

Title Page

Extracting Shallow-water Bathymetry from Lidar Point Clouds Using Pulse Attribute Data: Merging Density-based and Machine Learning Approaches

Kim Lowell¹, Brian Calder

Center for Coastal and Ocean Mapping and Joint Hydrographic Center

University of New Hampshire

24 Colovos Road,

Durham, NH 03824 UNITED STATES

¹Corresponding Author

Titles and email addresses:

Kim Lowell, Research Data Scientist, klowell@ccom.unh.edu (ORCID: 000-0002-8326-4022)

Brian Calder, Research Professor, brc@ccom.unh.edu

Funding: This work was supported by the National Oceanic and Atmospheric Administration (NOAA) Grant NA15NOS400020.

19 **Disclosure:** The authors have no potential competing financial nor non-financial interests in the work
20 presented.

21 **Data availability statement:** Data that support the findings of this study are available at the link
22 doi.org/10.6084/m9.figshare.12597404. SBET data in the required format are provided at the figshare
23 link. Though the .las data used are available to the public, the authors are not authorized to make them
24 directly available. A small sample of the data for a single data tile are provided at the figshare link.
25 Complete data sets (2016_420500e_2728500n.laz, 2016_426000e_2708000n.laz,
26 2016_428000e_2719500n.laz, and 2016_430000e_2707500n.laz) can be downloaded from
27 <https://coast.noaa.gov/digitalcoast/data/> (Data set name: 2016 NGS Topobathy Lidar: Key West FL') as
28 compressed .laz files. These can be decompressed using the LASzip tool which can be downloaded from
29 laszip.org.

Total word count: 9600 **Word count excluding title page and references:** 7746

Extracting Shallow-water Bathymetry from Lidar Point Clouds Using Pulse Attribute Data: Merging Density-based and Machine Learning Approaches

Abstract

37 To automate extraction of bathymetric soundings from lidar point clouds, two machine learning (ML¹)
38 techniques were combined with a more conventional density-based algorithm. The study area was four
39 data “tiles” near the Florida Keys. The density-based algorithm determined the most likely depth (MLD)
40 for a grid of “estimation nodes” (ENs). Unsupervised k -means clustering determined which EN’s MLD
41 depth and associated soundings represented ocean depth rather than ocean surface or noise to produce
42 a preliminary classification. An extreme gradient boosting (XGB) model was fitted to pulse return
43 metadata – e.g., return intensity, incidence angle -- to produce a final *Bathy/NotBathy* classification.
44 Compared to an operationally produced reference classification, the XGB model increased global accuracy
45 and decreased the false negative rate (FNR) – i.e., undetected bathymetry – that are most important for
46 nautical navigation for all but one tile. Agreement between the final XGB and operational reference
47 classifications ranged from 0.84 to 0.999. Imbalance between *Bathy* and *NotBathy* was addressed using
48 a probability decision threshold that equalizes the FNR and the true positive rate (TPR). Two methods are
49 presented for visually evaluating differences between the two classifications spatially and in feature-
50 space.

Keywords: shallow water bathymetry, airborne lidar, Florida Keys, extreme gradient boosting, k-means clustering

1. Introduction and Approach

56 It is generally accepted that Hickman and Hogg (1969) authored the first article published on the use of
57 airborne lidar ('light detection and ranging') data for bathymetric mapping. They observed that due to
58 limitations on the penetration of light through water, lidar is most appropriate for shallow water charting.
59 Heritage and Hetherington (2007) noted that the initial focus of lidar research had been primarily on the
60 sensor and data acquisition rather than data analysis or specific applications. It could be argued that this
61 tendency has continued with Andersen et al. (2017), for example, stating that as of 2017 there was no
62 standardized accepted methodology for extracting surface points from green lidar point data alone –
63 although green and near-infrared lidar data are currently combined operationally to extract water surface

¹ A list of abbreviations is provided at the end of the article.

64 returns. Nonetheless, recent review articles (Kashani et al. 2015; Kutser et al. 2020) suggest that
65 difficulties associated with extracting application-specific information from lidar point clouds are now
66 continually being addressed by the scientific community. As lidar data processing/analysis research has
67 increased in recent years, new concepts for improving lidar sensors have also continued (e.g., Kinzel et al.
68 2021; Mandlburger et al. 2020; Mitchell and Thayer 2014).

69 This increased interest in lidar data analysis has been driven by a desire to decrease data acquisition costs
70 to better understand various phenomena. For example, lidar data are proving to be particularly useful to
71 characterize benthic habitat. Various analytical approaches have been explored: characterizing lidar
72 waveforms (Collin et al. 2008; Eren et al. 2018), using machine learning approaches (e.g., Pittman et al.
73 2009; Su et al. 2019), and classifying benthic habitat using variables that describe characteristics of lidar
74 pulses (Tulldahl and Wikstrom 2012) – ‘soundings’ in marine parlance.

75 The focus of this article is the use of airborne lidar data for shallow water bathymetry charting – defined
76 herein as water depths less than 20 m (although Jawak et al. 2015 noted that lidar can penetrate up to
77 60m under ideal conditions). Much bathymetric depth work has focused on analysing the full lidar
78 waveform for a single spectral wavelength (see, for example, Pe’eri and Philpot 2007; Fernandez-Diaz et
79 al. 2014; Wang et al. 2015; Xing et al. 2019.) Waveform soundings have the potential to identify the water
80 surface and bottom due to increased reflectance from both. Single wavelength waveform data are
81 operationally advantageous because they potentially decrease sensor complexity but are
82 disadvantageous because of increased data volumes compared to multi-wavelength systems that collect
83 point data. Approaches to using waveform soundings for bathymetric mapping are varied and examples
84 include near-surface water modelling (Zhao et al. 2017), analysis of water column backscatter (Kinzel et
85 al. 2012; Nagle and Wright 2016), and a ‘surface-volume-bottom’ approach that provides a time-saving
86 closed-form solution (Schwarz et al. 2019). The analysis of lidar point – rather than lidar waveform – data
87 has also received considerable attention (see, for example, Brzank et al. (2008), Yang et al. 2020) including
88 its combination with data from passive sensors (e.g., Dietrich 2017, Agrifiotis et al. 2019a).

89 Numerous researchers have examined ways of extracting bathymetry from such waveform data
90 algorithmically (e.g., Lyzenga et al. 2006, Pacheco et al. 2015, Li et al. 2019). In such work, lidar is
91 sometimes used primarily as the reference data against which analytical methods are evaluated (e.g.,
92 Agrifiotis et al. 2019b). In recent years, many such studies have examined various machine learning
93 techniques: neural networks (Liu et al. 2015), support vector machines (Misra et al. 2018; Wang et al.

94 2018), principal components analysis (Gholamalifard et al. 2013), partial least squares (Niroumand-Jadidi
95 et al. 2018), and random forests (Kogut and Weistrock 2019).

96 The present research is focused on extracting shallow water bathymetry from lidar point clouds – i.e.,
97 identifying which lidar soundings represent the ocean bottom. The approach adopted combines a density-
98 based algorithm developed for multi-beam echo sounder (MBES) sonar data with machine learning (ML)
99 techniques. This methodological fusion is explored to overcome two considerable challenges. First, lidar
100 data are collected from airborne platforms, resulting in a substantial number of soundings that represent
101 the ocean surface and near-surface. Second, no ground-truth data are available for training ML models.
102 The latter difficulty was also recognized and addressed by Kerr and Purkis (2018), who developed a
103 workflow for optical data. The former is suggestive of a weak bathymetric signal within a cloud of lidar
104 soundings. The latter is particularly vexing because it creates a processing circularity: to determine which
105 lidar soundings represent ocean depth one needs at the least an initial depth estimate or, more ideally, a
106 *Bathy/NotBathy* designation for each sounding. This article describes a method that overcomes both of
107 these difficulties and documents the results relative to a reference classification that is produced by
108 operationally adopted procedures.

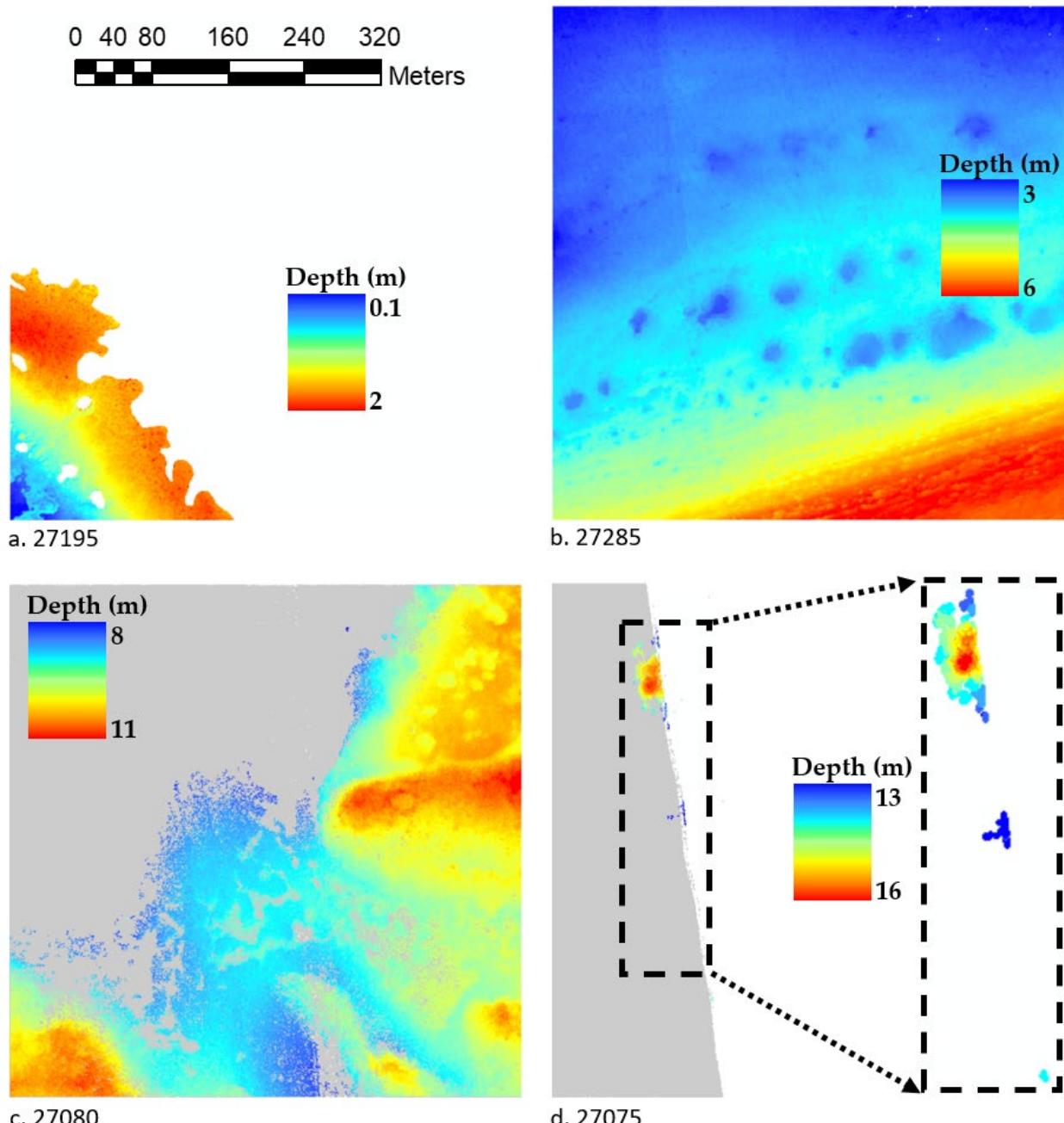
109 **2. Study Area and Lidar Data**

110 The airborne lidar data used for this work were captured by the United States National Oceanic and
111 Atmospheric Administration (NOAA) between April 22 and 25, 2016, in the vicinity of Key West, Florida
112 (24°33' N, 81°46' W). Data were acquired by collecting lidar soundings over multiple overlapping flight
113 lines generally having a north-south orientation using a Riegel™ VQ-880-G sensor that employs a counter-
114 clockwise circular scan and a 20° scan angle. The nominal flying altitude of 400 m above mean sea level
115 results in an individual swath width of approximately 300 m and the pulse frequency of 45,000 pulses per
116 second provides a spatial density of approximately 10 soundings sq m^{-1} for a single flight line. The lidar
117 data were post-processed by NOAA by “cutting” the data from all flight lines into 500m-by-500m data
118 “tiles” aligned north-south and east-west with the Universal Transverse Mercator (UTM) projection.

119 Data for four tiles (Figure 1) were provided by NOAA in the format of the LAS data standard Version 1.4-
120 R13 (Point Data Record Format 6) (ASPRS 2013). These tiles were selected because they are
121 representative of the range of sounding densities, depths, and ocean floor characteristics encountered in
122 operational shallow water bathymetric mapping (Table 1). For convenience, the first five digits of each
123 tile’s northing are employed as its identifier as well as a depth indicator – Shallow, Deep, Deeper, or
124 Deepest. The overlap in flight lines produces a combined average sounding density between 13 and 30

125 returns m^{-2} , although sounding density varies across each tile and is considerably higher where flight lines
126 overlap.

127



128
129 Figure 1. Depth maps (1m pixels) for the four tiles based on depth determined by NOAA. White areas
130 have no usable data. Gray areas have usable data, but no soundings were identified as bathymetry by
131 NOAA. Due to sparseness of NOAA-identified bathymetry on the deepest tile (27075; Fig. 1d), an
132 enlargement of the area containing bathymetry is shown with bathymetric soundings accentuated and
133 gray background removed.

134 Table 1. Descriptive information about the data tiles employed in this study.

Identifier (North- ing)	Relative Depth	Description	Area (km ²)	Approx. MSL depth range (m)	Total Soundings (million)	Mean return density (pts/m ²)	% Bathy- metry	Number of flight lines
27195	Shallow	Shallow area including some mangrove swamps	3	0 to 2	0.6	27.6	78	5
27285	Deep	Gradual slope with a few scattered mounds about 1 m tall	25	3 to 6	7.6	30.4	76	7
27080	Deeper	Gradual slope cut by relatively shallow channels; the northwest is poorly classified	25	8 to 11	3.7	14.8	21	7
27075	Deepest	Depth mostly beyond limit of lidar penetration except for mound in northeast and isolated points on eastern edge.	7.5	13 to 16	0.9	13.3	0.4	2

135

136 Attached to each sounding are its geographic (UTM) coordinates, depth, time of acquisition, and a variety
 137 of metadata that we term “sounding attribute data” (SAD; Table 2). Lidar depth is expressed in meters
 138 relative to mean sea level determined using NOAA’s VDATUM tool (<https://vdatum.noaa.gov/>). Sounding-
 139 based SAD are either acquired by the lidar instrument or were derived post-acquisition. Also provided
 140 were Smoothed Best Estimate of Trajectory (SBET) data. These are produced by the Applanix software by
 141 post-processing pulse return data from each flight line using a proprietary method based on a tightly
 142 coupled extended Kalman filter. SBET data have had noise removed to describe the most likely airplane
 143 position and orientation at 200 Hz. Flight path and orientation consistency are described in the SBET data
 144 by the standard deviations for the x, y, and z location of the plane and its yaw, pitch, and roll extracted
 145 from the Kalman filter’s post-observation covariance matrix. SBET values were assigned to individual
 146 soundings by matching time of acquisition.

147 An additional variable was created to characterize platform stability at the moment of data acquisition. It
 148 was observed that the crenularity – i.e., the deviation from a straight line -- of the margin of soundings of
 149 individual flight lines varied along the flight line (Figs. 2a and 2b). We hypothesized that this crenularity
 150 reflected local wind conditions that may in turn impact surface water conditions and lidar reflectance
 151 characteristics. To quantify this, sounding cloud ‘edge points’ were identified algorithmically along the
 152 length of the flight path (Fig. 2a). The two end soundings were considered ‘corner’ soundings and the
 153 equation of the straight line between them calculated (Fig. 2b). The orthogonal distance from each edge

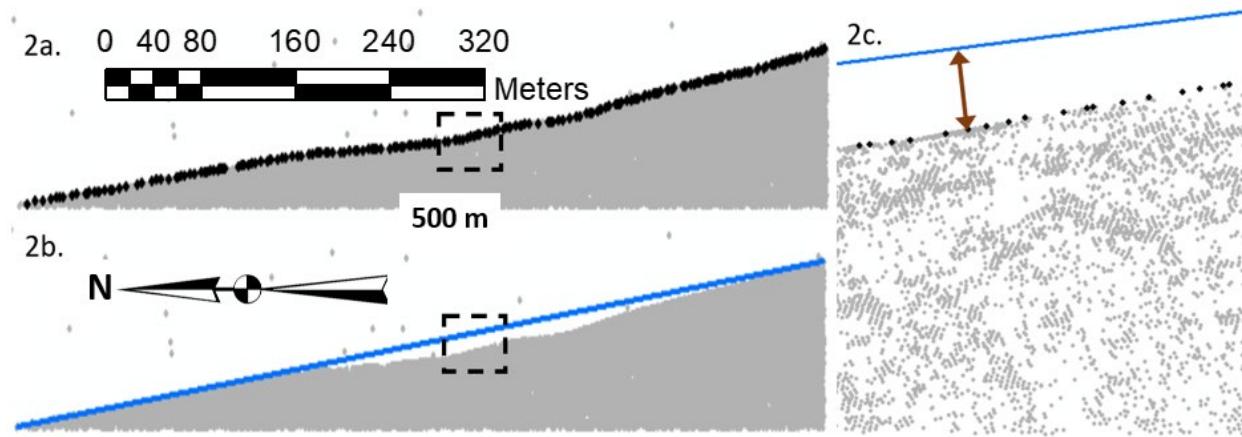
154 sounding to the straight line was determined (Fig. 2c) and the absolute value of this deviation was assigned
155 to each sounding by matching time of acquisition. This variable is termed *abs_devia*.

156 Table 2. Depth and sounding attribute data (SAD) employed in this study for machine learning (ML)
157 modelling. Variable names are *italicised* throughout the article.

SAD Type	Nature	Variable (Name)
Depth	Depth	Depth as provided via lidar post-processing (<i>depth</i> in m)
Sounding-based	Pulse-specific	<ul style="list-style-type: none">Intensity of sounding return (<i>intensity</i>; 16-bits – i.e., maximum value is 65536)Number of soundings (<i>numreturns</i>)Sounding number from a given lidar pulse (<i>return_no</i>)First sounding of many (<i>first_of_many</i>; 0 or 1)Last sounding of many (<i>last_of_many</i>; 0 or 1)Last sounding (<i>last</i>; 0 or 1)Scan direction (<i>scan_direct</i>; -1 (backwards) or +1 (forward))Azimuth from airplane to pulse (<i>azim2pulse</i>; 0⁰ to 360⁰ in decimal degrees)Incident scan angle corrected for yaw, pitch, and roll (<i>inciangle</i>; recorded in decimal degrees)Difference between pulse direction and airplane heading (<i>pulse_frm_hdng</i>; 0⁰ to 90⁰ decimal degrees)
Airplane stability	SBET	<ul style="list-style-type: none">Aircraft positional – sum of standard deviations of x, y, and z (<i>stdXYZ</i>)Aircraft platform – sum of standard deviations of Yaw, Pitch, and Roll (<i>stdYwPtR</i>)Deviation from flight path – see Figure 2 and text for explanation (<i>abs_devia</i>)

158
159 Most of the SAD variables can be considered ‘direct features’ (Höfle and Rutzinger 2011) that are
160 measured, although *abs_devia* would be considered an ‘indirect feature’ as it is derived post-acquisition.
161 The SAD variables in Table 2 were retained for analysis because of their documented or hypothesized
162 impact on light reflectance directly and bathymetric signal indirectly. Examples of their documented
163 impact include *intensity* (Schmidt et al. 2012), *abs_devia* and SBET variables as surrogates for surface
164 waves (Westfeld et al. 2017; Maas et al. 2019; Lowell et al. 2021), and *inciangle* (Birkeback et al. 2018;
165 Okhrimenko and Hopkinson 2020).

166



167
 168 Figure 2. Extraction of orthogonal deviations from a single flight line (the western edge of the deepest tile
 169 27075; Fig. 1d). To conserve space, North points to the left. a) Lidar point cloud (gray) and derived
 170 edgepoints (black). The dashed box is the area of enlargement in Fig. 2c. b) “Corner-to-corner” straight
 171 flight path (blue line). c) Orthogonal deviation of a single edge point from the corner-to-corner flight path
 172 edge of lidar point cloud.

173 Finally, also available for each sounding is the *Bathy/NotBathy* classification produced by NOAA using in-
 174 house methods. The LAS data standard classes of interest herein are ‘Bth’, ‘Unc’, and ‘LP-Nz’ that
 175 generally represent bathymetry, water surface, and water column noise, respectively. For the current
 176 work, these were condensed into two classes – *Bathy* (‘Bth’ only) and *NotBathy* (‘Unc’ and ‘LP-Nz’). This
 177 *Bathy/NotBathy* classification is used only as the reference classification against which the results of the
 178 method developed are compared – i.e., it is not used in the method developed. Moreover, although the
 179 NOAA *Bathy/NotBathy* classification is the most authoritative available and is an appropriate standard for
 180 comparison since it is used operationally, it is not ‘ground truth’ produced via direct measurement or
 181 observation.

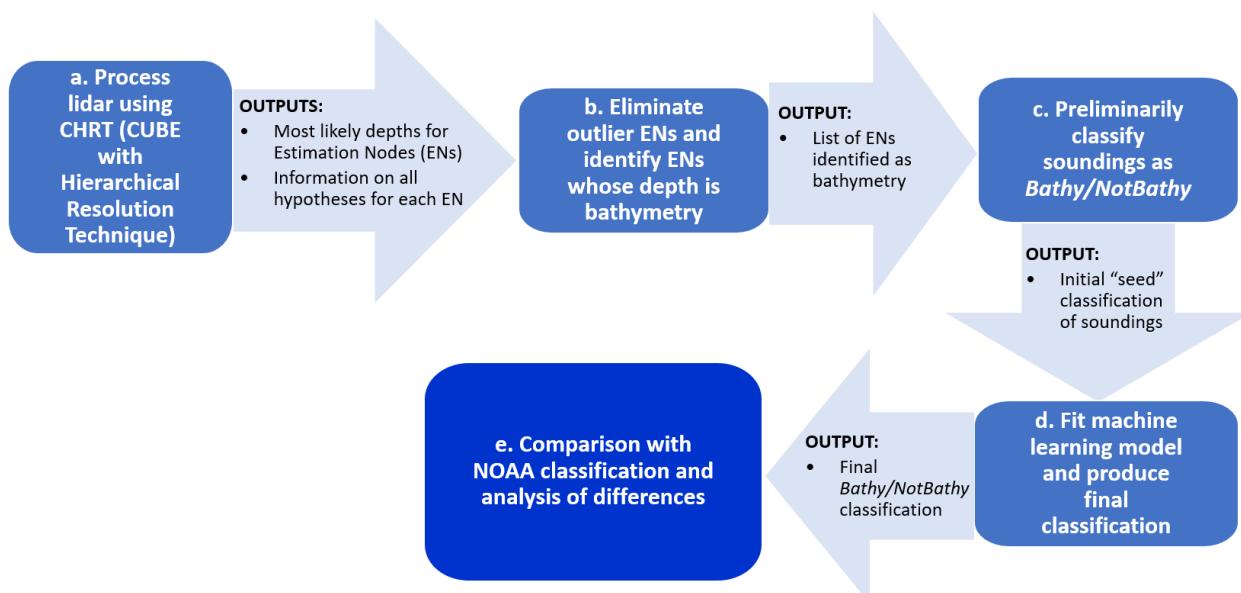
182 For analysis, notable in the data tiles employed is the spatial distribution of *Bathy* – i.e., the not-gray points
 183 in Figure 1. Tile 27195/Shallow (Fig. 1a) is the shallowest tile, is located in an area of mangrove swamps,
 184 and all of it except the southwest area has been classified by NOAA as being above sea level. For such
 185 areas, NOAA creates a data exclusion mask so that only soundings from aquatic areas are classified as
 186 *Bathy/NotBathy*. For consistency, the same practice is adopted herein and only data from the colored
 187 area shown in Fig. 1a are employed in subsequent analyses. Also notable – and representative of real-
 188 world conditions – are the incomplete *Bathy* coverages of Tiles 27080/Deeper (Fig. 1c) and 27075/Deepest
 189 (Fig. 1d). This results from increasing depths that ultimately exceed the depth limit of lidar penetration.
 190 It is most pronounced for Tile 27075/Deepest on which only 0.4% of soundings are *Bathy* (Table 1).

191

192 **3. Procedures**

193 Figure 3 is a schematic showing the procedural flow of the work undertaken. This is explained below and
194 was applied to each data tile individually.

195



196
197 Figure 3. Schematic of data processing flow. Letters refer to parts of section 3 of the paper; the final step
198 ("e.") is not further described in section 3.

199 **3a. Process lidar using density-based/CHRT algorithm**

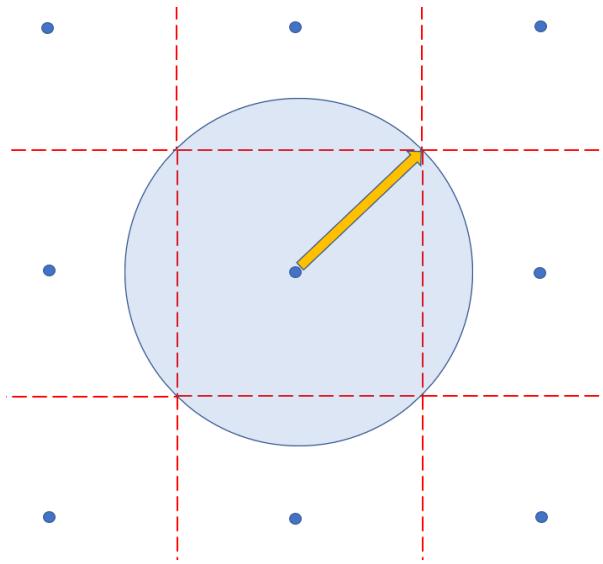
200 This process identifies the most likely depth (MLD) for a north-south/east-west grid of 'estimation nodes'
201 (ENs) established over each lidar data tile. This information is produced by processing the lidar point cloud
202 data through a density-based algorithm as described below.

203 The algorithm employed in this study is CHRT (CUBE with Hierarchical Resolution Technique; Calder and
204 Rice 2017) which is a modification of CUBE (Combined Uncertainty and Bathymetry Estimator; Calder and
205 Mayer 2003). CHRT is incorporated into many software packages that are widely used operationally and
206 scientifically for processing MBES sonar data (Lecours et al. 2016). Its scientific use has also been extended
207 into other applications such as benthic habitat mapping (Calvert et al. 2015).

208 CHRT establishes a grid of ENs across an area of interest with the spacing of the grid determined by the
209 density of the soundings. Given the non-rectangular nature of the spatial coverage for some tiles in this
210 study (see Figure 1), some ENs on a grid have no associated lidar soundings and are removed from further

211 analysis. Similarly, as will be explained subsequently, others have aberrant MLD values due to data
212 anomalies and sparseness; these are also removed using outlier analysis.

213 To estimate the MLD for a single EN, the ‘neighboring’ soundings for the EN are identified. An EN’s
214 ‘neighboring’ soundings are those within a geographic radius defined by the grid spacing for a tile. The
215 radius used is the Euclidean distance to the ‘pixel corner’ defined by a point equidistant from four adjacent
216 ENs (Figure 4). Thus 50-60% of soundings are neighbors of two ENs depending on local sounding density.



217
218 Figure 4. Search radius to determine “neighboring” pulse returns. Blue points are estimation nodes (ENs).
219 The orange arrow defines the neighbor radius.

220 For each EN, its neighboring soundings are progressively ingested with the first sounding defining an initial
221 depth ‘hypothesis.’ A variety of hyperparameters or ‘tuning’ parameters establish initial thresholds for
222 determining if two soundings represent different depths; default parameters are based on user
223 experience with the location and variability of depth frequency distributions for various depth conditions.
224 The depth of the second sounding ingested is evaluated against the hyperparameters to determine if it
225 also ‘belongs to’ the first depth hypothesis, or if its depth is ‘different enough’ to be considered a new
226 hypothesis. This process continues until all neighboring soundings have been ingested and one or more
227 depth hypotheses have been developed and characterized. As the process progresses, frequency
228 distributions for each hypothesis are produced and their characteristics – rather than the initial
229 hyperparameters -- increasingly control the assignment of newly ingested soundings to existing
230 hypotheses, or to the creation of a new hypothesis. After all soundings have been ingested,
231 disambiguation rules determine which hypothesis represents the MLD for the EN. A simplistic example is
232 that the hypothesis with the deepest mean depth is considered the MLD although such a rule ignores

233 factors such as turbidity in the water column or the number of soundings in the deepest hypothesis;
234 current disambiguation rules generally identify the hypothesis having the greatest number of soundings
235 as most likely.

236 Table 3 provides summary information about the ENs for each tile. One notable point is that the variability
237 (standard deviation) of MLDs for tile 27080/Deeper is considerably larger than for other tiles. This reflects
238 both a greater variability in geomorphometry for this tile and the large area in the northwest beyond the
239 range of lidar penetration (Fig. 1c). Note that because each tile is processed individually (here and
240 operationally) and the density of the EN grid on each tile depends on its sounding density, EN density
241 varies across tiles. This causes edge artifacts when combining adjacent tiles into a seamless map;
242 procedures for doing this are beyond the scope of this study.

243 Table 3. Estimation node (EN) information after removal of outliers. (See text for explanation.)

Identifier (Northing)	Relative Depth	Grid Spacing (m)	EN Grid: Rows*Cols	ENs used for analysis ¹	Mean hypotheses per EN	Mean soundings per hypothesis	MLD ² range (m)	Mean MLD (m)	MLD standard deviation (m)
27195	Shallow	12.4	20*18	188	4.8	3827	0 to 1	0.7	0.2
27285	Deep	1.6	308*308	94853	4.6	125	2 to 7	4.5	0.7
27080	Deeper	3.0	167*167	27823	6.3	32	1 to 10	3.5	2.3
27075	Deepest	1.9	267*120	18446	5.2	82	1 to 18	1.5	0.5

244 ¹Estimation Nodes after removal of no-data and outlier estimation nodes.

245 ²Most likely depth (MLD).

246

247 3b Eliminate outliers and identify ENs whose MLD is bathymetry

248 A two-phase outlier screening process is employed; Table 4 provides information on the results of this
249 screening.

250 Table 4. Information about estimation node (EN) outlier screening.

Identifier (Northing)	Relative Depth	Total Grid ENs	ENs w/o Soundings	MD ¹ Outliers	Beyond Lidar Penetration MLDs ²	ENs Analysed
27195	Shallow	360	136	2	37	185
27285	Deep	94864	11	1232	0	93621
27080	Deeper	27889	0	318	14	27557
27075	Deepest	32040	13514	288	34	18204

251 ¹Mahalanobis Distance.

252 ²Most Likely Depth (MLD).

253 First, 12 variables associated with each EN's hypotheses are used to calculate Mahalanobis distances
254 (MDs; Mahalanobis 1936) for each EN. Examples of such variables are the number of hypotheses, total
255 sounding, the number of soundings associated with the MLD hypothesis and non-MLD hypotheses, and
256 the standard deviation of the depth of soundings associated with the MLD and non-MLD hypotheses.
257 Prior to calculating the MDs, variables are normalized between 0 and 100 using max-min normalization.
258 ENs are eliminated from subsequent analysis if their MD is in the outer 0.1% of the frequency distribution
259 – i.e., their MD is more than approximately 3.3 standard deviations from the mean MD.

260 Second, airborne lidar cannot penetrate below certain ocean depths. Examination of depth frequency
261 distributions across all tiles suggested that for the area studied, lidar could not penetrate below a depth
262 of 20 m. Hence ENs whose MLD depth was greater than 20 m and that had not already been removed by
263 the MD outlier analysis are eliminated as “Beyond Lidar Penetration” MLDs.

264 MLD frequency distributions for the four tiles were highly irregular – e.g., not clearly normal or bi-modal
265 – generally reflecting a separation of ocean surface and ocean bottom. Hence *k*-means clustering
266 (Steinhaus 1957, McQueen 1967) is applied to the MLD of the ENs retained for analysis to separate them
267 into two classes. Because a single variable – MLD -- is used in this clustering, this is equivalent to
268 separating a frequency distribution along a single axis. The cluster having the greatest difference between
269 its MLD and the average depth of all other hypotheses – i.e., the ‘non-MLD’ hypotheses -- is assumed to
270 contain some EN hypotheses that are ‘definitely’ bathymetry. The other cluster has a smaller difference
271 between the mean MLD and the mean depth of non-MLD hypotheses suggesting that both represent the
272 ocean surface. Note that not all ENs will represent ocean floor or surface, but some will represent the
273 water column. This is most likely to be problematic where water column soundings are more prevalent
274 than ocean floor soundings – i.e., in highly turbid waters or beyond the limits of lidar depth penetration.

275 The mean and standard deviation for the MLDs of the cluster identified as ‘definitely’ containing
276 bathymetry are used to define the bathymetry MLD confidence interval for the MLDs for all ENs. The
277 shallower MLD limit of the interval is the one-sided 99.9% confidence limit whereas the deeper MLD limit
278 is the one-sided 95% confidence limit. These ‘imbalanced limits’ were found to address the irregularly
279 shaped bathymetry frequency distributions across all tiles better than equal ‘shallower/deeper’ MLD
280 confidence limits.

281 The MLD bathymetry confidence interval is used to classify the MLDs of all ENs as *Bathy* or *NotBathy*. That
282 is, the MLD hypotheses of all ENs contained within the bathymetry confidence interval are classified as

283 *Bathy*. All other hypotheses, even including those whose mean depth falls in the bathymetry depth
284 interval but are not the MLD for their EN, are classified as *NotBathy*.

285 Alternatives to this classification rule were evaluated, including clustering on all hypotheses rather than
286 on MLD hypotheses only, classifying as *Bathy* all hypotheses – MLD and non-MLD -- whose mean depth
287 fell in the bathymetry depth interval, and using the range instead of the standard deviation to define the
288 bathymetry confidence interval. None performed as well as the clustering approach and classification
289 rule adopted.

290 **3c Preliminarily classify pulse returns as *Bathy* or *NotBathy***

291 The neighboring soundings for each EN are classified as *Bathy* if they are associated with the MLD and the
292 MLD has been classified as *Bathy*; otherwise they are classified as *NotBathy* (Table 5). Soundings that are
293 neighbors of two ENs whose *Bathy* or *NotBathy* classification agrees are assigned to the agreed class.
294 Two-neighbor soundings whose classifications do not agree are termed ‘mixed’ and are assigned to *Bathy*.
295 Tile 27195/Shallow with the least separation between ocean surface and ocean depth had the largest
296 percentage of mixed soundings and Tile 27075/Deepest had the smallest (Table 5). This assignment
297 scheme for mixed soundings has the effect of decreasing the number of false negatives (FNs) – undetected
298 bathymetry – which is a more serious error than a false positive (FP) – erroneously labelled bathymetry –
299 in nautical chart production. Assigning mixed soundings to *Bathy* also was found to improve the skill of
300 the subsequently fitted machine learning model.

301 Table 5. *Bathy/NotBathy* classification information for soundings that were neighbors of two estimation
302 nodes (ENs).

Identifier (Northing)	Relative Depth	Soundings Neighboring Two ENs	Pure <i>Bathy</i> Soundings	Pure <i>NotBathy</i> Soundings	“Mixed” Soundings	% “Mixed”
27195	Shallow	307500 ¹	138500	85700	83300	27
27285	Deep	4246400	2307400	1547700	391300	9
27080	Deeper	2081400	600900	1343100	137400	7
27075	Deepest	542100	3100	538400	600	<1

303 ¹All values rounded to nearest 100.

304 **3d Fit a machine learning model to produce a final *Bathy/NotBathy* classification for all
305 soundings**

306 At this point a preliminary or ‘seed’ classification has assigned each sounding to the *Bathy* or *NotBathy*
307 class. However, only soundings associated with the MLD hypothesis will have been classified as *Bathy*.
308 This is problematic in areas where all hypotheses – MLD and others – are representative of bathymetry.

309 This occurs on tiles where bathymetry is commonplace (27195/Shallow and 27285/Deep; Table 1), as well
310 as in areas where bathymetry is locally concentrated such as the northeastern area of 27075/Deepest
311 (Fig. 1d). Hence this assignment is a ‘preliminary’ or ‘seed’ classification that can be considered
312 conservative – i.e., soundings classified as *Bathy* have an extremely high ‘true probability’ of being *Bathy*,
313 but the classification likely contains a high number of FN errors.

314 Therefore, to produce a final classification, extreme gradient boosting (XGB) (Friedman 2001) is used to
315 fit a model using the seed classification. XGB is a decision-tree machine-learning technique that
316 progressively fits numerous simple or ‘shallow’ models/trees. Each successive tree is fitted with a focus
317 on the worst-predicted observations of the previous tree. Once statistical convergence or the maximum
318 number of trees is achieved, a composite XGB model is produced using a ‘majority vote’ approach. Lowell
319 et al. 2021) have demonstrated that the SAD employed (Table 2) contain a substantial amount of
320 bathymetric signal. Specifically, machine learning models that used the variables in Table 2 as
321 independent variables and NOAA’s *Bathy/NotBathy* as the dependent variable produced R^2 values
322 between 0.61 and 0.99 and global classification accuracies between 90% and 99.9%.

323 Hence, an XGB model that uses the seed CHRT/clustering-based classification as the dependent variable
324 and the variables in Table 5 as predictor variables is fitted for each tile. This model is then used to estimate
325 $p(\text{Bathy})$ – i.e., the probability of each pulse return being *Bathy* for each sounding. Soundings are classified
326 as *Bathy/NotBathy* by applying to the $p(\text{Bathy})$ values a probability decision threshold (PDT) that equalizes
327 the true positive (*Bathy*) rate (TPR) and true negative (*NotBathy*) rate (TNR) rather than the conventional
328 PDT of 0.50; we term this alternative PDT the “optimal decision threshold” or “ODT.” Lowell et al. (2021)
329 demonstrated that the use of the ODT mitigates the impacts of the accuracy of a class – *Bathy* or *NotBathy*
330 – comprising a strong majority of soundings being maximized at the expense of the accuracy of the
331 minority class. Problems associated with applying a conventional PDT of 0.50 were notable for all tiles,
332 but especially for 27075/Deepest on which only 0.4% of pulse returns were identified by NOAA as being
333 *Bathy*.

334 **4. Analysis, Results, and Discussion**

335 Initially assessed are 1) how well the ‘preliminary/seed’ *Bathy/NotBathy* classification derived from
336 clustering the EN MLDs performs relative to the NOAA reference classification and 2) if the final XGB
337 model-based classification improves the preliminary seed classification relative to the NOAA reference

338 classification. Methods that can be used for continuous improvement of classification methodology are
339 subsequently presented.

340 **4a. Classification accuracies**

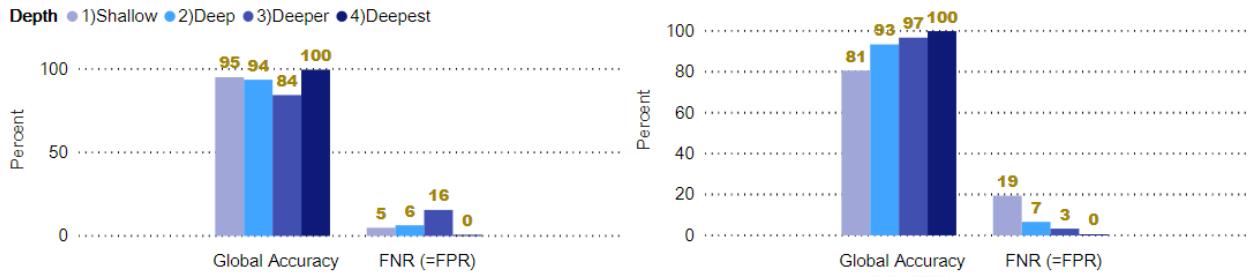
341 Recall that the preliminary seed classification produced by clustering EN MLDs from the CHRT algorithm
342 is considered a conservative classification because only the most certain soundings are classified as *Bathy*.
343 Nonetheless, because it will be subsequently refined using an XGB model, it only needs to be ‘sufficiently
344 accurate’ that the XGB model will be able to detect and describe underlying relationships between
345 bathymetry and the SAD variables (Table 2). If this occurs, the XGB model should be able to identify
346 soundings not classified as *Bathy* initially, but that have a high $p(\text{Bathy})$ nonetheless. Subsequently
347 reclassifying all soundings based on the $p(\text{Bathy})$ values should thus expand the number of soundings
348 correctly classified as *Bathy* or *NotBathy*. A truly ideal outcome would be that the preliminary seed
349 classification is identical to the NOAA reference classification and thus does not require additional
350 processing.

351 Figure 5a suggests that the preliminary seed clustering classification relates strongly to the NOAA
352 reference classification. Global accuracy – or more precisely ‘agreement between the two’ – is the
353 percentage of all soundings that are correctly classified as *Bathy* or *NotBathy*; it is at least 85% for all tiles.
354 Moreover, the percent of correctly classified *Bathy/NotBathy* soundings – true positives (TPs) and true
355 negatives (TNs), respectively – is 81% or more for all tiles. Similarly, the percentage of false positives (FPs);
356 *NotBathy* soundings incorrectly labelled *Bathy*) and false negatives (FNs; *Bathy* soundings incorrectly
357 classified as *NotBathy*) is 20% or lower for all tiles.

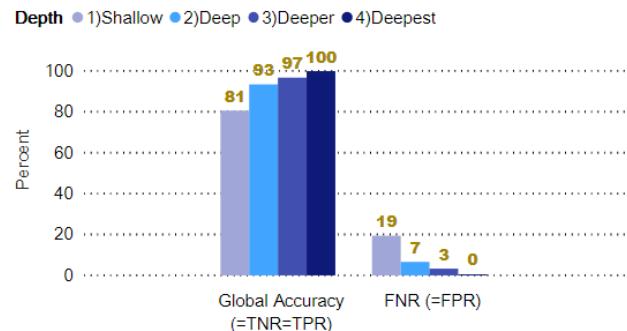
358

a. NOAA Reference vs Preliminary Seed Classification

b. NOAA Reference vs Final (XGB) Classification



c. Final (XGB) vs Prelim. Seed Classification



359
360 Figure 5. Classification accuracy/comparisons for various classification schemes.

361 The ability of an XGB model to improve on the preliminary classification – i.e., to harmonize it with the
362 NOAA classification -- can be assessed by comparing Figs. 5a and 5b. Readers are reminded that to classify
363 *p(Bathy)* as *Bathy/NotBathy*, the ODT that equalizes the TNR and TPR was employed throughout. Since
364 the FNR is 100 minus the TPR, the FPR is 100 minus the TNR, and the TPR and TNR are equal, the FNR and
365 FPR are equal. The use of the ODT also has the impact of making the global accuracy equal to the TNR
366 and TPR – e.g., if the classification of *NotBathy* soundings is 80% correct and the classification of *Bathy*
367 soundings is 80% correct, global accuracy for all soundings must also be 80%.

368 Figure 5b suggests that the XGB model improved the initial cluster-based ‘seed’ classification. Through
369 the use of an XGB model, global accuracy improved for all tiles except 27080/Deeper for which it
370 decreased by a single percent (85% to 84%). The TPR follows a similar pattern, although the TNR did
371 decrease for Tile 27285/Deep (from 100% to 94%). Of greatest real-world interest is that the FNR has
372 dropped considerably for all tiles except 27080/Deeper. In operational practice, a decrease in FNs not
373 only means improved navigational safety but also considerable cost savings. That is, because FNs are the
374 most serious error for nautical navigation, considerable human-time is spent verifying FNs. Hence
375 reducing the number of FNs decreases the time spent on manual editing. Thus except for the
376 27080/Deeper tile, the ML model has improved classification in a way that benefits operational workflows

377 and improves navigational safety. We note a considerable portion of the 27080/Deeper tile (northwest
378 of Figure 1c) exceeds the depth of lidar penetration which undoubtedly impacts the accuracy of identifying
379 *Bathy* soundings.

380 Results can potentially be further improved by better understanding the XGB model fitted to the binary
381 *Bathy/NotBathy* cluster-based “seed” classification using the variables in Table 2 as the independent
382 variables. The classification accuracy of the model on this preliminary classification—i.e., the classification
383 used to fit the model rather than NOAA’s reference classification -- is at least 81% for all tiles (Fig. 5c). The
384 goodness-of-fit/explanatory power of the model can also be evaluated by calculating an R^2 for binary
385 dependent variables (McFadden1974) that is conceptually equivalent to, and interpreted in the same
386 manner as, the more familiar R^2 value associated with linear regression. The R^2 values for individual
387 models are relatively high (Table 6) – particularly considering the large number of soundings (at least
388 600,000; Table 1) used to fit the models. The number of variables with an ‘importance value’ (a measure
389 of a variable’s contribution to an XGB model) greater than zero (0) was at least 11 for all tiles and the five
390 most important variables contained at least 95% of the total importance for all tiles except 27195/Shallow.
391 Coupled with the fact that other than *depth*, an inconsistent variety of SAD variables were important, the
392 information that provides discrimination between *Bathy* and *NotBathy* soundings appears to be
393 distributed among a suite of variables specific to each tile; XGB as a model development technique is able
394 to accommodate this variability.

395 These findings are potentially most relevant for the 27195/Shallow tile. Its relatively low cumulative
396 importance of the five most important variables (0.85) suggests that for shallow areas where the distance
397 between the ocean surface and ocean floor is less than the noise in the lidar sounding cloud, *depth*
398 contains a smaller proportion of the information that provides discrimination between *Bathy* and *NotBathy*
399 soundings than it does for deeper areas. Finally, SBET variables were among the five most important
400 variables in two of the models and *abs_devia* was present in one suggesting that both SAD associated with
401 individual soundings and SAD that describe flight path and airplane stability contain information that
402 provides discrimination between *Bathy* and *NotBathy* soundings.

403 Table 6. Information about XGB models.

Identifier (Northing)	Relative Depth	R- squared ¹	Number of Important Variables	Five most important variables ²	Cumulative importance of the five most important variables
27195	Shallow	0.48	12	<i>depth, last, first_of_many, stdYwPtRl, inciangle</i>	0.85

27285	Deep	0.79	14	depth, return_no, last_of_many, intensity, plse_frm_hdng	0.95
27080	Deeper	0.87	12	depth, num_returns, return_no, last_of_many plse_frm_hdng	0.99
27075	Deepest	0.97	11	depth, plse_frm_hdng, abs_devia, scan_direct, stdXYZ	0.99

404 ¹McFadden's (McFadden 1974) pseudo R² which cannot be tested for statistical significance.

405 ²In descending order of importance.

406 **4b. Continuous Improvement.**

407 Because neither the NOAA classification nor the XGB classification developed can be considered ground
 408 'truth' that results from direct measurement, being able to characterize differences between the two is
 409 useful for improving the NOAA classification, the final XGB classification, or both. Two methods were
 410 developed to provide such information.

411 The first method focusses on 'feature' or 'statistical' space and entails comparing $p(\text{Bathy})$ values from
 412 the XGB model with the NOAA *Bathy/NotBathy* classification using logistic regression. The approach is
 413 comparable to binning the soundings by $p(\text{Bathy})$ values and then determining if the proportion of
 414 soundings classified as *Bathy* by NOAA in each bin equals the bin mid-point class value. The logistic
 415 regression approach employed, however, provides information along the continuum of $p(\text{Bathy})$ values
 416 without requiring an arbitrary number of bins. In this approach, NOAA's *Bathy/NotBathy* classification is
 417 used as the dependent variable and the following logistic equation is fitted:

$$418 \quad p' = \left(1 + e^{-(b_0 + b_1 L)}\right)^{-1} \quad (1)$$

419 where L is:

$$420 \quad L = \ln\left(\frac{p}{(1-p)}\right) \quad (2)$$

421 and p is the $p(\text{Bathy})$ estimated by the XGB model. For each tile, if the NOAA classification and $p(\text{Bathy})$
 422 values from the XGB model are identical over the entire $p(\text{Bathy})$ range of 0.0 to 1.0, b_0 and b_1 in Equation
 423 (1) will be 0.0 and 1.0, respectively. Furthermore, R^2 for Equation 1 will be 1.0 with an associated log-
 424 likelihood p that is infinitesimally small. Such a 'logistic agreement model' was fitted for each tile (Table
 425 7).

426 Table 7. Information on logistic agreement models.

Identifier (Northing)	Relative Depth	R- squared ¹	log- likelihood <i>p</i>	b_0 ²	b_1 ³	n
27195	Shallow	0.85	<0.001	1.1*	2.05*	576,000
27285	Deep	0.79	<0.001	19.3*	2.83*	7,599,000
27080	Deeper	0.52	<0.001	-1.3*	0.60*	3,706,000
27075	Deepest	0.77	<0.001	-2.3*	0.70*	983,000

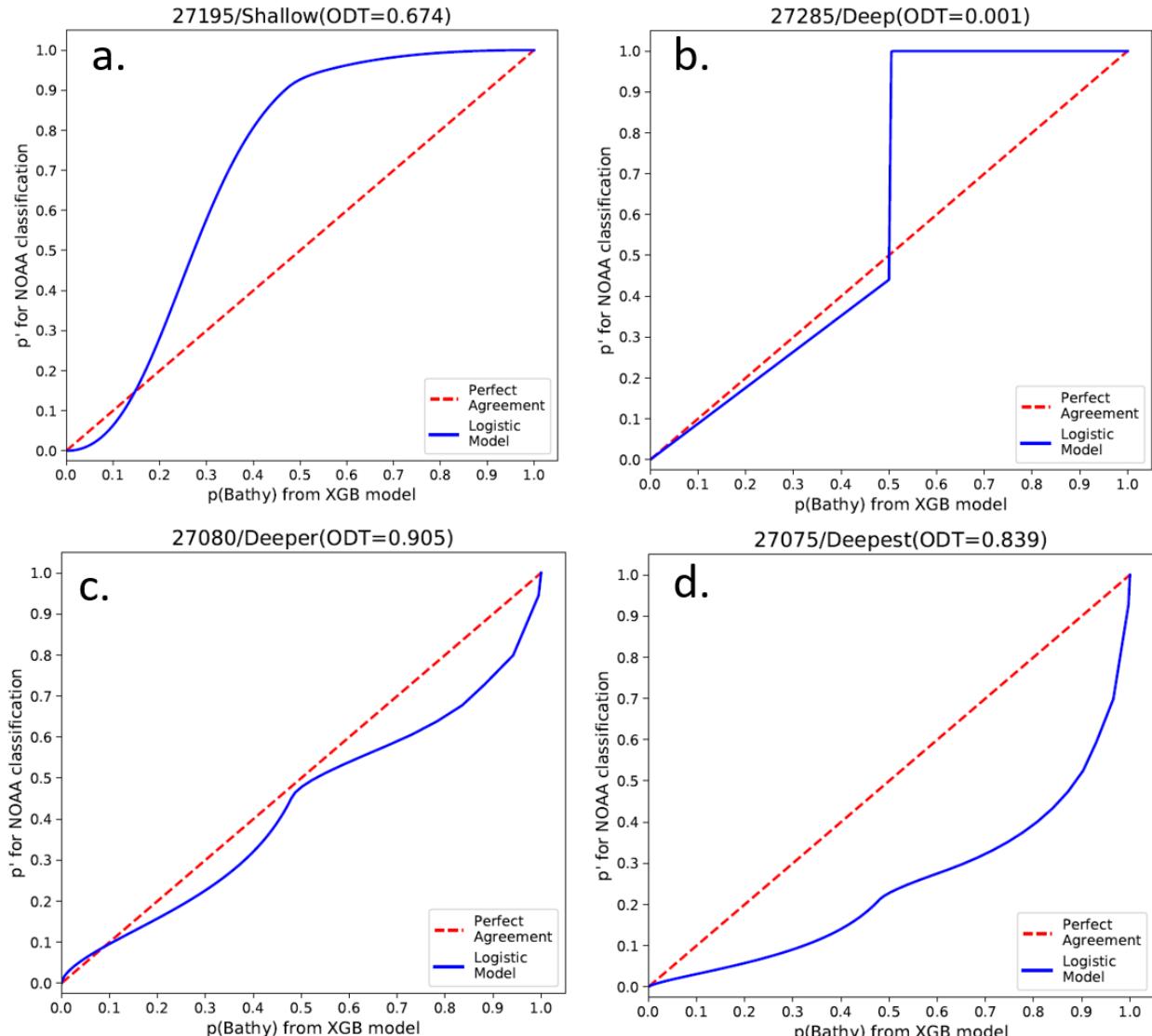
427 ¹McFadden's pseudo R² that cannot be tested for statistical significance.

428 ² * signifies the intercept value is significantly different from 0.0 at $\alpha=0.001$.

429 ³ * signifies the slope value is significantly different from 1.0 at $\alpha=0.001$.

430 The relatively high R² values and low log-likelihood *p* values for the logistic models (Table 7) suggest a
 431 strong and significant relationship between the *p(Bathy)* produced by the XGB model fitted on the
 432 preliminary classification and the NOAA *Bathy/NotBathy* classification. However, for all models the
 433 intercepts (b_0) and slopes (b_1) are significantly different from 0.0 and 1.0, respectively.

434 To assess (dis)agreement over the entire probability range, the logistic agreement models of Table 7 can
 435 be displayed graphically by plotting *p'* vs. *p* over the interval {0,1}. This was done using the ODT that is
 436 specific to each tile – i.e., by stretching *p(Bathy)* values in the range {0, ODT} to the interval {0.0, 0.5}, and
 437 stretching *p(Bathy)* values in the range {ODT, 1.0} .0 to the interval {0.5, 1.0}. Note that this segmenting
 438 of the probability range is the cause of the graphical discontinuities present at a *p(Bathy)* value of 0.5 for
 439 some tiles (Figure 6).



440

441

442

Figure 6. Agreement between $p(\text{Bathy})$ from NOAA classification and CHRT-based XGB model using logistic agreement models. (“ODT” is the tile-specific optimal decision threshold.)

443

444

445

446

447

448

449

450

451

The graphs of p' vs. $p(\text{Bathy})$ suggest bias along the range of $p(\text{Bathy})$ values whose magnitude varies by tile. For Tiles 27080/Deeper (Fig. 6c) and 27075/Deepest (Fig. 6d), relative to the NOAA *Bathy/NotBathy* classification XGB $p(\text{Bathy})$ values are overestimated over the entire range, resulting in a relatively large number of false positives (FPs). Given that these are the two tiles having depths that exceed lidar's penetration capability, we hypothesize that the FPs are spatially concentrated on the deeper edges of areas that NOAA identified as bathymetry; this will be examined explicitly. The XGB model for Tile 27285/Deep (Fig. 6b) performs reasonably well below the ODT but severely underestimates $p(\text{Bathy})$ above the ODT. For practical purposes, this may not be problematic. This indicates that, according to the XGB model, any sounding whose $p(\text{Bathy})$ is above the ODT is 'definitely' *Bathy*. Accordingly, all pulse

452 returns having a $p(\text{Bathy})$ value greater than the ODT will be classified as *Bathy* – which is likely to be the
453 correct classification for the vast majority of such soundings. Tile 27195/Shallow shows that below a
454 $p(\text{Bathy})$ value of about 0.15 the XGB model overestimates $p(\text{Bathy})$ thereby producing FP errors, but
455 higher $p(\text{Bathy})$ values are underestimates thereby resulting in FN errors. That Fig. 5b does not indicate
456 a large number of FNs for Tile 27195/Shallow suggests that examination of the spatial distribution of FNs
457 (and FPs) might be particularly useful for this tile.

458 Examination of the geographic distribution of the differences between the ML-based and reference
459 classifications is the second method of characterizing misclassification errors. To examine the spatial
460 distribution of the FNs and FPs, each tile was divided into 20 m pixels. If there is no spatial bias, the errors
461 will be distributed across each tile as the lidar pulse returns are – i.e., areas having a high density of pulse
462 returns should have a comparably high density of FNs and FPs. To determine if the densities of pulse
463 returns and errors were similar and therefore not spatially biased, the differences between the percent
464 of total lidar pulse returns and percent of FNs and FPs in each pixel can be calculated with negative values
465 indicating an ‘excess’ of FNs or FPs. These differences can then be displayed spatially (Figures 7, 8, 9, and
466 10) such that negative/brown values indicate ‘too many’ FNs or FPs, while positive/green values represent
467 ‘too few.’



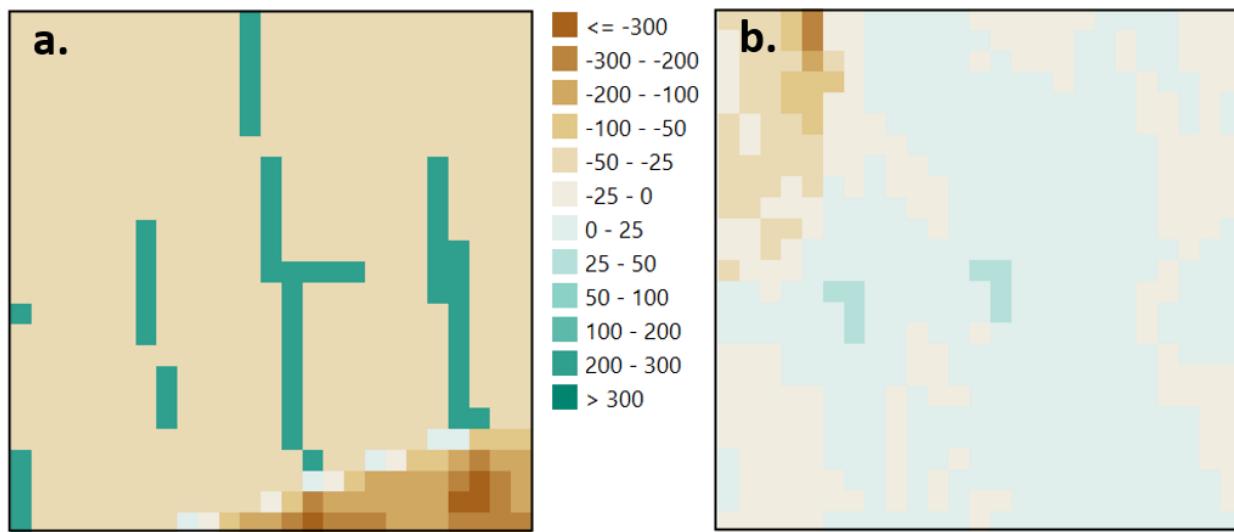
468
469 Figure 7. Tile 27195/Shallow. a. Difference between percent of *Bathy* points and False Negatives (FNs) in
470 each pixel (times 100). b. Difference between percent of *NotBathy* points and False Positives (FPs) in each
471 pixel (times 100). (Negative values indicate an “excess” of FNs or FPs.)

472 The pattern for FNs (undetected *Bathy*) for Tile 27195/Shallow (Fig. 7a) is unexpected: *Bathy* is fairly
473 accurately detected in the shallower northeast edge of data (relatively few FNs) where there are also
474 about the expected number of FPs (Fig. 7b), but there are ‘too many’ FNs in the deeper southwestern
475 portion. Also of interest is that there is an area (the green northwest-to-southeast band in Fig. 7b)

476 between the shallow northeast and deeper southwest where there are ‘too few’ FPs. It is also notable
477 that the magnitude of differences for FPs is less than for FNs as indicated by the more muted colors in Fig.
478 7b.

479 The information for the other tiles can be interpreted similarly:

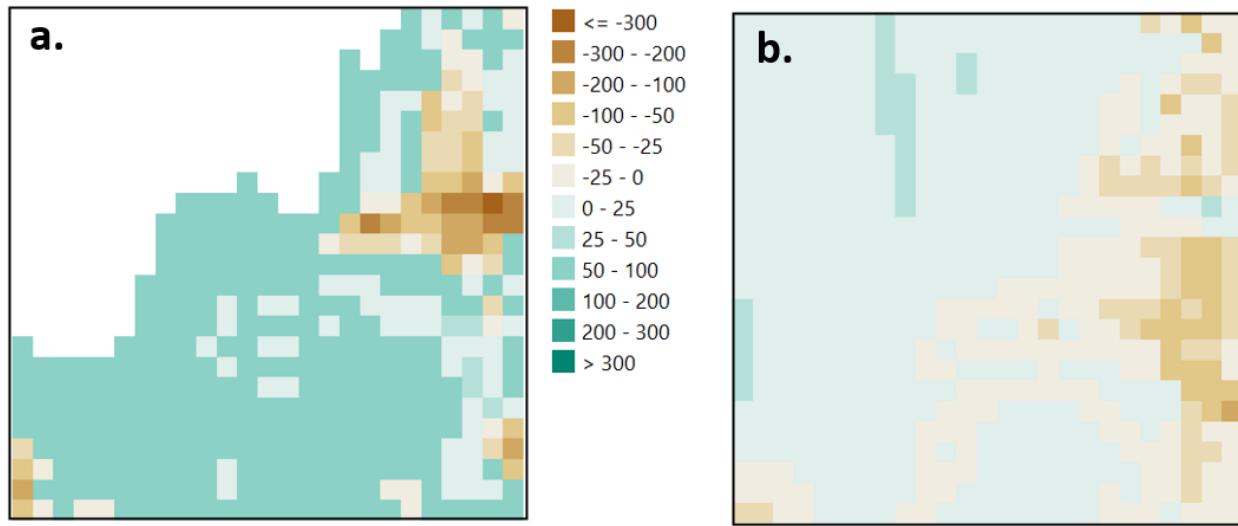
480 **Tile 27285/Deep (Figure 8):** There is an ‘excess’ of FNs (undetected *Bathy*) in the southeastern area (Fig.
481 8a) which is the shallowest area of the tile, and an excess of FPs (erroneously detected *Bathy*) in the
482 northwest. (The dark green north-south bands in Fig. 8a correspond to areas of flight line overlap where
483 sounding density is abnormally high.) The magnitude of differences is greater for FNs than for FPs as
484 indicated by the more muted colors for the latter (Fig. 8b). Noting that in practical terms FNs are
485 potentially more serious than FPs, the southeast of this tile may be an area where continuous
486 improvement efforts should be concentrated, although verifying the FPs in the northwest would also lead
487 to better accuracy for that portion of Tile 27285/Deep.



488
489 Figure 8. Tile 27285/Deep. a. Difference between percent of *Bathy* points and False Negatives (FNs) in
490 each pixel (times 100). b. Difference between percent of *NotBathy* points and False Positives (FPs) in each
491 pixel (times 100). (Negative values indicate an “excess” of FNs or FPs.)

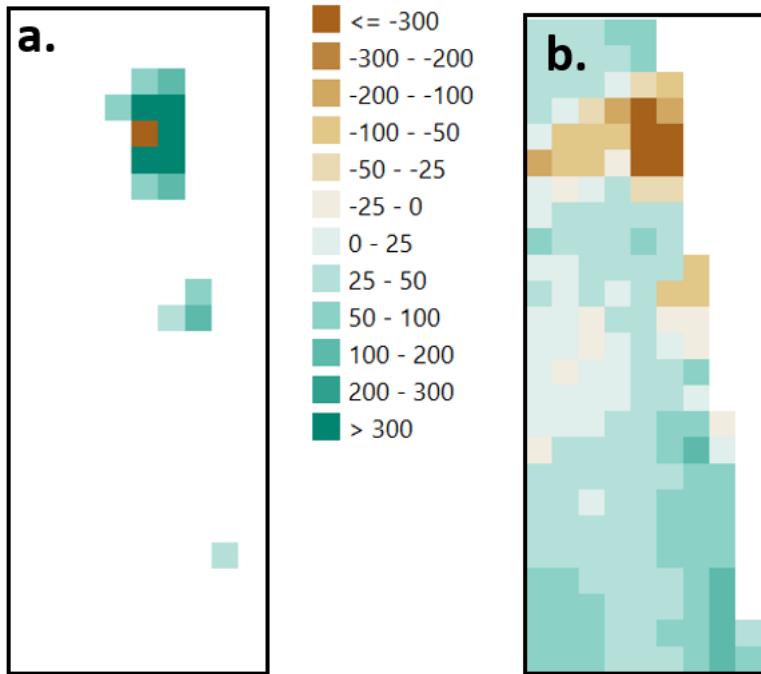
492 **Tile 27080/Deeper (Figure 9):** There is an ‘excess’ of FNs in the northeastern and southwestern quadrants
493 of this tile (Fig. 9a). These are the shallowest area of this tile (see Fig. 1c) and are generally surrounded
494 by areas of relatively low differences (muted greens and browns). Figure 9b indicates that ‘too many’ FPs
495 are present on the eastern edge of this tile suggesting that either the XGB classification identifies too
496 many *Bathy* soundings in this area, that the NOAA classification does not identify enough, or both. The
497 ‘too few’ FNs on the northwestern edge of *Bathy* pulse returns (Fig. 1c) coupled with the low level of FPs

498 in this area suggest that for this tile, the overall error rate is low at the limits of lidar light penetration.
499 The ‘too high’ number of FPs on the shallowest eastern edge of this tile may suggest that NOAA’s
500 classification procedures, the XGB model, or both could be improved by further studying this area and the
501 depths it represents.



502
503 Figure 9. Tile 27280/Deeper. a. Difference between percent of *Bathy* points and False Negatives (FNs) in
504 each pixel (times 100). b. Difference between percent of *NotBathy* points and False Positives (FPs) in each
505 pixel (times 100). (Negative values indicate an “excess” of FN or FPs.)
506

507 **Tile 27075/Deepest (Figure 10):** There is an ‘excess’ of FN – undetected *Bathy* – in the northeastern area
508 (Fig. 10a) which is the shallowest area and the area with the highest density of *Bathy* lidar pulse returns
509 (see Figure 1d). There are ‘too many’ FPs in the same area (Fig. 10b) further suggesting that *Bathy* may
510 be under-detected in this area (and/or that the XGB model performs poorly in this area). Interestingly,
511 however, FPs are fairly widely distributed spatially. This distribution of FPs strongly suggests that
512 undetected *Bathy* soundings might be present throughout the tile. It is possible that the widely
513 distributed FPs result from NOAA adopting a conservative approach to extracting bathymetry from areas
514 near the limit of lidar ocean penetration. Regardless of the reason, these results demonstrate how this
515 type of analysis could help to guide continuous improvement.



516
517 Figure 10. Tile 27075/Deepest. a. Difference between percent of *Bathy* points and False Negatives (FNs)
518 in each pixel (times 100). b. Difference between percent of *NotBathy* points and False Positives (FPs) in
519 each pixel (times 100). (Negative values indicate an “excess” of FNs or FPs.)

520

521 **5. Summary and Conclusions**

522 Lidar soundings that identify bathymetry could be extracted from lidar point clouds without the need for
523 an *a priori* estimate of depth with average global accuracies, true positive rates, and true negative rates
524 of 93% compared to a reference classification for four 500 m-by-500m lidar data tiles located near Key
525 West, Florida. These ‘accuracies’ are achieved relative to a reference classification that is used
526 operationally but that also has an unknown level of uncertainty. The accuracy of a preliminary
527 *Bathy/NotBathy* classification derived solely from a density-based algorithm coupled with unsupervised
528 clustering was improved for three of the tiles by fitting and applying a machine learning extreme gradient
529 boosting model to produce a final *Bathy/NotBathy* classification. Models for each tile were fit using the
530 preliminary classification as the dependent variable and 14 SAD variables such as the intensity and
531 incidence angle of each pulse return as independent variables. Though depth was consistently the most
532 important SAD variable, the models for all four tiles contained at least 11 SAD variables indicating that the
533 information that distinguishes between *Bathy* and *NotBathy* soundings is dispersed among numerous SAD
534 variables with no consistency across all tiles. Moreover, the information that distinguishes between *Bathy*
535 and *NotBathy* soundings is spread among SAD that quantify pulse reflectance characteristics and airplane
536 stability with the importance of individual SAD.

537 Two methods were employed to characterize differences between the reference and the ML-based
538 classification in feature/statistical and geographic space. These are exemplified by feature-space
539 information in Table 7 and Figure 6, and spatial information presented in Figures 7 through 10. One use
540 of this information would be refining the XGB final classification. However, a potentially more valuable
541 application would be continuous improvement of NOAA processing methodology. Because the true level
542 of accuracy in the XGB and NOAA classifications is unknown, the results in Table 7, Figure 6, and Figures 7
543 through 10 may be viewed as identifying differences between two independent classifications rather than
544 differences against ‘truth.’ The differences might be due to weaknesses in either or both classification(s),
545 or the large-difference areas may be where bathymetry is simply difficult to extract. Knowing this could
546 lead to revisions in XGB and/or NOAA classification procedures depending on confidence in a
547 classification, the severity or potential practical consequences of the observed differences, and a variety
548 of other factors.

549 In closing, the dual objectives of this work are recalled: to diminish the impacts of extracting bathymetry
550 from lidar sounding clouds for shallow water using machine learning, and to achieve this without the
551 circularity of needing a pre-existing classification or even depth estimate. If one accepts that the NOAA
552 classification used for evaluation is an authoritative – but not error-free – reference, we argue that these
553 objectives have been achieved across a range of depth and data conditions. While refinement of methods
554 and a better understanding of the nature of errors can certainly provide improvements, this work at least
555 provides a workflow to decrease time-consuming manual effort in extracting bathymetry from lidar
556 sounding clouds.

557

558 **List of Abbreviations**

559 CHRT – CUBE (Calder and Mayer 2003) with Hierarchical Resolution Technique (Calder and Rice 2017)

560 EN – Estimation Node for the density-based algorithm

561 FN, FNR – False Negative Rate (*Bathy* soundings erroneously identified as *NotBathy*)

562 FP, FPR – False Positive Rate (*NotBathy* soundings erroneously identified as *Bathy*)

563 MD – Mahalanobis Distance (used for outlier analysis)

564 ML – Machine Learning

565 MLD – Most Likely Depth

566 NOAA – National Oceanic and Atmospheric Administration

567 PDT – Probability Decision Threshold

568 SAD – Sounding Attribute Data

569 TN – True Negative Rate (*NotBathy* soundings correctly identified as *NotBathy*)
570 TP – True Positive Rate (*Bathy* soundings correctly identified as *Bathy*)
571 UTM – Universal Transverse Mercator
572

573 **Funding**
574 This work was supported by the National Oceanic and Atmospheric Administration (NOAA) Grant
575 NA15NOS400020.

576 **Bibliography**

577 Agrifiotis, P., D., Skarlatos, A., Georgopoulos, and K., Karantzalos. 2019a. Depthlearn: learning to correct
578 the refraction on point clouds derived from aerial imagery for accurate dense shallow water
579 bathymetry based on SVMs-fusion with LiDAR point clouds. *Remote Sensing* 11: 1225, 31 pp. DOI:
580 10.3390/rs11192225.

581 Agrifiotis, P., D., Skarlatos, A., Georgopoulos, and K. Karantzalos. 2019b. Shallow water bathymetry
582 mapping from UAV imagery based on machine learning. *The International Archives of the
583 Photogrammetry, Remote Sensing and Spatial Information Sciences*, XLII-2/W10, pp. 9–16. DOI:
584 <https://doi.org/10.5194/isprs-archives-XLII-2-W10-9-2019>.

585 American Society for Photogrammetry and Remote Sensing. 2013. LAS Specification Version 1.3-R13 (15
586 July 2013).

587 Andersen, M., A. Gergely, Z. Al-Hamdani, F. Steinbacher, L. Larsen, and V., Ernstsen. 2017. Processing and
588 performance of topobathymetric lidar data for geomorphometric and morphological classification in
589 a high-energy tidal environment. *Hydrology and Earth System Sciences* 21: 43-63. DOI: 10.5194/hess-
590 21-43-2017.

591 Birkeback, M., F. Eren, S. Pe'eri, N. Weston. 2018. The effect of surface waves on airborne lidar bathymetry
592 (ALB) measurement uncertainties. *Remote Sensing* 10: 453, 19 pp. DOI: 10.3390/rs10030453.

593 Brzank, A., C. Heipke, J., Goepfert, and U. Soergel. 2008. Aspects of generating precise digital terrain
594 models in the Wadden Sea from lidar-water classification and structure line extraction. *ISPRS Journal
595 of Photogrammetry and Remote Sensing* 63: 510-528.

596 Calder, B., and L. Mayer. 2003. Automatic processing of high-rate, high-density multibeam echosounder
597 data. *Geochemistry, Geophysics, Geosystems*, 4(6), 1048 (22 pp.). DOI: 10.1029/2002GC000486.

598 Calder, B., and G. Rice. 2017. Computationally efficient variable resolution depth estimation. *Computers
599 & Geosciences* 106: 49-59. DOI: [dx.doi.org/10.1016/j.cageo.2017.05.013](https://doi.org/10.1016/j.cageo.2017.05.013).

600 Calvert, J., J. String, M., Service, C., McGonigle, and R. Quinn. 2015. An evaluation of supervised and
601 unsupervised classification techniques for marine benthic habitat mapping using multibeam
602 echosounder data, *ICES Journal of Marine Science* 72(5): 1498-1513. DOI:
603 doi.org/10.1093/icesjms/fsu223.

604 Collin, A., P. Archambault, and B., Long. 2008. Mapping shallow water seabed habitat with the SHOALS.
605 *IEEE Transactions on Geoscience and Remote Sensing* 46(10): 2947-2955. DOI:
606 10.1109/TGRS.2008.920020.

607 Dietrich, J., 2017. Bathymetric structure-from-motion: extracting shallow stream bathymetry from multi-
608 view stereo photogrammetry. *Earth Surface Processes and Landforms* 42(2): 355-364.

609 Eren, F., S. Pe'eri, Y. Rzhanov, and L. Ward. 2018. Bottom characterization by using airborne lidar
610 bathymetry (ALB) waveform feature obtained from bottom return residual analysis. *Remote Sensing*
611 of Environment 206: 260-274. DOI: doi.org/10.1016/j.rse.2017.12.035.

612 Fernandez-Diaz, F., C. Glennie, W. Carter, R. Shrestha, M. Sartori, A. Singhania, C. Legleiter, and B.
613 Overstreet. 2014. Early results of simultaneous terrain and shallow water bathymetry mapping using
614 a single-wavelength airborne LiDAR sensor. *IEEE Journal of Selected Topics in Applied Earth*
615 *Observations and Remote Sensing* 7(2): 623-635. DOI: 10.1109/JSTARS.2013.2265255.

616 Friedman, J. 2001. Greedy function approximation: a gradient boosting machine. *Annals of Statistics* 29(5):
617 1189-1232.

618 Gholamalifard, M., T. Kutser, A. Esmaili-Sari, A., Abkar, and B. Naimi. 2013. Remotely sensed empirical
619 modelling of bathymetry in the Southeastern Caspian Sea. *Remote Sensing* 5(6): 2746-2762. DOI:
620 10.3390/rs5062746.

621 Heritage, G., and D. Hetherington. 2007. Towards a protocol for laser scanning in fluvial geomorphology.
622 *Earth Surface Processes and Landforms* 32(1): 66-74.

623 Hickman, G., and J. Hogg. 1969. Application of an airborne pulsed laser for near shore bathymetric
624 measurements. *Remote Sensing of Environment* 1: 47-58.

625 Höfle B., and M. Rutzinger. 2011. Topographic airborne LiDAR in geomorphology: a technological
626 perspective. *Zeitschrift für Geomorphologie* 55(2): 1-29 (in English).

627 Jawak, S., S. Vadlamani, and A. Luis. 2015. A synoptic review on deriving bathymetry information using
628 remote sensing technologies: models, methods, comparisons. *Advances in Remote Sensing* 4(2):147-
629 162. DOI: 10.4236/ars.2015.42013.

630 Kashani, A., M. Olsen, C. Parrish, and N. Wilson. 2015. A review of LIDAR radiometric processing: from *Ad*
631 *Hoc* intensity correction to rigorous radiometric calibration *Sensors* 15(11): 28099-28128. DOI:
632 doi.org/10.3390/s151128099.

633 Kerr, J., and S. Purkis. 2018. An algorithm for optically deriving water depth from multispectral imagery
634 in coral reef landscapes in the absence of ground-truth data. *Remote Sensing of Environment* 210:
635 307-324. DOI: doi.org/10.1016/j.rse.2018.03.024.

636 Kinzel, P., C. Legleiter, and P. Grams. 2021. Field evaluation of a compact, polarizing topo-bathymetric
637 lidar across a range of river conditions. *River Research and Applications* 13 pp. DOI:
638 doi.org/10.1002/rra.3771.

639 Kinzel, P., C. Legleiter, and J. Nelson. 2013. Mapping river bathymetry with a small footprint green LiDAR:
640 applications and challenges. *Journal of the American Water Resources Association (JAWRA)* 49(1):
641 183-204. DOI: 10.1111/jawr.12008.

642 Kogut, T., and M. Weistrock. 2019. Classifying airborne bathymetry data using the Random Forest
643 algorithm. *Remote Sensing Letters* 10(9): 874-882. DOI: doi.org/10.1080/2150704x.2019.1629710.

644 Kutser, T., J. Hedley, C. Giardino, C., Roelfsema, and V. Brando. 2020. Remote sensing of shallow waters –
645 a 50-year retrospective and future directions. *Remote Sensing of Environment* 240: 111619, 18 pp.
646 DOI: doi.org/10.106/j.rse.2019.111619.

647 Lecours, V., M. Dolan, A., Micallef, and V. Lucieer. 2016. A review of marine geomorphometry, the
648 quantitative study of the sea floor. *Hydrology and Earth System Sciences* 20: 3207-3244, DOI:
649 https://doi.org/10.5194/hess-20-3207-2016.

650 Li, J., D. Knapp, S., Schill, C., Roelfsema, S., Phinn, M., Silman, J., Mascaro, and G. Asner. 2019. Adaptive
651 bathymetry estimation for shallow coastal waters using Planet Dove satellite. *Remote Sensing of*
652 *Environment* 232: 111302 (14 pp.). DOI: doi.org/10.1016/j.rse.2019.111302

653 Liu, S., Y. Gao, W. Zheng, and X. Li. 2015. Performance of two neural network models in bathymetry.
654 *Remote Sensing Letters* 6(4): 321–330. DOI:10.1080/2150704X.2015.1034885.

655 Lowell, K., B. Calder, and A. Lyons. 2021. Measuring shallow-water bathymetric signal strength in lidar
656 point attribute data using machine learning. *International Journal of Geographical Information*
657 *Science* (in press). Published on-line. DOI:10.1080/13658816.2020.1867147.

658

659 Lyzenga, D., N. Malinas, and F. Tanis. 2006. Multispectral bathymetry using a simple physically based
660 algorithm. *IEEE Transactions on Geoscience and Remote Sensing* 44(8): 2251-2259.

661 Maas, H.-G., D. Mader, K., Richter, and P. Westfeld. 2019. Improvements in lidar bathymetry data analysis.
662 *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*,
663 XLII-2/W10: 113-117–16. DOI: doi.org/10.5194/isprs-archives-XLII-2-W10-113-2019.

664 McFadden, D. 1974. Conditional logit analysis of qualitative choice behavior. In *Frontiers in Econometrics*,
665 Academic Press, (P. Zarembka, ed.), pp. 105-142.

666 McQueen, J. 1967. Some Methods for classification and Analysis of Multivariate Observations.
667 *Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability*. University of
668 California Press. pp. 281–297.

669 Mahalanobis, P. 1936. On the generalized distance in statistics. *Proceedings of the National Institute of*
670 *Sciences of India* 2(1): 49–55.

671 Mandlburger, G., Pfennigbauer, M., Schwarz, R., Flory, S., and L. Nussbaumer. 2020. Concept and
672 performance evaluation of a novel UAV-borne topo-bathymetric LiDAR sensor. *Remote Sensing*
673 12(6):986. DOI: doi.org/10.3390/rs12060986.

674 Misra, A., Z. Vojinovic, B., Ramakrishnan, A., Luijendijk, and R. Ranasinghe. 2018. Shallow water
675 bathymetry mapping using support vector machine (SVM) technique and multispectral imagery.
676 *International Journal of Remote Sensing* 39(13): 4431-4450. DOI:
677 doi.org/10.1080/01431161.2017.1421796.

678 Mitchell, S., and J. Thayer. 2014. Ranging through shallow semitransparent media with polarization lidar.
679 *Journal of Atmospheric Ocean Technology* 31: 681-697. DOI: doi.org/10.1175/jtech-d-13-00014.1.

680 Nagle, D., and C. Wright. 2016. *Algorithms used in the Airborne Lidar Processing System (ALPS)*. United
681 States Dept. of the Interior/ United States Geological Survey, Open File Report 2016-1046, 45 pp.

682 Niroumand-Jadidi, M., A. Vitti, and D. Lyzenga. 2018. Multiple optimal depth predictors analysis (MODPA)
683 for river bathymetry: findings from spectroradiometry, simulations, and satellite imagery. *Remote*
684 *Sensing of Environment* 218: 132-147. DOI: //doi.org/10.1016/j.rse.2018.09.022.

685 Okhrimenko, M., and C. Hopkinson. 2020. A simplified end-user approach to lidar very shallow water
686 bathymetric correction. *IEEE Geoscience and Remote Sensing Letters* 17(1): 3-7.

687 Pacheco, A., J. Horta, C., Loureiro, and O. Ferreira. 2015. Retrieval of nearshore bathymetry from Landsat
688 8 images: a tool for coastal monitoring in shallow waters. *Remote Sensing of Environment* 159:102–
689 116. DOI: 10.1016/j.rse.2014.12.004.

690 Pe'eri, S., and W. Philpot. 2007. Increasing the existence of very shallow LIDAR measurements using the
691 red-channel waveforms. *IEEE Transactions on Geoscience and Remote Sensing* 45(5): 1217-1223.

692 Pittman, S., B. Costa, and T. Battista. 2009. Using lidar bathymetry and boosted regression trees to predict
693 the diversity and abundance of fish and corals. *Journal of Coastal Research* 53: 27-38.

694 Schmidt, A., F. Rottensteiner, and U. Soergel. 2012. Classification of airborne laser scanning data in
695 Wadden sea areas using conditional random fields. *The International Archives of the
696 Photogrammetry, Remote Sensing and Spatial Information Sciences* XXIX-B3: 161-166. DOI:
697 <https://doi.org/10.5194/isprs-archives-XLII-2-W10-9-2019>.

698 Schwarz, R., G. Mandlburger, M. Pfennigbauer, and N. Pfeifer. 2019. Design and evaluation of a full-wave
699 surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters. *ISPRS Journal
700 of Photogrammetry and Remote Sensing* 150: 1-10. DOI: [dx.doi.org/10.1016/j.isprsjprs.2019.02.002](https://doi.org/10.1016/j.isprsjprs.2019.02.002).

701 Steinhaus, H. 1957. Sur la division des corps matériels en parties. (English: "On the division of body
702 materials in parts.") *Bulletin de l'Académie Polonaise des Sciences*. (English: "Bulletin of the Polish
703 Academy of Sciences.") 4(12): 801-804. (In French.)

704 Su, D., F. Yang, Y. Ma, K. Zhang, J. Huang, and M. Wang. 2019. Classification of coral reefs in the South
705 China Sea by combining airborne LiDAR bathymetry bottom waveforms and bathymetric features.
706 *IEEE Transactions on Geoscience and Remote Sensing* 57(2): 815-828. DOI:
707 [10.1109/TGRS.2018.2860931](https://doi.org/10.1109/TGRS.2018.2860931).

708 Tull Dahl, H., and S. Wikström. 2012. Classification of aquatic macrovegetation and substrates with
709 airborne lidar. *Remote Sensing of Environment* 121: 347-357. DOI:
710 [//doi.org/10.1016/j.rse.2012.02.004](https://doi.org/10.1016/j.rse.2012.02.004).

711 Wang, C., Q. Li, Y. Liu, G. Wu, P. Liu, and X. Ding. 2015. A comparison of waveform processing algorithms
712 for single-wavelength LiDAR bathymetry. *ISPRS Journal of Photogrammetry and Remote Sensing*.
713 101:22-35. DOI: [dx.doi.org/10.1016/j.isprsjprs.2014.11.005](https://doi.org/10.1016/j.isprsjprs.2014.11.005).

714 Wang, L., H. Liu, H. Su, and J. Wang. 2018. Bathymetry retrieval from optical images with spatially
715 distributed support vector machines. *GIScience & Remote Sensing*. 56(3): 323-337. DOI:
716 [10.1080/15481603.2018.1538620](https://doi.org/10.1080/15481603.2018.1538620).

717 Westfeld, P., H. Maas, K. Richter, K., and R. Weiss. 2017. Analysis and correction of ocean wave pattern
718 induced systematic coordinate errors in airborne LiDAR bathymetry. *ISPRS Journal of
719 Photogrammetry and Remote Sensing* 128:314-325.

720 Xing, S., D. Wang, Q. Xu, Y. Lin, P. Li, L. Jiao, Z. Zhang, and C. Liu. 2019. A depth-adaptive waveform
721 decomposition method for airborne LiDAR bathymetry. *Sensors* 19: 5065, 28 pp. DOI:
722 [10.3390/s19235065](https://doi.org/10.3390/s19235065).

723 Yang, A., Z. Wu, F. Yang, D. Su, Y. Ma, D. Zhao, and C. Qi. 2020. Filtering of airborne LiDAR bathymetry
724 based on bidirectional cloth simulation. *ISPRS Journal of Photogrammetry and Remote Sensing*
725 163:49-61. DOI: doi.org/10.1016/j.isprsjprs.2020.03.004.

726 Zhao, J., X. Zhao, H. Zhang, and F. Zhou. 2017. Shallow water measurements using a single green laser
727 corrected by building a near water surface penetration model. *Remote Sensing* 9: 426; 18 pp.,
728 DOI:[10.3390/rs9050426](https://doi.org/10.3390/rs9050426).