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Extracting Shallow-water Bathymetry from Lidar Point Clouds Using Pulse Attribute Data: Merging
Density-based and Machine Learning Approaches

Abstract

To automate extraction of bathymetric soundings from lidar point clouds, two machine learning (ML)
techniques were combined with a more conventional density-based algorithm. The study area was four
data “tiles” near the Florida Keys. The density-based algorithm determined the most likely depth (MLD)
for a grid of “estimation nodes” (ENs). Unsupervised k-means clustering determined which EN’s MLD
depth and associated soundings represented ocean depth rather than ocean surface or noise to produce
a preliminary classification. An extreme gradient boosting (XGB) model was fitted to pulse return
metadata — e.g., return intensity, incidence angle -- to produce a final Bathy/NotBathy classification.
Compared to an operationally produced reference classification, the XGB model increased global accuracy
and decreased the false negative rate (FNR) —i.e., undetected bathymetry — that are most important for
nautical navigation for all but one tile. Agreement between the final XGB and operational reference
classifications ranged from 0.84 to 0.999. Imbalance between Bathy and NotBathy was addressed using
a probability decision threshold that equalizes the FNR and the true positive rate (TPR). Two methods are
presented for visually evaluating differences between the two classifications spatially and in feature-

space.

Keywords: shallow water bathymetry, airborne lidar, Florida Keys, extreme gradient boosting, k-means

clustering

1. Introduction and Approach

It is generally accepted that Hickman and Hogg (1969) authored the first article published on the use of
airborne lidar (‘light detection and ranging’) data for bathymetric mapping. They observed that due to
limitations on the penetration of light through water, lidar is most appropriate for shallow water charting.
Heritage and Hetherington (2007) noted that the initial focus of lidar research had been primarily on the
sensor and data acquisition rather than data analysis or specific applications. It could be argued that this
tendency has continued with Andersen et al. (2017), for example, stating that as of 2017 there was no
standardized accepted methodology for extracting surface points from green lidar point data alone —

although green and near-infrared lidar data are currently combined operationally to extract water surface

L A list of abbreviations is provided at the end of the article.
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returns. Nonetheless, recent review articles (Kashani et al. 2015; Kutser et al. 2020) suggest that
difficulties associated with extracting application-specific information from lidar point clouds are now
continually being addressed by the scientific community. As lidar data processing/analysis research has
increased in recent years, new concepts for improving lidar sensors have also continued (e.g., Kinzel et al.

2021; Mandlburger et al. 2020; Mitchell and Thayer 2014).

This increased interest in lidar data analysis has been driven by a desire to decrease data acquisition costs
to better understand various phenomena. For example, lidar data are proving to be particularly useful to
characterize benthic habitat. Various analytical approaches have been explored: characterizing lidar
waveforms (Collin et al. 2008; Eren et al. 2018), using machine learning approaches (e.g., Pittman et al.
2009; Su et al. 2019), and classifying benthic habitat using variables that describe characteristics of lidar

pulses (Tulldahl and Wikstrom 2012) — ‘soundings’ in marine parlance.

The focus of this article is the use of airborne lidar data for shallow water bathymetry charting — defined
herein as water depths less than 20 m (although Jawak et al. 2015 noted that lidar can penetrate up to
60m under ideal conditions). Much bathymetric depth work has focused on analysing the full lidar
waveform for a single spectral wavelength (see, for example, Pe’eri and Philpot 2007; Fernandez-Diaz et
al. 2014; Wang et al. 2015; Xing et al. 2019.) Waveform soundings have the potential to identify the water
surface and bottom due to increased reflectance from both. Single wavelength waveform data are
operationally advantageous because they potentially decrease sensor complexity but are
disadvantageous because of increased data volumes compared to multi-wavelength systems that collect
point data. Approaches to using waveform soundings for bathymetric mapping are varied and examples
include near-surface water modelling (Zhao et al. 2017), analysis of water column backscatter (Kinzel et
al. 2012; Nagle and Wright 2016), and a ‘surface-volume-bottom’ approach that provides a time-saving
closed-form solution (Schwarz et al. 2019). The analysis of lidar point— rather than lidar waveform — data
has also received considerable attention (see, for example, Brzank et al. (2008), Yang et al. 2020) including

its combination with data from passive sensors (e.g., Dietrich 2017, Agrifiotis et al. 2019a).

Numerous researchers have examined ways of extracting bathymetry from such waveform data
algorithmically (e.g., Lyzenga et al. 2006, Pacheco et al. 2015, Li et al. 2019). In such work, lidar is
sometimes used primarily as the reference data against which analytical methods are evaluated (e.g.,
Agrifiotis et al. 2019b). In recent years, many such studies have examined various machine learning

techniques: neural networks (Liu et al. 2015), support vector machines (Misra et al. 2018; Wang et al.
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2018), principal components analysis (Gholamalifard et al. 2013), partial least squares (Niroumand-Jadidi

et al. 2018), and random forests (Kogut and Weistock 2019).

The present research is focused on extracting shallow water bathymetry from lidar point clouds — i.e.,
identifying which lidar soundings represent the ocean bottom. The approach adopted combines a density-
based algorithm developed for multi-beam echo sounder (MBES) sonar data with machine learning (ML)
techniques. This methodological fusion is explored to overcome two considerable challenges. First, lidar
data are collected from airborne platforms, resulting in a substantial number of soundings that represent
the ocean surface and near-surface. Second, no ground-truth data are available for training ML models.
The latter difficulty was also recognized and addressed by Kerr and Purkis (2018), who developed a
workflow for optical data. The former is suggestive of a weak bathymetric signal within a cloud of lidar
soundings. The latter is particularly vexing because it creates a processing circularity: to determine which
lidar soundings represent ocean depth one needs at the least an initial depth estimate or, more ideally, a
Bathy/NotBathy designation for each sounding. This article describes a method that overcomes both of
these difficulties and documents the results relative to a reference classification that is produced by

operationally adopted procedures.

2. Study Area and Lidar Data

The airborne lidar data used for this work were captured by the United States National Oceanic and
Atmospheric Administration (NOAA) between April 22 and 25, 2016, in the vicinity of Key West, Florida
(24°33’ N, 81°46’ W). Data were acquired by collecting lidar soundings over multiple overlapping flight
lines generally having a north-south orientation using a Riegel™ VQ-880-G sensor that employs a counter-
clockwise circular scan and a 20° scan angle. The nominal flying altitude of 400 m above mean sea level
results in an individual swath width of approximately 300 m and the pulse frequency of 45,000 pulses per
second provides a spatial density of approximately 10 soundings sq m™ for a single flight line. The lidar
data were post-processed by NOAA by “cutting” the data from all flight lines into 500m-by-500m data

“tiles” aligned north-south and east-west with the Universal Transverse Mercator (UTM) projection.

Data for four tiles (Figure 1) were provided by NOAA in the format of the LAS data standard Version 1.4-
R13 (Point Data Record Format 6) (ASPRS 2013). These tiles were selected because they are
representative of the range of sounding densities, depths, and ocean floor characteristics encountered in
operational shallow water bathymetric mapping (Table 1). For convenience, the first five digits of each
tile’s northing are employed as its identifier as well as a depth indicator — Shallow, Deep, Deeper, or

Deepest. The overlap in flight lines produces a combined average sounding density between 13 and 30

4



125 returns m2, although sounding density varies across each tile and is considerably higher where flight lines

126  overlap.
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129 Figure 1. Depth maps (1m pixels) for the four tiles based on depth determined by NOAA. White areas
130  have no usable data. Gray areas have usable data, but no soundings were identified as bathymetry by
131 NOAA. Due to sparseness of NOAA-identified bathymetry on the deepest tile (27075; Fig. 1d), an
132 enlargement of the area containing bathymetry is shown with bathymetric soundings accentuated and
133  gray background removed.

134  Table 1. Descriptive information about the data tiles employed in this study.
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Identifier Relative Area Approx. Total return % Number
(North- Description MSL depth | Soundings . Bathy- | of flight
ing) Depth (km?) range (m) (million) density metr lines

8 8 (pts/m?) Y
Shallow area including
27195 Shallow 3 Oto2 0.6 27.6 78 5

some mangrove swamps
Gradual slope with a few
27285 Deep scattered mounds 25 3to6 7.6 30.4 76 7
about 1 m tall

Gradual slope cut by
relatively shallow
channels; the northwest
is poorly classified
Depth mostly beyond
limit of lidar penetration
27075 Deepest | except for mound in 7.5 13to 16 0.9 13.3 0.4 2
northeast and isolated
points on eastern edge.

27080 Deeper 25 8to 11 3.7 14.8 21 7

Attached to each sounding are its geographic (UTM) coordinates, depth, time of acquisition, and a variety
of metadata that we term “sounding attribute data” (SAD; Table 2). Lidar depth is expressed in meters
relative to mean sea level determined using NOAA’s VDATUM tool (https://vdatum.noaa.gov/). Sounding-
based SAD are either acquired by the lidar instrument or were derived post-acquisition. Also provided
were Smoothed Best Estimate of Trajectory (SBET) data. These are produced by the Applanix software by
post-processing pulse return data from each flight line using a proprietary method based on a tightly
coupled extended Kalman filter. SBET data have had noise removed to describe the most likely airplane
position and orientation at 200 Hz. Flight path and orientation consistency are described in the SBET data
by the standard deviations for the x, y, and z location of the plane and its yaw, pitch, and roll extracted
from the Kalman filter’s post-observation covariance matrix. SBET values were assigned to individual

soundings by matching time of acquisition.

An additional variable was created to characterize platform stability at the moment of data acquisition. It
was observed that the crenularity —i.e., the deviation from a straight line -- of the margin of soundings of
individual flight lines varied along the flight line (Figs. 2a and 2b). We hypothesized that this crenularity
reflected local wind conditions that may in turn impact surface water conditions and lidar reflectance
characteristics. To quantify this, sounding cloud ‘edge points’ were identified algorithmically along the
length of the flight path (Fig. 2a). The two end soundings were considered ‘corner’ soundings and the

equation of the straight line between them calculated (Fig. 2b). The orthogonal distance from each edge
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sounding to the straight line was determined (Fig. 2c) and the absolute value of this deviation was assigned

to each sounding by matching time of acquisition. This variable is termed abs_devia.

Table 2. Depth and sounding attribute data (SAD) employed in this study for machine learning (ML)
modelling. Variable names are italicised throughout the article.

SAD Type

Nature

Variable (Name)

Depth

Depth

Depth as provided via lidar post-processing (depth in m)

Sounding-
based

Pulse-
specific

Intensity of sounding return (intensity; 16-bits — i.e., maximum value is
65536)

Number of soundings (numreturns)

Sounding number from a given lidar pulse (return_no)

First sounding of many (first_of_many; 0 or 1)

Last sounding of many (last_of many; 0 or 1)

Last sounding (/ast; 0 or 1)

Scan direction (scan_direct; -1 (backwards) or +1 (forward))

Azimuth from airplane to pulse (azim2plse; 0° to 360° in decimal degrees)
Incident scan angle corrected for yaw, pitch, and roll (inciangle; recorded
in decimal degrees)

Difference between pulse direction and airplane heading (p/se_frm_hdng;
0° to 90° decimal degrees)

Airplane
stability

SBET

Aircraft positional — sum of standard deviations of x, y, and z (stdXYZ2)
Aircraft platform — sum of standard deviations of Yaw, Pitch, and Roll
(stdYwPtRI)

Deviation from flight path — see Figure 2 and text for explanation
(abs_devia)

Most of the SAD variables can be considered ‘direct features’ (Hofle and Rutzinger 2011) that are

measured, although abs_devia would be considered an ‘indirect feature’ as it is derived post-acquisition.

The SAD variables in Table 2 were retained for analysis because of their documented or hypothesized

impact on light reflectance directly and bathymetric signal indirectly. Examples of their documented

impact include intensity (Schmidt et al. 2012), abs_devia and SBET variables as surrogates for surface

waves (Westfeld et al. 2017; Maas et al. 2019; Lowell et al. 2021), and inciangle (Birkeback et al. 2018;

Okhrimenko and Hopkinson 2020).
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Figure 2. Extraction of orthogonal deviations from a single flight line (the western edge of the deepest tile
27075; Fig. 1d). To conserve space, North points to the left. a) Lidar point cloud (gray) and derived
edgepoints (black). The dashed box is the area of enlargement in Fig. 2c. b) “Corner-to-corner” straight
flight path (blue line). c) Orthogonal deviation of a single edge point from the corner-to-corner flight path
edge of lidar point cloud.

Finally, also available for each sounding is the Bathy/NotBathy classification produced by NOAA using in-
house methods. The LAS data standard classes of interest herein are ‘Bth’, ‘Unc’, and ‘LP-Nz’ that
generally represent bathymetry, water surface, and water column noise, respectively. For the current
work, these were condensed into two classes — Bathy (‘Bth’ only) and NotBathy (‘Unc’ and ‘LP-NZz’). This
Bathy/NotBathy classification is used only as the reference classification against which the results of the
method developed are compared — i.e., it is not used in the method developed. Moreover, although the
NOAA Bathy/NotBathy classification is the most authoritative available and is an appropriate standard for
comparison since it is used operationally, it is not ‘ground truth’ produced via direct measurement or

observation.

For analysis, notable in the data tiles employed is the spatial distribution of Bathy —i.e., the not-gray points
in Figure 1. Tile 27195/Shallow (Fig. 1a) is the shallowest tile, is located in an area of mangrove swamps,
and all of it except the southwest area has been classified by NOAA as being above sea level. For such
areas, NOAA creates a data exclusion mask so that only soundings from aquatic areas are classified as
Bathy/NotBathy. For consistency, the same practice is adopted herein and only data from the colored
area shown in Fig. 1a are employed in subsequent analyses. Also notable — and representative of real-
world conditions —are the incomplete Bathy coverages of Tiles 27080/Deeper (Fig. 1c) and 27075/Deepest
(Fig. 1d). This results from increasing depths that ultimately exceed the depth limit of lidar penetration.

It is most pronounced for Tile 27075/Deepest on which only 0.4% of soundings are Bathy (Table 1).
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3. Procedures

Figure 3 is a schematic showing the procedural flow of the work undertaken. This is explained below and

was applied to each data tile individually.

a. Process
lidar using OUTPUTS: b. Eliminate OUTPUT: c. Preliminarily
CHRT (CUBE *  Mostlikely depths for outlier ENs and e List of ENs classify
with Estimation Nodes (ENs) identify ENs identified as soundings as

Hierarchical e Information on all . e
Resolution hypotheses for each EN w::::y‘::stt:'vls Bathy/NotBathy

Technique)

OUTPUT:

e Initial “seed”
classification
of soundings

d. Fit machine
e. Comparison with OUTPUT: learning model

NOAA classification and *  Final and produce
Bathy/NotBathy final

classification

analysis of differences
classification

Figure 3. Schematic of data processing flow. Letters refer to parts of section 3 of the paper; the final step

(“e.”) is not further described in section 3.
3a. Process lidar using density-based/CHRT algorithm

This process identifies the most likely depth (MLD) for a north-south/east-west grid of ‘estimation nodes’
(ENs) established over each lidar data tile. This information is produced by processing the lidar point cloud

data through a density-based algorithm as described below.

The algorithm employed in this study is CHRT (CUBE with Hierarchical Resolution Technique; Calder and
Rice 2017) which is a modification of CUBE (Combined Uncertainty and Bathymetry Estimator; Calder and
Mayer 2003). CHRT is incorporated into many software packages that are widely used operationally and
scientifically for processing MBES sonar data (Lecours et al. 2016). Its scientific use has also been extended

into other applications such as benthic habitat mapping (Calvert et al. 2015).

CHRT establishes a grid of ENs across an area of interest with the spacing of the grid determined by the
density of the soundings. Given the non-rectangular nature of the spatial coverage for some tiles in this

study (see Figure 1), some ENs on a grid have no associated lidar soundings and are removed from further
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analysis. Similarly, as will be explained subsequently, others have aberrant MLD values due to data

anomalies and sparseness; these are also removed using outlier analysis.

To estimate the MLD for a single EN, the ‘neighboring’ soundings for the EN are identified. An EN’s
‘neighboring’ soundings are those within a geographic radius defined by the grid spacing for a tile. The
radius used is the Euclidean distance to the ‘pixel corner’ defined by a point equidistant from four adjacent

ENs (Figure 4). Thus 50-60% of soundings are neighbors of two ENs depending on local sounding density.

Figure 4. Search radius to determine “neighboring” pulse returns. Blue points are estimation nodes (ENs).
The orange arrow defines the neighbor radius.

For each EN, its neighboring soundings are progressively ingested with the first sounding defining an initial
depth ‘hypothesis.” A variety of hyperparameters or ‘tuning’ parameters establish initial thresholds for
determining if two soundings represent different depths; default parameters are based on user
experience with the location and variability of depth frequency distributions for various depth conditions.
The depth of the second sounding ingested is evaluated against the hyperparameters to determine if it
also ‘belongs to’ the first depth hypothesis, or if its depth is ‘different enough’ to be considered a new
hypothesis. This process continues until all neighboring soundings have been ingested and one or more
depth hypotheses have been developed and characterized. As the process progresses, frequency
distributions for each hypothesis are produced and their characteristics — rather than the initial
hyperparameters -- increasingly control the assignment of newly ingested soundings to existing
hypotheses, or to the creation of a new hypothesis. After all soundings have been ingested,
disambiguation rules determine which hypothesis represents the MLD for the EN. A simplistic example is

that the hypothesis with the deepest mean depth is considered the MLD although such a rule ignores
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factors such as turbidity in the water column or the number of soundings in the deepest hypothesis;
current disambiguation rules generally identify the hypothesis having the greatest number of soundings

as most likely.

Table 3 provides summary information about the ENs for each tile. One notable point is that the variability
(standard deviation) of MLDs for tile 27080/Deeper is considerably larger than for other tiles. This reflects
both a greater variability in geomorphometry for this tile and the large area in the northwest beyond the
range of lidar penetration (Fig. 1c). Note that because each tile is processed individually (here and
operationally) and the density of the EN grid on each tile depends on its sounding density, EN density
varies across tiles. This causes edge artifacts when combining adjacent tiles into a seamless map;

procedures for doing this are beyond the scope of this study.

Table 3. Estimation node (EN) information after removal of outliers. (See text for explanation.)

. Mean 2 MLD
Identifier Relative an:l EN Grid: ENs Mean soundings MLD Mean standard
R Spacing used for | hypotheses range MLD L.
(Northing) Depth (m) Rows*Cols analvsis? er EN per (m) (m) deviation
¥ P hypothesis (m)
27195 Shallow 12.4 20*18 188 4.8 3827 Oto1l 0.7 0.2
27285 Deep 1.6 308*308 94853 4.6 125 2to7 4.5 0.7
27080 Deeper 3.0 167*167 27823 6.3 32 1to 10 3.5 2.3
27075 Deepest 1.9 267*%120 18446 5.2 82 1to 18 1.5 0.5

Estimation Nodes after removal of no-data and outlier estimation nodes.
2Most likely depth (MLD).
3b Eliminate outliers and identify ENs whose MLD is bathymetry

A two-phase outlier screening process is employed; Table 4 provides information on the results of this

screening.

Table 4. Information about estimation node (EN) outlier screening.

Beyond
Identifier Relative | Total Grid | ENsw/o mD! Lidar ENs
(Northing) Depth ENs Soundings | Outliers | Penetration | Analysed
MLDs?
27195 Shallow 360 136 2 37 185
27285 Deep 94864 11 1232 0 93621
27080 Deeper 27889 0 318 14 27557
27075 Deepest 32040 13514 288 34 18204

!Mahalanobis Distance.
ZMost Likely Depth (MLD).
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First, 12 variables associated with each EN’s hypotheses are used to calculate Mahalanobis distances
(MDs; Mahalanobis 1936) for each EN. Examples of such variables are the number of hypotheses, total
sounding, the number of soundings associated with the MLD hypothesis and non-MLD hypotheses, and
the standard deviation of the depth of soundings associated with the MLD and non-MLD hypotheses.
Prior to calculating the MDs, variables are normalized between 0 and 100 using max-min normalization.
ENs are eliminated from subsequent analysis if their MD is in the outer 0.1% of the frequency distribution

—i.e., their MD is more than approximately 3.3 standard deviations from the mean MD.

Second, airborne lidar cannot penetrate below certain ocean depths. Examination of depth frequency
distributions across all tiles suggested that for the area studied, lidar could not penetrate below a depth
of 20 m. Hence ENs whose MLD depth was greater than 20 m and that had not already been removed by

the MD outlier analysis are eliminated as ‘“‘Beyond Lidar Penetration’ MLDs.

MLD frequency distributions for the four tiles were highly irregular — e.g., not clearly normal or bi-modal
— generally reflecting a separation of ocean surface and ocean bottom. Hence k-means clustering
(Steinhaus 1957, McQueen 1967) is applied to the MLD of the ENs retained for analysis to separate them
into two classes. Because a single variable — MLD -- is used in this clustering, this is equivalent to
separating a frequency distribution along a single axis. The cluster having the greatest difference between
its MLD and the average depth of all other hypotheses —i.e., the ‘non-MLD’ hypotheses -- is assumed to
contain some EN hypotheses that are ‘definitely’ bathymetry. The other cluster has a smaller difference
between the mean MLD and the mean depth of non-MLD hypotheses suggesting that both represent the
ocean surface. Note that not all ENs will represent ocean floor or surface, but some will represent the
water column. This is most likely to be problematic where water column soundings are more prevalent

than ocean floor soundings —i.e., in highly turbid waters or beyond the limits of lidar depth penetration.

The mean and standard deviation for the MLDs of the cluster identified as ‘definitely’ containing
bathymetry are used to define the bathymetry MLD confidence interval for the MLDs for all ENs. The
shallower MLD limit of the interval is the one-sided 99.9% confidence limit whereas the deeper MLD limit
is the one-sided 95% confidence limit. These ‘imbalanced limits’ were found to address the irregularly
shaped bathymetry frequency distributions across all tiles better than equal ‘shallower/deeper’ MLD

confidence limits.

The MLD bathymetry confidence interval is used to classify the MLDs of all ENs as Bathy or NotBathy. That

is, the MLD hypotheses of all ENs contained within the bathymetry confidence interval are classified as

12
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Bathy. All other hypotheses, even including those whose mean depth falls in the bathymetry depth

interval but are not the MLD for their EN, are classified as NotBathy.

Alternatives to this classification rule were evaluated, including clustering on all hypotheses rather than
on MLD hypotheses only, classifying as Bathy all hypotheses — MLD and non-MLD -- whose mean depth
fell in the bathymetry depth interval, and using the range instead of the standard deviation to define the
bathymetry confidence interval. None performed as well as the clustering approach and classification

rule adopted.

3c Preliminarily classify pulse returns as Bathy or NotBathy

The neighboring soundings for each EN are classified as Bathy if they are associated with the MLD and the
MLD has been classified as Bathy; otherwise they are classified as NotBathy (Table 5). Soundings that are
neighbors of two ENs whose Bathy or NotBathy classification agrees are assigned to the agreed class.
Two-neighbor soundings whose classifications do not agree are termed ‘mixed’ and are assigned to Bathy.
Tile 27195/Shallow with the least separation between ocean surface and ocean depth had the largest
percentage of mixed soundings and Tile 27075/Deepest had the smallest (Table 5). This assignment
scheme for mixed soundings has the effect of decreasing the number of false negatives (FNs) — undetected
bathymetry — which is a more serious error than a false positive (FP) — erroneously labelled bathymetry —
in nautical chart production. Assigning mixed soundings to Bathy also was found to improve the skill of
the subsequently fitted machine learning model.

Table 5. Bathy/NotBathy classification information for soundings that were neighbors of two estimation
nodes (ENs).

Identifier | Relative S(?undm,:gs Pure Bathy Pure “Mixed” %
(Northing) Depth Neighboring Soundings NotBathy Soundings | “Mixed”
Two ENs Soundings
27195 Shallow 307500! 138500 85700 83300 27
27285 Deep 4246400 2307400 1547700 391300 9
27080 Deeper 2081400 600900 1343100 137400 7
27075 Deepest 542100 3100 538400 600 <1

1All values rounded to nearest 100.

3d

soundings

Fit a machine learning model to produce a final Bathy/NotBathy classification for all

At this point a preliminary or ‘seed’ classification has assigned each sounding to the Bathy or NotBathy
class. However, only soundings associated with the MLD hypothesis will have been classified as Bathy.

This is problematic in areas where all hypotheses — MLD and others — are representative of bathymetry.
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This occurs on tiles where bathymetry is commonplace (27195/Shallow and 27285/Deep; Table 1), as well
as in areas where bathymetry is locally concentrated such as the northeastern area of 27075/Deepest
(Fig. 1d). Hence this assignment is a ‘preliminary’ or ‘seed’ classification that can be considered
conservative —i.e., soundings classified as Bathy have an extremely high ‘true probability’ of being Bathy,

but the classification likely contains a high number of FN errors.

Therefore, to produce a final classification, extreme gradient boosting (XGB) (Friedman 2001) is used to
fit a model using the seed classification. XGB is a decision-tree machine-learning technique that
progressively fits numerous simple or ‘shallow’ models/trees. Each successive tree is fitted with a focus
on the worst-predicted observations of the previous tree. Once statistical convergence or the maximum
number of trees is achieved, a composite XGB model is produced using a ‘majority vote’ approach. Lowell
et al. 2021) have demonstrated that the SAD employed (Table 2) contain a substantial amount of
bathymetric signal. Specifically, machine learning models that used the variables in Table 2 as
independent variables and NOAA’s Bathy/NotBathy as the dependent variable produced R? values

between 0.61 and 0.99 and global classification accuracies between 90% and 99.9%.

Hence, an XGB model that uses the seed CHRT/clustering-based classification as the dependent variable
and the variables in Table 5 as predictor variables is fitted for each tile. This modelis then used to estimate
p(Bathy)—i.e., the probability of each pulse return being Bathy for each sounding. Soundings are classified
as Bathy/NotBathy by applying to the p(Bathy) values a probability decision threshold (PDT) that equalizes
the true positive (Bathy) rate (TPR) and true negative (NotBathy) rate (TNR) rather than the conventional
PDT of 0.50; we term this alternative PDT the “optimal decision threshold” or “ODT.” Lowell et al. (2021)
demonstrated that the use of the ODT mitigates the impacts of the accuracy of a class — Bathy or NotBathy
— comprising a strong majority of soundings being maximized at the expense of the accuracy of the
minority class. Problems associated with applying a conventional PDT of 0.50 were notable for all tiles,
but especially for 27075/Deepest on which only 0.4% of pulse returns were identified by NOAA as being
Bathy.

4. Analysis, Results, and Discussion

Initially assessed are 1) how well the ‘preliminary/seed’ Bathy/NotBathy classification derived from
clustering the EN MLDs performs relative to the NOAA reference classification and 2) if the final XGB

model-based classification improves the preliminary seed classification relative to the NOAA reference
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classification. Methods that can be used for continuous improvement of classification methodology are

subsequently presented.
4a. Classification accuracies

Recall that the preliminary seed classification produced by clustering EN MLDs from the CHRT algorithm
is considered a conservative classification because only the most certain soundings are classified as Bathy.
Nonetheless, because it will be subsequently refined using an XGB model, it only needs to be ‘sufficiently
accurate’ that the XGB model will be able to detect and describe underlying relationships between
bathymetry and the SAD variables (Table 2). If this occurs, the XGB model should be able to identify
soundings not classified as Bathy initially, but that have a high p(Bathy) nonetheless. Subsequently
reclassifying all soundings based on the p(Bathy) values should thus expand the number of soundings
correctly classified as Bathy or NotBathy. A truly ideal outcome would be that the preliminary seed
classification is identical to the NOAA reference classification and thus does not require additional

processing.

Figure 5a suggests that the preliminary seed clustering classification relates strongly to the NOAA
reference classification. Global accuracy — or more precisely ‘agreement between the two’ — is the
percentage of all soundings that are correctly classified as Bathy or NotBathy; it is at least 85% for all tiles.
Moreover, the percent of correctly classified Bathy/NotBathy soundings — true positives (TPs) and true
negatives (TNs), respectively —is 81% or more for all tiles. Similarly, the percentage of false positives (FPs;
NotBathy soundings incorrectly labelled Bathy) and false negatives (FNs; Bathy soundings incorrectly

classified as NotBathy) is 20% or lower for all tiles.
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Figure 5. Classification accuracy/comparisons for various classification schemes.

The ability of an XGB model to improve on the preliminary classification — i.e., to harmonize it with the
NOAA classification -- can be assessed by comparing Figs. 5a and 5b. Readers are reminded that to classify
p(Bathy) as Bathy/NotBathy, the ODT that equalizes the TNR and TPR was employed throughout. Since
the FNR is 100 minus the TPR, the FPR is 100 minus the TNR, and the TPR and TNR are equal, the FNR and
FPR are equal. The use of the ODT also has the impact of making the global accuracy equal to the TNR
and TPR — e.g., if the classification of NotBathy soundings is 80% correct and the classification of Bathy

soundings is 80% correct, global accuracy for all soundings must also be 80%.

Figure 5b suggests that the XGB model improved the initial cluster-based ‘seed’ classification. Through
the use of an XGB model, global accuracy improved for all tiles except 27080/Deeper for which it
decreased by a single percent (85% to 84%). The TPR follows a similar pattern, although the TNR did
decrease for Tile 27285/Deep (from 100% to 94%). Of greatest real-world interest is that the FNR has
dropped considerably for all tiles except 27080/Deeper. In operational practice, a decrease in FNs not
only means improved navigational safety but also considerable cost savings. That is, because FNs are the
most serious error for nautical navigation, considerable human-time is spent verifying FNs. Hence
reducing the number of FNs decreases the time spent on manual editing. Thus except for the

27080/Deeper tile, the ML model has improved classification in a way that benefits operational workflows
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and improves navigational safety. We note a considerable portion of the 27080/Deeper tile (northwest
of Figure 1c) exceeds the depth of lidar penetration which undoubtedly impacts the accuracy of identifying

Bathy soundings.

Results can potentially be further improved by better understanding the XGB model fitted to the binary
Bathy/NotBathy cluster-based “seed” classification using the variables in Table 2 as the independent
variables. The classification accuracy of the model on this preliminary classification—i.e., the classification
used to fit the model rather than NOAA'’s reference classification -- is at least 81% for all tiles (Fig. 5¢c). The
goodness-of-fit/explanatory power of the model can also be evaluated by calculating an R? for binary
dependent variables (McFadden1974) that is conceptually equivalent to, and interpreted in the same
manner as, the more familiar R? value associated with linear regression. The R? values for individual
models are relatively high (Table 6) — particularly considering the large number of soundings (at least
600,000; Table 1) used to fit the models. The number of variables with an ‘importance value’ (a measures
of a variable’s contribution to an XGB model) greater than zero (0) was at least 11 for all tiles and the five
most important variables contained at least 95% of the total importance for all tiles except 27195/Shallow.
Coupled with the fact that other than depth, an inconsistent variety of SAD variables were important, the
information that provides discrimination between Bathy and NotBathy soundings appears to be
distributed among a suite of variables specific to each tile; XGB as a model development technique is able

to accommodate this variability.

These findings are potentially most relevant for the 27195/Shallow tile. Its relatively low cumulative
importance of the five most important variables (0.85) suggests that for shallow areas where the distance
between the ocean surface and ocean floor is less than the noise in the lidar sounding cloud, depth
contains a smaller proportion of the information the provides discrimination between Bathy and NotBathy
soundings than it does for deeper areas. Finally, SBET variables were among the five most important
variables in two of the models and abs_devia was present in one suggesting that both SAD associated with
individual soundings and SAD that describe flight path and airplane stability contain information that

provides discrimination between Bathy and NotBathy soundings.

Table 6. Information about XGB models.

Number of Cumulative
Identifier | Relative R- . . . 2 importance of the five
. 1 | Important Five most important variables .
(Northing) | Depth | squared Variables most important
variables
27195 | Shallow | 0.48 12 depth, last, first_of_many, stdYwPtR, 0.85
inciangle
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27285 Deep 0.79 14 depth, return_no, last_of_many, 0.95
intensity, plse_frm_hdng
depth, num_returns, return_no,
27 D 0.87 12 - " 0.99
080 ceper last_of _many plse_frm_hdng
depth, plse_frm_hdng, abs_devia,
27075 Deepest 0.97 11 scan. direct, stdxvZ 0.99

IMcFadden’s (McFadden 1974) pseudo R which cannot be tested for statistical significance.
2In descending order of importance.

4b. Continuous Improvement.

Because neither the NOAA classification nor the XGB classification developed can be considered ground
‘truth’ that results from direct measurement, being able to characterize differences between the two is
useful for improving the NOAA classification, the final XGB classification, or both. Two methods were

developed to provide such information.

The first method focusses on ‘feature’ or ‘statistical’ space and entails comparing p(Bathy) values from
the XGB model with the NOAA Bathy/NotBathy classification using logistic regression. The approach is
comparable to binning the soundings by p(Bathy) values and then determining if the proportion of
soundings classified as Bathy by NOAA in each bin equals the bin mid-point class value. The logistic
regression approach employed, however, provides information along the continuum of p(Bathy) values
without requiring an arbitrary number of bins. In this approach, NOAA’s Bathy/NotBathy classification is

used as the dependent variable and the following logistic equation is fitted:

p' = (1+e(-ot blL)))_l (1)

where Lis:

L=1In ((ﬁp)) 2)

and p is the p(Bathy) estimated by the XGB model. For each tile, if the NOAA classification and p(Bathy)
values from the XGB model are identical over the entire p(Bathy) range of 0.0 to 1.0, bg and b, in Equation
(1) will be 0.0 and 1.0, respectively. Furthermore, R? for Equation 1 will be 1.0 with an associated log-
likelihood p that is infinitesimally small. Such a ‘logistic agreement model’ was fitted for each tile (Table

7).

Table 7. Information on logistic agreement models.
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- . log-
Identifier | Relative R- S 2 3
(Northing) Depth squared? I|kell:ood bo by n
27195 Shallow 0.85 <0.001 1.1* 2.05* 576,000
27285 Deep 0.79 <0.001 19.3* 2.83* 7,599,000
27080 Deeper 0.52 <0.001 -1.3* 0.60* 3,706,000
27075 Deepest 0.77 <0.001 -2.3%* 0.70* 983,000

McFadden’s pseudo R? that cannot be tested for statistical significance.

2 * signifies the intercept value is significantly different from 0.0 at =0.001.

3 * signifies the slope value is significantly different from 1.0 at =0.001.

The relatively high R? values and low log-likelihood p values for the logistic models (Table 7) suggest a

strong and significant relationship between the p(Bathy) produced by the XGB model fitted on the

preliminary classification and the NOAA Bathy/NotBathy classification.

However, for all models the

intercepts (bo) and slopes (b:) are significantly different from 0.0 and 1.0, respectively.

To assess (dis)agreement over the entire probability range, the logistic agreement models of Table 7 can
be displayed graphically by plotting p’ vs. p over the interval {0,1}. This was done using the ODT that is
specific to each tile —i.e., by stretching p(Bathy) values in the range {0, ODT} to the interval {0.0, 0.5}, and
stretching p(Bathy) values in the range {ODT, 1.0) .0 to the interval {0.5, 1.0}. Note that this segmenting

of the probability range is the cause of the graphical discontinuities present at a p(Bathy) value of 0.5 for

some tiles (Figure 6).
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Figure 6. Agreement between p(Bathy) from NOAA classification and CHRT-based XGB model using logistic
agreement models. (“ODT” is the tile-specific optimal decision threshold.)

The graphs of p’ vs. p(Bathy) suggest bias along the range of p(Bathy) values whose magnitude varies by
tile. For Tiles 27080/Deeper (Fig. 6¢) and 27075/Deepest (Fig. 6d), relative to the NOAA Bathy/NotBathy
classification XGB p(Bathy) values are overestimated over the entire range, resulting in a relatively large
number of false positives (FPs). Given that these are the two tiles having depths that exceed lidar’s
penetration capability, we hypothesize that the FPs are spatially concentrated on the deeper edges of
areas that NOAA identified as bathymetry; this will be examined explicitly. The XGB model for Tile
27285/Deep (Fig. 6b) performs reasonably well below the ODT but severely underestimates p(Bathy)
above the ODT. For practical purposes, this may not be problematic. This indicates that, according to the

XGB model, any sounding whose p(Bathy) is above the ODT is ‘definitely’ Bathy. Accordingly, all pulse
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returns having a p(Bathy) value greater than the ODT will be classified as Bathy — which is likely to be the
correct classification for the vast majority of such soundings. Tile 27195/Shallow shows that below a
p(Bathy) value of about 0.15 the XGB model overestimates p(Bathy) thereby producing FP errors, but
higher p(Bathy) values are underestimates thereby resulting in FN errors. That Fig. 5b does not indicate
a large number of FNs for Tile 27195/Shallow suggests that examination of the spatial distribution of FNs

(and FPs) might be particularly useful for this tile.

Examination of the geographic distribution of the differences between the ML-based and reference
classifications is the second method of characterizing misclassification errors. To examine the spatial
distribution of the FNs and FPs, each tile was divided into 20 m pixels. If there is no spatial bias, the errors
will be distributed across each tile as the lidar pulse returns are —i.e., areas having a high density of pulse
returns should have a comparably high density of FNs and FPs. To determine if the densities of pulse
returns and errors were similar and therefore not spatially biased, the differences between the percent
of total lidar pulse returns and percent of FNs and FPs in each pixel can be calculated with negative values
indicating an ‘excess’ of FNs or FPs. These differences can then be displayed spatially (Figures 7, 8, 9, and
10) such that negative/brown values indicate ‘too many’ FNs or FPs, while positive/green values represent

‘too few.’

a. M <= -300 b
M -300 - -200 .

-200 - -100
-100 - -50
-50 - -25
-25-0
0-25
25-50
50 - 100
100 - 200

M 200 - 300

M- 300

[

| comil W

Figure 7. Tile 27195/Shallow. a. Difference between percent of Bathy points and False Negatives (FNs) in
each pixel (times 100). b. Difference between percent of NotBathy points and False Positives (FPs) in each
pixel (times 100). (Negative values indicate an “excess” of FNs or FPs.)

The pattern for FNs (undetected Bathy) for Tile 27195/Shallow (Fig. 7a) is unexpected: Bathy is fairly
accurately detected in the shallower northeast edge of data (relatively few FNs) where there are also
about the expected number of FPs (Fig. 7b), but there are ‘too many’ FNs in the deeper southwestern

portion. Also of interest is that there is an area (the green northwest-to-southeast band in Fig. 7b)
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between the shallow northeast and deeper southwest where there are ‘too few’ FPs. It is also notable
that the magnitude of differences for FPs is less than for FNs as indicated by the more muted colors in Fig.

7b.
The information for the other tiles can be interpreted similarly:

Tile 27285/Deep (Figure 8): There is an ‘excess’ of FNs (undetected Bathy) in the southeastern area (Fig.
8a) which is the shallowest area of the tile, and an excess of FPs (erroneously detected Bathy) in the
northwest. (The dark green north-south bands in Fig. 8a correspond to areas of flight line overlap where
sounding density is abnormally high.) The magnitude of differences is greater for FNs than for FPs as
indicated by the more muted colors for the latter (Fig. 8b). Noting that in practical terms FNs are
potentially more serious than FPs, the southeast of this tile may be an area where continuous
improvement efforts should be concentrated, although verifying the FPs in the northwest would also lead

to better accuracy for that portion of Tile 27285/Deep.

3. M <= -300 b. I
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-200 - -100
-100 - -50
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Figure 8. Tile 27285/Deep. a. Difference between percent of Bathy points and False Negatives (FNs) in
each pixel (times 100). b. Difference between percent of NotBathy points and False Positives (FPs) in each
pixel (times 100). (Negative values indicate an “excess” of FNs or FPs.)

Tile 27080/Deeper (Figure 9): There is an ‘excess’ of FNs in the northeastern and southwestern quadrants
of this tile (Fig. 9a). These are the shallowest area of this tile (see Fig. 1c) and are generally surrounded
by areas of relatively low differences (muted greens and browns). Figure 9b indicates that ‘too many’ FPs
are present on the eastern edge of this tile suggesting that either the XGB classification identifies too
many Bathy soundings in this area, that the NOAA classification does not identify enough, or both. The

‘too few’ FNs on the northwestern edge of Bathy pulse returns (Fig. 1c) coupled with the low level of FPs
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in this area suggest that for this tile, the overall error rate is low at the limits of lidar light penetration.
The ‘too high’ number of FPs on the shallowest eastern edge of this tile may suggest that NOAA’s
classification procedures, the XGB model, or both could be improved by further studying this area and the

depths it represents.

M <=-300

M -300 - -200 b.
-200 - -100
-100 - -50
-50 - -25
-25-0

-' 0-25

- l 25 - 50
50 - 100
100 - 200

M 200 - 300

M- 300

Figure 9. Tile 27280/Deeper. a. Difference between percent of Bathy points and False Negatives (FNs) in
each pixel (times 100). b. Difference between percent of NotBathy points and False Positives (FPs) in each
pixel (times 100). (Negative values indicate an “excess” of FNs or FPs.)

Tile 27075/Deepest (Figure 10): There is an ‘excess’ of FNs — undetected Bathy -- in the northeastern area
(Fig. 10a) which is the shallowest area and the area with the highest density of Bathy lidar pulse returns
(see Figure 1d). There are ‘too many’ FPs in the same area (Fig. 10b) further suggesting that Bathy may
be under-detected in this area (and/or that the XGB model performs poorly in this area). Interestingly,
however, FPs are fairly widely distributed spatially. This distribution of FPs strongly suggests that
undetected Bathy soundings might be present throughout the tile. It is possible that the widely
distributed FPs result from NOAA adopting a conservative approach to extracting bathymetry from areas
near the limit of lidar ocean penetration. Regardless of the reason, these results demonstrate how this

type of analysis could help to guide continuous improvement.
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Figure 10. Tile 27075/Deepest. a. Difference between percent of Bathy points and False Negatives (FNs)
in each pixel (times 100). b. Difference between percent of NotBathy points and False Positives (FPs) in
each pixel (times 100). (Negative values indicate an “excess” of FNs or FPs.)

5. Summary and Conclusions

Lidar soundings that identify bathymetry could be extracted from lidar point clouds without the need for
an a priori estimate of depth with average global accuracies, true positive rates, and true negative rates
of 93% compared to a reference classification for four 500 m-by-500m lidar data tiles located near Key
West, Florida. These ‘accuracies’ are achieved relative to a reference classification that is used
operationally but that also has an unknown level of uncertainty. The accuracy of a preliminary
Bathy/NotBathy classification derived solely from a density-based algorithm coupled with unsupervised
clustering was improved for three of the tiles by fitting and applying a machine learning extreme gradient
boosting model to produce a final Bathy/NotBathy classification. Models for each tile were fit using the
preliminary classification as the dependent variable and 14 SAD variables such as the intensity and
incidence angle of each pulse return as independent variables. Though depth was consistently the most
important SAD variable, the models for all four tiles contained at least 11 SAD variables indicating that the
information that distinguishes between Bathy and NotBathy soundings is dispersed among numerous SAD
variables with no consistency across all tiles. Moreover, the information that distinguishes between Bathy
and NotBathy soundings is spread among SAD that quantify pulse reflectance characteristics and airplane

stability with the importance of individual SAD.
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Two methods were employed to characterize differences between the reference and the ML-based
classification in feature/statistical and geographic space. These are exemplified by feature-space
information in Table 7 and Figure 6, and spatial information presented in Figures 7 through 10. One use
of this information would be refining the XGB final classification. However, a potentially more valuable
application would be continuous improvement of NOAA processing methodology. Because the true level
of accuracy in the XGB and NOAA classifications is unknown, the results in Table 7, Figure 6, and Figures 7
through 10 may be viewed as identifying differences between two independent classifications rather than
differences against ‘truth.” The differences might be due to weaknesses in either or both classification(s),
or the large-difference areas may be where bathymetry is simply difficult to extract. Knowing this could
lead to revisions in XGB and/or NOAA classification procedures depending on confidence in a
classification, the severity or potential practical consequences of the observed differences, and a variety

of other factors.

In closing, the dual objectives of this work are recalled: to diminish the impacts of extracting bathymetry
from lidar sounding clouds for shallow water using machine learning, and to achieve this without the
circularity of needing a pre-existing classification or even depth estimate. If one accepts that the NOAA
classification used for evaluation is an authoritative — but not error-free — reference, we argue that these
objectives have been achieved across a range of depth and data conditions. While refinement of methods
and a better understanding of the nature of errors can certainly provide improvements, this work at least
provides a workflow to decrease time-consuming manual effort in extracting bathymetry from lidar

sounding clouds.

List of Abbreviations

CHRT — CUBE (Calder and Mayer 2003) with Hierarchical Resolution Technique (Calder and Rice 2017)
EN — Estimation Node for the density-based algorithm

FN, FNR — False Negative Rate (Bathy soundings erroneously identified as NotBathy)
FP, FPR — False Positive Rate (NotBathy soundings erroneously identified as Bathy)
MD — Mahalanobis Distance (used for outlier analysis)

ML — Machine Learning

MLD — Most Likely Depth

NOAA — National Oceanic and Atmospheric Administration

PDT — Probability Decision Threshold

SAD — Sounding Attribute Data
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TN — True Negative Rate (NotBathy soundings correctly identified as NotBathy)
TP — True Positive Rate (Bathy soundings correctly identified as Bathy)

UTM — Universal Transverse Mercator
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