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Measuring shallow-water bathymetric signal strength in lidar point attribute data using machine learning

Abstract

The goal of this work was to evaluate if routinely collected but seldom used airborne lidar metadata — “point
attribute data” (PAD) — analyzed using machine learning/artificial intelligence can improve extraction of shallow-
water (less than 20 m) bathymetry from lidar point clouds. Extreme gradient boosting (XGB) models relating PAD
to an existing bathymetry/not bathymetry classification were fitted and evaluated for four areas near the Florida
Keys. The PAD examined include “pulse specific” information such as the return intensity and PAD describing
flight path consistency. The R? values for the XGB models were between 0.34 and 0.74. Global classification
accuracies were above 80% although this reflected a sometimes extreme Bathy/NotBathy imbalance that inflated
global accuracy. This imbalance was mitigated by employing a probability decision threshold (PDT) that equalizes
the true positive (Bathy) and true negative (NotBathy) rates. It was concluded that 1)the strength of the
bathymetric signal in the PAD should be sufficient to increase accuracy of density-based lidar point cloud
bathymetry extraction methods and 2)ML can successfully model the relationship between the PAD and the
Bathy/NotBathy classification. A method is also presented to examine the spatial and feature-space distribution

of errors that will facilitate quality assurance and continuous improvement.
Keywords : lidar metadata, hydrography, bathymetry, Florida Keys

Introduction

By at least 2005, lidar (“light detection and ranging”) had been identified as a “proven technology” for a variety of
marine information needs (Wozencraft and Millar 2005) including the production of nautical depth charts.
Compared to more conventional acoustic sonar data, lidar data typically comprise noisier point clouds (Chust et
al. 2008) and a major processing challenge is distinguishing between pulse returns that are unwanted noise and
those that truly describe ocean depth. Nonetheless lidar waveform data -- the energy returned from each lidar
pulse recorded in nanosecond intervals -- . have been shown to be able to distinguish among fine sand, coarse
sand, and rocks on ocean floors in shallow waters (Eren et al. 2019). Waveform lidar data have also been used to
estimate vertical uncertainty (Parrish et al. 2014), describe coastal vegetation (Rogers et al. 2015; Tulldahl and
Wikstrom 2012), and characterize marine seafloor habitats (Collin et al. 2011; Tulldahl 2014). It has also been
shown that depth and benthic habitat can be mapped by combining hyperspectral data and lidar waveform data

(Tuell et al. 2005).

Despite these demonstrated uses of lidar waveform data, the large data volumes make them difficult to use
operationally for the production of nautical charts. Hence it is of interest to be able to alternatively employ what

Tulldahl (2014) termed “lidar point data” — sometimes also referred to as “discrete lidar returns” — that do not
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record the entire temporal waveform of each lidar pulse return. One approach to mapping ocean depth that has
proved reasonably successful for lidar point data and (more conventional multi-beam echo sounder (MBES)
(sonar) point data) is based on the use of localised pulse return density. One example described by Nayegandhi
(2009) and Nagle and Wright (2016) is underpinned by a random consensus filter (Fischler and Bolles 1981).
Another that is broadly representative of density-based approaches and that also has been implemented
operationally is the CUBE (Combined Uncertainty and Bathymetry Estimator) algorithm. First described in 2003
(Calder and Mayer 2003), it proved successful for producing nautical charts from MBES data while decreasing
manual editing effort and maintaining computational efficiency. CUBE has since been enhanced using variable
data density information (Calder and Rice 2017); the updated algorithm is known as CHRT (CUBE with Hierarchical

Resolution Techniques).

CHRT establishes a variable resolution grid of points across an area being mapped. For each grid point,
“neighboring” pulse returns are identified. The frequency distribution of the depths of these neighbors — which
is generally multi-modal and resembles an individual-pulse waveform -- is analyzed to identify individual modes
or “depth hypotheses” using a process comparable to unsupervised clustering in one-dimensional space. An
algorithmic decision is then made about which hypothesis is the most likely depth of the grid point using relatively

simplistic “disambiguation rules” that rely largely on local context.

Density-based approaches employ only the depth estimated for each pulse return. Ignored are pulse return
metadata such as the intensity of each return and the incidence angle of the return-generating pulse; we term
these “point attribute data” (PAD). If the PAD collectively contain information about which pulse returns
(“soundings” in marine parlance) represent bathymetry, the PAD may enable improved bathymetric mapping.
Evidence of the successful use of discrete lidar return PAD exists for other applications such as building detection,
for example (Matikainen et al. 2009). Similarly, “multi-return” PAD such as rugosity — essentially local variability
of return intensity -- have been used for landcover classification and object detection in a ML approach (Zhao et
al. 2018). Furthermore sounding PAD may be useful as surrogates for factors such as ocean bottom characteristics
that are difficult to measure directly over large areas but that are known to impact return reflectance (see for

example Chust et al. (2008)).

Hence one objective of this work is to evaluate this premise for shallow-water bathymetry. The work is necessarily
constrained to shallow water — defined as depths less than 20 m — because of the limit of lidar penetration in
water. We note that though shallow waters comprise a relatively small percentage of the ocean, because of
human use and technical limitations, Salameh et al. (2019) recognized shallow water as a bathymetric priority for

ocean mapping.
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That PAD contain a strong bathymetric signal independent of the depth recorded for each sounding is a necessary
but not sufficient condition for its operational use in improving nautical charts using density-based approaches
like CHRT. It must also be possible to model the bathymetric signal despite the nature of the relationships of
individual PAD variables and their interaction(s) to bathymetry being unknown. In the introduction article to a
marine-themed issue of the ICES Journal of Marine Science, Beyan and Browman (2020) noted the potential of
machine learning and artificial intelligence (ML/AI) to address issues of unknown relationships and interactions.
In the same issue Malde et al. (2020) discussed a number of ML/AIl techniques and their potential for increasing

efficiency in processing expanding volumes of marine data.

ML/AI techniques have been applied to idar data for a variety of purposes. Examples include:

e Convolutional neural networks for landcover/vegetation) and objects (Zhao et al. 2018), and buildings (Nahhas
et al. 2018).

e Boosted trees and random forests for built infrastructure such as powerlines and buildings (Kim and Sohn
2011; Guo et al. 2015).

e AdaBoost tree-based classifiers for landscape objects such as buildings, trees, and cars (Zhang et al. 2016).

e Bayesian networks for land cover and objects (Kang et al. 2016).

e Neural networks and boosted regression trees for marine corals (Collin et al. 2018; Pittman et al. 2009) and
benthic habitat (Narayanan and Sohn 2009).

e Support vector machines (SVM) for urban classification (Mallet et al. 2011).

ML/AI has also been explored for bathymetric mapping. For example, Collin et al. (2008) used principal
component analysis (PCA) and cluster analysis to extract a shallow water digital depth model (DDM) from
waveform lidar data. To produce DDMs, ML/AI has also been applied to optical imagery alone (Mohamed et al.
2016), a combination of optical imagery and sonar (Vojinovic et al. 2013), and a combination of optical imagery
and lidar (Macon et al. 2008). The use of ML/Al to extract bathymetry from the PAD of lidar soundings, however,

does not appear to have been explored.

Hence the second objective of this article is to evaluate if ML/Al techniques provide a means to detect and model
the bathymetric signal in lidar PAD such that soundings representing shallow-water bathymetry can be better

identified and providing a means to improve shallow-water bathymetric mapping.

Study Area and Data
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Airborne lidar data collected between April 22 and April 25, 2016 were available for the area surrounding Key
West, Florida, United States — approximately 24°35’ N latitude and 81°45” W longitude. Data were acquired by
the National Oceanic and Atmospheric Administration (NOAA) Remote Sensing Division using a RIEGL™ VQ-880-G
lidar flown at a nominal altitude of 400 m above mean sea level at a speed of 190 km per hour. During operation,
near infrared (1064 nm) and green (532 nm) pulses are generated using a counterclockwise circular scan. The
maximum effective measurement rate at 550 kHz is 177,200 measurements per second for the infrared and
550,000 measurements per second for green. (NOAA operates at 145 kHz.) The scan angle of 20° results in a
swath approximately 300m wide. Data were acquired continuously along pre-determined overlapping flightpaths,
and then post-processed into 500 m-by-500 m square tiles. Tiles were available as “LAS” files in accordance with

Version 1.4-R13 (Point Data Record Format 6) of the LAS data standard (ASPRS 2013).

Provided with the LAS files was the NOAA Bathy/NotBathy classification of each return/sounding. This is produced
using a combination of semi-automated procedures and human intervention. In these processes, the infrared
data are used to eliminate above-water soundings and to produce a water surface model that determines to which
green pulses refraction corrections are applied. For this study, this NOAA Bathy/NotBathy classification was

considered to be “ground truth” although in bathymetric mapping it is in reality a “best estimate” of ocean depth.

Four data tiles located in UTM Zone 17N (NADS83) were employed (Table 1; Figure 1). The NOAA naming
convention for these files includes the UTM coordinates of the northeast corner of each tile; for brevity in this
paper the northing for each tile is used as its identifier. These tiles were selected because they represent a range
of physical and data conditions and a variety of real-world issues — e.g., a range of depths and ocean bottom
characteristics (Table 1), potentially weak and strong bathymetric signals (e.g., 2707500n in which only 0.4% of
returns are bathymetry versus 2728500n in which 76% of points are bathymetry), a range of sounding densities
and total number of soundings. Tile 2707500n covers the deepest area, is almost entirely at the depth limit of
airborne lidar in the area studied (approximately 20 m), and was only partially covered due to the location of
available flight paths. Tile 2719500n is largely covered by land — a characteristic that NOAA addresses by creating
a polygonal mask to eliminate land areas; for this reason, in this study only the unmasked area was analyzed.

Table 1. Description of tiles employed in this study from shallowest to deepest. (See Figure 1 for a spatial
representation of each tile.)

Area Area with Total 0
Identifier | Relative with Bathy- Approx. MSL Returns area Retu'rn % Flight-
. depth range . density Bathy-
(Northing) | Depth data metry (m) with data (pts/m?) metr paths
(m?) (m?) (milion) | ‘P y
2719500n | Shallow | 29,500 29,500 -0.1to-1.4 0.6 20. 78 4
2728500n Deep 250,000 250,000 -3.0to -6.6 7.6 30. 76 7
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2708000n Deeper | 250,000 131,600 -6.7t0-11.2 3.7 15. 21 7
2707500n | Deepest | 65,000 1,200 -12.6 to -16.7 1.0 13. 0.4 2
420500 420750 421000
27195 3028000 428250 42850(2]719500 2728500 2728500
e N ELLAD0 2728250 2728250

2719000 - 2719000
428000 428250 428500

a. 2719500n (Depth: -0.1 to -1.4 m)

426000 426250 426500
2708000 o 2708000

A

2707750 | 2707750
2707500 = = 2707500
426000 426250 426500

c. 2708000n (Depth: -6.7 to -11.2 m)

2728000 2728000
420500 420750 421000

b. 2728500n (Depth: -3.0 to -6.6 m)

430000 430250
2707500 2707500

A 3

s

4

2707250 2707250

2707000 2707000
430000 430250

d. 2707500n (Depth: -12.6 to -16.7 m)

Figure 1. Depth maps (1m pixels) for the four tiles based on depth determined by NOAA. Striped areas contain no
soundings identified as bathymetry by NOAA. Dotted areas are above sea level and have been removed from
analysis. Lighter colored areas are shallowest; dark areas are deepest. Coordinates are UTM Zone 17N (NAD 83).

Three types of sounding PAD were provided by NOAA and/or derived by the authors (Table 2). “Return-based”

PAD are associated with each pulse whereas “SBET” (Smoothed Best Estimate of Trajectory) and “lidar-edge” PAD

are more macro and reflect the flightpath and aircraft characteristics when data were collected.

“Return-based” PAD describe the green pulse returns and were largely provided by NOAA although rel_return_no

that normalizes return_no between 0 and 1 was derived. Determining the actual scan angle (abs_scanangl)

required correcting the sensor scan angle of 20°. for aircraft pitch and roll.
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Table 2. Lidar sounding point attribute data (PAD) employed in this study.

Meta- Variable Name Descrintion Range
data Type | (Abbreviation) P
Absolute value of .Absolute v.alue of §|gned anglg (as .recordgd negatlve
is the left side of airplane; positive is the right side) at
scan angle . . . 16-23
which a pulse was generated including the roll of the
(abs_scnangl) .
aircraft.
I.nten5|.ty Integer value representing the magnitude of the 7302 - 37448
(intensity) pulse return.
Iflrst of many Flag indicating if a return wa_s the first of a pulse that 0 (No) — 1 (Ves)
(first_of _many) generated multiple returns.
Last (last) Flag indicating if a return was the final return from a 0 (No) — 1 (Ves)
pulse.
Number of
Return- returns Number of returns from a single pulse 1-6
based (nhumreturns)
Relative Return
Number (Return Number-1)/(Number of Returns-1) 0.0-1.0(0.0fora
last return)
(rel_return_num)
Return number
Return number 1-6
(return_no)
Scan dll’e.CtIOI’l Flag indicating nf puIs.es were ge.nerated in the 0 (No) — 1 (Ves)
(scan_direct) forward direction of the flightpath
Single (single) Flag indicating if a pulse generated a single return.) 0 (No)—1 (Yes)
. . GPS-standardized time in seconds when a pulse was NA (Usgd for data
Time (gpstime) preparation but not
captured. .
analysis)
Aircraft . S o
ositional Simple sum of individual standard deviations for each
P . positional attribute (x, y, and z) from proprietary 0.022 -0.030
uncertainty Smoothed Best Estimate of Trajectory (SBET) process
SBET (stdXYZ) jectory P '
Aircraft stability | Simple sum of individual standard deviations for each
uncertainty aircraft-related attribute — Yaw, Pitch, and Roll -- 0.027-0.031
(stdYwPtRI) from SBET process.
Deviation Absolute value of orthogonal distance from lidar
absolute value oint cloud “corner-to-corner” flight path? 0-7.7
Lidar- (absdevia) P ghtp )
edge Maximum abs.
deviation Maximum absdevia over a given flight path. 0.6-38.3
(maxabsdev)

ISmoothed Best Estimate of Trajectory. See text for explanation.
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Notably absent from the return-based PAD is z (depth). Though clearly related to a sounding’s probability of
being bathymetry — p(Bathy) — reader’s are reminded that one of the main goals of this work was to evaluate the
strength of the bathymetric signal in the PAD only. Therefore the z/depth value was intentionally not included in

the PAD used to develop ML/AI models.

Additional return-based PAD not considered are instrument-dependent PAD such as amplitude and reflectance
collected by the RIEGL sensor employed (RIEGL 2017). These are embedded in the “extrabytes” of the RIEGL data
structure, that is not part of the 1.4-R13 LAS data standard. The use of such proprietary extrabytes would limit
the broader applicability of this work. Moreover, extrabyte data are not used in NOAA’s lidar processing

workflows and are routinely eliminated from the LAS files by NOAA in large part due to data volumes

SBET PAD are produced by the Applanix Corporation POSPac Mobile Mapping Suite (MMS) using POS AV -- an
integrated hardware and software system. It includes a motion sensor that is generally a GNSS!-aided INS? with
PPK3 corrections from a local base station. The SBET PAD are based on a tightly coupled extended Kalman filter
and its post-observation covariance matrix. SBET PAD are provided for each flight path at 0.005 second intervals
(i.e., 200 observations per second) and describe the location and uncertainty of the aircraft position in three
dimensions as well as the aircraft’s roll, pitch, and yaw. SBET uncertainty PAD were employed because they may
indicate -- among other factors such as surge, sway, acceleration, etc. -- wind-related turbulence that might in

turn affect sea surface characteristics that impact pulse reflectance.

It was similarly surmised that deviation(s) of a flightpath from a straight line might be indicative of temporally
local weather effects that impact pulse reflectance. Figures 2a and 2b show two-dimensional examples of lidar
point clouds with the SBET flight line (thick black line) from which the lidar data were collected. The deviation of
the actual flight from a straight line such as the SBET flight line is apparent in the edge of the gray lidar point cloud.
To quantify the crenulation of the actual flight path, a northeastern and southeastern “corner” of a flightpath’s
point cloud was identified and the equation of this “corner-to-corner” line calculated (the thin gray line in Figures
2c and 2d). Edge points of the lidar point cloud were identified and their orthogonal deviation from the corner-

to-corner line calculated. These were summarized as described for the “Lidar edge” PAD in Table 2.

1 Global Navigation Satellite System.
2 Inertial Navigation System.
3 post-processing Kinematic.
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Figure 2. Gray points are lidar pulse returns. a. Flightpath with a relatively smooth easternscan edge. (The solid
black line indicates the SBET aircraft location.) b. Flightpath with more crenulated (western and eastern scan
edge. c. Scan edge and “corner-to-corner” straight flight path (thin gray line) with edge points (black); the dotted
line indicates the area of enlargement in Figure 2d. d. Enlargement of a portion of Figure 2c.

The SBET variables stdXYZ and stdYwPtRI, and the lidar-edge variable absdevia were affixed to individual returns
based on closest gpstime. For the lidar-edge flight path-based variable maxabsdev a single value was assigned to

all returns on the relevant flight path.

Methods

The over-arching goals of this work are to assess the strength of the bathymetric signal in the PAD and to
determine if ML is able to model this relationship to improve identification of discrete lidar returns that represent
bathymetry. Achieving this translates into an operational goal of being able to assign to each lidar sounding a
PAD-based probability of being bathymetry -- p(Bathy) -- that can improve the disambiguation rules used in
density-based lidar point processing. The methodological outline to achieve these goals is to fit a ML/AI model
for each tile to NOAA’s Bathy/NotBathy classification using the PAD, estimate p(Bathy) for each sounding using
the fitted model, classify each sounding as Bathy or NotBathy, and compare the ML/Al classification with NOAA’s.
High classification accuracy would indicate a strong relationship of the PAD and bathymetry and evidence that ML

is suitable for such modelling; low classification accuracy suggests the opposite.
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Exploratory analysis was conducted to compare the merits of three different ML/Al techniques — regularized
logistic regression (RLR), multi-layer perceptrons (MLPs; a type of neural network), and extreme gradient boosting
(XGB). RLR was rejected because model fitting times were up to seven times longer compared to MLP and XGB.
MLP was also rejected because of the difficulty of evaluating the contribution of individual PAD variables to each
model — a well-recognized problem with ML/AI techniques. Hence XGB was the ML/AI technique retained for
use.XGB is a decision-tree-based approach that progressively develops a sequence of “weak” or “shallow”
models/trees and then combines them into a single model/tree using a weighted majority vote. Successively fit
trees focus on improving the classification of the observations having the biggest errors. Information about the
“importance” — but not statistical significance -- of each variable is produced with the “importance” of all variables
summing to 1.0. XGB models were fitted using lasso regularization (“I1” regularization) that applies a numerical
penalty to the model fitting cost function; this drives the contribution of “unimportant” variables to zero.
Individual XGB models were fitted for each tile using NOAA’s Bathy/NotBathy classification as the dependent
variable and all of the PAD variables described in Table 2 and selected interactions as predictors. Prior to model

fitting, all independent variables were normalised between 0 and 1 using max-min normalisation.

Models were evaluated using a variety of metrics. McFadden’s adjusted (pseudo) R? (McFadden 1974) provides
an assessment of goodness-of-fit for binary classification models. The other metrics employed are based on two

different confusion matrices.

IM

The first is a “conventional” confusion matrix that assigns observations to Bathy or NotBathy based on a
probability decision threshold (PDT) of 0.50. However, an undesirable latent characteristic of ML/Al model fitting
is that the accuracy of the most prevalent class —is increased at the expense of the accuracy of the minorityclass.
Alternately stated, deemphasizing the true positive rate (TPR) of the minority class better achieves the model
fitting goal of maximizing global accuracy. . While not a problem if all classes are equally present, class imbalance

was present in all tiles used in this study (see Table 1). The impact on the goals of this study is that the true

bathymetric signal in the PAD may be obscured.

Lowell and Calder (2019) addressed this using an alternate PDT that equalizes the true negative rate (TNR) and
TPR. Figure 3 provides an example. In the upper left is a confusion matrix resulting from a conventional PDT of
0.50. Its receiver operating characteristics (ROC) curve that indicates the trade-off between the TPR and false
positive rate (FPR) at different PDTs is shown in the lower right. The gray arrow indicates the FPR (x axis) and TPR
(y axis) produced by a PDT of 0.50. The threshold at which TPR and TNR are equal -- 0.41 in this example — is the

intersection of these curves as shown in the graph in the upper right of Figure 4; this threshold is termed the

10
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“optimal decision threshold” (ODT). The resulting confusion matrix is presented in the lower left and shows how

the ODT equalizes TNR and TPR; it also makes false negative rate (FNR) and FPR equal.

Most important for evaluating the strength of the bathymetric signal is that the TPR — correct identification of

bathymetry — has increased from 37% to 79%. And the FNR — undetected bathymetry that is the most important

nautical navigation -- has decreased from 63% to 21%. In this example and relative to the goals of this study,

comparison of the results for the PDT and the ODT suggests there is a reasonably strong bathymetric signal in the

sounding PAD.

Confusion Matrix: Threshold = 0.50

Truth
NotBath Bath Total
NotBath 2,751,500 497,500 3,249,000
Predicted
Bath 169,500 287,500 457,000
Total 2,921,000 785,000 3,706,000

Global Accuracy (%): 82

True Positive or
Negative Rate(%)

94 (TNR)

Individual Accuracies

NotBath

Bath 37 (TPR)

Confusion Matrix: Threshold = 0.41

Truth
NotBath Bath
NotBath | 2,307,000 | 165,000
Predicted
Bath 614,000 620,000
Total 2,921,000 785,000

Global Accuracy (%): 79

True Negative or

Other Accuracies (%) Positive Rate(%)

Not Bathymetry 79 (TNR)

Bathymetry 79 (TPR)

False Positive or
Negative Rate(%)

63 (FNR)
6 (FPR)

Total
2,472,000
1,234,000

3,706,000

False Negative or
Positive Rate(%)

21 (FNR)

21 (FPR)

Classification Rate

True Positive Rate

Optimum Threshold Value (Intersection of
TPR and TNR (black arrow))
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Figure 3. Example of the conventional (gray arrows) and optimal (black arrows) probability decision

thresholds(PDTs) for tile 2708000n.
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To enable evaluation of which PAD most relate to bathymetry, a rank-based variable scoring system was
developed. For each model, the “contributing” variables — defined as those whose importance was greater than

0.0 —were ordered by decreasing importance. The variable in each position was assigned a score for that position:
Position score = (n+1)-r

where n is the total number of contributing variables and r is the rank position. If a position was occupied by a
two-way interaction, each variable in the position received half of the score for that position. Scores were

summed for each variable over all positions and the variables ranked in importance based on their total score.

As a final step, a method to examine the distribution of the classification errors in geographic and feature space
was developed. Such analysis can provide more insight into where the relationship between the PAD and
bathymetry is stronger/weaker, and may further be of interest for operational quality assurance and continuous
improvement. Several spatial statistics and methods exist to test for complete spatial randomness in point
patterns: nearest neighbor analysis (Boots and Getis 1988), quadrat analysis (Boots and Getis 1988), Ripley’s K
(Dixon 2002), and the join-count statistic for multi-nominal categorical data (Odland 1988). Herein, however, it is
not expected that classification errors will be randomly distributed, but instead that areas having “high” sounding

densities (due to flightpath overlap, for example) will have equally/proportionately high error rates.

To examine the expected versus actual spatial and feature-space distributions of classification errors, each tile
was sub-divided into 20m (0.04 ha) pixels. This size was determined to be a useful trade-off between having “too
few” or “too many” pulse returns in each pixel. The number of returns that were Bathy, NotBathy, TPs, FNs, TNs,
and FPs were tabulated for each pixel and the percentage of the total number of returns of each type within each
cell calculated. A pixel-based map was produced of the difference between percent of total Bathy minus percent
of total FNs (i.e., negative numbers indicate an “excess” of FNs; positive numbers indicate fewer FNs than
expected); the same was done for the percent of total NotBathy minus the percent of total FPs. This was explored

visually.

To examine classification errors in feature space, a regression line was also fitted to the individual pixel values for
each of these comparisons. Evaluation of this line relative to the characteristics of a 1:1 line —i.e., the percent of

returns equals the percent of errors — provides a means to further evaluate classification error characteristics.

Results and discussion
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Global information about model goodness-of-fit and accuracy is presented in Figure 4. (Pseudo) R? values suggest
that the bathymetric signal in the PAD is reasonably high?. This is reinforced by relatively high global accuracies
for all tiles, although as noted that these are achieved for the PDT of 0.50 through an implicit majority-class bias.
Global accuracy decreases slightly when an ODT is applied, but remain around 80% or higher. This global
classification accuracy implies a strong relationship between PAD variables and bathymetry, although global

classification accuracy is not the sole consideration in this work.

a. (Pseudo) R-sqrd b. Global Accuracy (PDT: 0.50) c. Global Accuracy (ODT)
Deeper I Deeper - Deeper .
0.3 0.4 0.5 0.6 0.7 0.8 70 80 90 100 75 80 85 90 95 100

Figure 4. Goodness-of-fit information. a. (Pseudo) R? values from model fitting. b. Global accuracy using a PDT
(probability decision threshold) of 0.50. c. Global accuracy using the optimal decision threshold (that equalizes
the TPR and TNR).

The number of “contributing variables” in each model was at least 13 or 59% of the total available (Table 3). This
suggests that the bathymetric signal is not concentrated in a few key PAD variables but is distributed across a large
number of variables. This supports the premise that the ML technique XGB is able to describe the relationship

between PAD variables and bathymetry.

Table 3. Description of variables included in the XGB models for each tile.

. Number of . L Optimal
Identifier Variable Set (Total um. er? Five Most Important Contributing ptima
- . Contributing . ) Threshold
(Northing) Number of Variables) . 1 Variables
Variables
Shallow 13 abs_scanangl, stdYPR, last, intensity, 0.87
(2719500n) absdevia
0.56

Deep abs_scanangl, numreturns, intensity,

17
(2728500n) | Main Effects & selected stdYPR, rela_rtrn_no
Deeper interactions (22) 16 abs_scanangl, stdYPR, intensity, 0.40
(2708000n) absdevia, stdXYZ
Deepest 17 abs_scanangl, stdYPR, return_no, 0.02
(2707500n) rela_rtrn_no, intensity

4 McFadden’s pseudo R? cannot be tested for statistical significance. This statement is based on the authors’ experience
with conventional R? values with large sample sizes —i.e., greater than 500,000.
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ISee text for explanation of “contributing variables.”
2Variables are presented in order of decreasing contribution.

The five contributing variables with the highest scores are presented in descending order of importance in Table
3. There are commonalities among models. The return-specific variable abs_scanangl was consistently the most
important for all tiles. Variables that quantify platform stability appeared important: at least one SBET variable
(StdYPR and StdXYZ) was present in all models and the edge-based variable absdevia appeared in two models.
Intensity was similarly important even for the “Shallow” tile (2719500n) for which it might have been expected
that the intensity of returns would be less variable than for other tiles. Finally, the return number was generally
important with at least one variable that describes return order — last, return_no, and/or rela_rtrn_num — being

among the five most important variables except for the “Deeper” tile (270800n).

Figure 5 presents the accuracy and error rates for Bathy (considered “positive”) and NotBathy (“negative”) from
the XGB models based on a conventional 0.50 PDT. The “Deepest” tile (2707500n) which is the one that has the
greatest Bathy/NotBathy sample imbalance (Table 1) demonstrates most clearly the difficulty of using a
conventional PDT of 0.50 to assess bathymetric signal strength. Despite having a global accuracy near 100%
(Figure 4) for a PDT of 0.50, its TPR (percent of correctly classified Bathy returns) is extremely low (approximately

10%) while its TNR (percent of correctly classified NotBathy returns) is near 100%.
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a. True Positive Rate b. True Negative Rate

Shallow Shallow

Deep Deep

Deeper Deeper

Deepest Deepest

0 20 40 60 80 100 0 20 40 60 80 100

c. False Positive Rate d. False Negative Rate

Deep Deep

Deeper Deeper

Shallow - Shallow

Deepest Deepest

o

20 40 60 80 100 0 20 40 60 80 100
Figure 5. Accuracy and error rates resulting from the use of a probability decision threshold of 0.50.
Correcting for class imbalance via the application of the ODT (Figure 6) provides a better indication of the strength
of the relationship between the PAD and Bathy and NotBathy individually. Accuracy of Bathy identification (TPR)
is at least 79% for all tiles compared to, for example, only 10% for the most imbalanced Deepest tile (2707500n)
when applying the PDT of 0.50; accuracy of NotBathy detection (TNR) is identically high since the ODT is selected

to equalize the two. Inaccurate detection of Bathy and NotBathy are inversely low.
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a. Accuracy Rate (TPR = TNR) b. Error Rate (FNR = FPR)

Shallow I

Shallow

I
0 20 40 60 80 100 0 20 40 60 80 100

Figure 6. Accuracy and error rates resulting from the use of the optimal decision threshold for each tile.

Results presented thus far suggest that 1)the lidar PAD have a strong relationship to bathymetry and 2)the ML
technique XGB is able to model the relationship for individual tiles. Of operational interest for quality assurance
and continuous improvement is an examination of model performance in geographic and feature space as
described in the Methods section. For brevity, only results for the Deeper/2708000n tile are presented (Figures
7 and 8). The reader is reminded that that negative numbers indicate a relatively high number of errors. The

reader is also referred to Figure 1c that indicates the depth and usable data coverage of this tile.

M5
35

Figure 7. Spatial distribution of classification errors for the “Deeper” tile (2708000n). Legend units are percent
multiplied by 100. a (left). % of Bathy soundings minus % of false negatives. b (right). % of NotBathy soundings
returns minus % of false positives. (Negative values indicate “too many” errors.)
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Figure 8. Scatterplot and regression statistics of classification errors for the “Deeper” tile (2708000n). Units of the
x and y axes are percent times 100. a. % of Bathy soundings vs. % of false negatives. b. % of NotBathy soundings
returns vs. % of false positives.

%NotBathy

Figure 7 provides a means for examining the geographical distribution/concentration of classification errors. For
this example, a large number of undetected Bathy soundings (FNs; Fig. 7a) are present in the southeast and near
the center of this tile in an area close to the limits of lidar penetration (i.e., “extinction”) (Fig. 7a). But an
“excessive” number of Bathy soundings are erroneously being identified (i.e., FPs) along the eastern border (Fig.
7b). Neither the “excessive” FNs nor FPs appear to relate to depth nor proximity to extinction (see Fig. 1c). The
utility of the information in Figure 7 is that it can improve continuous improvement efforts — particularly if
classification error tendencies are examined over multiple tiles. Figure 8 provides a means to examine ML/AI
model performance in feature space. For this tile, R%s are low though significant, variance around both regression
lines is heteroscedastic, FNs are concentrated in pixels where bathymetry soundings are sparse (where the
regression line is above the 1:1 line in Fig. 8a), and FPs and NotBathy soundings are generally distributed similarly
(the 95% confidence band around the regression line overlaps considerably with the 1:1 line in Fig. 8b). Although

these are subjective interpretations with which another analyst might not agree, this discussion demonstrates

that Figures 7 and 8 are useful descriptors of ML/Al model performance.

This examination of the distribution of errors geographically and in feature space may enable a decrease in manual
input by NOAA into the Bathy/NotBathy classification process and increase accuracy. Areas where errors are

“abundant” may be indicative of poor ML/Al model performance, of course. But these may instead (or also) be
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indicative of where the NOAA classification accuracy is low. In particular, “high FN” areas may be areas that NOAA

could target since these have the greatest potential real-world navigational consequences.

The use of the ODT also could help reduce manual input into the extraction of Bathy from lidar point clouds. In
the example in Figure 3, although the ODT increases the total errors from 667,000 to 779,000, it reduces the most
practically important error — FNs — by 67% from 497,500 to 165,000. Furthermore, the use of the ODT provides a
better indication of the strength of the Bathy signal in the PAD for severely Bathy/NotBathy imbalanced point
clouds. This could be operationally be important for processing tiles for which a ML/AI model is so weak as to be

considered “borderline usable.”.

The ODT is also important in the improvement of the disambiguation rules employed in density-based lidar
processing methods such as CHRT. Without consideration of sample imbalance, a pulse return whose p(Bathy)
value is 0.10, for example, would be classified asNotBathy. However, for a tile where the measurable bathymetric
signal is weak due to sample imbalance (such as the deepest tile 2707500n where the ODT = 0.02), a p(Bathy) of
0.10 would indicate a relatively high likelihood of being bathymetry. Hence the ODT provides a means to scale

the p(Bathy) appropriately.

Results of this study suggest a sufficiently strong PAD-based bathymetric signal for improvement of operational
procedures. However, incorporating results into a data processing workflow seemingly raises a paradox that
precludes operationalization: fitting ML models to obtain a precise estimate of p(Bathy) for subsequent use in
disambiguation rules requires a pre-existing classification. There are two potential ways to overcome this
apparent circularity. First, it might be possible to fit a single “universally” applicable ML model from a sample of
areas across a region and then apply it to individual areas. However, the prevalence of SBET and lidar-edge
variables that likely are specific to ocean surface conditions at the time of data capture suggests this may be
difficult. Moreover, local depth-related or turbidity interactions might also exist. Nonetheless, it may be possible
to fit a “universal model” that is not statistically optimal, but that is operationally useful. This would be useful

subject of future research

Second, ML models could become part of an iterative workflow. In its current form, CHRT, for example, is capable
of distinguishing between “highly certain” and “less certain” bathymetry soundings. Such a distinction could be
formalized as an initial Bathy/NotBathy classification. This would be used to train an initial ML model whose
estimates of p(Bathy) would then be provided to CHRT for a second classification. This would provide for fitting a
second set of ML models whose p(Bathy) values would again be fed back to CHRT, and the process would repeat

until some convergence threshold is achieved. This would also be a useful subject for future research.
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The work presented might be extended to other applications. For example, the extraction of terrestrial elevation
from lidar data to produce “bare-earth” digital elevation models (DEMs) has received considerable attention (e.g.,
Mongus and Zalik 2012; Liu 2008) including recent use of ML/AI techniques (Hu and Yuan 2016). Using point-
based/discrete lidar for this requires addressing the same conceptual problem as density-based ocean mapping
methods: identifying lidar returns that are reflected from the earth surface (ocean bottom) rather than vegetative
cover (the water column). Though modelling the vegetative cover using full waveform data is one way to address
this, the increase in data volume makes this operationally daunting for a large area. The density-based methods
for mapping ocean depth essentially create and analyze area-based waveforms derived from discrete lidar returns
for grid points thereby overcoming the problem of waveform data volumes. It would seem that density-based
bathymetry mapping from lidar and the enhancements documented in this study could be adapted to the problem

of mapping terrestrial elevation.

Finally, an additional topic for potential future research is identified. It is known that the geomorphometry of an
area — e.g., its rugosity, slope, slope direction -- impacts lidar pulse returns; it would be useful to examine how

geomorphometry impacts the ocean depth signal strength in the pulse return metadata.

Summary and Conclusions

The principal goals of this research were to evaluate if metadata for airborne lidar that are currently not exploited
contain information about ocean depth/bathymetry for shallow water (less than 20 m), and to explore how ML/AI
can be used to model this relationship. The overarching operational goal was to enhance density-based methods
of extracting bathymetry from discrete-return — i.e., not waveform -- lidar point clouds thereby potentially
improving map accuracy, reducing person-hours, and decreasing subjectivity. Density-based methods establish a
dense grid of estimation nodes (EN) across an area and use the lidar pulse returns of each EN’s neighbours to
estimate ocean depth for each EN. This entails being able to separate a given EN’s neighbouring pulse returns
that reflect from the ocean bottom from those that represent the ocean surface or water column noise. Because
this is akin to the terrestrial application of separating pulse returns reflected from the Earth’s surface from those
reflected by vegetative cover, there may be potential for using this approach to produce bare-Earth digital terrain

models without the need for voluminous lidar waveform data.

It was concluded that:
e The bathymetric signal strength in the point attribute metadata examined is sufficiently strong to enhance
shallow-water bathymetry extraction from lidar point clouds.
e The scan angle, intensity of return, stability of the aircraft, and consistency of heading are the most

important variables for determining if a return is bathymetry.
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e The application of an “optimal” probability decision threshold that equalizes the TPR and TNR provides a

better means to evaluate bathymetric signal strength than a conventional threshold of 0.50. due to
potential Bathy/NotBathy imbalance in the lidar data. Such a threshold also provides adjusted estimates
of the probability of each sounding being Bathy — p(Bathy) — that may be more useful than unadjusted
values in operational density-based lidar processing workflows.

e The distribution of classification errors in geographic and feature space can be explored to potentially

improve estimates of p(Bathy) and the classification itself.

Data and codes availability statement: The codes that support the findings of this study are available at the link
https://figshare.com/s/8c563¢c3032927af0b25d. SBET data in the required format are provided at the figshare
link. Though the .las data used are available to the public, the authors are not authorized to make them directly
available. A small sample of the data for a single data tile are provided at the figshare link to demonstrate how
codes function. Complete data sets (2016_420500e_2728500n.laz, 2016_426000e_2708000n.laz,
2016_428000e_2719500n.laz, and 2016_430000e_2707500n.laz) can be downloaded from
https://coast.noaa.gov/htdata/lidar2_z/geoid12b/data/6246 as compressed .laz files. These can be
decompressed using the LASzip tool which can be downloaded from laszip.org.
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