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Abstract

As a result of implementation of nutrient management following the binational Great Lakes
Water Quality Agreement in 1972, the ecosystems within the Laurentian Great Lakes were
gradually transforming to lower trophic regimes. This transformation dramatically accelerated
in the late 1980s after the introduction of two invasive species of filter-feeding mussels of the
genus Dreissena. We performed a detailed analysis of spatial and temporal patterns of this
transformation using remotely sensed surface chlorophyll-a concentration (Chl-a) from the
multi-satellite long-term Ocean Colour Climate Change Initiative (OC-CCl) dataset as a proxy of
ecosystem state. We analyzed 25 years (1997-2022) of monthly composites covering most of
the Great Lakes’ area detecting regime shifts in Chl-a employing an integrated approach
combining Seasonal-Trend decomposition (STL) and Sequential T-test Analysis of Regime Shifts
(STARS). The results identified the timings (shift points) when Ch/-a stabilized at new lower
trophic regimes, the magnitudes of Ch/-a decrease across various lake regions and depths, and
the changes in Chl-a seasonal cycles. In Lakes Michigan, Huron and Ontario, the timings and
magnitudes of regime shifts and vanishing of spring phytoplankton bloom suggest that
dreissenid mussel presence was a primary driving factor of the observed transformation. We
demonstrate that the OC-CCI dataset is a reliable source of information that enables the
detection of these regime shifts in major lakes, with only minor effects of inconsistencies
resulting from the biases between different satellites collecting data during different time

periods.

Keywords: Laurentian Great Lakes; Chlorophyll-a; Remote sensing; Regime shift; Dreissenid

mussels; Dreissena
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1. Introduction

Decreases in phytoplankton biomass and productivity in the Laurentian Great Lakes over the
past decades demonstrate a cumulative effect of significant reduction of nutrient loads and the
introduction of invasive species. Since European settlement through to the early 1980s, the
Great Lakes experienced progressive eutrophication (Stoermer et al., 1990), with phosphorus as
the major nutrient limiting primary production (Schelske et al., 1974). In response to the
deteriorating state of water quality in these lakes, the binational Great Lakes Water Quality
Agreement (GLWQA), a commitment between the US and Canada to provide a framework for
identifying binational priorities to improve and protect water quality, was signed in 1972
(International Joint Commission, 1972). As a result of the control programs, phosphorus
loadings to the lakes substantially decreased during the 1970s and 1980s (Bunnell et al., 2014),
resulting in significant lake-wide reductions in phytoplankton biomass (Stevens and Neilson,

1987; Millard et al., 1996).

The decrease of phytoplankton biomass in the Great Lakes dramatically accelerated in the
1990s after the colonization of the lakes by two species of filter-feeding mussels: Dreissena
polymorpha (Pallas, zebra mussel) and D. rostriformis bugensis (Andrusov, quagga mussel),
hereafter referred to collectively as “dreissenids”. As suspension filter-feeders, the magnitude
of their impact on pelagic ecosystems results from their ability to filter massive volumes of
water (Kryger and Riisgard, 1988; Horgan and Mills, 1997; Diggins, 2001). A little selection of
particle size or quality is performed during filtration, so more water is filtered than would be
required to feed an individual, and not all filtered particles are consumed. Excess food and
particles that are too large or are of low food quality are bound in mucus and expelled as
pseudofeces (Padilla et al., 1996). As a result, these mussels affect pelagic ecosystems through
both top-down control by feeding on planktonic organisms and bottom-up control by
sequestering phosphorus that otherwise would be available to phytoplankton (Bunnell et al.,
2014). The total impact of an individual mollusk on the planktonic community is, therefore,

much greater than the impact of the same biomass of other predators (e.g., zooplankton).



72
73
74
75
76
77
78

79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
9%
97
98
99

The effect of zebra and quagga mussels on the Great Lake ecosystem included an increase in
water transparency (Binding et al., 2015; Yousef et al., 2017; Son and Wang, 2019), a decrease
in the biomass/abundance of phytoplankton and chlorophyll-a (Fahnenstiel et al., 2010;
Vanderploeg et al., 2010; Reavie et al., 2014), decline in zooplankton (Kerfoot et al., 2010;
Barbiero et al., 2011; Pothoven and Fahnenstiel, 2015; Kovalenko et al., 2018) and prey fish
(Bunnell et al., 2014; Madenjian et al., 2015), and changes in the structure of the nearshore

benthic community (Pillsbury et al., 2002; Hecky et al., 2004; Nalepa et al., 2009).

It is unclear whether the reduction in phytoplankton biomass and increase in water clarity
result primarily from the regulation of nutrient discharge or the heterotrophic pressure of
mussels on phytoplankton biomass plays a dominating role in the observed transformation in
the Great Lakes. The effect of nutrient regulation is expected to result in a gradual decrease of
phytoplankton biomass over most of the lakes’ area. In contrast, the effect of mussel feeding is
expected to be correlated with the steps of colonization of the lakes by dreissenids
documented in previous studies (Nalepa et al., 2010, 2009; Karatayev and Burlakova, 2022;

Karatayev et al., 2021).

The details of the transformation of the pelagic ecosystems of the Great Lakes to new lower
trophic regimes are described in numerous publications based on field sampling (Fahnenstiel et
al., 2010; Mida et al., 2010; Bunnell et al., 2014; Madenjian et al., 2015; Kovalenko et al., 2018;
Pothoven and Vanderploeg, 2020) and satellite radiometry (Yousef et al., 2017, 2014; Rowe et
al., 2015; Fahnenstiel et al., 2016; Son and Wang, 2020, 2019). Binding et al. (2015) used an
empirical algorithm relating water clarity (Secchi disk depth) to reflectance measured in the
green bands of Coastal Zone Color Scanner (CZCS), Sea-viewing Wide Field-of-view Sensor
(SeaWiFS), and Moderate Resolution Imaging Spectroradiometer on Aqua platform (MODIS-
Aqua), and showed a long-term increase (up to 62%) in water transparency comparable to the
changes in Chl-a as reported in this study. However, most published results were focused
either on separate lakes or over relatively short time periods, and many provided assessments
averaged over an entire lake and/or depth zone. Furthermore, most published works conclude

that this transformation is ongoing (Nalepa et al., 2010, 2009; Reavie et al., 2014; Rowe et al.,
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2017, 2015). Itis thus unknown if phytoplankton biomass has stabilized to new lower trophic

regimes and what the final magnitude of that decrease was.

The questions of “when and where trophic status changes are occurring” can be addressed
using estimates of surface chlorophyll-a concentration derived from visible measurements
collected by Earth-observing satellites. Remotely-sensed water color represents a unique
source of information for quantitative assessment of interannual variations of large-scale
aquatic ecosystems (including ocean and large lakes), especially in the regions where detailed
monitoring based on field surveys is unavailable (Calamita et al., 2024). However, combining
the data collected by different satellites into one time series may introduce abrupt shifts and
inconsistencies resulting from the differences in accuracy and resolution (spatial, temporal, and

spectral) between satellite sensors.

The merged dataset produced by the Ocean Colour Climate Change Initiative (OC-CCl) project
includes data corrected for the biases between the reflectances measured by different satellite
sensors (Sathyendranath et al., 2019). The most recent version (v.6.0) of the OC-CCl dataset
covers >25 years (1997-2022) of continuous global observations and can be used to analyze
long-term interannual variations in different aquatic regions. It is important to keep in mind
that the early stages of the oligotrophication process in the Great Lakes are not quantified in
this study. The OC-CCl dataset started more than two decades after the beginning of nutrient

discharge regulation and several years after the first reports of the introduction of dreissenids.

This study provides a detailed analysis of spatial and temporal variations of remotely-sensed
chlorophyll-a concentration (Chl-a) in the five North American Laurentian Great Lakes
(Superior, Michigan, Huron, Erie, and Ontario) using a consistent methodology for detecting
regime shifts. We performed a quantitative assessment of regime shifts based on Ch/-a, thus
enabling estimation of the timing of shift points between the regimes and the differences
between the mean levels of the regime indicator. The objectives of our study include: 1)
addressing the question of whether the biases between the data collected during different
periods by different satellites can be misinterpreted as regime shifts; 2) estimating the timings

(shift points) when different regions of the lake ecosystems stabilized at new lower trophic
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regimes; 3) quantifying the magnitudes of the Chl-a decrease in different geographic and
bathymetric zones of the lakes; and 4) analyzing the effect of regime shift on Chl-a seasonal
cycles in different parts of the lakes. The paper is organized as follows: Section 2 describes the
study area; Section 3 describes the steps of colonization of dreissenids in the Great Lakes;
Section 4 details the OC-CCl dataset and statistical methods of data processing and regime shift
detection; Section 5 presents the results of the study, and is followed by discussions in Section

6 and conclusions in Section 7.

2. The study region: The Laurentian Great Lakes

The Laurentian Great Lakes (Figure 1) is one of the largest freshwater systems in the world, with
a total lake surface area of 244,000 km? and a catchment area of approximately 1 million km?2,
The lakes contain 22,000 km? of water, which is 84% of North America’s surface fresh water and
21% of the world’s surface fresh water supply (Sterner et al., 2017), with the lowest nutrient
loads in mass per unit time entering Lake Superior and the largest nutrient load entering Lake
Erie (Sterner, 2021). The Great Lakes basin is home to almost 40 million people, or roughly 10%
of the US and 32% of Canada’s population (Méthot et al., 2015). The lakes differ in size (from
18,960 km? for Lake Ontario to 82,100 km? for Lake Superior (Bunnell et al., 2014)), mean depth
(from 7 m for western Lake Erie to 147 m for Lake Superior (Bunnell et al., 2014; Sterner,
2021)), hydraulic residence time (from about 200 years for Lake Superior to about three years
for Lake Erie (Quinn, 1992)), and levels of primary production (from the ultra-oligotrophic Lake
Superior to the periodically hypereutrophic waters of western Lake Erie (Bunnell et al., 2014;

Dove and Chapra, 2015)).

Biogeochemical properties of the Great Lakes vary over a broad range of temporal and spatial
scales (Sterner, 2021). Among the features potentially encouraging the colonization by
dreissenids are relatively high pH and dissolved inorganic carbon (DIC) resulting from a high
abundance of limestone and carbonate weathering in all lakes except for Lake Superior (Lin and

Guo, 2016), a factor supporting the growth of invasive mussels (Hincks and Mackie, 1997). On



155
156
157
158
159

160
161
162
163
164

165

166

167
168
169
170
171
172
173
174
175
176
177
178
179
180

the other hand, a negative factor affecting benthic organisms is hypolimnetic hypoxia, which is
a regular seasonal event in some shallow embayments (Sterner, 2021), as well as the central

basin of Lake Erie, where hypoxia sometimes extended up to 60% of the surface area (Zhou et
al., 2013). The spatial distribution of dreissenids in Lake Erie has been clearly connected to the

occurrence of hypoxia (Karatayev et al., 2018b).

Because of their large size, the five lakes are often considered “inland seas”, requiring a
scientific approach with attributes similar to those of oceanography (Sterner et al., 2017). One
of these approaches is using satellite remote-sensing imagery, providing regular synoptic
coverage and the opportunity for comprehensive assessment of lake-wide water quality and

robust determination of spatial and temporal trends (Binding et al., 2015).

3. Colonization of the Great Lakes by dreissenids

The introduction and expansion of zebra and quagga mussels in the Great Lakes has been well
documented and represents one of the most dramatic and impactful colonizations of invasive
species in modern times (Ricciardi and Maclsaac, 2000; Evans et al., 2011; Lower et al., 2024).
These small (maximum size 50 mm) mollusks were introduced with the release of ballast waters
from commercial vessels (Ricciardi and Maclsaac, 2000). The first occurrence of zebra mussels
was noted between April and November 1986 in the western basin of Lake Erie (Carlton, 2008),
followed by its formal (i.e., published) discovery on 1 June 1988 in Lake St. Clair, a small lake
between Lakes Huron and Erie (Hebert et al., 1989). The zebra mussel extended its distribution
beyond Lake Erie and was found in 1989 in three other lakes: Michigan, Huron, and Ontario
(Griffiths et al., 1991; Karatayev et al., 2021). 1989 also marked the first record of the quagga
mussel in North America when a single specimen was found in Lake Erie (Benson, 2014). The
discovery of quagga mussels in Lake Ontario followed soon after in 1990 (Benson, 2014). In
1997, quagga mussels appeared in northern Lake Michigan and eastern Lake Huron (Karatayev

et al., 2021). Zebra mussels and then quagga mussels were discovered in Lake Superior proper
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in the early 2000’s (Grigorovich et al., 2008, 2003), but marginal calcium levels have dampened

their expansion (Trebitz et al., 2019).

The process of colonization and the dynamic between the two dreissenid species is influenced
by how their differing physiologies react to environmental conditions. Zebra mussels have
lower filtration rates (Diggins, 2001) and assimilation efficiencies (Baldwin et al., 2002), as well
as higher respiration rates (Stoeckmann, 2003; Karatayev et al., 2015) when compared to
guagga mussels. Quagga mussels are capable of spawning at colder temperatures (Roe and
Maclsaac, 1997; Claxton and Mackie, 1998) and can adapt to soft substrate (Karatayev and
Burlakova, 2022). Accordingly, zebra mussels are better equipped for warmer, more productive
nearshore environments, while quagga mussels can readily inhabit cold, deep waters

(Karatayev et al., 2015; Strayer et al., 2019).

Lake morphometry largely dictates the outcome of dreissenid mussel composition and
distribution (Strayer et al., 2019; Karatayev et al., 2021). In shallow, productive regions such as
the Western Basin of Lake Erie and Saginaw Bay in Lake Huron, zebra mussels peaked by the
early 1990’s and then have been able to persist after quagga mussels arrived, albeit at lower
densities (Karatayev et al., 2021). In contrast, quagga mussels are competitively superior to
zebra mussels in deeper, oligotrophic waters (Nalepa et al., 2010). In Lake Ontario, Lake Huron,
and Lake Michigan, quagga mussels virtually displaced zebra mussels by 1997, 2003, and 2005,
respectively, all within 8 years of their arrival (Karatayev et al., 2021). Further, the biomass
attained by quagga mussels in these three lakes in 2018, 2017, and 2015 was more than ten
times the maxima attained by zebra mussels in 1995, 2000, and 2000, respectively (Karatayev
et al.,, 2022, 2021). As a result, the quagga mussel invasion waves caused stronger lake-wide
ecosystem impacts compared to the more limited nearshore impacts of zebra mussels
(Karatayev et al., 2022). The steps of colonization by both quagga and zebra mussels in shallow
and deep basins of the Great Lakes are clearly illustrated in maps produced by Karatayev et al.
(2021), which have been reproduced in Supplementary Figures S1a and S1b for ease of

reference.



209 4. Data and Methods

210 4.1. Ocean Colour Climate Change Initiative (OC-CCl) dataset

211  Surface chlorophyll-a concentration (Chl-a) is a proxy for phytoplankton biomass and one of the
212 most widely used satellite ocean color products that are monitored by Earth-orbiting satellites
213 (IOCCG, 2008). Multiple studies have used Chl-a to identify global trends and regime shifts in
214  aquatic ecosystems (Behrenfeld et al., 2006; Chavez et al., 2011) and to monitor ecosystem

215  health due to its direct link to aquatic net primary productivity and biomass (Wang and

216  Convertino, 2023). Historical importance and availability of multi-decade Chl-a records

217  motivated including it into the list of Essential Climate Variables (ECV), a limited set of variables

218 deemed critical to the characterization of Earth’s climate (GCOS, 2011; Bojinski et al., 2014).

219  The Ocean Colour Climate Change Initiative (OC-CCl) project of the European Space Agency
220  (ESA) provides a consistent, long-term continuous dataset of merged ocean-color products
221  created by integrating remote sensing reflectances (Rrs) from individual sensors (Table 1) and
222 retrieving various ocean-color parameters via selected in-water algorithm (Lavender et al.,

223 2015; Sathyendranath et al., 2019).

224  As different ocean color sensors often measure radiances at different wavebands, the input
225  radiometric measurements were band-shifted to a common set of bands corresponding to the
226  Medium Resolution Imaging Spectrometer (MERIS) on ENVISAT platform. The non-reference
227  sensors of SeaWiFS, MODIS, VIIRS and OLCI (though OLCI already contains the MERIS bands so
228  this was not required) were band shifted to the six main MERIS bands (412, 443, 490, 510, 560,
229  665nm) by computing Quasi-Analytical algorithm (QAA) (Lee et al., 2002) Inherent Optical

230  Properties (IOP) and back computing the Rrs bands using a high-resolution spectral model

231  (European Space Agency, 2022). Then, overlapping data were used to correct for mean biases
232  between sensors, the corrected Rrs were merged by averaging all available data at every pixel
233  with equal weight given to each available sensor, and the blended Ch/-a algorithm (Jackson et

234 al., 2017) was applied to the merged data to generate maps of chlorophyll concentration. The
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merged products were validated against a global data set comprising in situ measurements

collected from multiple sources (Valente et al., 2022).

Monthly Chl-a data at 4 km spatial resolution of the latest OC-CCI version 6.0 (September 1997—-
December 2022) were obtained from the OC-CCl dataset

(https://climate.esa.int/en/projects/ocean-colour/).

In 2002, SeaWiFS had been operational for five years when MODIS-Aqua and MERIS were
launched, and the total number of collected images dramatically increased. From 2012 to 2013,
MERIS ceased operations, and Visible Infrared Imaging Radiometer Suite on the Suomi National
Polar-orbiting Partnership platform (VIIRS -SNPP) was launched (Table 1). Starting in 2020,
MODIS-Aqua and VIIRS-SNPP were not used in the OC-CCl dataset due to sensor degradation
problems. Inter-mission differences in the merged OC-CCI Ch/-a dataset may not have been
completely corrected and may consequently be misinterpreted as trends and abrupt shifts

(Mélin et al., 2017; Mélin, 2016; Hammond et al., 2018; Yu et al., 2023).

To evaluate if any spurious artifacts were introduced during merging, we compared OC-CCl Chl-
a time series to the single-mission Chl-a time series of SeaWiFS, MERIS and MODIS-Aqua
obtained from the Ocean Biology Processing Group at NASA Goddard Space Flight Center

archive (https://oceandata.sci.gsfc.nasa.gov/). Monthly Level-3 Standard Mapped Image (SMI)

Chl-a products with spatial resolutions at 4 km for MERIS (April 2002 to April 2012) and MODIS-
Aqua (July 2002 to December 2022), and 9 km for SeaWiFS (September 1998 to December
2010) were examined. The Chl-a products in these datasets were derived using a combined Chl/-
a algorithm of OC3/0C4 (OCx) band ratio (O'Reilly and Werdell, 2019) and the color index (Cl)
algorithms (Hu et al., 2019). All satellite data were subsampled for the Great Lakes region (41.0-
49.0N, 92.5-76.0W) and remapped with the standard cylindrical projection on 4-km resolution
grids. For increased computational efficiency during statistical analysis, the resolution of all 4-
km grids was reduced by a factor of three in each direction with a resulting cell represented as

3x3 median value (hereafter called 12-km grid cells).

10


https://climate.esa.int/en/projects/ocean-colour/
https://oceandata.sci.gsfc.nasa.gov/
https://92.5-76.0W

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276

277

278
279
280
281
282
283
284
285
286
287
288

Although many authors have questioned the absolute accuracy of the standard NASA Chl-a
retrievals in the Great Lakes (Bergmann et al., 2004; Budd and Warrington, 2004; Watkins,
2009; Mouw et al., 2017, 2013; Moore et al., 2017; Sayers et al., 2019), other studies have
indicated that the default iterative atmospheric correction is adequate for all the Great Lakes
(Shuchman et al., 2013) and standard NASA band-ratio algorithms produce chlorophyll
estimates that are linearly related to the Ch/-a concentrations measured in the field (Lesht et
al., 2013). Also, most of the areas analyzed in this study (excluding Lake Erie) are optically deep,
therefore waters where the band-ratio method may be compromised by the presence of
confounding substances (primarily embayments and shallow waters) constitute a comparatively
small fraction of the Great Lakes (Lesht et al., 2013; Shuchman et al., 2013). Nevertheless, it is
likely that increased uncertainty exists in the OC-CCI Chl-a particularly in turbid or eutrophic
conditions and the nearshore, relative to other algorithms specifically tuned to optically
complex waters. Utilizing the OC-CCl dataset for detecting regime shits in the Great Lakes’
ecosystems, we therefore focus on relative temporal (interannual and seasonal) variations of

remotely sensed Chl-a rather than assessment of the Ch/-a absolute values.

4.2.  Statistical methods of data analysis

This study focused on quantitative analyses of the ecosystem’s regime transformation in the
Great Lakes, both from a whole lake and spatially explicit perspective. To quantify these
changes, we applied the statistical method detecting a breakpoint between two periods: an
early period characterized by a continuous stepwise decrease of Chl-a followed by a period of
stable or increasing Chl-a. For this purpose, we selected the method that can evaluate two basic
metrics of Chl-a decrease: 1) the timing (shift point) when the transformation from one regime
to another is completed, and 2) the magnitude of this transformation (Figure 2c). The model is
based on our understanding that oligotrophication was a dominant process over most of the
Great Lakes. The selected model, however, may not apply to some regions for two reasons.
First, some regions may not be affected by oligotrophication. Second, the process of regime

transformation, which started in the late 1980s in some areas, could be completed earlier than

11
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the OC-CCl dataset started in September 1997. The examples are Lake Superior, whose trophic
status did not change (Binding et al., 2015; Fahnenstiel et al., 2016), and Lake Erie, which has

undergone a period of re-eutrophication (Scavia et al., 2014; Watson et al., 2016).

The Sequential T-test Analysis of Regime Shifts (STARS; Rodionov, 2004) identifies timing(s)
when a system attribute — in our study, Chl-a — undergoes a persistent change. The basic
constraint regulating the durations of the detected regimes is the regimes cut-off length, the
parameter similar to the cut-off point in low-pass filtering. In this study, the regimes cut-off
length was determined through practical testing as 5 years (60 months). STARS sequentially
analyzes each observation in the time series by testing whether it is statistically different from
the current regime by calculating a Regime Shift Index (RSI) based on the Student’s t-test to
confirm or reject the existence of a regime change (Rodionov and Overland, 2005; Rodionov,
2004). Many authors used this method for detecting abrupt changes in paleoecological records
(Espinoza et al., 2022), climate (Marty, 2008; Reid et al., 2016), marine ecosystems (Tian et al.,
2008; Conversi et al., 2010; Mo6llmann and Diekmann, 2012; Moéllmann et al., 2009; Greene et

al., 2013) and many other studies.

Before applying STARS, seasonal variability was removed from each analyzed time series of Chl-
a using the Seasonal-Trend decomposition using LOESS (STL) method (Cleveland et al., 1990).
This filtering procedure decomposes a time series into the three components — trend, seasonal,
and remainder — by extracting smoothed estimates of each component using a locally
estimated scatterplot smoothing (LOESS) method based on local polynomial regressions. A
salient feature of STL is that it allows amplitude variation in the seasonal component for a given
period (e.g., annual), which helps capture a more significant portion of total variance than
amplitude alone (Vantrepotte and Mélin, 2009). We did not use the “pre-whitening” approach
recommended by Rodionov (2006) because preliminary analysis revealed that in the monthly
data examined, the components generated by stationary red noise processes were not
misinterpreted as “climatic regimes”. Instead, we focused on removing seasonal variations,
which contributed substantially to the variability and hindered the identification of statistically

significant shift points. For this, each time series (an example in Figure 2a) was decomposed by

12
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STL into trend (blue line in Figure 2c), seasonal (Figure 2b) and remainder (residual)
components and then residuals were added to the trend, and the resulting “deseasonalized”
time series (black line in Figure 2c) was analyzed by STARS. Each Chl-a time series was log-
transformed prior to STL and STARS analysis and the outputs were inverse-transformed
because the Chl-a values vary over several orders of magnitude and because log-transformed

Chl-a is more normally distributed than the untransformed data (Campbell, 1995).

We applied the integrated STL-STARS algorithm to the time series of median Ch/-a for individual
lakes and each 12-km grid cell within each lake with at least 120 monthly observations, i.e.,
twice the regimes cut-off length, the parameter regulating minimum regime duration in STARS
algorithm. In each location, transformation to a lower trophic regime was typically a gradual
process that took several years and, as such, the STARS method detected a cascade of regime
shifts (Figure 2c). For individual lakes and grid cells, the STARS method identified the timings
when the cell experienced its ‘initial’ and ‘final’ decreasing regime shifts. The ‘final’ shift timing
is when Chl-a stabilized (saturated) at its ‘final’ concentration, after which no other decreasing
shift in Chl-a was detected. Two parameters were documented from the ‘initial’ and ‘final’
regimes: 1) the year of the final’ regime shift, i.e., ecosystem stabilization (months were
ignored); and 2) the magnitude of Chl-a decrease during the regime transformation, which was
calculated as the percentage difference between the chlorophyll concentrations of the ‘initial’

and ‘final’ regimes (Figure 2c).

The relationship between detected regime shifts and lake depth was analyzed using
bathymetric data of the Great Lakes obtained from the NOAA National Centers for
Environmental Information (NCEI) Marine Geology and Geophysics online archive

https://www.ngdc.noaa.gov/mgg/greatlakes. The grids of scale 1:250,000 were reprojected to

12-km resolution similar to the resampled OC-CCI and single-mission satellite data.

The annual cycles of monthly median Ch/-a were examined in each location during the ‘starting’
(1998-2002) and ‘ending’ (2018-2022) five-year periods of the 25-year OC-CCI time series. The
timings of Chl-a monthly maxima were estimated from the five-year medians of monthly

medians either in entire lakes or in spatially explicit (i.e., 12-km grid cells) perspective during

13
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the ‘starting’ and ‘ending’ five-year periods. The timings of monthly Ch/-a maxima were
computed using the “centroid” method to yield a center of gravity in polar coordinates. Using
the center of gravity (and viewing the results in polar coordinates) is deemed a better estimate
for this purpose than other estimates, such as a simple average or a center of gravity in linear
coordinates (Colebrook, 1979; Edwards and Richardson, 2004; Meis et al., 2009). Figure 3 is an
example of this estimation for the grid cell located farthest from shore in the southern part of
Lake Michigan (Figure 1M). The center of gravity (Figure 3b) of maximum average monthly
median Chl-a was estimated to be mid-March (month 3.5) for the period from 1998 to 2002
and late October (month 10.8) for the last 5-year period (2018-2022), which were similar
though not exactly the same as the Ch/-a maxima assessed visually (Figure 3a). It is worth
mentioning that although we operate monthly data (i.e., the times are integers), the resulting
assessments of the centers of gravity can include decimal fraction leading to conclusions at sub-

monthly time scale.

5. Results

5.1 Inter-mission artifact or shift to a different trophic state?

Although the potential of discontinuities of Ch/-a (and other derived bio-optical properties) and
incorrectly detecting them as regime shifts in Chl-a was higher when satellite sensors changed
or merged (Supplementary Figure S2), the analysis of the individual mission Chl-a time series
collected by the three satellites operating during the beginning of the observed period, i.e.,
SeaWiFS, MODIS-Aqua, and MERIS, and used in the creation of OC-CCl, revealed decreasing
trends and successive regime shifts similar to those detected in the merged OC-CCI dataset.
This is particularly evident in Lakes Michigan and Huron (Figure 4). Furthermore, in most time
series collected by single satellite sensors, regime shifts were detected in 2005 (Figure 4), when
sources of data from satellite sensors in OC-CCl dataset did not change (Supplementary Figure

S2a).
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As the trends and shifts observed in chlorophyll concentrations of the OC-CCI dataset are
similar to those observed in the single satellite missions, we conclude that they are real and not

artifacts introduced during the creation of the OC-CCl dataset.

5.2. Timings and magnitudes of regime shifts in Chl-a

The median concentrations of Chl-a in Lakes Michigan, Huron, and Ontario gradually decreased
during 1997-2012 (Figure 5). In Lakes Michigan and Huron, the integrated STL-STARS method
detected a cascade of three regime shifts to a lower trophic state followed by a small shift to
higher trophic state between 2014-2016 (Figure 5M, H). In Lake Ontario, a cascade of two
regime shifts to lower trophic state was detected (Figure 50). No decrease of Chl-a was
observed in Lakes Superior and Erie (Figure 5S, E), though small but significant increases of Chl/-

a were detected in Lake Erie in 2002 and in Lake Superior in 2014.

The year when chlorophyll concentration reached its ‘final’ stable levels, i.e., Chl-a no longer
declined, differed regionally within and between each of the Great Lakes (Figures 6 and 7). In
Lakes Michigan, Huron, and Ontario, Chl-a decreased between 2002 and 2020 over most of the
lake’s areas. In Lake Superior, only the western portion of the lake experienced a decrease in
Chl-a during the first decade of the observed OC-CCI time series (2002-2008; Figure 6S). The
majority of Lake Erie also exhibited limited shifts in Chl-a, occurring along its western Canadian
shore early in the OC-CCl time series and along the Michigan shore and in Lake St. Clair during
the latter part of the dataset (Figure 6E). In Lake Huron, a lower trophic regime was achieved
earlier (in 2002-2005) in the Georgian Bay than in the northeast, then in the southern and
northwestern nearshore zones and along the Alpena-Amberley Ridge (marked in Figure 1H).
Circa 2012, Chl-a decreased to its ‘final’ level in the remaining open parts of the lake (Figure
6H). Over most of Lake Ontario, the process to the new regime was slow. Over most of the
lake, the Chl-a achieved a stable regime as late as 2015-2020 (Figure 60). Only the small

central-eastern region of the lake experienced the regime shift earlier (2002).
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In Lake Michigan, the Chl-a level stabilized first in the nearshore regions north of 44°N (Figure
6M). From 2010 to 2012, a new regime was established offshore in the northern part of the

lake and started spreading to its southern part, first along the western and eastern shores and
then offshore. Offshore in the southern portion of the lake, the level of Chl-a stabilized as late

as 2020.

Similar to the timing, the magnitude of the reduction in Ch/-a between its ‘initial’ and “final’
stabilized concentrations also varied regionally within and between each of the Great Lakes. In
Lakes Superior and Erie, where regime shifts were rarely found, the magnitudes of detected
regime shifts were typically below 10% (Figure 7S, E). In Lake Michigan, Chl-a decreased 10-25%
north of 44°N and 35-45% in the south (Figure 7M). Both the timing (Figure 6M) and magnitude
of Chl-a decrease indicate that to the north of 44°N transformation of ecosystem from
eutrophic to oligotrophic state started before the start of the OC-CCl dataset in 1997 and was
completed few years earlier than in the south and a substantial part of this process was not
captured in our analysis. In Lake Huron, the reduction in Chl-a varied between 20%-40%, with a
maximum in its deeper southern portion (Figure 7H). Lastly, in Lake Ontario, the magnitude of
Chl-a reduction was about 10% in the eastern part of the lake and 20-30% in its western part

(Figure 70).

The relationship between the timing (year) when Chl-a reached stable levels and lake
bathymetry showed no apparent pattern (not shown), whereas the difference in its magnitude
did (Figure 8). In Lake Superior, the difference in Chl-a between the ‘initial’ and ‘final’ regimes
clearly decreased with increasing depth until it exceeded ~100 m. In Lakes Michigan and Huron,
the lakes that exhibited the most evident regime shifts, the difference in Chl-a was most
pronounced in water between 30 and 100 meters deep. No clear-cut relationship was

observed in Lakes Erie and Ontario, the former likely due to its limited depth range.

5.3.  Chlorophyll concentration phenology
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Analyzing seasonal cycles of Chl-a in the Great Lakes based on OC-CCl data, we have to bear in
mind that the number of images collected during winter was much lower as compared to other
seasons due to data gaps associated with cloud and ice coverage (see Supplementary Figure
S3). The number of images acquired during December-January was low over all five lakes,

especially over the Lakes Superior and Huron (Supplementary Figure S3S, H).

Significant changes in seasonal cycles of Chl-a over the entire lake areas were observed in Lakes
Michigan (Figure 9M, 10M1, M2) and Huron (Figure 9H, 10H1, H2). In Lake Michigan during
1998-2002, two maxima of median Chl-a were observed in April-June and August (Figure 9M);
the plot of the timings of Ch/-a seasonal maxima demonstrates that these two maxima were
observed in different parts of the lake: maximum in April-June in the southern part and
maximum in August in the northern part (Figure 10M1). In 2018-2022, the timing of seasonal
maximum changed to October over the entire lake (Figure 9M, 10M2). In Lake Huron during
1998-2002, the median (averaged over the entire lake) Ch/-a maximum was in winter-spring
(March-June; Figure 9H); a spatially explicit view revealed winter maximum in nearshore parts
of the lake and spring maximum in open waters (Figure 10H1). By 2018-2022, the timing of
seasonal maximum changed to fall (October-December). In both Lakes Michigan and Huron, the

changes in the timings of seasonal maxima occurred between 2002 and 2004 (Figure 9a).

We speculate that a seasonal maximum in the northern Lake Michigan may not have been
observed in spring (in contrast to its southern part; Figure 10M1) because, during the beginning
of the OC-CCl dataset, local ecosystems had already undergone most, if not all of the regime
transformation. This explanation agrees with early stabilization and low magnitude of regime

shifts observed there (Figures 6M and Figure 7M).

In Lake Superior, the timing of Chl-a maximum (October-December) did not change, but its
magnitude substantially decreased (Figure 9S, O). The differences in the timing and magnitude
of winter maximum in Lake Superior in 1998-2002 (fall maximum in its northern part and winter
maximum in the south; strong maximum in 1998-2002 vs. small maximum in 2018-2022) can be

attributed to flaws in OC-CCl data resulting from very low number of satellite images acquired
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over Lake Superior during winter seasons 1998-2002 when the maxima were detected and only

one satellite (SeaWiFS) collected data.

In Lake Erie, Chl-a maximum in 1998-2002 was observed in winter (Figure 10E1), and its timing
did not change by the end of the observed period (Figure 10E2). Similarly, in Lake Ontario, the
timing of Chl-a summer maximum remained unchanged (June-September; Figure 90, 1001,

02).

During the ‘ending’ (2018-2022) 5-year period, we see an almost complete disappearance of a
spring bloom, typical of temperate waters, replaced with an autumn bloom. In 2018-2022,
seasonal Chl-a cycles in four lakes (Superior, Michigan, Huron, and Ontario) were characterized
by a maximum in late fall (October-December; Figure 10S2, M2, H2, 02). The vanishing of
spring maxima can be explained by the strong effect of mussel filtration on phytoplankton in
the entire water column, including the near-surface layer, during spring when the water column

is well mixed (see details in Discussion).

6. Discussion

To our knowledge, this is the first study to analyze a relatively long-term continuous and
internally consistent time series of satellite-derived chlorophyll concentration to identify
statistically significant, abrupt changes of chlorophyll concentration in a spatially explicit
manner in all of the Laurentian Great Lakes during the same period. This approach permits us
to examine inter- and intra-lake differences in the timing and magnitude of changes in

chlorophyll concentration, and explore potential factors related to these changes.

6.1.  Transformations to lower trophic regimes in the Great Lakes

The spatial and temporal features of regime transformation in the Great Lakes described in this

paper agree with the previously published information about the proliferation of dreissenid
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mussels, supporting the hypothesis that colonization of the lakes by dreissenids was a primary
driver of this transformation. A shift to the lower trophic state was evident in three initially
mesotrophic deep lakes (Michigan, Huron, and Ontario) and small or absent in the consistently
oligotrophic Lake Superior and regionally eutrophic Lake Erie. These results do not deny the
role of nutrient management in improving water clarity in the Great Lakes, but indicate that

mussel presence was an important driving factor of this oligotrophication.

6.1.1. Lake Superior

The magnitudes of regime shifts detected in Lake Superior were small compared to the other
three deep lakes (Michigan, Huron, and Ontario). These assessments agree with the
information that dreissenid mussels invaded Lake Superior in very low numbers (Grigorovich et
al., 2008; Karatayev and Burlakova, 2022). Also, even before the dreissenid invasion, Lake
Superior was characterized as the clearest of the Great Lakes, in terms of water transparency
(Binding et al., 2015), phytoplankton/chlorophyll/primary production (Vollenweider et al.,

1974) and zooplankton biomass (Barbiero et al., 2012). As a result, no differences between pre-
mussel and post-mussel periods were found in water clarity (Binding et al., 2015; Yousef et al.,
2017), phytoplankton (Reavie et al., 2014; Kovalenko et al., 2018), zooplankton (Kovalenko et
al., 2018), chlorophyll (Barbiero et al., 2012; Fahnenstiel et al., 2016), and total phosphorus

concentrations (Bunnell et al., 2014).

At the same time, small magnitudes of regime shifts detected in Lake Superior may be a result
of less accurate (as compared with other deep lakes) Chl-a detection by the algorithms utilized
in OC-CCI dataset. Mouw et al. (2017, 2013) indicated that in Lake Superior band-ratio
algorithms significantly overestimate Chl-a because light absorption in its waters is dominated
by CDOM, while very small contribution of phytoplankton and non-algal particles to overall
absorption poses a challenge to deriving these parameters from reflectance spectra (Mouw et
al., 2017, 2013), making the conclusions about temporal (seasonal and interannual) variations

of Chl-a in that lake less reliable.
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Recent observations in western Lake Superior documented cyanobacterial blooms in the
narrow nearshore zone, a phenomenon never observed before 2012 (Sterner et al., 2020).
These blooms may result in a positive regime shift in median Ch/-a averaged over the entire
lake including the nearshore (Figure 5S). Some authors attribute these recent changes in Lake
Superior to atmospheric and lake warming (Reavie et al., 2014) extending its short (as

compared to other lakes) period of summer stratification (Fahnenstiel et al., 2016).

6.1.2. Lake Michigan

The details of regime transformation revealed by our spatially explicit analysis agree with the
introduction and spread of dreissenids described in numerous publications (Nalepa et al., 2010,
2009; Evans et al., 2011; Madenjian et al., 2015; Rowe et al., 2015). Specifically, a significant
number of dreissenids were first recorded in the northern nearshore regions in about 2000. By
2005, they had spread to the south nearshore, and by 2010, they had colonized offshore
regions that resulted in a decrease in phytoplankton/chlorophyll biomass and an increase in
water clarity. By 2015, however, maximum concentrations of dreissenids in the shallow regions

slightly decreased (from 10*-10° to 103-10* mussels m2 (Karatayev et al., 2021)).

In the northern basin, Reavie et al. (2014) noted that a decline in spring phytoplankton
occurred by 2002, followed by no statistically significant long-term trend, while in the southern
basin, a significant drop in phytoplankton biovolume occurred between 2004 and 2005.
Fahnenstiel et al. (2010) demonstrated in the southern basin small or no decreases in Chl-a,
phytoplankton biomass, and water column primary productivity between 1983-1987 and
1995-1998, followed by their substantial decrease by 2007-2008. In the same area, Chl-a
decreased by 50% between 1995-2000 and 2007-2011 (Pothoven and Fahnenstiel, 2013).
Yousef et al. (2017, 2014) reported a decrease in the diffuse attenuation coefficient (a proxy of
water clarity based on SeaWiFS and MODIS-Aqua ocean color data) during 1998-2012 in the

central part of the southern basin and no changes in the northern part of the lake. At the same
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time, Sayers et al. (2020) found no increasing or decreasing linear trends in remotely-sensed

Chl-a in all five Laurentian Great Lakes during 2003-2018.

Comparison between the results mentioned above and our assessments demonstrate the
advantage of the approach used in this study, i.e., detecting a breakpoint between a decreasing
trend followed by a stable regime, over the trend-detection method based on a linear model.
The latter approach revealed significant changes in water clarity only in the offshore southern
basin where, according to our results, Chl-a was decreasing during most of the OC-CCI period.
Also, no linear trend was detected in the northern part of the lake and in the southern basin
nearshore, where, according to our results, transformation took place during the initial part of

the observed period until a stable regime was achieved.

6.1.3. Lake Huron

Lakes Huron and Michigan experienced significant expansion of dreissenid populations, so it is
not surprising that there are some similarities in their phytoplankton changes (Reavie et al.,
2014). Previous studies documented a significant increase in water clarity associated with the
deepening of the mean euphotic depth (from 41 m in 1998-2002 to 51 m in 2003-2010), which
continued increasing in deeper (>30 m) regions (Yousef et al., 2017). In 2003, a dramatic
reduction in the size of the spring phytoplankton maximum was reported in the entire lake

(Barbiero et al., 2011; Reavie et al., 2014).

The decline in Lake Huron's spring phytoplankton biovolume occurred earlier and was more
severe than that in Lake Michigan despite a faster and more abundant dreissenid invasion in
the latter (Reavie et al., 2014). One possible reason for a lower density of mussels having a
larger impact is that Lake Huron had a lower phytoplankton abundance prior to quagga mussel

colonization and it is shallower than Lake Michigan (Yousef et al., 2017).

6.1.4. Lake Erie
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Lake Erie is very different from other Great Lakes in terms of its shallow bathymetry (mean
depth 7 m to 24 m from west to east (Bunnell et al., 2014)), mineral turbidity, and high
bioproductivity, especially in its western basin (Vollenweider et al., 1974; Reavie et al., 2014;
Allinger and Reavie, 2013). No regime shift to lower trophic state was detected in that lake.
Several studies documented a significant decrease in phytoplankton/chlorophyll concentration
in some regions of Lake Erie within a few years of the establishment of large populations of
zebra mussels (Holland, 1993; Makarewicz et al., 1999; Nicholls et al., 1999; Allinger and Reavie,
2013), yet this transformation may have occurred prior to the period comprising the OC-CCI

dataset and hence could not be detected in this study.

During the two most recent decades of the OC-CCl time series examined, phytoplankton
biomass in Lake Erie remained high and even increased, attributable primarily due to blooms of
blue-green algae (cyanobacteria) observed in both nearshore and open parts of the lake (Twiss
et al., 2012; Reavie et al., 2014; Yuan et al., 2021). These blooms can be explained by increasing
phosphorus loading to the western basin resulting in re-eutrophication of the lake (Michalak et
al., 2013; Scavia et al., 2014; Watson et al., 2016). These blooms dramatically compromise
optical signal, because cyanobacteria often exhibit unique backscatter and absorption features
due to the presence of gas vacuoles, variable pigmentation, or colonial aggregation into floating
mats (Moore et al., 2017; Binding et al., 2019). These unique optical properties lead to several-
fold underestimation of Chl-a by standard blue to green ratio-based algorithms (Stumpf et al.,
2016, 2012; Binding et al., 2019; Wynne et al., 2021), especially during summer when blooms
are most abundant (Wynne and Stumpf, 2015; Stumpf et al., 2012; Son and Wang, 2019). The
peak chlorophyll observed in winter in this study is nevertheless in agreement with the
extremely high biomass diatom blooms observed in Lake Erie during the winter (Binding et al.,
2012b; Twiss et al., 2012), outside of the summer cyanobacteria bloom monitoring period
typically reported on using satellite observations of the lake. However, given the known
uncertainties of ratio-based Ch/-a retrieval algorithms in highly turbid waters, the seasonal
cycles of Chl-a obtained by the OC-CCI products may also reflect seasonal variability in mineral
sediments rather than chlorophyll concentration (Binding et al., 2019, 2012a) with maximum in

winter and minimum in summer. It is therefore important to consider further year-round
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validation of the OC-CCI Chl-a retrievals in these optical extremes in order to provide

confidence in results in the case of the turbid eutrophic waters of Lake Erie.

6.1.5. Lake Ontario

Over most areas of Lake Ontario, the process of transformation to lower trophic regime
detected by the integrated STL-STARS method continued until the end of the OC-CCI dataset
(2020-2022). These assessments are corroborated by the conclusion that colonization of Lake
Ontario by dreissenid mussels was slow as compared to the other Great Lakes. One reason
could be that a high proportion of Lake Ontario is deep (>90 m) and mussels at greater depths
exhibit very slow growth rates (Elgin et al., 2022b). Karatayev et al. (2022) noted that the lake-
wide biomass of dreissenids continued increasing since its arrival (1989 for zebra mussels and
1990 for quagga mussels) and reached an all-time high in 2018 (the most recent whole-lake
data available at this time). Our assessments agree with the conclusion of Karatayev et al.
(2022) that the ecological effects of quagga mussels in Lake Ontario will likely continue into the

foreseeable future.

A slow rate of regime transformation in Lake Ontario detected by the integrated STL-STARS
method applied to OC-CCI data agrees with the data reported by Reavie et al. (2014), who
noted little overall change in total algal abundance during 2001-2011 with some changes taking

place in the composition of the phytoplankton assemblages.

6.2.  Effect of dreissenid filtration in different depth zones

This study supports the hypothesis that the impact of dreissenid filter-feeding on pelagic
ecosystems depends on lake bathymetry, and this effect is nonlinear, with a maximum in the
mid-depth range (about 30-100 m) and a smaller effect in shallower and deeper waters. Similar
conclusions were reached earlier by several studies using a variety of approaches: by

Vanderploeg et al. (2010), estimating the clearance rates of quagga mussels; by Kerfoot et al.
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(2010) and Yousef et al. (2014) from their assessments of decreasing rates of remotely-sensed
Chl-a in southern Lake Michigan; and by Karatayev and Burlakova (2022) in their review of

dreissenid mussel biology in the Great Lakes.

The comparatively small impact of dreissenid mussels in the shallow zone is explained by their
lower density resulting from unstable sandy substrate, physical disturbance by waves and
currents, thermal instability, and fish predation (Nalepa et al., 2010; Vanderploeg et al., 2010;
Glyshaw et al., 2015).

In deeper waters, the impact of dreissenid mussels on phytoplankton biomass is reduced by
vertical extension of the water column, i.e., greater biomass of dreissenids is required to filter
the same fraction of the water column due to greater volume per unit bottom habitat, and
slower rates of mussel filtration associated with low temperature and limited food availability.
At temperatures typical of shallow water, the filtration rates of dreissenids measured in
experiments achieved 400 mL h't mussel™ (about 10 L day* mussel?) (Kryger and Riisgard,
1988; Horgan and Mills, 1997; Diggins, 2001). However, the filtration activity of mussels
significantly (2- to 10-fold) decreases at lower temperatures (Vanderploeg et al., 2010; Xia et
al., 2021), reducing the volume of food consumed by mussels. Low food concentrations also
negatively affect dreissenid filtering activity (Malkin et al., 2012; Karatayev et al., 2018c; Xia et
al., 2021). Furthermore, during summer, the upper euphotic layer where phytoplankton is
concentrated is isolated by seasonal stratification from the hypolimnion affected by mussel
filtration. The effect of thermal stratification limiting the impact of filtration by benthic
organisms on the pelagic community in the Great Lakes was highlighted by several authors

(Fahnenstiel et al., 2010; Vanderploeg et al., 2010; Malkin et al., 2012; Karatayev et al., 2021).

Although the filter-feeding activity of dreissenids is most prominent in the mid-depth zone, it
also impacts offshore regions by reducing the amount of phytoplankton biomass transported
from the nearshore zone (Hecky et al., 2004; Kerfoot et al., 2010; Pothoven and Vanderploeg,
2020; Vanderploeg et al., 2010), where phytoplankton growth is stimulated by seasonal
tributary inputs and resuspension of nutrients (Vanderploeg et al., 2007; Johengen et al., 2008;

Rowe et al., 2017). At the beginning of regime transformation, dreissenids were concentrated
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in the shallow zone and nutrients (primarily phosphorus) from allochthonous sources were
retained in the nearshore, thus impacting offshore pelagic communities through “nearshore
phosphorus shunt” (Hecky et al., 2004). The shift in the bulk of mussels from the nearshore to
the mid-depth zone (30-50 m) resulted in the fraction of the water column cleared at mid-
depth greatly exceeding phytoplankton growth, while the rates of seston uptake nearshore and
offshore were lower (Vanderploeg et al., 2010). This pattern of seston uptake at different
depths affected not only the mid-depth region, but also the offshore region “downstream” of
the mid-depth zone, suggesting a new “mid-depth carbon and phosphorus sink” hypothesis
(Vanderploeg et al., 2010). Further expansion of mussels to deep regions and declining density
and biomass in the shallowest zone resulted in the “offshore carbon and phosphorus sink”

hypothesis (Karatayev and Burlakova, 2022).

6.3.  Effect of dreissenids filtration on phytoplankton phenology (seasonal cycles)

The disappearance of spring Chl-a maximum in Lakes Huron and Michigan corresponds closely
with the dreissenid invasion, and argues strongly for top-down control through filtration.
Bottom-up control through the reduction of nutrient input from the watershed and its
sequestration nearshore may have contributed to this, as well as climate changes, though we

cannot ascertain this in our study.

Climate change is an important factor affecting aquatic food webs (Edwards and Richardson,
2004; Behrenfeld et al., 2006; Adams et al., 2022); however, the timings of ecosystem
transformations observed in the Great Lakes do not appear to be a direct consequence of
global warming. Although previous studies indicated that since 1985 water temperature in the
Great Lakes was increasing even more rapidly than regional air temperature (Austin and
Colman, 2008; Schneider and Hook, 2010; O'Reilly et al., 2015), most abrupt warming occurred
from 1997 to 1998 (Van Cleave et al., 2014; Gronewold et al., 2015; Zhong et al., 2016), i.e., in
the beginning of the period analyzed in this study. The 1997/1998 warming started with an

anomalously warm El Nifio winter over the northern US (Assel et al., 2000; Kumar et al., 2001)
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followed by a long-term shift toward a negative phase of the Pacific Decadal Oscillation (PDO)
associated with an abnormally cold eastern Pacific Ocean and warm western-central North

Pacific Ocean (Mantua et al., 1997; Zhang et al., 1997; Newman et al., 2016).

Warming of the upper layer results in an earlier onset of springtime stratification in the Great
Lakes (Zhong et al., 2016; Fichot et al., 2019; Calamita et al., 2021; Kayastha et al., 2023).

Under pressure by dreissenid mussels, the role of seasonal stratification is different from the
role it usually plays in phytoplankton phenology. Typically, stratification retains phytoplankton
cells in the euphotic zone where production by photosynthesis is balanced by loss processes,
sinking and heterotrophic grazing. With shallowing of the seasonal thermocline in spring,
phytoplankton receive more solar energy while nutrient concentrations are still high; as a
result, photosynthetic growth exceeds loss processes producing a spring (‘vernal’)
phytoplankton bloom (Sverdrup, 1953; Siegel et al., 2002). In the regions where the abundance
of filter-feeding mussels is high and the water column is well mixed (e.g., in winter-spring
before the formation of seasonal thermocline), intensive heterotrophic pressure in the near-
bottom layer reduces net primary production in the entire water column and, as a result, a
spring maximum is not formed (Fahnenstiel et al., 2010; Kerfoot et al., 2010; Vanderploeg et al.,

2010; Reavie et al., 2014; Rowe et al., 2015).

In summer, when nutrients in the upper mixed layer are depleted, the thermocline plays the
role of a barrier between the subsurface euphotic layer and deep waters rich in nutrients, often
resulting in the formation of deep chlorophyll maximum (DCM), regularly observed in the Great
Lakes (Fahnenstiel and Scavia, 1987; Barbiero and Tuchman, 2004; Malkin et al., 2012; Scofield
et al., 2020; Fraker et al., 2021). With seasonal decrease in solar heating, erosion of the
thermocline increases nutrient supply to the upper mixed layer resulting in autumn
phytoplankton maximum observed in remotely-sensed Chl-a imagery. However, in the waters
affected by dreissenids, summer stratification not only retains photosynthetic algae in the
euphotic layer and controls vertical nutrient flux but also separates phytoplankton from benthic

filter-feeders (Fahnenstiel et al., 2010; Rowe et al., 2017, 2015; Karatayev et al., 2021, 2018a).
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As such, erosion of stratification is expected to produce both positive (by nutrient supply) and

negative (by grazing) effects on phytoplankton dynamics.

It is unclear why in the Great Lakes, in fall, when the seasonal thermocline is eroding, a positive
effect of nutrient flux to the euphotic zone outweighs the negative effect of filter-feeders. A
possible explanation is that an increase of near-surface Chl-a concentration in fall may result
from shoaling DCM rather than phytoplankton growth associated with increased nutrient flux

to the euphotic layer.

6.4. OC-CCl dataset as a source for regime shifts detection

The OC-CCI Chl-a dataset appears to be a suitable source of information for detecting trends
and regime shifts in aquatic regions when transformations are as dramatic as those observed in
the Great Lakes. This is corroborated by Henson et al. (2016, 2010), who estimated that the
minimum length of a time series required to detect Ch/-a trends in the open ocean was 15-60
years based on the amplitude of trend to natural variability. The present duration of the OC-CCI
dataset (25 years) is clearly within these limits and the magnitude of observed changes in Chl-a

are much larger than those in the open ocean driven by global warming.

Unfortunately, the OC-CCl dataset only begins in 1997 when regular satellite-derived estimates
of Chl-a are available and we are unable to analyze changes in Chl-a during the previous two
decades when nutrient discharge regulation began and before the dreissenid mussel invasion in
the Great Lakes started in 1988. Previous studies based on reflectances measured by satellite
sensors operating during that period, such as the Advanced Very High Resolution Radiometer
(AVHRR, operating since 1981) and Coastal Zone Color Scanner (CZCS; 1978-1986)
demonstrated a significant increase in water clarity of the Great Lakes (Budd et al., 2001;
Binding et al., 2015). Unfortunately, estimates of Ch/-a from AVHRR imagery used by Budd et
al. (2001) are unreliable because it does not possess the required wavebands used to derive
Chl-a; it possesses only one visible (630 nm) channel (Stumpf and Pennock, 1991,1989;
Woodruff et al., 1999). The “proof-of-concept” CZCS mission (1978-1986) onboard the Nimbus-
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7 satellite was focused on estimates of ocean color, including assessments of Chl-a (Hovis et al.,
1980). However, the attempts to compare Chl-a derived from CZCS to the more recent
dedicated ocean color sensors resulted in ambiguous conclusions (Gregg et al., 2003; Antoine et
al., 2005; Martinez et al., 2009) and the lack of overlap between CZCS and SeaWiFS prevented
including CZCS in the OC-CCI Chl-a time series.

Other merged ocean color satellite datasets are available and could potentially be used to
detect Chl-a trends. Of these, the most prominent is the Copernicus Marine Environmental
Monitoring Service (CMEMS) GlobColour processor (Maritorena et al., 2010; Garnesson et al.,
2019) where the continuous data set of Chl-a was generated by combining Chl-a products
computed for each sensor using different algorithms. We chose not to use the GlobColour
dataset because it was not explicitly bias-corrected and revealed higher discontinuities as

compared with OC-CCl (Hammond et al., 2018).

OC-CCl is a developing project whose future versions will comprise additional satellite
information, including reprocessed VIIRS SNPP after 2020, and two new VIIRS sensors onboard
NOAA-20 (launched November 2017) and NOAA-21 (launched November 2022). These and
other datasets with improved correction of inter-mission differences (Yu et al., 2023) will
provide advanced possibilities to detect trends and regime shifts in different aquatic regions

effectively.

6.5. Potential Issues

We cannot be entirely certain that all biases introduced by the merging of observations
collected by different satellite sensors were completely removed from the OC-CCI Ch/-a dataset
and hence could be misinterpreted by the STARS method as regime shifts. Yet any artifacts
resulting from the compilation are likely minimal and did not affect the assessments of the
timings and magnitudes of this transformation; the same trends and timing of shifts in
chlorophyll concentration observed in the individual sensor data were also detected in the OC-

CCl dataset.
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745  Overall, we think that STARS is a good and appropriate method to detect and quantify the

746  timings of regime shifts. We assume the regime cut-off length parameter we set to 5 years (60
747  months) was sufficient. Stirnimann et al. (2019), using the experiments with synthetic time

748  series including artificial change points (APs), demonstrated that STARS detected regime shifts
749  within a temporal range of £12 time units (months) from (typically 1-3 time units before) AP
750 and recommended caution to be used in the intra-annual (phenological scale) interpretations of
751  the results when monthly time series is used. This recommendation agrees with the accuracy

752  we used in this study, analyzing the calendar years of regime shifts and ignoring the month:s.

753  As stated previously, though we analyzed the longest time series of Chl-a currently available,
754  the lakes have undoubtedly undergone changes prior to the 25 years comprising the OC-CClI
755  dataset. For instance, the oligotrophication in lakes may have begun and ended earlier than the
756  first year of the OC-CCl dataset, i.e., 1997. Furthermore, the monthly resolution of the OC-CCI
757  will not capture details of short-lived events. Yet, for the purposes of this study, it provides a
758  synoptic view at a sufficient temporal scale to document the mean environment and its

759  changes over a year.

760  Another issue related to the application of OC-CCl dataset to nearshore shallow parts of the
761  Great Lakes is that OC-CCl was not well calibrated for turbid shallow waters. Field samples for
762  OC-CCl calibration were collected over depths >50 m (Sathyendranath et al., 2019). Similarly,
763  the adopted Chl-a retrieval algorithm (a blended combination of the OC band ratio and color
764  index) is optimized for both low Ch/-a and typically Case-1 waters, where phytoplankton

765  dominates the optical properties, and has been shown to carry larger uncertainties in optically
766  complex Case-2 waters such as observed in Lake Erie (Binding et al., 2019). The ratio between
767  total suspended solids (TSS) and Chl-a in Lake Erie is also higher than in other Great Lakes (Xu et
768  al., 2022), making the assessments of remotely-sensed Chl-a less reliable. This kind of product

769  uncertainty may contribute to the result that no regime shifts were detected in Lake Erie.

770

771 7. Conclusions
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The results of this study demonstrate that the combined effect of regulation of nutrient loads
enhanced by the invasion of non-native filter-feeding mussels affected the ecosystems of the
Great Lakes differently. In two of the five lakes (deep, cold and already oligotrophic Lake
Superior and shallow eutrophic Lake Erie), the regime shift was either small, not detectable due
to uncertainties of algorithm performance in those optical water types, or completed before
1997, outside the temporal coverage of the analyzed time series. Over most of Lakes Michigan
and Huron, pelagic ecosystems stabilized at a new lower trophic regime from 2005-2015. In a
few locations (the central part of Lake Michigan, Saginaw Bay in Lake Huron, and most of Lake
Ontario), regime transformation either occurred prior to the timeframe of this study or is
ongoing and may continue in the future. The last few rounds of whole lake benthic surveys
have shown that dreissenid mussels have stabilized in many locations in the Great Lakes (Elgin
et al., 2022a). However, it is still unclear how the dreissenid populations will progress in these

areas and what changes in the community structure and functioning are expected in the future.

This study proves that inconsistencies in the OC-CCl dataset resulting from the biases between
different satellites collecting data during different periods are minor compared to regime
transformations observed in the Great Lakes during the recent two and a half decades. Given
that so far only 9% of the studies focused on regime shifts in lakes use satellite data as main
data source (Calamita et al., 2024), this study demonstrates that the OC-CCl dataset is a reliable
source of data that enables the detection of regime shifts in different regions of the world,

including major lakes.

Data and Software Availability

OC-CCl data are available from https://climate.esa.int/en/projects/ocean-colour/. Single-

mission satellite data of SeaWiFS, MERIS, and MODIS-Aqua are available from

(https://oceandata.sci.gsfc.nasa.gov/). STARS codes are available at

(https://sites.google.com/view/regime-shift-test/, written in Excel Visual Basic (VBA), R and
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MATLAB languages. Python codes used in this study were created and tested based on VBA

codes and are available from (will be assigned upon acceptance).
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Table 1. Sensor data used in the construction of the Ocean Colour Climate Change Initiative

(OC-CCl) Version 6.0 dataset.

Sensor Satellite Agency DataUsedin References
OC-CCl v.6.0
SeaWiFS? SeaWiFs? NASA®  1997-2010 (McClain et al., 2004; McClain, 1998)
MODIS® Aqua NASAP 2002-2019 (Esaias et al., 1998; Parkinson, 2003)
MERIS® Envisat ESA® 2002-2012 (Rast et al., 1999)
VIIRS SNPPpe NASA®  2012-2019 (Cao et al., 2014, 2013)
OLCI-AP Sentinel-3A  ESA® 2016-2022 (Donlon et al., 2012; Nieke et al.,
2012)
oLcI-B" Sentinel-3B  ESA 2018-2022 (Donlon et al., 2012; Nieke et al.,

2012)

aSea-viewing Wide-Field-of-view Sensor

® National Aeronautics and Space Administration

¢ MODerate-resolution Imaging Spectroradiometer
4 MEdium spectral Resolution Imaging Spectrometer

¢ European Space Agency

fVisible and Infrared Imaging Radiometer Suite

& SUOMI National Polar-Orbiting Partnership

h Ocean and Land Colour Instrument
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Figure Captions

Figure 1. Bathymetric maps of the Laurentian Great Lakes: (S) Superior, (M) Michigan, (H)

Huron, (E) Erie, and (O) Ontario. Depth/elevation grids from https://www.ngdc.noaa.gov

/mgg/greatlakes/. White triangle in (M) indicates the center (the location with maximum

distance offshore) of Lake Michigan used later in Figures 2 and 3.

Figure 2. An example of using (a) the time series of chlorophyll concentration (Chl-a; ug L) in
the center of Lake Michigan (latitude 43.047; longitude -87.070; depth 81 m; white triangle in
Figure 1M) to determine the Seasonal-Trend decomposition using LOESS (STL). The Chl-a time
series is split into the (b) seasonal factor (ug L) and (c) smoothed trend (blue line; pg L) and
residuals (black line; ug L'!). Regime shifts (solid red lines in (c)) are detected in the
“deseasonalized” time series (the sum of trend and residuals) using the Sequential T-test

Analysis of Regime Shifts (STARS) method.

Figure 3. (a)—Monthly median chlorophyll concentrations (dots) and its five-year median (filled
triangles) in the center of southern Lake Michigan (white triangle in Figure 1M) for the ‘starting’
(1998-2002; blue line; upward pointing triangles) and ‘ending’ (2018-2022; red line; downward
pointing triangles) five-year periods of OC-CCl observations. (b)—Median monthly mean
chlorophyll concentrations (blue polygon 1998-2002; red polygon 2018-2022) and the timings
of annual maxima (arrows pointing through the centers of gravity represented by blue and red
stars to the external circle representing a 12-month cycle) plotted in polar coordinates. The
magnitude of average monthly median Chl-a is represented as the distance from the center of
polar coordinates. In both 3a and 3b, the values of 3.5 and 10.8, indicate the timings in months

of Chl-a maximum during 1998-2002 and 2018-2022, respectively.

Figure 4. Trends and regime shifts detected by the integrated STL-STARS method in median
chlorophyll concentration (Chl-a) of (a, c, e, g) Lake Michigan and (b, d, f, h) Lake Huron based
on observations of (a-b) OC-CClI, (c-d) SeaWiFS, (e-f) MODIS-Aqua, and (g-h) MERIS. Red circular
markers indicate outliers, i.e., the values exceeding two standard deviations. Red dotted

vertical lines indicate regime shifts; red horizontal lines indicate regime means.
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Figure 5. Trends and regime shifts detected by the integrated STL-STARS method in OC-CCI
median chlorophyll concentration (Ch/-a) in Lakes (S) Superior, (M) Michigan, (H) Huron, (E) Erie
and (O) Ontario. Red circular markers indicate outliers, i.e., the values exceeding two standard
deviations. Red dotted vertical lines indicate regime shifts; red numbers indicate the years of

regime shifts; red horizontal lines indicate regime means.

Figure 6. Maps of the year in which chlorophyll concentrations (Ch/-a) stabilized at a lower level
in Lakes (S) Superior, (M) Michigan, (H) Huron, (E) Erie and (O) Ontario. White color indicates

that no significant decrease in Chl-a was detected during the period (1997-2022) examined.

Figure 7. Maps of the difference (in percent) of chlorophyll concentration (Chl-a) between the
‘initial’ (starting 1997) and ‘final’ (see Figure 6) regimes in Lakes (S) Superior, (M) Michigan, (H)
Huron, (E) Erie and (O) Ontario. White color indicates that no significant decrease in Chl-a was

detected during the period examined.

Figure 8. Difference (in percent) of chlorophyll concentration (Ch/-a) between the ‘initial’ and
‘final’ regimes (Figure 7) in relation to bathymetry in Lakes (S) Superior, (M) Michigan, (H)
Huron, (E) Erie and (O) Ontario. The magnitudes of Chl-a decrease in 12-km grid cells (circles)

were smoothed with LOESS function (black lines).

Figure 9. Seasonal cycles of monthly median chlorophyll concentrations (Ch/-a) in the ‘starting’
(1998-2002; blue line; upward pointing triangles) and ‘ending’ (2018-2022; red line; downward
pointing triangles) five-year periods of the Ocean Colour Climate Change Initiative (OC-CCl)
dataset in Lakes (S) Superior, (M) Michigan, (H) Huron, (E) Erie and (O) Ontario. Vertical dashed
lines indicate the timings of seasonal maxima estimated by the “center of gravity” method.
(a)—The months of Chl-a maximum estimated by the “center of gravity” method for each year

in Lakes Superior, Michigan, Huron, Erie, and Ontario.

Figure 10. Maps of the month of maximum monthly median chlorophyll concentration
estimated by the “center of gravity” method for the ‘starting’ (1998-2002; left column) and

‘ending’ (2018-2022; right column) five-year periods of the Ocean Colour Climate Change
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Initiative (OC-CCl) dataset in Lakes Superior (S1, S2), Michigan (M1, M2), Huron (H1, H2), Erie
(E1, E2) and Ontario (01, 02).
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Figure 1. Bathymetric maps of the Laurentian Great Lakes: (S) Superior, (M) Michigan, (H)
Huron, (E) Erie, and (O) Ontario. Depth/elevation grids from
https://www.ngdc.noaa.gov/mgg/greatlakes/. White triangle in (M) indicates the center (the
location with maximum distance offshore) of Lake Michigan used later in Figures 2 and 3.
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Figure 2. An example of using (a) the time series of chlorophyll concentration (Chl-a; pug L) in
the center of Lake Michigan (latitude 43.047; longitude -87.070; depth 81 m; white triangle in
Figure 1M) to determine the Seasonal-Trend decomposition using LOESS (STL). The Chl-a time
series is split into the (b) seasonal factor (ug L) and (c) smoothed trend (blue line; pg L) and
residuals (black line; pug L'!). Regime shifts (solid red lines in (c)) are detected in the



“deseasonalized” time series (the sum of trend and residuals) using the Sequential T-test
Analysis of Regime Shifts (STARS) method.
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Figure 3. (a)—Monthly median chlorophyll concentrations (dots) and its five-year median
(filled triangles) in the center of southern Lake Michigan (white triangle in Figure 1M) for the
initial (1998-2002; blue line; upward pointing triangles) and final (2018-2022; red line;
downward pointing triangles) five-year periods of OC-CCl observations. (b)—Median monthly
mean chlorophyll concentrations (blue polygon 1998-2002; red polygon 2018-2022) and the
timings of annual maxima (arrows pointing through the centers of gravity represented by
blue and red stars to the external circle representing a 12-month cycle) plotted in polar
coordinates. The magnitude of average monthly median Chl-a is represented as the distance
from the center of polar coordinates. In both 3a and 3b, the values of 3.5 and 10.8, indicate
the timings in months of Ch/-a maximum during 1998-2002 and 2018-2022, respectively.
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Figure 4. Trends and regime shifts detected by the integrated STL-STARS method in median
chlorophyll concentration (Chl-a) of (a, c, e, g) Lake Michigan and (b, d, f, h) Lake Huron based
on observations of (a-b) OC-CCl, (c-d) SeaWiFS, (e-f) MODIS-Aqua, and (g-h) MERIS. Red
circular markers indicate outliers, i.e., the values exceeding two standard deviations. Red
dotted vertical lines indicate regime shifts; red horizontal lines indicate regime means.
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Figure 5. Trends and regime shifts detected by the integrated STL-STARS method in OC-CCI
median chlorophyll concentration (Chl-a) in Lakes (S) Superior, (M) Michigan, (H) Huron, (E)
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was detected during the period examined.
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Figure 9. Seasonal cycles of monthly median chlorophyll concentrations (Ch/-a) in the initial
(1998-2002; blue line; upward pointing triangles) and final (2018-2022; red line; downward
pointing triangles) five-year periods of the Ocean Colour Climate Change Initiative (OC-CCl)
dataset in Lakes Superior (S), Michigan (M), Huron (H), Erie (E) and Ontario (O). Vertical
dashed lines indicate the timings of seasonal maxima estimated by the “center of gravity”
method. (a)—The months of Chl-a maximum estimated by the “center of gravity” method for
each year in Lakes Superior, Michigan, Huron, Erie, and Ontario (a).
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Figure 10. Maps of the month of maximum monthly median chlorophyll concentration
estimated by the “center of gravity” method for the initial (1998-2002; left column) and final
(2018-2022; right column) five-year periods of the Ocean Colour Climate Change Initiative
(OC-CCI) dataset in Lakes Superior (S1, S2), Michigan (M1, M2), Huron (H1, H2), Erie (E1, E2)
and Ontario (01, 02).



Supplementary materials to the manuscript:

Regime shifts in satellite-derived chlorophyll within the Laurentian Great Lakes

Nikolay P. Nezlin*2*, SeungHyun Son'3, Christopher W. Brown'?3, Prasanjit Dash#,

Caren E. Binding®, Ashley K. Elgin®, Andrea VanderWoude’

1 NOAA/NESDIS Center for Satellite Applications and Research, College Park, Maryland, USA
2 Global Science & Technology, Inc., Greenbelt, Maryland, USA
3 Cooperative Institute for Satellite Earth System Studies (CISESS)/Earth System Science

Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD, USA

4 Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort
Collins, Colorado, USA

> Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington,
Ontario, Canada

® NOAA Great Lakes Environmental Research Laboratory, Lake Michigan Field Station,
Muskegon, MI, USA

NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, Ml, USA

*Corresponding author: nikolay.nezlin@noaa.gov; +1-(310)-770-1302


mailto:nikolay.nezlin@noaa.gov

Supplement 1. Colonization of the Laurentian Great Lakes by dreissenids

The steps of colonization of dreissenids in the Great Lakes are described in publications
(Karatayev et al., 2021; Karatayev & Burlakova, 2022; Nalepa et al., 2010, 2009; Strayer et al.,
2019). Figures S1a and S1b (source: Fig. 3 and Fig. 6 from Lake morphometry determines
Dreissena invasion dynamics, Karatayev et al., Biological Invasions, Volume 23, Springer Nature,
2021, reproduced with permission from SNCSC) demonstrate how the two species of mussels
(zebra mussels at upper panels and quagga mussels at lower panels) spread across the entire
bottom of shallow (Figure S1a) and deep (Figure S1b) basins.
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Figure S1a. Source: Fig. 3 from (Lake morphometry determines Dreissena invasion dynamics,
Karatayev et al., Biological Invasions, Volume 23, Springer Nature, 2021, reproduced with
permission from SNCSC). Spatial distribution of Dreissena polymorpha (upper rows within
each lake panel) and D. rostriformis bugensis (lower rows) in shallow lakes/regions of Lake
Erie-Western Basin, Lake St. Clair, and Huron Lake-Saginaw Bay. Dreissenid density is
expressed as individuals m2. Red dots indicate sampling stations.
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Figure S1b. Source: Fig. 6 from (Lake morphometry determines Dreissena invasion dynamics,
Karatayev et al., Biological Invasions, Volume 23, Springer Nature, 2021, reproduced with
permission from SNCSC). Spatial distribution of Dreissena polymorpha (upper rows within
each lake panel) and D. rostriformis bugensis (lower rows) in deep Lake Huron, Lake
Michigan, and Lake Ontario. Dreissenid density is expressed as individuals m. Red dots
indicate sampling stations.




Supplement 2. Inter-mission differences and biases between satellite sensors misinterpreted
as regime shifts

Although in the OC-CCI dataset the biases between the data collected by different satellites
were corrected, a significant number of artifacts remained and could be misinterpreted as
regime shifts. However, OC-CCl Chl-a data reveal the basic patterns of regime shifts in the Great
Lakes because the scale of these transformations is higher than the differences between bias-
corrected Chl-a collected by different satellites.

The chance to detect regime shifts (both positive and negative) by STARS algorithm in all cells of
12-km grids in each of the five lakes demonstrate four maxima: in 2002, 2005, 2013 and 2020
(Figure S2b), and three of them coincide with the periods when the sources of data from
satellite sensors integrated in the OC-CCl dataset changed (Figure S2a). Specifically, in 2002,
SeaWiFS had been operational for five years when MODIS-Aqua and MERIS were launched, and
the total number of collected images dramatically increased. From 2012 to 2013, MERIS ceased
operations, and VIIRS-SNPP was launched. Starting in 2020, MODIS-Aqua and VIIRS-SNPP were
not used in the OC-CCI dataset due to sensor degradation problems. These periods of changes
in the origin of satellite data used in the OC-CCI dataset resulted in Chl-a discontinuities
remaining after bias-correction procedures (Garnesson et al., 2019; Hammond et al., 2018; Yu
et al., 2023) and could be misinterpreted as regime shifts.

The highest number of regime shifts in 2013 (when MERIS was replaced by SNPP VIIRS) and
2020 (when MODIS-Aqua and VIIRS-SNPP ceased being used) was detected in Lake Superior
(gray bars in Figure S2b), where no regime transformation took place and all detected regime
shifts should be treated as artifacts.

It is worth mentioning that some periods when the chance to detect regime shift in the Great
Lakes was higher than during other years had reasonable explanations not necessarily
associated with the change of sensors. In 2011-2013, the change in observing satellites (MERIS
replaced by SNPP VIIRS) coincided with extreme weather conditions. After warm winter of
2011-2012, late winter cooling and an early spring warming resulted in incomplete fall
overturning facilitating cross-shelf circulation delay, reducing deep-water ventilation and
limiting the supply of nutrients to the sunlit surface layers (Fichot et al., 2019). During the next
winter 2012-2013, the Great Lakes endured the most persistent, lowest temperatures and
highest ice cover in recent history (Gronewold et al., 2015), which could result in discontinuities
in Chl-a time series. The period 2004-2005 was noted by other authors as a point when the
most dramatic drop in water quality parameters occurred in the Great Lakes, including a
decrease of water turbidity in Lakes Michigan and Huron (Zheng & DiGiacomo, 2022) and a
decline in phytoplankton biomass in the southern basin of Lake Michigan (Reavie et al., 2014).
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Figure S2. The relationship between (a) the number of images collected over the Great Lakes
by different satellite sensors used in the OC-CClI dataset and (b) the number of regime shifts
(both positive and negative) detected by the integrated STL-STARS method during every year
in all grid cells of the five Great Lakes.



Supplement 3. Different number of images collected during different seasons
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Figure S3. The mean numbers of images collected over the lakes Superior (S), Michigan (M),
Huron (H), Erie (E), and Ontario (O) by different satellite sensors used in the OC-CCl dataset
during different months.



Supplement 4. Preliminary comparison between in-situ and satellite Ch/-a measurements in

the Great Lakes.

At the preliminary step preceding this study, we compared in-situ Chl-a measurements in the
Great Lakes from Environmental Protection Agency (EPA) Great Lakes Environmental Database
System (GLENDA) with VIIRS-SNPP Level-2 Chl-a products using OC3V algorithm (at 1x1 km
spatial resolution) from 2018 to 2023. The matchup comparison is shown in the following
Figure S4. As mentioned, VIIRS OC3V Chl-a data are underestimated, but more systematically.
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Figure S4. Comparison between in-situ and satellite Ch/-a measurements in the Great Lakes.
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