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36 Abstract  

To automate  extraction of bathymetric soundings from lidar point clouds,  two machine learning (ML1) 

techniques  were combined  with  a more conventional density-based algorithm.   The study area was four  

data “tiles” near the Florida Keys.   The density-based  algorithm  determined  the most likely depth  (MLD) 

for a grid  of “estimation  nodes” (ENs).   Unsupervised  k-means  clustering  determined  which EN’s  MLD  

depth  and associated soundings  represented  ocean depth  rather than ocean  surface or n oise  to produce  

a preliminary  classification.   An extreme gradient  boosting (XGB) model was  fitted  to pulse return  

metadata –  e.g.,  return  intensity,  incidence  angle  -- to produce a final Bathy/NotBathy  classification.   

Compared to an  operationally produced  reference classification,  the XGB model increased global accuracy  

and decreased the false  negative  rate  (FNR)  –  i.e., undetected bathymetry  –  that are most  important  for  

nautical navigation  for all but  one  tile.  Agreement between  the final XGB  and operational reference  

classifications  ranged  from  0.84 to 0.999.   Imbalance  between  Bathy  and  NotBathy  was addressed using  

a  probability decision  threshold t hat  equalizes  the  FNR and t he  true  positive  rate  (TPR).  Two  methods  are  

presented  for  visually evaluating  differences between  the two  classifications  spatially and  in feature-

space.  
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1.  Introduction  and Approach  

It is generally accepted that  Hickman  and Hogg (1969) authored  the first article  published on  the use  of  

airborne lidar (‘light  detection  and ranging’) data for  bathymetric mapping.  They observed  that  due to  

limitations  on the penetration of light through water,  lidar is most appropriate for shallow water  charting.   

Heritage and Hetherington (2007) noted that the  initial focus of lidar research had been  primarily  on the  

sensor and data acquisition rather than data analysis  or specific applications.   It could be  argued that  this  

tendency  has continued with Andersen  et al.  (2017),  for example, stating that as  of 2017 there was  no  

standardized accepted  methodology for extracting surface points from  green lidar point  data alone  –  

although green  and  near-infrared lidar data  are  currently  combined  operationally  to extract water surface  
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1  A list of abbreviations is provided at the end of the article.  
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returns. Nonetheless, recent review articles (Kashani et al. 2015; Kutser et al. 2020) suggest that 

difficulties associated with extracting application-specific information from lidar point clouds are now 

continually being addressed by the scientific community. As lidar data processing/analysis research has 

increased in recent years, new concepts for improving lidar sensors have also continued (e.g., Kinzel et al. 

2021; Mandlburger et al. 2020; Mitchell and Thayer 2014). 

This increased interest in lidar data analysis has been driven by a desire to decrease data acquisition costs 

to better understand various phenomena. For example, lidar data are proving to be particularly useful to 

characterize benthic habitat.  Various analytical approaches have been explored: characterizing lidar 

waveforms (Collin et al. 2008; Eren et al. 2018), using machine learning approaches (e.g., Pittman et al. 

2009; Su et al. 2019), and classifying benthic habitat using variables that describe characteristics of lidar 

pulses (Tulldahl and Wikstrom 2012) – ‘soundings’ in marine parlance. 

The focus of this article is the use of airborne lidar data for shallow water bathymetry charting – defined 

herein as water depths less than 20 m (although Jawak et al. 2015 noted that lidar can penetrate up to 

60m under ideal conditions). Much bathymetric depth work has focused on analysing the full lidar 

waveform for a single spectral wavelength (see, for example, Pe’eri and Philpot 2007; Fernandez-Diaz et 

al. 2014; Wang et al. 2015; Xing et al. 2019.) Waveform soundings have the potential to identify the water 

surface and bottom due to increased reflectance from both. Single wavelength waveform data are 

operationally advantageous because they potentially decrease sensor complexity but are 

disadvantageous because of increased data volumes compared to multi-wavelength systems that collect 

point data. Approaches to using waveform soundings for bathymetric mapping are varied and examples 

include near-surface water modelling (Zhao et al. 2017), analysis of water column backscatter (Kinzel et 

al. 2012; Nagle and Wright 2016), and a ‘surface-volume-bottom’ approach that provides a time-saving 

closed-form solution (Schwarz et al. 2019). The analysis of lidar point– rather than lidar waveform – data 

has also received considerable attention (see, for example, Brzank et al. (2008), Yang et al. 2020) including 

its combination with data from passive sensors (e.g., Dietrich 2017, Agrifiotis et al. 2019a). 

Numerous researchers have examined ways of extracting bathymetry from such waveform data 

algorithmically (e.g., Lyzenga et al. 2006, Pacheco et al. 2015, Li et al. 2019).  In such work, lidar is 

sometimes used primarily as the reference data against which analytical methods are evaluated (e.g., 

Agrifiotis et al. 2019b).  In recent years, many such studies have examined various machine learning 

techniques: neural networks (Liu et al. 2015), support vector machines (Misra et al. 2018; Wang et al. 
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2018), principal components analysis (Gholamalifard et al. 2013), partial least squares (Niroumand-Jadidi 

et al. 2018), and random forests (Kogut and Weistock 2019). 

The present research is focused on extracting shallow water bathymetry from lidar point clouds – i.e., 

identifying which lidar soundings represent the ocean bottom. The approach adopted combines a density-

based algorithm developed for multi-beam echo sounder (MBES) sonar data with machine learning (ML) 

techniques. This methodological fusion is explored to overcome two considerable challenges. First, lidar 

data are collected from airborne platforms, resulting in a substantial number of soundings that represent 

the ocean surface and near-surface.  Second, no ground-truth data are available for training ML models.  

The latter difficulty was also recognized and addressed by Kerr and Purkis (2018), who developed a 

workflow for optical data. The former is suggestive of a weak bathymetric signal within a cloud of lidar 

soundings.  The latter is particularly vexing because it creates a processing circularity: to determine which 

lidar soundings represent ocean depth one needs at the least an initial depth estimate or, more ideally, a 

Bathy/NotBathy designation for each sounding.  This article describes a method that overcomes both of 

these difficulties and documents the results relative to a reference classification that is produced by 

operationally adopted procedures. 

2. Study Area and Lidar Data 

The airborne lidar data used for this work were captured by the United States National Oceanic and 

Atmospheric Administration (NOAA) between April 22 and 25, 2016, in the vicinity of Key West, Florida 

(24o33’ N, 81o46’ W). Data were acquired by collecting lidar soundings over multiple overlapping flight 

lines generally having a north-south orientation using a Riegel™ VQ-880-G sensor that employs a counter-

clockwise circular scan and a 200 scan angle.  The nominal flying altitude of 400 m above mean sea level 

results in an individual swath width of approximately 300 m and the pulse frequency of 45,000 pulses per 

second provides a spatial density of approximately 10 soundings sq m-1 for a single flight line. The lidar 

data were post-processed by NOAA by “cutting” the data from all flight lines into 500m-by-500m data 

“tiles” aligned north-south and east-west with the Universal Transverse Mercator (UTM) projection. 

Data for four tiles (Figure 1) were provided by NOAA in the format of the LAS data standard Version 1.4-

R13 (Point Data Record Format 6) (ASPRS 2013). These tiles were selected because they are 

representative of the range of sounding densities, depths, and ocean floor characteristics encountered in 

operational shallow water bathymetric mapping (Table 1).  For convenience, the first five digits of each 

tile’s northing are employed as its identifier as well as a depth indicator – Shallow, Deep, Deeper, or 

Deepest.  The overlap in flight lines produces a combined average sounding density between 13 and 30 
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125 returns  m-2,  although  sounding  density  varies across  each  tile and  is  considerably higher  where  flight  lines  
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Figure  1. Depth maps  (1m pixels)  for  the four tiles based  on depth determined  by NOAA.  White areas  
have no usable data.  Gray areas have usable data, but no  soundings were identified as bathymetry by  
NOAA.  Due to sparseness of NOAA-identified bathymetry on the deepest tile (27075; Fig. 1d),  an 
enlargement  of the area containing bathymetry is shown with bathymetric soundings  accentuated and  
gray background removed.  

Table 1. Descriptive information about the data tiles  employed in  this study.  



 
 

 

 

 
   

 

 
  

 

 
 

 

 
 
 
  

 
 

 

         

   
 

      

   
 

 

      

  
 

 
 
 

      

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identifier 
(North-

ing) 

Relative 
Depth Description Area 

(km2) 

Approx. 
MSL depth 
range (m) 

Total 
Soundings 
(million) 

Mean 
return 
density 
(pts/m2) 

% 
Bathy-
metry 

Number 
of flight 

lines 

27195 Shallow Shallow area including 
some mangrove swamps 3 0 to 2 0.6 27.6 78 5 

27285 Deep 
Gradual slope with a few 
scattered  mounds 
about 1 m tall 

25 3 to 6 7.6 30.4 76 7 

27080 Deeper 

Gradual slope cut by 
relatively shallow 
channels; the northwest 
is poorly classified 

25 8 to 11 3.7 14.8 21 7 

27075 Deepest 

Depth mostly beyond 
limit of lidar penetration 
except for mound in 
northeast and isolated 
points on eastern edge. 

7.5 13 to 16 0.9 13.3 0.4 2 

135 

136 Attached  to each  sounding  are  its geographic  (UTM)  coordinates,  depth, time  of acquisition, and a variety  

of  metadata that we term “sounding  attribute data” (SAD;  Table 2).  Lidar depth is expressed in  meters  

relative  to  mean sea level determined  using NOAA’s VDATUM tool  (https://vdatum.noaa.gov/).  Sounding-

based  SAD are either acquired by the lidar instrument or  were derived post-acquisition.  Also provided  

were Smoothed  Best Estimate of  Trajectory  (SBET)  data.   These are produced  by the Applanix software  by 

post-processing pulse return data from each flight line using a proprietary  method based on a tightly  

coupled extended Kalman  filter.  SBET data have had  noise removed to describe  the most likely airplane  

position a nd  orientation at  200  Hz.   Flight  path and  orientation  consistency  are  described in  the  SBET data  

by the standard deviations for the x,  y, and z location of the plane and its  yaw,  pitch,  and roll extracted  

from the Kalman  filter’s post-observation covariance matrix.   SBET values  were assigned to individual  

soundings  by  matching time of acquisition.  

An additional variable  was  created  to  characterize  platform  stability  at  the  moment  of data acquisition.   It  

was observed that the crenularity  –  i.e.,  the deviation from  a straight line  -- of the  margin of soundings  of 

individual flight lines varied alo ng  the flight line  (Figs. 2a and 2b).  We  hypothesized that this  crenularity  

reflected  local wind conditions that  may in turn impact surface  water conditions and  lidar reflectance  

characteristics.   To quantify this,  sounding  cloud  ‘edge points’  were identified algorithmically along the  

length of the flight path (Fig. 2a).  The two end  soundings  were considered  ‘corner’  soundings  and the  

equation  of  the straight line between them  calculated  (Fig. 2b).  The  orthogonal  distance from each edge  

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

6 



 
 

 

 

 
 

  

 

 

 

 

 

 

 

  

154 sounding  to the  straight line was determined (Fig. 2c) and the absolute  value of this deviation  was  assigned 

to each  sounding  by matching  time of acquisition.  This variable is termed  abs_devia.  155 

156 Table  2. Depth and  sounding  attribute  data (SAD) employed in  this study for machine learning (ML)  
modelling.  Variable names are  italicised  throughout the article.  157 
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7 

 SAD Type  Nature  Variable (Name) 
 Depth  Depth    Depth as provided via lidar post-processing (depth in m) 

Sounding-
 based 

Pulse-
 specific 

 • 

 • 
 • 
 • 
 • 
 • 
 • 

   Intensity of sounding return (intensity; 16-bits  –   i.e., maximum value is 
 65536) 

   Number of soundings (numreturns) 
    Sounding number from a given lidar pulse (return_no) 

   First sounding of many (first_of_many; 0 or 1) 
    Last sounding of many (last_of_many; 0 or 1) 
  Last sounding (last; 0 or 1) 

  Scan direction (scan_direct; -1 (backwards) or +1 (forward)) 
 • 
 • 

 • 

     Azimuth from airplane to pulse (azim2plse; 00 to 3600 in decimal degrees) 
 Incident scan angle corrected for yaw, pitch, and roll (inciangle; recorded 

 in decimal degrees) 
Difference between pulse direction and airplane heading (plse_frm_hdng; 

   00 to 900 decimal degrees) 

 Airplane 
 stability   SBET 

 • 
 • 

 • 

     Aircraft positional – sum of standard deviations of x, y, and z (stdXYZ) 
Aircraft platform   –   sum of standard deviations of Yaw, Pitch, and Roll 

 (stdYwPtRl) 
Deviation from   flight path  – see  Figure 2  and text for   explanation 

 (abs_devia) 

Most of the SAD  variables  can be considered  ‘direct features’  (Höfle  and  Rutzinger  2011)  that are  

measured,  although  abs_devia  would be considered an  ‘indirect feature’  as it is derived  post-acquisition.   

The SAD  variables in Table 2 were retained for analysis because  of their documented  or hypothesized  

impact  on light reflectance directly and bathymetric signal indirectly.   Examples of  their documented  

impact include  intensity  (Schmidt  et al.  2012),  abs_devia  and SBET variables as surrogates for surface  

waves (Westfeld  et al.  2017; Maas  et al.  2019; Lowell  et al. 2021),  and  inciangle  (Birkeback  et al.  2018; 

Okhrimenko and Hopkinson 2020).   
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168 Figure  2.  Extraction  of orthogonal deviations from  a single  flight  line  (the western edge of  the deepest tile  
27075; Fig. 1d).   To  conserve space, North points  to the left.   a)  Lidar point cloud (gray) and derived  
edgepoints  (black).   The dashed box is the area  of enlargement in Fig. 2c.  b)  “Corner-to-corner”  straight  
flight  path ( blue  line).   c)  Orthogonal  deviation  of  a  single  edge  point  from  the corner-to-corner  flight  path  
edge of lidar point cloud.  

169 

171 
172 

173 Finally,  also available for each sounding is the  Bathy/NotBathy  classification produced by NOAA  using in-

house  methods.  The LAS data standard classes  of  interest herein are ‘Bth’,  ‘Unc’, and  ‘LP-Nz’  that 

generally represent bathymetry,  water surface, and  water column noise, respectively.  For  the current  

work, these w ere c ondensed  into two classes  –  Bathy  (‘Bth’  only) and  NotBathy  (‘Unc’  and ‘LP-Nz’).   This  

Bathy/NotBathy  classification is used  only  as  the reference classification against  which  the  results  of the  

method developed  are compared  –  i.e., it is not used in the  method developed.   Moreover,  although  the  

NOAA  Bathy/NotBathy  classification  is  the  most  authoritative  available and is  an  appropriate standard  for  

comparison since it is used operationally, it is not  ‘ground truth’  produced  via direct measurement or  

observation.  

For analysis, notable in the  data tiles employed is the spatial distribution  of Bathy  –  i.e., the not-gray points  

in Figure 1.   Tile 27195/Shallow  (Fig. 1a) is the shallowest  tile, is located in an area of  mangrove swamps,  

and all of it except the southwest  area has  been  classified by NOAA as being above sea level.  For such  

areas, NOAA creates a data exclusion mask so that  only  soundings  from aquatic areas are  classified  as 

Bathy/NotBathy.  For consistency, the same practice is adopted herein and only  data from  the colored  

area shown in Fig. 1a are  employed in subsequent analyses.   Also notable  –  and representative of real-

world conditions  –  are the incomplete Bathy  coverages of Tiles 27080/Deeper  (Fig. 1c) and 27075/Deepest  

(Fig. 1d).  This  results from  increasing depths  that ultimately exceed the depth limit of lidar penetration.   

It is  most pronounced for  Tile 27075/Deepest  on which only  0.4%  of soundings  are  Bathy  (Table 1).  
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192 3.  Procedures  

Figure  3  is a schematic  showing the procedural flow  of the work undertaken.  This  is explained below and  

was applied to  each data tile individually.  
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Figure  3. Schematic  of data processing flow.   Letters refer to  parts of section  3  of  the paper; the final step  

(“e.”) is not further described in section  3.  

3a.  Process lidar using  density-based/CHRT  algorithm  

This process identifies the  most likely depth  (MLD) for a  north-south/east-west grid of ‘estimation nodes’  

(ENs) established  over  each lidar data  tile.  This information is produced by processing the lidar point  cloud  

data through a density-based algorithm as described  below.    

The algorithm  employed in this study is CHRT  (CUBE  with Hierarchical Resolution Technique; Calder and  

Rice  2017) which is  a modification  of CUBE  (Combined Uncertainty and Bathymetry  Estimator;  Calder and  

Mayer 2003).  CHRT is incorporated into many software packages that are widely used  operationally and  

scientifically for processing  MBES sonar data (Lecours  et al. 2 016).  Its scientific use  has also  been  extended  

into  other  applications  such as  benthic habitat  mapping (Calvert  et  al. 2015).   

CHRT establishes a grid of ENs across an area of interest with the spacing of the grid determined by the  

density of  the soundings.  Given  the non-rectangular nature of the  spatial coverage for some tiles in this  

study  (see  Figure  1),  some  ENs on  a  grid  have  no associated  lidar  soundings  and  are  removed  from further  



 
 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

211 analysis.  Similarly, as will be explained subsequently,  others have  aberrant  MLD values  due to  data  

anomalies and sparseness;  these are also removed  using outlier analysis.  

To estimate the MLD for  a single EN, the ‘neighboring’ soundings  for the EN  are identified.   An EN’s  

‘neighboring’  soundings  are those within  a  geographic  radius defined by the  grid spacing for a tile.  The  

radius  used  is the Euclidean distance to the ‘pixel corner’  defined by a point equidistant from four adjacent  

ENs (Figure 4).   Thus  50-60% of  soundings  are  neighbors  of  two E Ns  depending on local  sounding  density.  

212 

213 

214 

215 

216 

217 
218 

 
Figure 4. Search radius to determine  “neighboring” pulse returns.  Blue points are  estimation nodes (ENs).   
The orange arrow defines  the neighbor radius.  219 

220 For each EN, its  neighboring soundings  are progressively ingested with the first  sounding  defining an initial 

depth  ‘hypothesis.’   A  variety of hyperparameters  or ‘tuning’  parameters  establish initial thresholds for  

determining if two soundings represent different depths; default parameters are based on user  

experience with  the location a nd v ariability  of  depth f requency  distributions  for  various  depth c onditions.   

The  depth of the second  sounding  ingested  is evaluated  against the hyperparameters  to  determine if it  

also  ‘belongs to’  the first depth hypothesis, or if its depth is  ‘different enough’  to be considered a new  

hypothesis.  This process continues until all neighboring soundings  have been ingested and  one or  more  

depth hypotheses have been developed and characterized.   As the process  progresses, frequency  

distributions for each hypothesis are produced and their characteristics  –  rather than the initial  

hyperparameters  -- increasingly  control the assignment of newly ingested soundings to  existing  

hypotheses,  or  to the creation  of  a new hypothesis.  After all soundings have been ingested,  

disambiguation rules determine which hypothesis represents  the MLD for the EN.  A simplistic example is 

that the hypothesis with  the deepest mean depth is considered  the  MLD although such a rule ignores  
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factors  such as turbidity in the water column  or  the number of soundings in the deepest hypothesis; 

current disambiguation rules generally identify the  hypothesis having the greatest number  of  soundings  

as most likely.  

Table 3 provides summary information about the ENs for each tile.   One notable point is that the  variability  

(standard deviation) of  MLDs for tile  27080/Deeper is  considerably larger than for other tiles.  This reflects  

both a greater variability in geomorphometry  for  this tile  and the  large area in the northwest beyond the  

range of lidar penetration (Fig. 1c).   Note that because each  tile is processed individually (here and  

operationally) and the density  of the EN grid  on each tile depends  on its sounding density, EN density  

varies across tiles.   This causes edge artifacts  when  combining adjacent tiles  into a seamless map; 

procedures for doing this  are beyond the scope  of  this study.  

Table  3. Estimation node (EN) information after removal of outliers.   (See text for  explanation.)  

Identifier  
(Northing)  

Relative  
Depth  

 Grid 
Spacing  

(m)  

EN Grid:  
Rows*Cols  

 ENs 
used for  
analysis1  

 Mean 
 hypotheses 

 per EN 

 Mean 
 soundings 

per  
hypothesis  

 MLD2 

range  
 (m) 

 Mean 
 MLD 

 (m) 

 MLD 
 standard 
 deviation 

(m)  
27195  Shallow  12.4  20*18  188  4.8  3827     0 to 1 0.7  0.2  
27285  Deep  1.6  308*308  94853  4.6  125     2 to 7 4.5  0.7  
27080  Deeper  3.0  167*167  27823  6.3   32  1 to 10 3.5  2.3  
27075  Deepest  1.9  267*120  18446  5.2   82  1 to 18 1.5  0.5  

 
 

  

 

 

 

 

1Estimation Nodes after removal of no-data and outlier estimation nodes.  
2Most likely depth (MLD).  

3b  Eliminate outliers and identify ENs  whose MLD is bathymetry   

A two-phase outlier  screening  process is employed; Table  4  provides information on the results  of this  

screening.  

Table 4.  Information about  estimation node (EN) outlier  screening.  

 Identifier 
 (Northing) 

Relative 
 Depth 

  Total Grid 
 ENs 

 ENs w/o 
 Soundings 

 MD1 

 Outliers 

Beyond 
Lidar  

 Penetration 
 MLDs2 

ENs 
 Analysed 

 27195  Shallow  360  136  2  37  185 
 27285  Deep  94864  11  1232  0  93621 
 27080  Deeper  27889  0  318  14  27557 
 27075  Deepest  32040  13514  288  34  18204 

 1Mahalanobis Distance.    
2Most Likely Depth  (MLD).  
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First, 12 variables associated with each EN’s hypotheses are used to calculate Mahalanobis distances 

(MDs; Mahalanobis 1936) for each EN. Examples of such variables are the number of hypotheses, total 

sounding, the number of soundings associated with the MLD hypothesis and non-MLD hypotheses, and 

the standard deviation of the depth of soundings associated with the MLD and non-MLD hypotheses.  

Prior to calculating the MDs, variables are normalized between 0 and 100 using max-min normalization.  

ENs are eliminated from subsequent analysis if their MD is in the outer 0.1% of the frequency distribution 

– i.e., their MD is more than approximately 3.3 standard deviations from the mean MD. 

Second, airborne lidar cannot penetrate below certain ocean depths.  Examination of depth frequency 

distributions across all tiles suggested that for the area studied, lidar could not penetrate below a depth 

of 20 m.  Hence ENs whose MLD depth was greater than 20 m and that had not already been removed by 

the MD outlier analysis are eliminated as ‘‘Beyond Lidar Penetration’ MLDs. 

MLD frequency distributions for the four tiles were highly irregular – e.g., not clearly normal or bi-modal 

– generally reflecting a separation of ocean surface and ocean bottom.  Hence k-means clustering 

(Steinhaus 1957, McQueen 1967) is applied to the MLD of the ENs retained for analysis to separate them 

into two classes.  Because a single variable – MLD -- is used in this clustering, this is equivalent to 

separating a frequency distribution along a single axis. The cluster having the greatest difference between 

its MLD and the average depth of all other hypotheses – i.e., the ‘non-MLD’ hypotheses -- is assumed to 

contain some EN hypotheses that are ‘definitely’ bathymetry. The other cluster has a smaller difference 

between the mean MLD and the mean depth of non-MLD hypotheses suggesting that both represent the 

ocean surface. Note that not all ENs will represent ocean floor or surface, but some will represent the 

water column.  This is most likely to be problematic where water column soundings are more prevalent 

than ocean floor soundings – i.e., in highly turbid waters or beyond the limits of lidar depth penetration. 

The mean and standard deviation for the MLDs of the cluster identified as ‘definitely’ containing 

bathymetry are used to define the bathymetry MLD confidence interval for the MLDs for all ENs.  The 

shallower MLD limit of the interval is the one-sided 99.9% confidence limit whereas the deeper MLD limit 

is the one-sided 95% confidence limit.  These ‘imbalanced limits’ were found to address the irregularly 

shaped bathymetry frequency distributions across all tiles better than equal ‘shallower/deeper’ MLD 

confidence limits. 

The MLD bathymetry confidence interval is used to classify the MLDs of all ENs as Bathy or NotBathy. That 

is, the MLD hypotheses of all ENs contained within the bathymetry confidence interval are classified as 
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283 Bathy.   All other hypotheses,  even  including those whose  mean d epth  falls  in the bathymetry depth  

interval but  are  not the MLD for their  EN,  are  classified as  NotBathy.  

Alternatives to this  classification  rule  were evaluated,  including clustering on all  hypotheses rather than  

on  MLD  hypotheses only, classifying as  Bathy  all  hypotheses  –  MLD and non-MLD  -- whose mean depth  

fell in the  bathymetry depth interval, and using the range instead of the standard deviation to define the  

bathymetry  confidence  interval.  None performed as well as  the  clustering approach and  classification  

rule  adopted.  

3c  Preliminarily classify pulse returns as Bathy  or  NotBathy  

The  neighboring soundings  for each  EN  are  classified as  Bathy  if they  are  associated w ith the  MLD  and t he  

MLD has  been  classified  as  Bathy;  otherwise they  are  classified as  NotBathy  (Table 5).   Soundings  that are  

neighbors of two ENs  whose  Bathy  or NotBathy  classification agrees are  assigned to the agreed class.   

Two-neighbor  soundings  whose classifications do  not agree are termed  ‘mixed’  and  are  assigned to  Bathy.  

Tile 27195/Shallow  with the least separation between ocean surface and  ocean  depth had the largest  

percentage  of mixed  soundings  and Tile 27075/Deepest had the smallest (Table 5).   This  assignment  

scheme  for mixed  soundings  has the effect of decreasing the number of  false negatives  (FNs)  –  undetected  

bathymetry  –  which  is a more serious  error than a false positive  (FP) –  erroneously labelled bathymetry  –  

in nautical chart production.   Assigning mixed  soundings  to  Bathy  also was found to improve  the skill of 

the subsequently fitted  machine learning model.  

Table 5.  Bathy/NotBathy  classification information for  soundings  that were neighbors of two  estimation  
nodes (ENs).  

284 
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301 
302 

Identifier 
(Northing) 

Relative 
Depth 

Soundings 
Neighboring 

Two ENs 

Pure Bathy 
Soundings 

Pure 
NotBathy 
Soundings 

“Mixed” 
Soundings 

% 
“Mixed” 

27195 Shallow 3075001 138500 85700 83300 27 
27285 Deep 4246400 2307400 1547700 391300 9 
27080 Deeper 2081400 600900 1343100 137400 7 
27075 Deepest 542100 3100 538400 600 <1 

303 1All values rounded to nearest  100.  

3d  Fit a  machine  learning model to produce a final  Bathy/NotBathy  classification for all  

soundings   

At  this point  a preliminary  or ‘seed’ classification has assigned each sounding to  the  Bathy  or NotBathy  

class.   However, only  soundings  associated with the  MLD hypothesis will have  been classified  as  Bathy. 

This is problematic in areas where  all hypotheses  –  MLD  and others  –  are representative of bathymetry.   

304 
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308 
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This occurs on tiles where bathymetry is commonplace (27195/Shallow and 27285/Deep; Table 1), as well 

as in areas where bathymetry is locally concentrated such as the northeastern area of 27075/Deepest 

(Fig. 1d).  Hence this assignment is a ‘preliminary’ or ‘seed’ classification that can be considered 

conservative – i.e., soundings classified as Bathy have an extremely high ‘true probability’ of being Bathy, 

but the classification likely contains a high number of FN errors. 

Therefore, to produce a final classification, extreme gradient boosting (XGB) (Friedman 2001) is used to 

fit a model using the seed classification. XGB is a decision-tree machine-learning technique that 

progressively fits numerous simple or ‘shallow’ models/trees.  Each successive tree is fitted with a focus 

on the worst-predicted observations of the previous tree.  Once statistical convergence or the maximum 

number of trees is achieved, a composite XGB model is produced using a ‘majority vote’ approach. Lowell 

et al. 2021) have demonstrated that the SAD employed (Table 2) contain a substantial amount of 

bathymetric signal.  Specifically, machine learning models that used the variables in Table 2 as 

independent variables and NOAA’s Bathy/NotBathy as the dependent variable produced R2 values 

between 0.61 and 0.99 and global classification accuracies between 90% and 99.9%. 

Hence, an XGB model that uses the seed CHRT/clustering-based classification as the dependent variable 

and the variables in Table 5 as predictor variables is fitted for each tile.  This model is then used to estimate 

p(Bathy) – i.e., the probability of each pulse return being Bathy for each sounding.  Soundings are classified 

as Bathy/NotBathy by applying to the p(Bathy) values a probability decision threshold (PDT) that equalizes 

the true positive (Bathy) rate (TPR) and true negative (NotBathy) rate (TNR) rather than the conventional 

PDT of 0.50; we term this alternative PDT the “optimal decision threshold” or “ODT.” Lowell et al. (2021) 

demonstrated that the use of the ODT mitigates the impacts of the accuracy of a class – Bathy or NotBathy 

– comprising a strong majority of soundings being maximized at the expense of the accuracy of the 

minority class. Problems associated with applying a conventional PDT of 0.50 were notable for all tiles, 

but especially for 27075/Deepest on which only 0.4% of pulse returns were identified by NOAA as being 

Bathy. 

4. Analysis, Results, and Discussion 

Initially assessed are 1) how well the ‘preliminary/seed’ Bathy/NotBathy classification derived from 

clustering the EN MLDs performs relative to the NOAA reference classification and 2) if the final XGB 

model-based classification improves the preliminary seed classification relative to the NOAA reference 
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classification.  Methods that can be used for continuous improvement of classification methodology are 

subsequently presented. 

4a. Classification accuracies 

Recall that the preliminary seed classification produced by clustering EN MLDs from the CHRT algorithm 

is considered a conservative classification because only the most certain soundings are classified as Bathy. 

Nonetheless, because it will be subsequently refined using an XGB model, it only needs to be ‘sufficiently 

accurate’ that the XGB model will be able to detect and describe underlying relationships between 

bathymetry and the SAD variables (Table 2).  If this occurs, the XGB model should be able to identify 

soundings not classified as Bathy initially, but that have a high p(Bathy) nonetheless.  Subsequently 

reclassifying all soundings based on the p(Bathy) values should thus expand the number of soundings 

correctly classified as Bathy or NotBathy. A truly ideal outcome would be that the preliminary seed 

classification is identical to the NOAA reference classification and thus does not require additional 

processing. 

Figure 5a suggests that the preliminary seed clustering classification relates strongly to the NOAA 

reference classification.  Global accuracy – or more precisely ‘agreement between the two’ – is the 

percentage of all soundings that are correctly classified as Bathy or NotBathy; it is at least 85% for all tiles. 

Moreover, the percent of correctly classified Bathy/NotBathy soundings – true positives (TPs) and true 

negatives (TNs), respectively – is 81% or more for all tiles.  Similarly, the percentage of false positives (FPs; 

NotBathy soundings incorrectly labelled Bathy) and false negatives (FNs; Bathy soundings incorrectly 

classified as NotBathy) is 20% or lower for all tiles. 
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359 
360 Figure  5. Classification accuracy/comparisons for various classification schemes.  

The ability  of an  XGB model to improve on  the preliminary classification  –  i.e., to  harmonize it with the  

NOAA classification  -- can be assessed by comparing Figs. 5a and 5b.   Readers are reminded that  to classify  

p(Bathy)  as Bathy/NotBathy, the ODT that equalizes the TNR  and  TPR  was employed throughout.   Since  

the  FNR is 100 minus the TPR, the FPR is 100  minus  the TNR, and the TPR and TNR are equal,  the FNR and  

FPR  are equal.   The use of  the ODT  also has the impact  of making the global accuracy  equal to  the TNR  

and TPR  –  e.g., if the classification  of NotBathy  soundings is 80% correct  and the classification of Bathy  

soundings is 80% correct,  global accuracy for all soundings must also be  80%.  

Figure 5b suggests that the XGB model  improved  the initial cluster-based  ‘seed’  classification.   Through  

the use of an XGB  model, global accuracy improved for all tiles except 27080/Deeper for which it  

decreased by a single percent (85% to  84%).   The TPR follows a similar pattern, although the TNR did  

decrease for Tile 27285/Deep (from 100% to  94%).   Of greatest real-world interest is  that the FNR has  

dropped considerably for all tiles except  27080/Deeper.  In operational practice, a decrease in FNs not  

only  means improved navigational safety but also considerable cost savings.  That  is, because FNs are  the  

most serious  error for  nautical navigation, considerable human-time is spent verifying FNs.  Hence  

reducing the number  of  FNs decreases  the time spent on  manual editing.  Thus except for the  

27080/Deeper tile, the ML  model has improved classification in a way that benefits operational workflows  
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377 and improves navigational safety.   We note a considerable portion  of  the 27080/Deeper tile (northwest  

of  Figure 1c) exceeds  the depth of lidar penetration which undoubtedly impacts the accuracy  of identifying  

Bathy  soundings.  

Results can potentially be further improved by  better  understanding  the  XGB model  fitted  to the binary  

Bathy/NotBathy  cluster-based  “seed” classification using the variables in Table 2 as the independent  

variables.  The  classification accuracy of the  model  on this  preliminary  classification–  i.e., the classification  

used to fit the model  rather than NOAA’s reference classification  -- is at least  81%  for all tiles  (Fig.  5c).   The  

goodness-of-fit/explanatory power of the  model can also be evaluated by calculating an R2  for binary  

dependent variables (McFadden1974)  that is conceptually equivalent to, and interpreted in the same  

manner as, the  more familiar R2  value associated with linear regression.  The R2  values for individual  

models  are  relatively high  (Table 6) –  particularly considering the large number of soundings  (at least  

600,000; Table  1)  used  to fit the  models.   The  number  of variables  with an  ‘importance  value’  (a  measures  

of a variable’s  contribution to  an  XGB model)  greater than zero (0)  was at least 11  for all tiles  and  the five  

most important  variables  contained at least 95% of the total importance  for all tiles  except 27195/Shallow.  

Coupled  with the fact that other  than  depth,  an inconsistent  variety of SAD  variables  were  important, the  

information that  provides discrimination between  Bathy  and  NotBathy  soundings  appears to be  

distributed among  a suite of variables  specific to  each tile;  XGB  as a  model development  technique is  able  

to  accommodate this  variability.  

These findings are  potentially  most relevant for the 27195/Shallow  tile.  Its relatively low cumulative  

importance  of  the  five  most  important variables  (0.85)  suggests  that for  shallow  areas  where  the  distance  

between the ocean surface and o cean f loor is  less  than the noise in  the lidar sounding  cloud,  depth  

contains a smaller proportion of the  information the provides discrimination between  Bathy  and  NotBathy  

soundings  than  it does for  deeper areas.  Finally, SBET variables were among the five  most important  

variables in two  of the models  and  abs_devia  was present in one  suggesting  that both  SAD  associated with  

individual soundings  and  SAD  that describe flight path and airplane stability contain  information that  

provides discrimination between  Bathy  and  NotBathy  soundings.  
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403 Table  6.  Information  about XGB models.  
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 Identifier 
 (Northing) 

Relative 
 Depth 

R-
 squared1 

 Number of 
 Important 

Variables  
Five most important variables2  

 Cumulative 
  importance of the five  

 most important 
variables  

27195  Shallow  0.48   12  depth, last, first_of_many, stdYwPtRl, 
 inciangle 0.85  



 
 

27285  Deep  0.79   14  depth, return_no, last_of_many, 
 intensity, plse_frm_hdng 0.95  

27080  Deeper  0.87   12  depth, num_returns, return_no, 
 last_of_many plse_frm_hdng  0.99  

27075  Deepest  0.97   11  depth, plse_frm_hdng, abs_devia, 
scan_direct, stdXYZ  0.99  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

405

410

415

420

425

404 1McFadden’s  (McFadden 1974) pseudo R2  which cannot be tested  for statistical  significance.  
2In descending order of importance.  

406 4b. Continuous Improvement.  

Because neither the NOAA classification nor the  XGB classification developed can  be considered  ground  

‘truth’ that results  from  direct measurement, being able to characterize  differences between the two  is 

useful for  improving  the NOAA classification, the  final XGB  classification, or both.   Two methods were  

developed  to  provide  such information.  

The first method  focusses on  ‘feature’ or ‘statistical’ space and  entails  comparing  p(Bathy)  values from  

the  XGB  model with the NOAA  Bathy/NotBathy  classification using logistic regression.  The approach is  

comparable to  binning the  soundings  by  p(Bathy)  values  and then determining if the  proportion  of 

soundings  classified as  Bathy  by NOAA  in  each bin  equals  the bin  mid-point class value.   The logistic 

regression approach  employed, however,  provides information along the continuum  of  p(Bathy)  values  

without requiring an arbitrary  number of  bins.   In this  approach, NOAA’s  Bathy/NotBathy  classification is  

used as the dependent variable and the following logistic  equation is fitted:  

−1 
𝑝𝑝′ = �1 + 𝑒𝑒�−(𝑏𝑏0+  𝑏𝑏1𝐿𝐿)��     (1)  

where L  is:  

𝐿𝐿 = 𝑙𝑙𝑙𝑙 � 𝑝𝑝 
   �      (2)  

(1−𝑝𝑝) 

and  p  is  the  p(Bathy)  estimated by  the XGB  model.   For each tile, if the NOAA  classification and  p(Bathy)  

values  from the XGB model  are identical  over  the entire p(Bathy)  range of 0.0  to 1.0,  b0  and b 1  in E quation  

(1)  will be  0.0 and  1.0, respectively.  Furthermore,  R2  for Equation 1  will be  1.0  with an associated log-

likelihood  p  that is  infinitesimally small.  Such a  ‘logistic  agreement model’ was  fitted for each  tile (Table  

7).  

Table  7. Information  on logistic agreement  models.  
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Identifier 
(Northing) 

Relative 
Depth 

R-
squared1 

log-
likelihood 

p 
2b0

3b1 n 

27195 Shallow 0.85 <0.001 1.1* 2.05* 576,000 
27285 Deep 0.79 <0.001 19.3* 2.83* 7,599,000 
27080 Deeper 0.52 <0.001 -1.3* 0.60* 3,706,000 
27075 Deepest 0.77 <0.001 -2.3* 0.70* 983,000 

427 1McFadden’s pseudo R2  that  cannot be tested  for statistical significance.  
2  * signifies  the intercept  value is significantly  different from  0.0 at  a=0.001.  
3  * signifies  the slope  value is  significantly  different from  1.0 at  a=0.001.  

428 
429 

430 The relatively high  R2  values and low  log-likelihood  p  values  for  the logistic models (Table  7) suggest a  

strong and significant relationship between  the  p(Bathy)  produced  by  the XGB model  fitted on the  

preliminary classification  and the NOAA  Bathy/NotBathy  classification.  However, for all models the  

intercepts  (b0) and slopes (b1)  are significantly different from  0.0 and  1.0, respectively.  

To assess (dis)agreement over the entire probability range, the logistic agreement models  of Table  7  can 

be displayed graphically by plotting  p’  vs. p  over  the interval {0,1}.   This was done using the  ODT  that is  

specific  to each tile  –  i.e., by stretching  p(Bathy)  values  in the range  {0, ODT}  to the interval {0.0,  0.5}, and 

stretching  p(Bathy)  values  in the range {ODT, 1.0)  .0 to the interval  {0.5,  1.0}.   Note that this segmenting  

of the probability range  is the cause of the  graphical discontinuities present  at a p(Bathy)  value of 0.5  for 

some tiles  (Figure 6).  
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440 
441 Figure  6. Agreement between p(Bathy) from NOAA classification and  CHRT-based XGB model  using  logistic  

agreement models.  (“ODT” is the  tile-specific  optimal decision threshold.)  442 

443 The  graphs of  p’  vs. p(Bathy)  suggest bias along  the range of p(Bathy)  values whose magnitude varies  by  

tile.  For  Tiles 27080/Deeper (Fig.  6c)  and 27075/Deepest (Fig.  6d), relative to the NOAA  Bathy/NotBathy  

classification XGB p(Bathy)  values  are overestimated over the entire range,  resulting in a relatively large  

number of false positives  (FPs).  Given that these are the two tiles having depths that exceed lidar’s  

penetration capability,  we  hypothesize that the FPs are spatially  concentrated on the deeper edges  of  

areas that NOAA identified as bathymetry; this  will  be examined explicitly.   The XGB  model for Tile  

27285/Deep (Fig. 6b) performs reasonably well below the ODT but severely underestimates  p(Bathy)  

above  the ODT.   For practical purposes, this  may  not  be  problematic.   This  indicates  that, according to  the  

XGB  model, any  sounding  whose  p(Bathy)  is above the ODT is ‘definitely’  Bathy. Accordingly,  all pulse  

444 

445 

446 

447 

448 

449 

450 

451 

20 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

452 returns having a p(Bathy)  value greater than the  ODT  will be classified as  Bathy  –  which is likely to be the  

correct classification for the vast  majority  of such  soundings.   Tile 27195/Shallow shows that below a  

p(Bathy)  value  of about 0.15 the XGB  model overestimates  p(Bathy)  thereby producing FP errors, but  

higher  p(Bathy)  values are  underestimates  thereby resulting in FN errors.  That Fig. 5b does not  indicate  

a large number of FNs  for Tile 27195/Shallow  suggests that  examination of the spatial distribution  of FNs  

(and FPs)  might be particularly useful for this tile.  

Examination of the geographic  distribution of the differences  between  the ML-based and  reference  

classifications is  the second method  of characterizing misclassification errors.   To examine the spatial  

distribution  of the FNs  and  FPs,  each  tile  was  divided  into  20  m pixels.   If  there  is no  spatial bias,  the errors  

will be distributed  across each tile as the lidar pulse returns are  –  i.e., areas having a high density  of pulse  

returns should have a comparably high density  of  FNs and FPs. To determine  if the densities of pulse  

returns and errors were  similar and  therefore not spatially biased,  the differences between the percent  

of total lidar  pulse returns  and percent  of  FNs  and F Ps  in each  pixel can b e  calculated  with  negative values  

indicating an  ‘excess’  of FNs or FPs.  These differences  can  then  be  displayed  spatially (Figures  7,  8,  9, and 

10) such  that  negative/brown values indicate  ‘too many’  FNs or FPs,  while positive/green values represent  

‘too few.’  
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Figure  7.  Tile 27195/Shallow. a. Difference between percent of  Bathy  points and  False Negatives (FNs) in  
each pixel (times 100).  b. Difference between percent  of  NotBathy  points and False Positives (FPs) in  each  
pixel (times 100). (Negative values indicate an “excess”  of FNs  or FPs.)  

470 
471 

472 The pattern for FNs (undetected  Bathy)  for Tile 27195/Shallow  (Fig. 7a)  is unexpected:  Bathy  is fairly  

accurately detected in the shallower northeast edge of data (relatively few FNs) where there are also  

about the expected number of FPs (Fig.  7b), but there are ‘too many’  FNs in the deeper  southwestern  

portion.  Also of interest is that there is an area (the green  northwest-to-southeast  band in Fig. 7b)  
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476 between the shallow northeast and deeper southwest where there are ‘too few’  FPs.  It is also notable  

that the magnitude  of differences for FPs  is  less than  for FNs as  indicated by  the  more  muted  colors in  Fig.  

7b.  

477 

478 

479 The information  for the  other tiles can be interpreted similarly:  

480 Tile 27285/Deep  (Figure  8): There is an  ‘excess’  of FNs (undetected  Bathy) in  the southeastern  area  (Fig.  

8a)  which is the  shallowest area of the tile, and an  excess of FPs  (erroneously detected  Bathy)  in the  

northwest.  (The dark green north-south bands  in Fig. 8a correspond to areas of flight line overlap  where  

sounding  density is abnormally high.)   The  magnitude of differences is greater for FNs  than for FPs  as  

indicated by the more muted colors for the latter  (Fig. 8b).  Noting that in  practical terms FNs are  

potentially  more serious  than FPs,  the southeast  of this tile  may be an area where continuous 

improvement efforts  should  be concentrated, although  verifying  the FPs  in  the  northwest would  also  lead  

to better accuracy for  that portion of Tile 27285/Deep.  
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Figure 8. Tile 27285/Deep. a.  Difference between percent of  Bathy  points and False  Negatives (FNs) in  
each pixel (times 100).  b. Difference between percent  of  NotBathy  points and False Positives (FPs) in  each  
pixel (times 100). (Negative values indicate an “excess”  of FNs  or FPs.)  

490 
491 

492 Tile 27080/Deeper (Figure  9):  There is an  ‘excess’  of FNs in the northeastern and  southwestern quadrants  

of this tile (Fig. 9a).  These  are the shallowest area of this tile (see Fig. 1c) and are generally surrounded  

by  areas  of relatively low  differences  (muted  greens  and browns).   Figure 9b  indicates  that  ‘too many’  FPs  

are present on the eastern edge of this tile suggesting that either the XGB  classification identifies too  

many  Bathy  soundings  in  this area, that the NOAA  classification does not identify enough,  or both.  The  

‘too few’  FNs  on the northwestern  edge of  Bathy  pulse returns  (Fig.  1c) coupled  with  the low level of FPs  
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498 in this area suggest that for this tile, the  overall error rate is low  at the limits  of lidar light penetration.   

The ‘too high’  number of  FPs on the shallowest eastern  edge of  this tile may  suggest th at N OAA’s  

classification procedures, the XGB model,  or both could be improved by further studying this area and the  

depths it represents.  
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Figure  9. Tile 27280/Deeper. a. Difference  between  percent of  Bathy  points and False Negatives (FNs) in  
each pixel (times 100).  b. Difference between percent  of  NotBathy  points and False Positives (FPs) in  each  
pixel (times 100). (Negative values indicate an “excess”  of FNs  or FPs.)  

Tile 27075/Deepest (Figure 10): There is an  ‘excess’  of FNs  –  undetected  Bathy  -- in  the northeastern area  

(Fig. 10a)  which  is  the shallowest area and  the area with the highest density  of  Bathy  lidar  pulse returns  

(see Figure 1d).  There are  ‘too many’  FPs in the same area (Fig. 10b)  further suggesting  that Bathy  may  

be  under-detected  in this area  (and/or  that the XGB model  performs  poorly  in  this  area).  Interestingly,  

however,  FPs are fairly widely distributed  spatially.  This distribution of FPs strongly suggests that  

undetected  Bathy  soundings  might  be present throughout the tile.  It is possible that the widely  

distributed FPs result from  NOAA adopting a conservative approach to extracting bathymetry from areas  

near the limit  of lidar ocean penetration.   Regardless  of the reason, these  results demonstrate how  this 

type  of analysis could help  to guide  continuous improvement.  
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516 
517 Figure 10. Tile 27075/Deepest. a.  Difference between  percent of  Bathy  points and False Negatives (FNs)  

in each pixel (times  100).   b. Difference between percent of  NotBathy  points and False Positives (FPs) in  
each pixel (times 100). (Negative  values indicate an “excess”  of FNs  or FPs.)  
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520 

521 5.  Summary and Conclusions  

Lidar soundings  that identify  bathymetry  could  be extracted  from lidar point clouds without  the need for  

an  a  priori  estimate of depth  with average  global  accuracies,  true positive rates, and true negative rates  

of 93%  compared to  a reference  classification for  four  500 m-by-500m lidar data tiles located near Key  

West, Florida.   These ‘accuracies’  are  achieved  relative to a reference  classification  that is used  

operationally but that  also  has an unknown level of uncertainty.  The accuracy of a preliminary  

Bathy/NotBathy  classification derived  solely  from a density-based algorithm coupled with unsupervised  

clustering  was  improved  for three of the tiles  by fitting and applying a machine learning extreme gradient  

boosting  model to produce a final Bathy/NotBathy  classification.  Models for each tile were fit using  the  

preliminary  classification  as the dependent variable and 14  SAD variables such as the intensity  and 

incidence angle  of each  pulse return as independent  variables.  Though depth  was consistently the most  

important  SAD  variable, the models for all four tiles contained at least  11  SAD variables indicating  that the  

information  that distinguishes between  Bathy  and  NotBathy  soundings  is  dispersed among numerous  SAD  

variables  with no consistency  across all tiles.   Moreover,  the information  that distinguishes between  Bathy  

and  NotBathy  soundings  is spread among SAD that quantify pulse reflectance characteristics and airplane  

stability  with the importance  of individual SAD.  
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Two methods were employed to characterize differences between the reference and the ML-based 

classification in feature/statistical and geographic space.  These are exemplified by feature-space 

information in Table 7 and Figure 6, and spatial information presented in Figures 7 through 10.  One use 

of this information would be refining the XGB final classification.  However, a potentially more valuable 

application would be continuous improvement of NOAA processing methodology.  Because the true level 

of accuracy in the XGB and NOAA classifications is unknown, the results in Table 7, Figure 6, and Figures 7 

through 10 may be viewed as identifying differences between two independent classifications rather than 

differences against ‘truth.’ The differences might be due to weaknesses in either or both classification(s), 

or the large-difference areas may be where bathymetry is simply difficult to extract.  Knowing this could 

lead to revisions in XGB and/or NOAA classification procedures depending on confidence in a 

classification, the severity or potential practical consequences of the observed differences, and a variety 

of other factors. 

In closing, the dual objectives of this work are recalled: to diminish the impacts of extracting bathymetry 

from lidar sounding clouds for shallow water using machine learning, and to achieve this without the 

circularity of needing a pre-existing classification or even depth estimate.  If one accepts that the NOAA 

classification used for evaluation is an authoritative – but not error-free – reference, we argue that these 

objectives have been achieved across a range of depth and data conditions.  While refinement of methods 

and a better understanding of the nature of errors can certainly provide improvements, this work at least 

provides a workflow to decrease time-consuming manual effort in extracting bathymetry from lidar 

sounding clouds. 

List of Abbreviations 

CHRT – CUBE (Calder and Mayer 2003) with Hierarchical Resolution Technique (Calder and Rice 2017) 

EN – Estimation Node for the density-based algorithm 

FN, FNR – False Negative Rate (Bathy soundings erroneously identified as NotBathy) 

FP, FPR – False Positive Rate (NotBathy soundings erroneously identified as Bathy) 

MD – Mahalanobis Distance (used for outlier analysis) 

ML – Machine Learning 

MLD – Most Likely Depth 

NOAA – National Oceanic and Atmospheric Administration 

PDT – Probability Decision Threshold 

SAD – Sounding Attribute Data 

25 



 
 

         

         

     

  

  
   

  

  
         

    
     

  
        

     
      

  
      

  
         

        
      

  
         

      
      

   
     

     
     
      

     

       
    

      
  

    
     

   

  
     

569

570

571

572

573
574

575

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

600
601
602
603

604
605
606

607
608

TN – True Negative Rate (NotBathy soundings correctly identified as NotBathy) 

TP – True Positive Rate (Bathy soundings correctly identified as Bathy) 

UTM – Universal Transverse Mercator 
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