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Measuring shallow-water bathymetric signal strength in lidar point attribute data using machine learning 

Abstract 

The goal of this work was to evaluate if routinely collected but seldom used airborne lidar metadata – “point 

attribute data” (PAD) – analyzed using machine learning/artificial intelligence can improve extraction of shallow-

water (less than 20 m) bathymetry from lidar point clouds. Extreme gradient boosting (XGB) models relating PAD 

to an existing bathymetry/not bathymetry classification were fitted and evaluated for four areas near the Florida 

Keys. The PAD examined include “pulse specific” information such as the return intensity and PAD describing 

flight path consistency. The R2 values for the XGB models were between 0.34 and 0.74.  Global classification 

accuracies were above 80% although this reflected a sometimes extreme Bathy/NotBathy imbalance that inflated 

global accuracy. This imbalance was mitigated by employing a probability decision threshold (PDT) that equalizes 

the true positive (Bathy) and true negative (NotBathy) rates.  It was concluded that 1)the strength of the 

bathymetric signal in the PAD should be sufficient to increase accuracy of density-based lidar point cloud 

bathymetry extraction methods and 2)ML can successfully model the relationship between the PAD and the 

Bathy/NotBathy classification. A method is also presented to examine the spatial and feature-space distribution 

of errors that will facilitate quality assurance and continuous improvement. 

Keywords : lidar metadata, hydrography, bathymetry, Florida Keys 

Introduction 

By at least 2005, lidar (“light detection and ranging”) had been identified as a “proven technology” for a variety of 

marine information needs (Wozencraft and Millar 2005) including the production of nautical depth charts.  

Compared to more conventional acoustic sonar data, lidar data typically comprise noisier point clouds (Chust et 

al. 2008) and a major processing challenge is distinguishing between pulse returns that are unwanted noise and 

those that truly describe ocean depth. Nonetheless lidar waveform data -- the energy returned from each lidar 

pulse recorded in nanosecond intervals -- .  have been shown to be able to distinguish among fine sand, coarse 

sand, and rocks on ocean floors in shallow waters (Eren et al. 2019).  Waveform lidar data have also been used to 

estimate vertical uncertainty (Parrish et al. 2014), describe coastal vegetation (Rogers et al. 2015; Tulldahl and 

Wikström 2012), and characterize marine seafloor habitats (Collin et al. 2011; Tulldahl 2014).  It has also been 

shown that depth and benthic habitat can be mapped by combining hyperspectral data and lidar waveform data 

(Tuell et al. 2005). 

Despite these demonstrated uses of lidar waveform data, the large data volumes make them difficult to use 

operationally for the production of nautical charts. Hence it is of interest to be able to alternatively employ what 

Tulldahl (2014) termed “lidar point data” – sometimes also referred to as “discrete lidar returns” – that do not 
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record the entire temporal waveform of each lidar pulse return. One approach to mapping ocean depth that has 

proved reasonably successful for lidar point data and (more conventional multi-beam echo sounder (MBES) 

(sonar) point data) is based on the use of localised pulse return density. One example described by Nayegandhi 

(2009) and Nagle and Wright (2016) is underpinned by a random consensus filter (Fischler and Bolles 1981).  

Another that is broadly representative of density-based approaches and that also has been implemented 

operationally is the CUBE (Combined Uncertainty and Bathymetry Estimator) algorithm.  First described in 2003 

(Calder and Mayer 2003), it proved successful for producing nautical charts from MBES data while decreasing 

manual editing effort and maintaining computational efficiency.  CUBE has since been enhanced using variable 

data density information (Calder and Rice 2017); the updated algorithm is known as CHRT (CUBE with Hierarchical 

Resolution Techniques). 

CHRT establishes a variable resolution grid of points across an area being mapped. For each grid point, 

“neighboring” pulse returns are identified. The frequency distribution of the depths of these neighbors – which 

is generally multi-modal and resembles an individual-pulse waveform -- is analyzed to identify individual modes 

or “depth hypotheses” using a process comparable to unsupervised clustering in one-dimensional space.  An 

algorithmic decision is then made about which hypothesis is the most likely depth of the grid point using relatively 

simplistic “disambiguation rules” that rely largely on local context. 

Density-based approaches employ only the depth estimated for each pulse return.  Ignored are pulse return 

metadata such as the intensity of each return and the incidence angle of the return-generating pulse; we term 

these “point attribute data” (PAD). If the PAD collectively contain information about which pulse returns 

(“soundings” in marine parlance) represent bathymetry, the PAD may enable improved bathymetric mapping. 

Evidence of the successful use of discrete lidar return PAD exists for other applications such as building detection, 

for example (Matikainen et al. 2009).  Similarly, “multi-return” PAD such as rugosity – essentially local variability 

of return intensity -- have been used for landcover classification and object detection in a ML approach (Zhao et 

al. 2018).  Furthermore sounding PAD may be useful as surrogates for factors such as ocean bottom characteristics 

that are difficult to measure directly over large areas but that are known to impact return reflectance (see for 

example Chust et al. (2008)). 

Hence one objective of this work is to evaluate this premise for shallow-water bathymetry.  The work is necessarily 

constrained to shallow water – defined as depths less than 20 m – because of the limit of lidar penetration in 

water. We note that though shallow waters comprise a relatively small percentage of the ocean, because of 

human use and technical limitations, Salameh et al. (2019) recognized shallow water as a bathymetric priority for 

ocean mapping. 
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That PAD contain a strong bathymetric signal independent of the depth recorded for each sounding is a necessary 

but not sufficient condition for its operational use in improving nautical charts using density-based approaches 

like CHRT.  It must also be possible to model the bathymetric signal despite the nature of the relationships of 

individual PAD variables and their interaction(s) to bathymetry being unknown. In the introduction article to a 

marine-themed issue of the ICES Journal of Marine Science, Beyan and Browman (2020) noted the potential of 

machine learning and artificial intelligence (ML/AI) to address issues of unknown relationships and interactions. 

In the same issue Malde et al. (2020) discussed a number of ML/AI techniques and their potential for increasing 

efficiency in processing expanding volumes of marine data.  

ML/AI techniques have been applied to idar data for a variety of purposes.  Examples include: 

• Convolutional neural networks for landcover/vegetation) and objects (Zhao et al. 2018), and buildings (Nahhas 

et al. 2018). 

• Boosted trees and random forests for built infrastructure such as powerlines and buildings (Kim and Sohn 

2011; Guo et al. 2015). 

• AdaBoost tree-based classifiers for landscape objects such as buildings, trees, and cars (Zhang et al. 2016). 

• Bayesian networks for land cover and objects (Kang et al. 2016). 

• Neural networks and boosted regression trees for marine corals (Collin et al. 2018; Pittman et al. 2009) and 

benthic habitat (Narayanan and Sohn 2009). 

• Support vector machines (SVM) for urban classification (Mallet et al. 2011). 

ML/AI has also been explored for bathymetric mapping. For example, Collin et al. (2008) used principal 

component analysis (PCA) and cluster analysis to extract a shallow water digital depth model (DDM) from 

waveform lidar data. To produce DDMs, ML/AI has also been applied to optical imagery alone (Mohamed et al. 

2016), a combination of optical imagery and sonar (Vojinovic et al. 2013), and a combination of optical imagery 

and lidar (Macon et al. 2008). The use of ML/AI to extract bathymetry from the PAD of lidar soundings, however, 

does not appear to have been explored. 

Hence the second objective of this article is to evaluate if ML/AI techniques provide a means to detect and model 

the bathymetric signal in lidar PAD such that soundings representing shallow-water bathymetry can be better 

identified and providing a means to improve shallow-water bathymetric mapping. 

Study Area and Data 
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131 Airborne lidar data  collected between April 22 and  April 25,  2016  were available for the  area surrounding Key  

West, Florida, United States  –  approximately 24o35’ N latitude and 81o45’ W longitude.   Data  were  acquired by  

the National Oceanic and Atmospheric  Administration  (NOAA) Remote  Sensing Division  using a  RIEGL™ VQ-880-G 

lidar flown at a nominal altitude  of 400  m above  mean  sea level at a  speed of 190  km  per hour.  During  operation,  

near infrared (1064 nm) and green  (532 nm) pulses  are  generated using a counterclockwise  circular scan.  The  

maximum effective  measurement rate at 550 kHz is 177,200  measurements per second for the infrared  and  

550,000  measurements per second for green.   (NOAA operates at 145  kHz.)   The  scan  angle of 200  results  in a  

swath  approximately  300m wide.   Data were  acquired continuously along pre-determined  overlapping  flightpaths,  

and then post-processed  into  500  m-by-500  m  square tiles.  Tiles  were available as  “LAS”  files in accordance  with  

Version 1.4-R13 (Point Data Record Format  6)  of the LAS data standard  (ASPRS 2013).  

Provided with  the LAS  files  was the NOAA  Bathy/NotBathy  classification of each  return/sounding.  This is produced  

using a combination  of  semi-automated procedures  and human intervention.   In these processes,  the infrared  

data are used  to  eliminate  above-water soundings  and to  produce  a water s urface model that  determines  to  which  

green  pulses  refraction  corrections  are  applied.   For  this  study, this  NOAA  Bathy/NotBathy  classification  was 

considered  to be “ground t ruth”  although  in bathymetric mapping it  is  in  reality  a “best es timate”  of ocean  depth.  

Four  data tiles  located in UTM Zone 17N (NAD83)  were employed  (Table 1;  Figure 1).  The  NOAA  naming  

convention for  these files includes the UTM  coordinates  of the northeast corner  of each tile; for brevity  in this  

paper  the northing for  each  tile is  used as  its  identifier.  These tiles  were selected  because they  represent a range  

of physical and data conditions and a variety  of real-world issues  –  e.g.,  a range  of depths and ocean bottom  

characteristics  (Table 1),  potentially weak and strong  bathymetric signals  (e.g.,  2707500n in which only 0.4%  of  

returns are bathymetry  versus  2728500n  in which 76% of points are bathymetry),  a range of sounding  densities  

and total number of soundings.  Tile  2707500n  covers the deepest area,  is  almost entirely  at the depth  limit of 

airborne lidar  in the area  studied (approximately 20  m),  and  was only partially  covered due to  the location of  

available flight paths.   Tile  2719500n is largely covered by land  –  a characteristic  that NOAA addresses by creating 

a polygonal mask to eliminate land areas; for this reason, in this  study  only the unmasked area was analyzed.  

Table  1.  Description of tiles employed in  this study from shallowest to deepest. (See Figure  1 for a spatial  
representation of each tile.)  
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 Identifier 
 (Northing) 

Relative 
 Depth 

 Area 
with 

 data 
 (m2) 

Area with 
Bathy-

 metry 
 (m2) 

 Approx. MSL 
 depth range 

 (m) 

Total  
  Returns area 

 with data 
 (million) 

Return 
density  

 (pts/m2) 

% 
Bathy-

 metry 

Flight-
 paths 

 2719500n  Shallow  29,500  29,500   -0.1 to -1.4  0.6  20.  78  4 
 2728500n  Deep  250,000  250,000    -3.0 to -6.6  7.6  30.  76  7 



 
 

 2708000n  Deeper  250,000  131,600   -6.7 to -11.2  3.7  15.  21  7 
 2707500n  Deepest  65,000  1,200    -12.6 to -16.7  1.0  13.  0.4  2 
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159 
160 Figure  1.  Depth  maps  (1m  pixels)  for the four tiles  based o n d epth determined b y  NOAA.   Striped  areas  contain  no  

soundings identified as bathymetry by NOAA.  Dotted areas are above  sea level and have been removed  from  
analysis.   Lighter colored areas  are shallowest; dark areas are deepest.  Coordinates are UTM Zone  17N  (NAD 83).  

Three types  of sounding PAD were provided by NOAA and/or derived by the authors (Table  2).   “Return-based”  

PAD  are associated  with  each  pulse whereas  “SBET”  (Smoothed  Best Estimate  of  Trajectory) and  “lidar-edge” PAD  

are  more  macro and reflect the flightpath and aircraft  characteristics  when data  were collected.  

“Return-based”  PAD  describe  the  green p ulse  returns  and w ere largely  provided  by  NOAA  although  rel_return_no  

that normalizes  return_no  between 0 and 1   was  derived.   Determining the  actual scan angle  (abs_scanangl) 

required  correcting  the sensor scan angle  of 200 .  for aircraft pitch  and roll.   
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169 

170 Table 2. Lidar sounding  point attribute data  (PAD)  employed in this study.  
Meta-

data Type 
Variable Name 
(Abbreviation) Description Range 

Return-
based 

Absolute value of 
scan angle 

(abs_scnangl) 

Absolute value of signed angle (as recorded negative 
is the left side of airplane; positive is the right side) at 
which a pulse was generated including the roll of the 

aircraft. 

16 - 23 

Intensity 
(intensity) 

Integer value representing the magnitude of the 
pulse return. 7302 -- 37448 

First of many 
(first_of_many) 

Flag indicating if a return was the first of a pulse that 
generated multiple returns. 0 (No) – 1 (Yes) 

Last (last) Flag indicating if a return was the final return from a 
pulse. 0 (No) – 1 (Yes) 

Number of 
returns 

(numreturns) 
Number of returns from a single pulse 1 - 6 

Relative Return 
Number 

(rel_return_num) 
(Return Number-1)/(Number of Returns-1) 0.0 – 1.0 (0.0 for a 

last return) 

Return number 
(return_no) Return number 1 - 6 

Scan direction 
(scan_direct) 

Flag indicating if pulses were generated in the 
forward direction of the flightpath 0 (No) – 1 (Yes) 

Single (single) Flag indicating if a pulse generated a single return.) 0 (No) – 1 (Yes) 

Time (gpstime) GPS-standardized time in seconds when a pulse was 
captured. 

NA (Used for data 
preparation but not 

analysis) 

SBET1 

Aircraft 
positional 

uncertainty 
(stdXYZ) 

Simple sum of individual standard deviations for each 
positional attribute (x, y, and z) from proprietary 

Smoothed Best Estimate of Trajectory (SBET) process. 
0.022 – 0.030 

Aircraft stability 
uncertainty 
(stdYwPtRl) 

Simple sum of individual standard deviations for each 
aircraft-related attribute – Yaw, Pitch, and Roll --

from SBET process. 
0.027 – 0.031 

Lidar-
edge 

Deviation 
absolute value 

(absdevia) 

Absolute value of orthogonal distance from lidar 
point cloud “corner-to-corner” flight path2 . 0 – 7.7 

Maximum abs. 
deviation 

(maxabsdev) 
Maximum absdevia over a given flight path. 0.6 – 8.3 

171 1Smoothed Best Estimate of Trajectory.   2See  text  for explanation.  
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173 Notably absent from the return-based PAD is   z  (depth).  Though clearly related to a  sounding’s probability  of  

being bathymetry  –  p(Bathy)  –  reader’s are reminded  that one of the  main goals  of this  work  was to  evaluate the  

strength  of the bathymetric signal in the PAD  only.   Therefore the z/depth  value  was intentionally not included in  

the PAD used to develop  ML/AI  models.  

Additional return-based  PAD not considered are instrument-dependent  PAD such as amplitude and reflectance  

collected by the RIEGL  sensor  employed  (RIEGL  2017).  These are embedded in the “extrabytes”  of the RIEGL data  

structure,  that is not part  of the 1.4-R13  LAS data standard.  The use  of such proprietary extrabytes would limit  

the  broader ap plicability of this work.  Moreover, extrabyte  data are not used in NOAA’s lidar processing  

workflows and are routinely eliminated from  the  LAS files by NOAA in large part due to data volumes  

SBET  PAD are produced by the Applanix Corporation  POSPac Mobile Mapping Suite (MMS) using POS AV  -- an 

integrated hardware and  software system.  It includes a motion sensor that is generally  a GNSS1-aided INS2  with  

PPK3  corrections from a local base station.   The SBET  PAD are based on a tightly  coupled  extended  Kalman filter 

and its post-observation  covariance  matrix.  SBET PAD are provided for each flight path at 0.005 second intervals  

(i.e., 200 observations per second) and describe  the location and uncertainty  of the aircraft position in  three  

dimensions as well as the aircraft’s roll, pitch, and yaw.  SBET uncertainty  PAD were employed because they  may  

indicate  -- among  other factors such as surge, sway,  acceleration, etc.  -- wind-related turbulence that might in  

turn affect sea surface characteristics that impact pulse reflectance.  

It was  similarly  surmised that deviation(s)  of a flightpath from a straight line  might be indicative  of temporally  

local weather  effects  that impact pulse reflectance.  Figures  2a and  2b show two-dimensional examples of lidar 

point  clouds with the SBET  flight line  (thick black line)  from which the  lidar data were  collected.   The  deviation of  

the actual flight from a straight line such as the SBET flight line is apparent in  the  edge of the  gray  lidar point cloud.   

To quantify the crenulation of the actual flight path,  a northeastern and southeastern “corner” of  a flightpath’s  

point cloud was identified  and the equation  of this “corner-to-corner”  line  calculated (the thin  gray  line in Figures  

2c and 2d).   Edge points of the lidar point  cloud were  identified and  their orthogonal deviation from the corner-

to-corner line calculated.  These were summarized  as  described for the “Lidar  edge”  PAD  in Table 2.  
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1 Global Navigation Satellite System. 
2 Inertial Navigation System. 
3 Post-processing Kinematic. 
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198 

199 Figure  2. Gray points are lidar pulse returns.   a. Flightpath with a relatively smooth  easternscan edge.  (The  solid 
black line indicates  the SBET aircraft location.)   b. Flightpath with  more  crenulated (western and eastern  scan 
edge.   c. Scan  edge and “corner-to-corner” straight flight path (thin gray line) with edge points (black);  the dotted  
line indicates  the area of enlargement in Figure  2d.  d. Enlargement  of a portion  of Figure  2c.  

The  SBET variables  stdXYZ  and  stdYwPtRl,  and the  lidar-edge variable  absdevia  were affixed to  individual  returns  

based on  closest  gpstime.  For the  lidar-edge flight path-based variable  maxabsdev  a single  value was assigned to  

all returns  on the relevant flight path.  

Methods  

The over-arching  goals  of this  work  are to  assess  the strength  of the bathymetric signal in the  PAD and to  

determine  if ML  is  able  to  model this relationship  to  improve identification  of discrete lidar returns  that represent  

bathymetry.  Achieving this  translates into an  operational goal of being  able to  assign  to  each lidar  sounding  a 

PAD-based  probability  of being  bathymetry  -- p(Bathy)  -- that can  improve  the disambiguation rules used in  

density-based lidar point processing.  The methodological outline  to achieve these goals  is to fit a ML/AI  model 

for each tile to NOAA’s  Bathy/NotBathy  classification using  the  PAD, estimate  p(Bathy)  for each sounding using 

the fitted  model,  classify  each sounding  as  Bathy  or NotBathy,  and compare  the  ML/AI  classification with NOAA’s.   

High classification  accuracy  would  indicate a strong  relationship  of the  PAD  and  bathymetry  and  evidence that  ML  

is suitable for such  modelling; low classification accuracy suggests the opposite.  
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Exploratory analysis was conducted to compare the merits of three different ML/AI techniques – regularized 

logistic regression (RLR), multi-layer perceptrons (MLPs; a type of neural network), and extreme gradient boosting 

(XGB). RLR was rejected because model fitting times were up to seven times longer compared to MLP and XGB.  

MLP was also rejected because of the difficulty of evaluating the contribution of individual PAD variables to each 

model – a well-recognized problem with ML/AI techniques.  Hence XGB was the ML/AI technique retained for 

use.XGB is a decision-tree-based approach that progressively develops a sequence of “weak” or “shallow” 

models/trees and then combines them into a single model/tree using a weighted majority vote. Successively fit 

trees focus on improving the classification of the observations having the biggest errors. Information about the 

“importance” – but not statistical significance -- of each variable is produced with the “importance” of all variables 

summing to 1.0. XGB models were fitted using lasso regularization (“l1” regularization) that applies a numerical 

penalty to the model fitting cost function; this drives the contribution of “unimportant” variables to zero. 

Individual XGB models were fitted for each tile using NOAA’s Bathy/NotBathy classification as the dependent 

variable and all of the PAD variables described in Table 2 and selected interactions as predictors.  Prior to model 

fitting, all independent variables were normalised between 0 and 1 using max-min normalisation. 

Models were evaluated using a variety of metrics. McFadden’s adjusted (pseudo) R2 (McFadden 1974) provides 

an assessment of goodness-of-fit for binary classification models.  The other metrics employed are based on two 

different confusion matrices. 

The first is a “conventional” confusion matrix that assigns observations to Bathy or NotBathy based on a 

probability decision threshold (PDT) of 0.50. However, an undesirable latent characteristic of ML/AI model fitting 

is that the accuracy of the most prevalent class –is increased at the expense of the accuracy of the minorityclass. 

Alternately stated, deemphasizing the true positive rate (TPR) of the minority class better achieves the model 

fitting goal of maximizing global accuracy. . While not a problem if all classes are equally present, class imbalance 

was present in all tiles used in this study (see Table 1). The impact on the goals of this study is that the true 

bathymetric signal in the PAD may be obscured. 

Lowell and Calder (2019) addressed this using an alternate PDT that equalizes the true negative rate (TNR) and 

TPR. Figure 3 provides an example.  In the upper left is a confusion matrix resulting from a conventional PDT of 

0.50. Its receiver operating characteristics (ROC) curve that indicates the trade-off between the TPR and false 

positive rate (FPR) at different PDTs is shown in the lower right. The gray arrow indicates the FPR (x axis) and TPR 

(y axis) produced by a PDT of 0.50.  The threshold at which TPR and TNR are equal -- 0.41 in this example – is the 

intersection of these curves as shown in the graph in the upper right of Figure 4; this threshold is termed the 
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246 “optimal decision threshold” (ODT).  The resulting confusion matrix is presented in the lower left and shows  how  

the ODT  equalizes TNR and TPR; it also  makes  false negative rate (FNR)  and  FPR equal.  

Most important for  evaluating the strength  of  the bathymetric signal  is that the TP R  –  correct identification of  

bathymetry  –  has increased from 37%  to  79%.  And the FNR  –  undetected bathymetry that is the most important  

nautical navigation  -- has decreased  from 63%  to 21%.   In this example  and relative to the goals  of this study,   

comparison  of the results for the PDT and  the ODT  suggests  there is  a reasonably strong bathymetric signal in the  

sounding PAD.  
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Figure  3. Example of the conventional  (gray arrows)  and  optimal (black arrows)  probability  decision  

thresholds(PDTs)  for  tile 2708000n.  257 
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To enable evaluation of which PAD most relate to bathymetry, a rank-based variable scoring system was 

developed.  For each model, the “contributing” variables – defined as those whose importance was greater than 

0.0 – were ordered by decreasing importance. The variable in each position was assigned a score for that position: 

Position score = (n+1)-r 

where n is the total number of contributing variables and r is the rank position.  If a position was occupied by a 

two-way interaction, each variable in the position received half of the score for that position.  Scores were 

summed for each variable over all positions and the variables ranked in importance based on their total score. 

As a final step, a method to examine the distribution of the classification errors in geographic and feature space 

was developed. Such analysis can provide more insight into where the relationship between the PAD and 

bathymetry is stronger/weaker, and may further be of interest for operational quality assurance and continuous 

improvement. Several spatial statistics and methods exist to test for complete spatial randomness in point 

patterns: nearest neighbor analysis (Boots and Getis 1988), quadrat analysis (Boots and Getis 1988), Ripley’s K 

(Dixon 2002), and the join-count statistic for multi-nominal categorical data (Odland 1988). Herein, however, it is 

not expected that classification errors will be randomly distributed, but instead that areas having “high” sounding 

densities (due to flightpath overlap, for example) will have equally/proportionately high error rates. 

To examine the expected versus actual spatial and feature-space distributions of classification errors, each tile 

was sub-divided into 20m (0.04 ha) pixels.  This size was determined to be a useful trade-off between having “too 

few” or “too many” pulse returns in each pixel.  The number of returns that were Bathy, NotBathy, TPs, FNs, TNs, 

and FPs were tabulated for each pixel and the percentage of the total number of returns of each type within each 

cell calculated. A pixel-based map was produced of the difference between percent of total Bathy minus percent 

of total FNs (i.e., negative numbers indicate an “excess” of FNs; positive numbers indicate fewer FNs than 

expected); the same was done for the percent of total NotBathy minus the percent of total FPs. This was explored 

visually. 

To examine classification errors in feature space, a regression line was also fitted to the individual pixel values for 

each of these comparisons.  Evaluation of this line relative to the characteristics of a 1:1 line – i.e., the percent of 

returns equals the percent of errors – provides a means to further evaluate classification error characteristics. 

Results and discussion 
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285 Global information  about  model  goodness-of-fit and  accuracy is presented  in Figure  4.  (Pseudo) R2  values  suggest  

that the bathymetric signal in the  PAD is reasonably high4 . This is reinforced by relatively high global accuracies  

for all tiles, although  as noted  that these  are  achieved  for the PDT of 0.50  through an implicit  majority-class bias.   

Global accuracy  decreases slightly  when an ODT is  applied, but remain around 80%  or higher.  This global  

classification accuracy implies a strong relationship  between PAD  variables and bathymetry, although  global 

classification accuracy  is not the  sole consideration in this  work.  
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Figure  4. Goodness-of-fit information. a.  (Pseudo) R2  values from  model fitting. b. Global accuracy using a PDT  
(probability decision threshold)  of 0.50.   c. Global accuracy using the optimal decision  threshold (that equalizes  
the TPR and  TNR).  

The  number of “contributing  variables”  in each model was  at least  13  or 59%  of the total available  (Table 3).  This  

suggests that the bathymetric signal is not concentrated in a few key  PAD  variables but is  distributed across  a large  

number of variables.   This supports  the premise  that the ML technique XGB is able to describe the relationship  

between PAD variables  and  bathymetry.  

Table 3. Description of variables included in the XGB  models for each tile.  

 Identifier 
 (Northing) 

Variable Set (Total  
  Number of Variables) 

 Number of 
Contributing  

 Variables1 

Five Most Important Contributing  
 Variables2 

Optimal  
 Threshold 

Shallow  
 (2719500n) 

  Main Effects & selected 

 13    abs_scanangl, stdYPR, last, intensity, 
 absdevia 

 0.87 

 Deep 
 (2728500n)  17    abs_scanangl, numreturns, intensity, 

 stdYPR, rela_rtrn_no 

 0.56 

 interactions (22) 
 Deeper 

 (2708000n)  16   abs_scanangl, stdYPR, intensity, 
 absdevia, stdXYZ 

 0.40 

 Deepest 
 (2707500n)  17   abs_scanangl, stdYPR, return_no, 

 rela_rtrn_no, intensity 
 0.02 

4  McFadden’s pseudo R2  cannot be tested for  statistical significance.  This statement is based on the authors’ experience  
with conventional R2  values with large sample sizes  –  i.e., greater than 500,000.  



 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

300 1See text for  explanation of “contributing  variables.”  
2Variables are presented in order of decreasing contribution.  
 

301 
302 

303 The five  contributing variables with the highest scores  are presented in descending order  of importance in  Table  

3.  There are  commonalities among models.   The return-specific variable  abs_scanangl  was consistently  the most 

important  for  all tiles.   Variables that quantify platform stability appeared important: at least one  SBET variable  

(StdYPR  and  StdXYZ) was present in all models and  the edge-based variable  absdevia  appeared  in two  models.   

Intensity  was  similarly important  even  for the “Shallow”  tile (2719500n)  for  which  it might  have  been  expected  

that the  intensity  of returns would be  less variable  than for other tiles.   Finally, the return number was  generally  

important with at least  one variable  that describes return order  –  last,  return_no,  and/or  rela_rtrn_num  –  being 

among the five most important variables  except for  the “Deeper”  tile  (270800n).  

Figure  5  presents the  accuracy and error rates for Bathy  (considered  “positive”) and  NotBathy  (“negative”) from  

the  XGB models based on a  conventional  0.50 PDT.   The  “Deepest”  tile  (2707500n)  which is  the one that has the  

greatest  Bathy/NotBathy  sample imbalance (Table 1)  demonstrates  most clearly the difficulty  of using a  

conventional PDT  of 0.50  to assess bathymetric signal strength.  Despite having a global accuracy near 100%  

(Figure  4)  for a PDT  of 0.50, its TPR (percent of  correctly classified  Bathy  returns) is extremely low  (approximately  

10%)  while its TNR (percent of  correctly classified  NotBathy  returns) is near 100%.  
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Figure 5. Accuracy and error rates resulting from the use of a probability decision threshold of 0.50. 

Correcting for class imbalance via the application of the ODT (Figure 6) provides a better indication of the strength 

of the relationship between the PAD and Bathy and NotBathy individually. Accuracy of Bathy identification (TPR) 

is at least 79% for all tiles compared to, for example, only 10% for the most imbalanced Deepest tile (2707500n) 

when applying the PDT of 0.50; accuracy of NotBathy detection (TNR) is identically high since the ODT is selected 

to equalize the two. Inaccurate detection of Bathy and NotBathy are inversely low. 

15 



 
 

  
 

 

 

 

 

 

 

Figure  6. Accuracy and  error rates  resulting from the  use of the  optimal decision threshold f or each tile.  

Results presented thus far  suggest that 1)the lidar  PAD have a strong relationship to bathymetry and  2)the ML  

technique  XGB is able to  model the relationship  for individual tiles.   Of operational interest for quality  assurance  

and continuous improvement is  an examination  of  model performance in geographic and feature space as  

described in the  Methods section.  For brevity, only results for the Deeper/2708000n tile are presented (Figures  

7  and 8).  The reader is reminded that that negative numbers indicate a relatively high number of errors.   The  

reader is  also referred to Figure 1c  that indicates  the depth and usable data coverage of this tile.  
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332 
333 Figure  7. Spatial distribution of classification errors for the  “Deeper”  tile (2708000n).  Legend units are percent  

multiplied by  100.   a (left). % of  Bathy  soundings  minus % of false negatives.  b  (right). % of NotBathy  soundings  
returns  minus %  of false positives.   (Negative values indicate  “too many” errors.)  
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336 

337 
338 Figure  8.  Scatterplot and regression statistics  of classification  errors  for the  “Deeper”  tile  (2708000n).  Units of  the 

x and  y axes  are percent times 100.  a. % of Bathy  soundings  vs. % of false  negatives.   b. % of NotBathy  soundings  
returns vs. %  of false positives.  

339 
340 
341 
342 Figure 7 provides a  means  for examining the geographical distribution/concentration  of classification errors.  For  

this example,  a large  number of  undetected  Bathy  soundings  (FNs;  Fig. 7a)  are  present  in the southeast  and  near 

the center of this tile in an area close to  the limits  of lidar penetration  (i.e.,  “extinction”) (Fig. 7a).   But an 

“excessive”  number of  Bathy  soundings are  erroneously  being identified  (i.e., FPs) along the  eastern border (Fig.  

7b).  Neither the “excessive”  FNs  nor  FPs  appear to  relate to  depth nor proximity to extinction (see Fig.  1c).   The  

utility  of the information in Figure 7 is  that it can improve continuous improvement efforts  –  particularly if  

classification  error tendencies are  examined  over multiple tiles.   Figure  8 provides a means  to  examine ML/AI  

model performance in  feature  space.   For this  tile, R 2s are  low  though significant, variance  around  both  regression  

lines  is heteroscedastic,  FNs  are concentrated in pixels where bathymetry soundings are sparse  (where the 

regression line is above the 1:1 line in Fig.  8a), and  FPs  and  NotBathy  soundings are  generally  distributed  similarly  

(the 95% confidence band  around  the regression line  overlaps considerably with  the 1:1 line in Fig. 8b).  Although  

these are subjective interpretations  with which another analyst  might not agree, this discussion demonstrates  

that Figures  7 and  8 are useful descriptors of ML/AI model performance.  

This examination of the  distribution of e rrors  geographically  and in feature space  may  enable a decrease in  manual  

input by NOAA into the  Bathy/NotBathy  classification  process and  increase accuracy.   Areas where errors are  

“abundant”  may be indicative of poor ML/AI  model performance, of course.  But these may instead (or also) be  
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indicative of where the NOAA classification accuracy is low.  In particular, “high FN” areas may be areas that NOAA 

could target since these have the greatest potential real-world navigational consequences. 

The use of the ODT also could help reduce manual input into the extraction of Bathy from lidar point clouds. In 

the example in Figure 3, although the ODT increases the total errors from 667,000 to 779,000, it reduces the most 

practically important error – FNs – by 67% from 497,500 to 165,000. Furthermore, the use of the ODT provides a 

better indication of the strength of the Bathy signal in the PAD for severely Bathy/NotBathy imbalanced point 

clouds. This could be operationally be important for processing tiles for which a ML/AI model is so weak as to be 

considered “borderline usable.”. 

The ODT is also important in the improvement of the disambiguation rules employed in density-based lidar 

processing methods such as CHRT.  Without consideration of sample imbalance, a pulse return whose p(Bathy) 

value is 0.10, for example, would be classified asNotBathy. However, for a tile where the measurable bathymetric 

signal is weak due to sample imbalance (such as the deepest tile 2707500n where the ODT = 0.02), a p(Bathy) of 

0.10 would indicate a relatively high likelihood of being bathymetry.  Hence the ODT provides a means to scale 

the p(Bathy) appropriately. 

Results of this study suggest a sufficiently strong PAD-based bathymetric signal for improvement of operational 

procedures.  However, incorporating results into a data processing workflow seemingly raises a paradox that 

precludes operationalization: fitting ML models to obtain a precise estimate of p(Bathy) for subsequent use in 

disambiguation rules requires a pre-existing classification.  There are two potential ways to overcome this 

apparent circularity. First, it might be possible to fit a single “universally” applicable ML model from a sample of 

areas across a region and then apply it to individual areas.  However, the prevalence of SBET and lidar-edge 

variables that likely are specific to ocean surface conditions at the time of data capture suggests this may be 

difficult. Moreover, local depth-related or turbidity interactions might also exist. Nonetheless, it may be possible 

to fit a “universal model” that is not statistically optimal, but that is operationally useful. This would be useful 

subject of future research 

Second, ML models could become part of an iterative workflow. In its current form, CHRT, for example, is capable 

of distinguishing between “highly certain” and “less certain” bathymetry soundings.  Such a distinction could be 

formalized as an initial Bathy/NotBathy classification.  This would be used to train an initial ML model whose 

estimates of p(Bathy) would then be provided to CHRT for a second classification.  This would provide for fitting a 

second set of ML models whose p(Bathy) values would again be fed back to CHRT, and the process would repeat 

until some convergence threshold is achieved. This would also be a useful subject for future research. 
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The work presented might be extended to other applications.  For example, the extraction of terrestrial elevation 

from lidar data to produce “bare-earth” digital elevation models (DEMs) has received considerable attention (e.g., 

Mongus and Zalik 2012; Liu 2008) including recent use of ML/AI techniques (Hu and Yuan 2016).  Using point-

based/discrete lidar for this requires addressing the same conceptual problem as density-based ocean mapping 

methods: identifying lidar returns that are reflected from the earth surface (ocean bottom) rather than vegetative 

cover (the water column). Though modelling the vegetative cover using full waveform data is one way to address 

this, the increase in data volume makes this operationally daunting for a large area.  The density-based methods 

for mapping ocean depth essentially create and analyze area-based waveforms derived from discrete lidar returns 

for grid points thereby overcoming the problem of waveform data volumes. It would seem that density-based 

bathymetry mapping from lidar and the enhancements documented in this study could be adapted to the problem 

of mapping terrestrial elevation. 

Finally, an additional topic for potential future research is identified.  It is known that the geomorphometry of an 

area – e.g., its rugosity, slope, slope direction -- impacts lidar pulse returns; it would be useful to examine how 

geomorphometry impacts the ocean depth signal strength in the pulse return metadata. 

Summary and Conclusions 

The principal goals of this research were to evaluate if metadata for airborne lidar that are currently not exploited 

contain information about ocean depth/bathymetry for shallow water (less than 20 m), and to explore how ML/AI 

can be used to model this relationship.  The overarching operational goal was to enhance density-based methods 

of extracting bathymetry from discrete-return – i.e., not waveform -- lidar point clouds thereby potentially 

improving map accuracy, reducing person-hours, and decreasing subjectivity. Density-based methods establish a 

dense grid of estimation nodes (EN) across an area and use the lidar pulse returns of each EN’s neighbours to 

estimate ocean depth for each EN.  This entails being able to separate a given EN’s neighbouring pulse returns 

that reflect from the ocean bottom from those that represent the ocean surface or water column noise. Because 

this is akin to the terrestrial application of separating pulse returns reflected from the Earth’s surface from those 

reflected by vegetative cover, there may be potential for using this approach to produce bare-Earth digital terrain 

models without the need for voluminous lidar waveform data. 

It was concluded that: 

• The bathymetric signal strength in the point attribute metadata examined is sufficiently strong to enhance 

shallow-water bathymetry extraction from lidar point clouds. 

• The scan angle, intensity of return, stability of the aircraft, and consistency of heading are the most 

important variables for determining if a return is bathymetry. 
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• The application of an “optimal” probability decision threshold that equalizes the TPR and TNR provides a 

better means to evaluate bathymetric signal strength than a conventional threshold of 0.50. due to 

potential Bathy/NotBathy imbalance in the lidar data.  Such a threshold also provides adjusted estimates 

of the probability of each sounding being Bathy – p(Bathy) – that may be more useful than unadjusted 

values in operational density-based lidar processing workflows. 

• The distribution of classification errors in geographic and feature space can be explored to potentially 

improve estimates of p(Bathy) and the classification itself. 

Data and codes availability statement: The codes that support the findings of this study are available at the link 
https://figshare.com/s/8c563c3032927af0b25d.  SBET data in the required format are provided at the figshare 
link. Though the .las data used are available to the public, the authors are not authorized to make them directly 
available.  A small sample of the data for a single data tile are provided at the figshare link to demonstrate how 
codes function.  Complete data sets (2016_420500e_2728500n.laz, 2016_426000e_2708000n.laz, 
2016_428000e_2719500n.laz, and 2016_430000e_2707500n.laz) can be downloaded from 
https://coast.noaa.gov/htdata/lidar2_z/geoid12b/data/6246 as compressed .laz files.  These can be 
decompressed using the LASzip tool which can be downloaded from laszip.org. 
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