication in lakes may have begun and ended earlier than the                

first year of the OC-CCI dataset, i.e., 1997. Furthermore, the monthly resolution of the OC-CCI             

will  not capture details of short-lived events.       Yet, for the purposes of this study, it provides a         

synoptic view at a sufficient temporal    scale to document the mean environment and its       

changes over a year  .   

Another issue related to the application of OC-CCI dataset to nearshore shallow parts of the              

Great Lakes is that   OC-CCI was not well   calibrated for turbid shallow waters.       Field samples for    

OC-CCI calibration were collecte  d  over de pths >50 m    (Sathyendranath et al., 2019)  .  Similarly,  

the adopted   Chl-a  retrieval  algorithm (a blended combination of the OC band ratio and          color 

index) is optimized for both low       Chl-a  and typically Case  -1 waters, where phytoplankton     

dominates the optical    properties, and has been shown to carry larger uncertainties in optically            

complex Case-2 waters such as obser   ved in Lake Er   ie  (Binding et al., 2019)  . The ratio between    

total  suspended solids (TSS) and     Chl-a  in Lak e Er ie i s al so highe r than in    other Gre at Lakes (Xu et   

al., 2022), making the assessments of remotely      -sensed Chl-a  less reliable.    This ki nd of product   

uncertainty may contribute to the result that no regime shifts were detected in Lake Eri            e.   
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772 The results of this study demonstrate that the combined effect of regulation of nutrient loads             

enhanced by the invasion of non-native filter      -feeding mussels affected the ecosystems of the        

Great Lakes differently.    In two of the five lakes (deep, cold and already oligotrophic Lake             

Superior and shallow eutrophic Lake Erie), the regime shift was either small, not detectable due              

to uncertainties of algorithm performance in those optical         water types, or completed before      

1997, outside the temporal     coverage of the analyzed time series.        Over most of Lakes Michigan     

and Huron, pelagic ecosystems stabilized at a new lower trophic regime from 2005–2015.             In a  

few locations (the central     part of Lake Michigan, Saginaw Bay in Lake Huron, and most of Lake            

Ontario), regime transformation either occurred prior to the timeframe of this study or              is 

ongoing  and may continue in the future     .  The last few rounds of whole lake benthic surveys         

have shown that dreissenid mussels have stabilized in many locations in the Great Lakes             (Elgin 

et al., 2022a) .  However, it is still    unclear how the dreissenid populations will       progress in these    

areas and what changes in the community structure and functioning are expected in the future.               

This study proves that inconsistencies in the OC-CCI dataset resulting from the biases between            

different satellites collecting data during different periods are minor compared to regime          

transformations observed in the Great Lakes during the recent two and a half decades.             Given  

that so far only 9% of the studies focused on regime shifts in lake            s use satellite data as main      

data source (Calamita et al., 2024), this study demonstrates that the OC-CCI dataset is a reliable          

source of data that enables the detection of regime shifts in different regions of the world,              

including major lakes.      
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793 Data  and Software  Availability  

OC-CCI data are available fr  om  https://climate.esa.int/en/projects/ocean-colour/.   Single-

mission satellite data of SeaWiFS, MERIS, and MODIS-Aqua are available from          

(https://oceandata.sci.gsfc.nasa.gov/).   STARS  codes are available at    

(https://sites.google.com/view/regime-shift-test/, written in Excel     Visual  Basic (VBA), R and    
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798 MATLAB languages. Python codes used in this study were created and tested based on VBA                

codes and are available from (will       be assigned upon acceptance   ).  799 
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1446 Table 1. Sensor data used in the construction of the Ocean Colour Climate Change Initiative 

(OC-CCI) Version 6.0 dataset.  1447 

Sensor Satellite Agency Data Used in 

OC-CCI v.6.0 

References 

SeaWiFSa SeaWiFSa NASAb 1997-2010 (McClain et al., 2004; McClain, 1998) 

MODISc Aqua NASAb 2002-2019 (Esaias et al., 1998; Parkinson, 2003) 

MERISd Envisat ESAe 2002-2012 (Rast et al., 1999) 

VIIRSf SNPPg NASAb 2012-2019 (Cao et al., 2014, 2013) 

OLCI-Ah Sentinel-3A ESAe 2016-2022 (Donlon et al., 2012; Nieke et al., 

2012) 

OLCI-Bh Sentinel-3B ESA 2018-2022 (Donlon et al., 2012; Nieke et al., 

2012) 

1448 

1449 a  Sea-viewing Wide-Field-of-view Sensor  
b  National  Aeronautics and Space Administration     
c  MODerate-resolution Imaging Spectroradiometer     
d  MEdium spectral   Resolution Imaging Spectrometer     
e  European Space Agency     
f  Visible and Infrared Imaging Radiometer Suite        
g  SUOMI National  Polar-Orbiting Partnership   
h  Ocean and Land Colour Instrument       
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1457 Figure Captions   

Figure 1.   Bathymetric maps of the Laurentian Great Lakes: (S) Superior, (M) Michigan, (H)            

Huron, (E) Erie, and (O) Ontario.        Depth/elevation grids from    https://www.ngdc.noaa.gov  

/mgg/greatlakes/. White triangle in (M) indicates the center (the location with maximum             

distance offshore) of Lake Michigan used later in Figures 2 and 3.             

Figure 2.   An example of using (a) the time series of chlorophyll           concentration ( Chl-a; μg L-1) in 

the center of Lake Michigan (latitude 43.047; longitude         -87.070; depth 81 m; white triangle in        

Figure 1M) to determine the Seasonal-Trend decomposition using LOESS          (STL). The   Chl-a  time  

series is split into the (b) seasonal       factor (μg L  -1) and (c) smoothed trend (blue line; μg L        -1) and   

residuals (black line; μg L    -1). Regime shifts (solid red lines in (c)) are detected in the             

“deseasonalized”  time series (the sum of trend and residuals) using the Sequential            T-test 

Analysis of Regime Shifts (STARS) method.       

Figure 3.   (a)—Monthly median chlorophyll    concentrations (dots) and its five    -year median (filled    

triangles) in the center of southern Lake Michigan (white triangle in Figure 1M) for the                ‘starting’  

(1998-2002; blue line; upward pointi ng triangles) and    ‘ending’  (2018-2022; red line; downward  

pointing triangles ) five-year periods of OC-CCI observations. (b)—Median monthl     y mean   

chlorophyll  concentrations (blue polygon 1998-   2002; red polygon 2018-2022) and the timings     

of annual   maxima (arrows pointing through the centers of gravity represented by blue and red             

stars to the external     circle representing a 12  -month cycle) plotted in polar coordinates. The        

magnitude of average monthly median      Chl-a  is represented as the distance from the center of          

polar coordinates. In both 3a and 3b, the values of 3.5 and 10.8, indicate the timings in months                  

of Chl-a  maximum during 1998-2002 and 2018-2022, re     spectively.  

Figure 4.   Trends and regime shifts detected by the integrated STL-STARS          method in median    

chlorophyll  concentration ( Chl-a) of (a, c, e, g) Lake Michigan and (b, d, f, h) Lake Huron based                 

on observations of (a-   b) OC-CCI, (c-d) SeaWiFS, (e   -f) MODIS-Aqua, and (g-h) MERIS. Red circular        

markers indicate outliers, i.e., the values exceeding two standard deviations. Red dotted             

vertical  lines indicate regime shifts; red horizontal       lines indicate regime means.     
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1484 Figure 5.   Trends and regime shifts detected by the integrated STL-STARS          method in OC-CCI   

median chlorophyll   concentration ( Chl-a) i n Lak es (S ) Supe rior, (M) Michi  gan, (H) Huron, (E) Erie      

and (O) Ontario. Red circular markers indicate outliers, i.e., the values exceeding two standard               

deviations. Red dotted vertical     lines indicate regime shifts; red numbers indicate the years of           

regime shifts; red horizontal     lines indicate regime means.     

Figure 6.   Maps of the year in which chlorophyll        concentrations ( Chl-a) stabilized at a lower level     

in Lakes (S) Superior, (M) Michigan, (H) Huron, (E) Erie and (O) Ontario.               White color indicates    

that no significant decrease in    Chl-a  was detected during the period (1997-2022) examined.        

Figure 7.   Maps of the difference (in percent) of chlorophyll         concentration ( Chl-a) between the    

‘initial’ (starting 1997) and     ‘final’ (see Figure 6) regimes in Lakes (S) Superior, (M) Michigan, (H)             

Huron, (E) Erie and (O) Ontario. White color i        ndicates that no signifi  cant decrease i n  Chl-a  was  

detected during the period examined.      

Figure 8.   Difference (in percent) of chlorophyll      concentration ( Chl-a) between the    ‘initial’ and   

‘final’ regimes (Fi  gure 7) i  n relati on to bathymetry i   n Lak es (S) Superior, (M) Michigan, (H)       

Huron, (E) Erie and (O) Ontario.        The magni tudes of   Chl-a  decrease in 12-  km grid  cells  (circles)  

were smoothed with LOESS     function (black lines).    

Figure 9.    Seasonal  cycles of monthly median chlorophyll      concentrations ( Chl-a) in the    ‘starting’  

(1998-2002; blue line; upward pointi ng triangles) and    ‘ending’  (2018-2022; red line; downward  

pointing triangles ) five-year periods of the Ocean Colour Climate Change Initiative (OC-CCI)           

dataset in Lakes (S) Superior, (M) Michigan, (H) Huron, (E) Erie and (O) Ontario. Vertical               dashed  

lines indicate the timings of seasonal       maxima estimated by the “center of gravity”       method.  

(a)—The months of    Chl-a  maximum estimated by the “center of gravity”        method for each year     

in Lakes Superior, Michigan, Huron, Erie, and Ontario.         

Figure 10.   Maps of the month of maximum monthly median chlorophyll          concentration  

estimated by the “center of gravity”       method for the    ‘starting’  (1998-2002; left column) and    

‘ending’  (2018-2022; ri ght column) fi ve-year periods of the Ocean Colour Climate Change         
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1510 Initiative (OC-CCI) dataset in Lakes Superior (S1, S2), Michigan (M1, M2), Huron (H1, H2), Erie               

(E1, E2) and Ontario (O1, O2).       1511 

1512 
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Figure 1. Bathymetric maps of the Laurentian Great Lakes: (S) Superior, (M) Michigan, (H) 
Huron, (E) Erie, and (O) Ontario.  Depth/elevation grids from 
https://www.ngdc.noaa.gov/mgg/greatlakes/. White triangle in (M) indicates the center (the 
location with maximum distance offshore) of Lake Michigan used later in Figures 2 and 3. 

https://www.ngdc.noaa.gov/mgg/greatlakes


 

           
        

       
  

               

  

Figure 2. An example of using (a) the time series of chlorophyll concentration (Chl-a; μg L-1) in 
the center of Lake Michigan (latitude 43.047; longitude -87.070; depth 81 m; white triangle in 
Figure 1M) to determine the Seasonal-Trend decomposition using LOESS (STL). The Chl-a time 
series is split into the (b) seasonal factor (μg L-1) and (c) smoothed trend (blue line; μg L-1) and 
residuals (black line; μg L-1). Regime shifts (solid red lines in (c)) are detected in the 



      

 

 

          
                

 
     

 
 

    
    

   

  

 

 

 

 

“deseasonalized” time series (the sum of trend and residuals) using the Sequential T-test 
Analysis of Regime Shifts (STARS) method. 

Figure 3. (a)—Monthly median chlorophyll concentrations (dots) and its five-year median 
(filled triangles) in the center of southern Lake Michigan (white triangle in Figure 1M) for the 
initial (1998-2002; blue line; upward pointing triangles) and final (2018-2022; red line; 
downward pointing triangles) five-year periods of OC-CCI observations. (b)—Median monthly 
mean chlorophyll concentrations (blue polygon 1998-2002; red polygon 2018-2022) and the 
timings of annual maxima (arrows pointing through the centers of gravity represented by 
blue and red stars to the external circle representing a 12-month cycle) plotted in polar 
coordinates. The magnitude of average monthly median Chl-a is represented as the distance 
from the center of polar coordinates. In both 3a and 3b, the values of 3.5 and 10.8, indicate 
the timings in months of Chl-a maximum during 1998-2002 and 2018-2022, respectively. 



 

              
                

         
            

 
  

  
Figure 4. Trends and regime shifts detected by the integrated STL-STARS method in median 
chlorophyll concentration (Chl-a) of (a, c, e, g) Lake Michigan and (b, d, f, h) Lake Huron based 
on observations of (a-b) OC-CCI, (c-d) SeaWiFS, (e-f) MODIS-Aqua, and (g-h) MERIS. Red 
circular markers indicate outliers, i.e., the values exceeding two standard deviations. Red 
dotted vertical lines indicate regime shifts; red horizontal lines indicate regime means. 



 

              
         

           
             

       

  
Figure 5. Trends and regime shifts detected by the integrated STL-STARS method in OC-CCI 
median chlorophyll concentration (Chl-a) in Lakes (S) Superior, (M) Michigan, (H) Huron, (E) 
Erie and (O) Ontario. Red circular markers indicate outliers, i.e., the values exceeding two 
standard deviations. Red dotted vertical lines indicate regime shifts; red numbers indicate the 
years of regime shifts; red horizontal lines indicate regime means. 



 

           
                 

  
 

  

  

Figure 6. Maps of the year in which chlorophyll concentrations (Chl-a) stabilized at a lower 
level in Lakes Superior (S), Michigan (M), Huron (H), Erie (E) and Ontario (O). White color 
indicates that no significant decrease in Chl-a was detected during the period (1997-2022) 
examined. 



 

            
               

 
 

  

  

Figure 7. Maps of the difference (in percent) of chlorophyll concentration (Chl-a) between the 
initial (starting 1997) and final (see Figure 6) regimes in Lakes Superior (S), Michigan (M), 
Huron (H), Erie (E) and Ontario (O). White color indicates that no significant decrease in Chl-a 
was detected during the period examined. 



 

         
               

         
       

  

  

Figure 8. Difference (in percent) of chlorophyll concentration (Chl-a) between the initial and 
final regimes (Figure 7) in relation to bathymetry in Lakes Superior (S), Michigan (M), Huron 
(H), Erie (E) and Ontario (O). The magnitudes of Chl-a decrease in 12-km grid cells (circles) 
were smoothed with LOESS function (black lines). 



 

           
 

         
              

   
  

            

  

  

Figure 9. Seasonal cycles of monthly median chlorophyll concentrations (Chl-a) in the initial 
(1998-2002; blue line; upward pointing triangles) and final (2018-2022; red line; downward 
pointing triangles) five-year periods of the Ocean Colour Climate Change Initiative (OC-CCI) 
dataset in Lakes Superior (S), Michigan (M), Huron (H), Erie (E) and Ontario (O). Vertical 
dashed lines indicate the timings of seasonal maxima estimated by the “center of gravity” 
method. (a)—The months of Chl-a maximum estimated by the “center of gravity” method for 
each year in Lakes Superior, Michigan, Huron, Erie, and Ontario (a). 



 

            

       
                

 

 

Figure 10. Maps of the month of maximum monthly median chlorophyll concentration 
estimated by the “center of gravity” method for the initial (1998-2002; left column) and final 
(2018-2022; right column) five-year periods of the Ocean Colour Climate Change Initiative 
(OC-CCI) dataset in Lakes Superior (S1, S2), Michigan (M1, M2), Huron (H1, H2), Erie (E1, E2) 
and Ontario (O1, O2). 
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Supplement 1. Colonization of the Laurentian Great Lakes by dreissenids 

The steps of colonization of dreissenids in the Great Lakes are described in publications 
(Karatayev et al., 2021; Karatayev & Burlakova, 2022; Nalepa et al., 2010, 2009; Strayer et al., 
2019). Figures S1a and S1b (source: Fig. 3 and Fig. 6 from Lake morphometry determines 
Dreissena invasion dynamics, Karatayev et al., Biological Invasions, Volume 23, Springer Nature, 
2021, reproduced with permission from SNCSC) demonstrate how the two species of mussels 
(zebra mussels at upper panels and quagga mussels at lower panels) spread across the entire 
bottom of shallow (Figure S1a) and deep (Figure S1b) basins. 



 

          

      
        

        
       

Figure S1a. Source: Fig. 3 from (Lake morphometry determines Dreissena invasion dynamics, 
Karatayev et al., Biological Invasions, Volume 23, Springer Nature, 2021, reproduced with 
permission from SNCSC). Spatial distribution of Dreissena polymorpha (upper rows within 
each lake panel) and D. rostriformis bugensis (lower rows) in shallow lakes/regions of Lake 
Erie-Western Basin, Lake St. Clair, and Huron Lake-Saginaw Bay. Dreissenid density is 
expressed as individuals m-2. Red dots indicate sampling stations. 



 

          

      
        

       
    

Figure S1b. Source: Fig. 6 from (Lake morphometry determines Dreissena invasion dynamics, 
Karatayev et al., Biological Invasions, Volume 23, Springer Nature, 2021, reproduced with 
permission from SNCSC). Spatial distribution of Dreissena polymorpha (upper rows within 
each lake panel) and D. rostriformis bugensis (lower rows) in deep Lake Huron, Lake 
Michigan, and Lake Ontario. Dreissenid density is expressed as individuals m-2. Red dots 
indicate sampling stations. 



 
 

          
           

             
             

      

                
                 
               
           
             

              
           

             
            

           
          

               
            
               
       

            
           

               
             

             
         

            
         

           
               

           
              

              
 

Supplement 2. Inter-mission differences and biases between satellite sensors misinterpreted 
as regime shifts 

Although in the OC-CCI dataset the biases between the data collected by different satellites 
were corrected, a significant number of artifacts remained and could be misinterpreted as 
regime shifts. However, OC-CCI Chl-a data reveal the basic patterns of regime shifts in the Great 
Lakes because the scale of these transformations is higher than the differences between bias-
corrected Chl-a collected by different satellites. 

The chance to detect regime shifts (both positive and negative) by STARS algorithm in all cells of 
12-km grids in each of the five lakes demonstrate four maxima: in 2002, 2005, 2013 and 2020 
(Figure S2b), and three of them coincide with the periods when the sources of data from 
satellite sensors integrated in the OC-CCI dataset changed (Figure S2a). Specifically, in 2002, 
SeaWiFS had been operational for five years when MODIS-Aqua and MERIS were launched, and 
the total number of collected images dramatically increased. From 2012 to 2013, MERIS ceased 
operations, and VIIRS-SNPP was launched. Starting in 2020, MODIS-Aqua and VIIRS-SNPP were 
not used in the OC-CCI dataset due to sensor degradation problems. These periods of changes 
in the origin of satellite data used in the OC-CCI dataset resulted in Chl-a discontinuities 
remaining after bias-correction procedures (Garnesson et al., 2019; Hammond et al., 2018; Yu 
et al., 2023) and could be misinterpreted as regime shifts. 

The highest number of regime shifts in 2013 (when MERIS was replaced by SNPP VIIRS) and 
2020 (when MODIS-Aqua and VIIRS-SNPP ceased being used) was detected in Lake Superior 
(gray bars in Figure S2b), where no regime transformation took place and all detected regime 
shifts should be treated as artifacts. 

It is worth mentioning that some periods when the chance to detect regime shift in the Great 
Lakes was higher than during other years had reasonable explanations not necessarily 
associated with the change of sensors. In 2011-2013, the change in observing satellites (MERIS 
replaced by SNPP VIIRS) coincided with extreme weather conditions. After warm winter of 
2011–2012, late winter cooling and an early spring warming resulted in incomplete fall 
overturning facilitating cross-shelf circulation delay, reducing deep-water ventilation and 
limiting the supply of nutrients to the sunlit surface layers (Fichot et al., 2019). During the next 
winter 2012-2013, the Great Lakes endured the most persistent, lowest temperatures and 
highest ice cover in recent history (Gronewold et al., 2015), which could result in discontinuities 
in Chl-a time series. The period 2004-2005 was noted by other authors as a point when the 
most dramatic drop in water quality parameters occurred in the Great Lakes, including a 
decrease of water turbidity in Lakes Michigan and Huron (Zheng & DiGiacomo, 2022) and a 
decline in phytoplankton biomass in the southern basin of Lake Michigan (Reavie et al., 2014). 



 

      
  

       
          

  

Figure S2. The relationship between (a) the number of images collected over the Great Lakes 
by different satellite sensors used in the OC-CCI dataset and (b) the number of regime shifts 
(both positive and negative) detected by the integrated STL-STARS method during every year 
in all grid cells of the five Great Lakes. 



 

 

 
           

   
   

Supplement 3. Different number of images collected during different seasons 

Figure S3. The mean numbers of images collected over the lakes Superior (S), Michigan (M), 
Huron (H), Erie (E), and Ontario (O) by different satellite sensors used in the OC-CCI dataset 
during different months. 



    
   

             
        

         
              
             

 

         

Supplement 4. Preliminary comparison between in-situ and satellite Chl-a measurements in 
the Great Lakes. 

At the preliminary step preceding this study, we compared in-situ Chl-a measurements in the 
Great Lakes from Environmental Protection Agency (EPA) Great Lakes Environmental Database 
System (GLENDA) with VIIRS-SNPP Level-2 Chl-a products using OC3V algorithm (at 1×1 km 
spatial resolution) from 2018 to 2023. The matchup comparison is shown in the following 
Figure S4. As mentioned, VIIRS OC3V Chl-a data are underestimated, but more systematically. 

Figure S4. Comparison between in-situ and satellite Chl-a measurements in the Great Lakes. 
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