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Abstract: The oceans remain one of Earth’s last great unknowns, with about 74% still
unmapped to modern standards. Consequently, interpolation is employed to create seam-
less digital bathymetric models (DBMs) from incomplete hydrographic datasets, but this
introduces unquantified depth uncertainties. This study aims to estimate and characterize
uncertainties arising from set-line spacing hydrographic surveys, which are important for
nautical charting, navigational safety, and many other applications. By sampling four dis-
tinct complete-coverage testbeds in United States waters that vary in slope and roughness
at different line spacings, this study interpolates across entire testbed areas using Spline,
Inverse Distance Weighting, and Linear interpolation. Uncertainty is calculated by compar-
ing interpolated depths against the source depths for independent points. The resulting
interpolation uncertainties are evaluated from both scientific and operational perspectives.
Linear regression and machine learning techniques, specifically artificial neural networks
and random forest, are used to model the relationship between these uncertainties and three
ancillary predictors (distance to the nearest known measurement, slope, and roughness) for
interpolation uncertainty quantification. The results show operational equivalence among
the three interpolators, how line spacing and morphology impact uncertainty, and the
statistical significance of the examined uncertainty predictors. However, the relationships
between the combined ancillary predictors and interpolation uncertainty are weak. These
findings suggest the potential presence of unaccounted-for factors influencing uncertainty
yet provide a foundational understanding for improving uncertainty estimates in DBMs
within operational settings.

Keywords: hydrography; set-line spacing surveys; survey designs; interpolation; digital
bathymetric models; uncertainty estimation; geospatial analysis; machine learning; nautical
charting

1. Introduction
The Earth’s oceans, constituting approximately 71% of its surface [1], remain one of

our planet’s last great unknowns. Surprisingly, the surfaces of Mars, Venus, and the Earth’s
Moon are mapped at a higher spatial resolution than the seafloor [2], where individual
depth measurements can exhibit data gaps spanning hundreds of kilometers [3]. While
efforts are ongoing to completely map the global seafloor by 2030 [4], about 74% of the
world’s ocean are still unmapped to modern standards [5].
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These bathymetric data gaps can be the result of survey designs lacking resources
for complete-seabed-coverage hydrographic surveys, or survey oversight, and can span
meters to kilometers between survey measurements. The former is still the major cause
of the bathymetry data gaps in the ocean, and this is as a result of the considerable time
and resources (and therefore costs) associated with the acquisition of high-resolution
bathymetric data [6].

Modern bathymetric data can be acquired through various methods and instruments,
including single-beam echo-sounders (SBESs) [7], multibeam echo-sounders (MBESs) [8,9],
phase-difference side-scan sonar [10], Light Detection and Ranging (LiDAR) [11], satellite-
derived bathymetry (SBD) [12], satellite altimetry [3], and crowdsourced bathymetry [13].
Each method has its own advantages and disadvantages in terms of cost, accuracy, res-
olution, coverage, repeatability, and depth limitations. The present work focuses on
high-resolution bathymetric surveys obtained using instruments that transmit acoustic
signals through water, such as SBESs and MBESs. This method of data acquisition leads to
different types of survey designs used to achieve different types of seafloor coverage.

According to the National Oceanic and Atmospheric Administration (NOAA) Hydro-
graphic Survey Specifications and Deliverables (HSSD) 2022, there are four classifications
of coverage: object detection coverage, complete coverage, set-line spacing, and track
line (transit and reconnaissance) [14]. The choice of coverage determines the appropriate
hydrographic survey technique to employ. Object detection coverage is applied in critical
areas requiring under-keel clearance. It involves achieving complete bathymetric coverage
using MBESs with object detection capabilities, typically with a 50 cm grid resolution in the
0–20 m depth range [14].

Complete coverage is employed in areas that, while less stringent than those requiring
object detection, are still important for identifying navigational hazards. This classification
requires full bathymetric coverage using MBESs designed for complete-coverage surveys,
with a 1 m grid resolution in the 0–20 m depth range [14]. Complete bathymetric coverage
ensures depth measurements are taken across the entire survey area with appropriate
line spacings, leaving no significant portions of the seabed unsampled. This enables the
detection of potential hazards and provides an accurate representation of the seafloor topog-
raphy. The set-line spacing hydrographic survey technique, which is the focus of this work,
uses SBESs or MBESs to survey an area with specified line spacings that do not achieve full
bathymetric coverage. This technique is primarily used in areas too shallow for efficient
full-bottom-coverage bathymetry or too hazardous for SBES or MBES deployment [14].
Hydrographic offices worldwide, such as NOAA’s Office of Coast Survey (OCS), rely on
set-line spacing hydrographic survey techniques to cover large areas relatively quickly
and at reduced cost, albeit with the drawback of incomplete bathymetric data coverage.
Consequently, interpolation becomes an essential step to fill in data gaps among set-line
spacing survey bathymetric datasets and to create a seamless digital bathymetric model
(DBM) of the seafloor for numerous scientific and commercial applications.

Interpolation is a mathematical process used to predict unknown values based on
surrounding measured values, under the assumption that the surface is continuous and
smooth and that measured values at neighboring points are highly correlated with the
value at the unknown point [15,16]. Various interpolation methods exist, all of which
assume that bathymetry is positively spatially autocorrelated, in line with Tobler’s First
Law of Geography [17]. This study examines three commonly employed deterministic
interpolation techniques—Linear, Spline, and Inverse Distance Weighting (IDW). These
methods were selected due to their ubiquity, simplicity, and computational efficiency, which
makes them suitable in an operational setting. On the contrary, geostatistical methods
like Kriging were excluded due to their computation- and time-intensive nature. For a
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detailed explanation of the investigated interpolation methods and the general classes of
interpolation methods, see [18].

Beyond creating a DBM with these interpolation methods, there is a crucial need to
inform users of the confidence in the data within the interpolated regions, as the interpo-
lation process introduces depth uncertainty of unknown nature into the DBM. Although
geostatistical methods (e.g., see [19–21]) provide uncertainty estimates, their computational
demands render them unsuitable for this research. This study aims to produce data-driven
operationally viable hydrography products from large national datasets while assigning
appropriate hydrographic quality metrics of uncertainty. Therefore, it focuses on investi-
gating deterministic spatial interpolation methods for uncertainty quantification in set-line
spacing surveys using methods that can be applied in operational settings. Additionally, it
characterizes the uncertainty by relating it to measurable seafloor characteristics such as
slope and roughness.

Uncertainty in bathymetric models generated from interpolated datasets is particularly
important for hydrographic data collection, nautical charting, navigation safety, and mod-
eling purposes [18]. The International Hydrographic Organization (IHO) S-44 defines the
standards applicable to hydrographic surveys and sets minimum standards to be achieved.
S-44 describes the orders of safety of navigation surveys that are considered acceptable for
the production of navigational products and services to enable surface vessels to navigate
safely [22]. As requirements may vary, five different survey orders are defined to cater for a
different range of needs. These orders include Order 2, Order 1b, Order 1a, Special Order,
and Exclusive Order (see [22] for more information on each order).

It is important to note that the S-44 hydrographic survey order is one of the input
parameters in determining the data quality requirements for final nautical charting products.
Other parameters include factors such as cartographic generalization, gridding, etc. The
IHO defines the data quality requirements for charting purposes through the Category of
Zones of Confidence (CATZOC) levels and the Quality of Bathymetric Data (QoBD) in the
S-57 IHO Transfer Standard for Digital Hydrographic Data [23] and in the new S-101 ENC
Product Specification [24], respectively. CATZOC/QoBD, in general, addresses three types
of uncertainty—positional, depth, and features (that may create navigation hazards)—and
is an indicator that a particular survey meets the minimum criteria for these accuracy
parameters based on specific standards (Table 1).

This study aims to facilitate the a posteriori CATZOC classification of interpolated
datasets in areas where set-line spacing survey techniques were deployed. This includes
addressing the uncertainty metric associated with depth accuracy in CATZOC, excluding,
however, considerations of seafloor feature detection and factors like expected feature size
or seabed undulations. Thus, possible CATZOC classification improvement through the
better estimation of interpolation uncertainty is generally limited to CATZOC B unless
the hydrographic offices’ full-seabed-coverage and feature detection requirements for
CATZOC A1 and A2 are met using side-scan sonar. This study aims to illuminate how
interpolation uncertainty can be used to optimize ‘on-the-fly’ set-line spacing hydrographic
survey design to meet a targeted survey order/CATZOC within the constraints of existing
resources, thereby making field data collection more efficient and effective.

Despite the critical importance of uncertainty associated with interpolation-based
bathymetry generated from set-line spacing surveys, there is little to no research on charac-
terizing and estimating interpolation uncertainty in set-line spacing surveys within the field
of ocean mapping. For example, Adediran et al. [18] investigated estimating interpolation
uncertainty in sparse bathymetric datasets which is only relevant for archival bathymetric
datasets. However, they did not consider the modern systematic data collection of set-line
spacing hydrographic survey. In light of this gap, building upon the methods and findings
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of the aforementioned work ([18]), this study aims to estimate the interpolation uncertainty
in set-line spacing hydrographic surveys and explore how this uncertainty can help inform
set-line spacing survey design.

Table 1. The International Hydrographic Organization (IHO) S-57 Category of Zones of Confidence
(CATZOC) levels and S-101 Quality of Bathymetric Data (QoBD). Depth and position accuracies are
at a 95% confidence interval [25]. (d is water depth in meters.)

CATZOC LEVEL QoBD POSITIONAL
ACCURACY

DEPTH
ACCURACY SEAFLOOR COVERAGE

A1 1 5 m + 5% d 0.5 m + 1% d
Full area search undertaken. Significant
seafloor features detected, and depths

measured.

A2 2 20 m 1 m + 2% d
Full area search undertaken. Significant
seafloor features detected, and depths

measured.

B 3 50 m 1 m + 2% d
Full area search not achieved; uncharted
features; hazardous surface navigation is

not expected but may exist.

C 4 500 m 2 m + 5% d Full area search not achieved; depth
anomalies may be expected.

D 5 Worse than CATZOC
C

Worse than CATZOC
C

Full area search not achieved, large depth
anomalies may be expected.

U 6 Unassessed Quality of data has yet to be assessed
O Oceanic Oceanic areas with water depth greater than 200 m

In detail, this research aims to address the following questions:

1. Which deterministic interpolation method yields the lowest interpolation uncertainty
for set-line spacing survey bathymetry?

2. How efficiently can distance to the nearest known measurement, seabed slope, and
roughness be used to estimate and characterize interpolation uncertainty in bathymet-
ric models in an operational setting?

3. To what extent can we improve depth interpolation uncertainty estimation by em-
ploying machine learning techniques to combine the above predictors?

Estimating and characterizing interpolation uncertainty in set-line spacing hydro-
graphic surveys is not only important for improving the filling of bathymetric gaps but
also for improving the quality of bathymetry by assigning associated quality metrics to
bathymetric data. It is also significant for improving the effectiveness and efficiency of
hydrographic surveys by reducing the time and cost of surveys while meeting the targeted
survey order/CATZOC. This makes the work important to the entire hydrographic com-
munity for the safety of navigation, shipping route optimization, survey planning, and
associated cost savings.

It is also of great relevance to many ongoing NOAA data-driven projects, such as the
National Bathymetric Source Program [26], which are cornerstones of safer navigation,
resilient coastal communities and ecosystems, and a stronger blue economy through the
sustainable use and management of ocean resources for economic growth.

The subsequent sections of this paper are structured as follows: Section 2 details the
datasets and methods employed, Section 3 presents the obtained results on four testbeds,
Section 4 engages in a comprehensive discussion of the findings, and Section 5 offers
concluding remarks.
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2. Materials and Methods
This section provides a description of the study areas under investigation and the

datasets employed. Furthermore, it defines the predictors and outlines the methodologies
employed to accomplish the specified objectives.

2.1. Testbeds and Datasets

Four distinct bathymetric surfaces were strategically chosen as testbeds within U.S.
waters to represent diverse seafloor morphologies, as illustrated in Figure 1. These testbeds,
each measuring 10 km by 10 km with an 8 m pixel resolution, encompass varying combina-
tions of slope and roughness characteristics, enabling a thorough analysis of factors that
may impact interpolation uncertainty. For a detailed overview of the testbeds, including
their names, morphology, respective locations, and key attributes, refer to Table A1.
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Figure 1. Four testbeds of various seabed characteristics for testing the proposed methodology in
(a) Gulf of Mexico (flat seabed), (b) Florida main channel (rough seabed), (c) Massachusetts Bay (slopy
seabed), and (d) Gulf of Maine (rough and slopy seabed) Adapted with permission from ref. [18]
Copyright 2024 Taylor & Francis Ltd.
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The bathymetric datasets for these testbeds shown in Figure 1 were sourced from
NOAA’s BlueTopo repository, horizontally referenced to their respective North American
Datum of 1983 (NAD83) and Universal Transverse Mercator (UTM) zone (Table A1), and
vertically referenced to North American Vertical Datum 1988 (NADV88), positively upward.
The BlueTopo repository offers both raw and interpolated bathymetry; great care was taken
to exclusively utilize raw data that had not been subjected to interpolation. These non-
interpolated BlueTopo depths are designated as the “true depth” despite any uncertainty
associated with these measurements. Following the dual-assessment approach in [18], the
selected testbeds were evaluated for an accurate representative of their respective seabed
morphologies using qualitative visualization inspection and quantitative analysis, i.e., the
slope and roughness histograms presented in Figure 2.
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Figure 2. Histograms depicting the slope and roughness characteristics of the original testbeds’
bathymetric datasets (e.g., (a) depicts the histogram of the slope of Testbed 1 (b) depicts the histogram
of the roughness of Testbed 1 (c) depicts the histogram of the slope of Testbed 2 (d) depicts the
histogram of the roughness of Testbed 2 (e) depicts the histogram of the slope of Testbed 3 (f) depicts
the histogram of the roughness of Testbed 3 (g) depicts the histogram of the slope of Testbed 4
(h) depicts the histogram of the roughness of Testbed 4). Reprinted with permission from ref. [18]
Copyright 2024 Taylor & Francis Ltd.

In comparing the slope and roughness values across the testbeds, the histograms
demonstrate that the testbeds capture their respective morphologies. Terrain characteristics
of slope and roughness in the context of this work are defined in the following section.
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2.2. Terrain Characterization

This study focused on two key terrain characteristics, specifically slope and roughness,
to evaluate how seabed morphology influences uncertainty estimation. These predictors
were chosen based on their relatively high correlation with interpolation uncertainty,
as revealed by preliminary analysis. Other terrain characteristics including curvature
and aspect were excluded due to their low correlation with uncertainty. The following
sections provide a detailed explanation of the definitions of slope and roughness and the
methodology used to calculate these predictors in the context of this work.

2.2.1. Slope

Slope represents the steepest rate of depth variation within a moving analysis window
t is calculated using the gradients in both the X (fx) and Y (fy) directions, as shown in
Equation (1):

Slope = arctan
(√

( f x)2 + ( f y)2
)

(1)

To calculate slope (or other terrain characteristics like roughness), an analysis win-
dow moves across the raster DBM surface. Each pixel then acts as the central point for
computations (Figure 3).
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This generalization allows the predictor to be examined at various scales (different
values of n ≥ 3) [27]. Notably, this study utilizes a 3-by-3 window size, as preliminary
comparisons with 5-by-5 and 7-by-7 windows showed similar outcomes. This finding aligns
with [18], which, using a random sampling approach, reported no significant differences in
estimating interpolation uncertainty among the three window sizes (3-by-3, 5-by-5, and
7-by-7). Horn’s finite difference method [28] is employed to calculate the fx and fy of
the central point of the analysis window using appropriate convolution kernels. Horn’s
technique uses convolution kernels specifically designed for each moving analysis window
to estimate a value for a subject pixel [28].

2.2.2. Roughness

Roughness quantifies the variation in elevation within a given sampled terrain unit
and captures both highs and lows. The definition of terrain surface roughness is dependent
on the scale considered, and the unit of measurement across a scale window is crucial.
This research employs the roughness calculation method outlined by [27]. This approach
determines roughness by identifying the maximum difference in elevation between a
central cell and its adjacent cells within an n × n rectangular neighborhood (see Figure 3
for illustration). In this study, the 3-by-3 window size is employed.
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2.3. Interpolation Techniques

This study quantified uncertainty in interpolated bathymetric datasets generated
from three common deterministic interpolation techniques, i.e., IDW, Spline, and Linear,
across four distinct testbeds in the United States. The algorithms for these interpolators
were developed in Python such that minimal adjustment of interpolation parameters was
required. This deliberate approach aims to streamline the implementation process and
enhance the applicability of the developed algorithms, thereby eliminating dependence
on specific GIS software. Consequently, the optimization of interpolation parameters was
not within the scope of this work, and the optimal IDW parameters identified in [29]
were employed.

2.4. Implementation of Methodology

The methodology utilized herein was the simulation of set-line spacing surveys from
the testbeds’ complete-coverage depth measurement (Figure 4) and investigation of un-
certainty estimation associated with interpolation within this known area. The main line
spacings used were 16 m, 32 m, 64 m, 128 m, 256 m, and 512 m. These line spacings were
chosen to understand how interpolation uncertainty will behave in relatively small and
wide line spacings. Since main lines are usually supplemented by cross lines to verify and
evaluate the internal consistency of hydrographic surveys, the set-line spacing surveys’
cross line spacings were calculated using 9% of the main line mileage according to [14] and
distributed geographically across the testbeds; see Figure 4 for an example. The set-line sur-
vey was simulated across each testbed using these main line spacings and their appropriate
cross line spacings.
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Depths along the main and cross lines, selected using the main line and calculated
cross line spacing, were designated as training depths for interpolation. The unselected
depths, referred to as test depths, were earmarked for uncertainty quantification and error
analysis. See Figure 5 for a schematic of the data preparation and analysis workflow.
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the machine learning techniques’ architectures.

The training depths were interpolated using each of the interpolation techniques
employed. The resulting interpolated raster was then compared, on a cell-by-cell basis,
to the test depths to quantify interpolation uncertainty. Interpolation uncertainty was
determined as the absolute value of the difference between the interpolated depths and the
measured depths for the cells that were in the test dataset and not within one of the set lines.
Ancillary predictors, such as the Euclidean distance to the nearest known measurement
and the slope and roughness raster surfaces were generated from the training depths and
the interpolated DBM, respectively (refer to Figure 6). These predictors, along with their
respective interpolation uncertainties, constituted the datasets prepared for modeling to
discern the relationship between the predictors and interpolation uncertainties to quantify
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the ‘estimated uncertainty’ and determine the most important predictor(s) of interpolation
uncertainty. To mitigate bias in the analysis, depth measurements along the border of study
areas were part of the data used for interpolation. This approach minimized potential
edge effects by ensuring that the interpolated values near the study area’s boundaries were
influenced by actual measured depths, reducing potential inaccuracies that could arise
from extrapolation.
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2.5. Modeling and Analysis

Linear regression was employed to model the relationship between interpolation un-
certainty and individual predictors, resulting in an estimated uncertainty. For each testbed,
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linear regression models were created for three predictors—distance to the nearest known
measurement, slope, and roughness—separately for all line spacings and interpolation
methods. The performance of these models was measured using the adjusted coefficient of
determination (R2) and root mean square error (RMSE) in meters.

To move beyond individual predictor effects, this study used artificial neural networks
(ANNs) (see [30]) to capture nonlinear relationships, interactions, and hidden patterns
among the combined predictors. These capabilities surpass traditional methods such as
multivariate regression, which may not adequately identify such complexities. Random
forest (RF) techniques were employed to assess the importance of uncertainty predictors
due to their computational efficiency compared to identifying predictor importance using
the ANN’s SHAP (SHapley Additive exPlanations) (see [31]), which is computationally
expensive. RF was used to complement the ANN model in order to explain which predictor
is most important for predicting interpolation uncertainty. Both the ANN and RF models’
architectures are summarized in Figure 5.

The ANN was implemented in Python using the Keras library with a TensorFlow
backend. The dataset was split into 70% training data and 30% test data, and standard
scaling normalization was applied to both sets. The model architecture included an input
layer with 10 neurons, a hidden layer with five neurons using the Rectified Linear Unit
(ReLU) activation function [32], and an output layer with one neuron employing linear
activation for regression tasks. The training involved specifying the mean squared error
(MSE) as the loss function, using the Adam optimizer for gradient descent [33], and
monitoring the mean absolute error (MAE) during five epochs of training. The model
predicted interpolation uncertainty for the test data, and performance was assessed using
an adjusted R2 and RMSE.

The RF implementation in Python utilized the Scikit Learn Random Forest Regressor.
Similarly to the ANN, the data were split into training and testing sets and normalized. An
RF model with 100 decision trees was created and trained on the normalized training data.
Performance evaluation metrics included the adjusted R2 and RMSE. The importance of
each predictor in the model’s prediction was assessed, considering the number of trees in
which a variable appeared.

To determine the significance of variable contributions to models, a non-parametric
bootstrap approach was used. The RF model was fitted to 500 bootstrapped datasets of
about 120,000 data points, and the resulting variable importance values from each RF
model were combined to compute the mean importance and 95% confidence intervals. In
averaging across all line spacings and interpolation methods, the overall mean importance
and 95% confidence intervals for each variable were computed.

By employing both ANN and RF methods, this study combined robust predic-
tion and interpretability, enabling a comprehensive understanding of the drivers of
interpolation uncertainty.

2.6. Validation Technique/Accuracy Assessment

Two well-known methods for assessing interpolation accuracy and model overfitting
are cross-validation [29,34–36] and the split-sample method [29,37–39]. In this study,
the split-sample method was employed to evaluate how changes in line spacing affect
interpolation accuracy. This method involves splitting the dataset into training and testing
subsets, where the training data are used for interpolation, and performance is assessed
using the test data. Standard statistical metrics such as RMSE, mean absolute error (MAE),
bias, and R2 are frequently used for evaluation [40–42]. RMSE and R2 were applied in
this study.
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To evaluate the statistical significance of differences among interpolation methods,
pairwise t-tests were conducted. These tests were used to compare uncertainties between
pairs of interpolation methods and assess whether the differences were statistically different
from zero. Notably, the normality of pairwise difference distribution was also checked. In
addition to the statistical evaluation, visual inspection was conducted to spatially assess
interpolation accuracy and understand the spatial distribution of uncertainty, providing a
qualitative characterization of interpolation uncertainties.

3. Results
Interpolation Methods

The performance of the interpolation methods at each line spacing for each testbed
is evaluated using box and whisker plots (Figures 7 and 8). Overall, the interpolation
uncertainty from Spline was better than IDW and Linear, except in Testbed 1, where Linear
yielded better results. IDW consistently showed the worst performance across all testbeds.
Figures 7 and 8 illustrate the performance of the interpolation methods across all line
spacings for Testbeds 1 and 4, which were selected for presentation due to their significant
variation in uncertainty magnitude, encompassing the range of uncertainties observed in
the other testbeds.
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However, the above differences in interpolation methods across various line spac-
ings for all testbeds are not statistically significant, as indicated by pairwise analysis.
Figure 9 and Table 2 present the distribution of pairwise interpolation uncertainty differ-
ences and the t-test results for Testbed 4, which serves as a representative example of the
other testbeds.
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Table 2. Testbed 4 (rough and slopy) statistics for pairwise interpolation methods’ comparison at
various line spacings.

Line Spacing (m) Interpolation Methods t-Statistics p-Value

16

Spline and IDW −160 0

IDW and Linear 176.8 0

Spline and Linear −20.3 0
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Table 2. Cont.

Line Spacing (m) Interpolation Methods t-Statistics p-Value

32

Spline and IDW −106.7 0

IDW and Linear 113.4 0

Spline and Linear −22.5 0

64

Spline and IDW −139.8 0

IDW and Linear 153.4 0

Spline and Linear 6 0

128

Spline and IDW −111.8 0

IDW and Linear 147.4 0

Spline and Linear 59.6 0

256

Spline and IDW −76.6 0

IDW and Linear 140.4 0

Spline and Linear 118.3 0

512

Spline and IDW −53.9 0

IDW and Linear 151.8 0

Spline and Linear 171.9 0

The magnitude of interpolation uncertainties is in the order of centimeters for Testbeds
1 (Figure 7) and 2, whereas for the more complex Testbeds 3 and 4 (Figure 8), uncertainties
are in the order of meters. Moreover, differences between uncertainties are relatively higher
at wider line spacings across all testbeds, while at tighter line spacings, uncertainties tend
to become the same.

a Spatial Pattern of Interpolation Uncertainties

The spatial pattern of the interpolation uncertainties refers to the distribution and
arrangement of uncertainty values across the testbed, highlighting how they vary spatially
in response to different predictors. In this study, these patterns were visually examined
qualitatively across Testbeds 1 to 4 to understand how seafloor characteristics, distance
to the nearest measurement, and data quality affect interpolation uncertainty. The results
indicate that the uncertainties are not randomly distributed; instead, they follow specific,
identifiable patterns based on seafloor characteristics, distance to the nearest measurement,
and multibeam data artifacts (see Figures 10 and 11).

In Testbed 1, higher uncertainties are concentrated on the eastern side, likely due
to multibeam artifacts in the original dataset. For Testbed 2, higher uncertainties are
associated with areas of increased surface roughness. In Testbed 3, higher uncertainties
are linked to regions with steeper slopes. Testbed 4 shows non-random patterns, with
higher uncertainties correlating with both high slope and roughness values. Given the
presence of multibeam artifacts in Testbed 1 and the larger uncertainty magnitudes in
Testbed, their spatial uncertainty plots are shown in Figures 10 and 11, respectively. To
ensure a meaningful comparison, the color bar has been standardized across all line
spacings and interpolation methods. However, differences in the subplots at identical
line spacings—viewed horizontally—are minimal due to the similar performance of the
interpolation methods.
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b. Predictive Models of Interpolation Uncertainties

Across the testbeds, the linear regression relationships between interpolation uncer-
tainty and individual ancillary predictors (i.e., distance to the nearest known measurement,
slope, and roughness) were generally weak for all interpolation methods (see Figure 12).
To explore potential nonlinearities and hidden interactions among these combined pre-
dictors and the estimated uncertainty, we employed an ANN. This resulted in a slight
improvement in the adjusted R2 (Figure 13), although the accuracy of the predictive models
based on these combined predictors varied significantly across the testbeds. The highest
performance was observed in Testbed 4, followed by Testbeds 3, 2, and 1.
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Among the interpolation techniques, IDW’s predictive uncertainty model generally
achieved higher adjusted R2 values compared to those of Spline and Linear, but it had the
worst performance in terms of RMSE. Spline and Linear interpolations showed similar
performance for both metrics. Figures 12 and 13 present the predictive uncertainty models
for Testbed 4, the best-performing testbed, for both individual and combined predictors.
The differences in RMSE between the interpolation methods’ predictive uncertainty models
were in the order of centimeters, which are not operationally significant for meeting
survey order or charting specifications. For instance, the 15 cm difference between Spline’s
and IDW’s uncertainty model at a 512 m line spacing, as shown in Figure 13b, is not
operationally significant. A 512 m line spacing survey would not be conducted in water
depths where uncertainties of this magnitude would pose a hazard to navigation.

The results from the RF analysis, combined with the bootstrap statistical technique
(Table 3), identified slope as the strongest predictor of uncertainty in Testbeds 1 and 2,
while roughness emerged as the best predictor in Testbeds 3 and 4. Across all testbeds,
distance to the nearest known measurement was found to be the least significant predictor
of uncertainty.

Table 3. Statistics of the importance of predictors of uncertainty across testbeds.

Testbed Statistics/Predictor Distance Slope Roughness

1

Mean importance (%) 8.4 52.8 38.7

# times of most important 0 13 5

95% bootstrap percentile CI of the importance (8.0, 8.8) (51.4, 54.3) (37.3, 40.1)

2

Mean importance (%) 11.5 49.7 38.8

# times of most important 0 12 6

95% bootstrap percentile CI of the importance (11.1, 11.8) (48.9, 50.5) (38.0, 39.7)

3

Mean importance (%) 9.3 37.7 53.0

# times of most important 0 3 15

95% bootstrap percentile CI of the importance (8.9, 9.7) (36.2, 40.4) (50.3, 54.5)

4

Mean importance (%) 8.8 38.3 52.9

# times of most important 0 1 17

95% bootstrap percentile CI of the importance (8.5, 9.0) (37.5, 39.1) (52.2, 53.7)

4. Discussion
4.1. Unraveling the Contextual Performance of Interpolation Methods

The analysis of results revealed that, from a scientific standpoint—specifically in terms
of minimizing uncertainty—Linear interpolation performed best for Testbed 1 (flat), while
Spline performed best for Testbeds 2 (rough), 3 (sloped), and 4 (rough and sloped). IDW
consistently showed the worst performance across all testbeds. However, when evaluated
from an operational perspective and their effect to surface navigation, the interpolation
methods performed similarly with differences in the range of centimeters. These are
unlikely to affect the CATZOC designation due to the total depth vertical uncertainty (as
shown in Table 1), particularly in shallow waters where the differences are nonexistent
(see, e.g., Figure 13 for line spacing up to 256 m that corresponds to a water depth of,
approximately, 64 m). The lack of statistically significant differences in the performance
of interpolators indicates operational equivalence among the three interpolation methods.
This suggests that linear interpolation may be the most suitable choice in operational
settings, given its simplicity and lower computational demands.

Testbeds 1 and 2 exhibited uncertainties in the order of centimeters due to their
relatively simpler morphologies as shown in Figure 2. In contrast, Testbeds 3 and 4, which
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have more complex features, showed uncertainties in the order of meters, particularly at
wider line spacings (256 m and 512 m). Even though Testbeds 1 to 4 have varying depth
ranges, 26 m, 11 m, 140 m, 90 m, respectively, these differences in depth range do not
impact the uncertainties results. This is justified by expressing uncertainties as a percentage
of depth, and the same outcome was observed. To facilitate analysis and enhance result
comprehension in this study, interpolation uncertainties are presented as absolute values.
The variability in uncertainties indicates that seabed complexity has a significant impact
on interpolation uncertainties, with Testbeds 1 (flat) and 2 (rough) yielding more accurate
results compared to Testbeds 3 (slopy) and 4 (rough and slopy), especially in the context of
creating DBMs from set-line spacing surveys and field operations. This finding emphasizes
that seabed morphology should be one of the variables driving set-line spacing survey
density. It also suggests that a set-line spacing survey approach is more suitable for simpler
morphologies, as interpolation uncertainties can reach up to 15 m in 100 m of depth or
more in complex morphologies, as shown in Figure 10.

The impact of line spacing is conspicuous, particularly in Testbeds 3 and 4, where
uncertainties become relatively similar and smaller at tighter line spacings. This suggests
that denser line spacing is a way of overcoming geomorphologically related uncertainty on
Testbeds 3 and 4. Summarily, the interpolation method performance varies across testbeds,
influenced by seabed morphology and line spacing. While nuanced differences exist, the
overall insights suggest that selecting an interpolation method should be tailored to the
specific characteristics of the seabed under consideration.

Additionally, the qualitative spatial analysis of interpolation uncertainties across the
testbeds reveals distinct, non-random patterns. For instance, higher uncertainties are
concentrated in specific regions, such as the eastern side of Testbed 1 (see Figure 10) due
to the artifacts in the original dataset, and areas associated with high distances to the
nearest known measurement and high slope or roughness values in Testbeds 2, 3, and
4. This highlights the influence of underlying terrain characteristics and line spacings on
uncertainty. The multibeam artifacts present in Testbed 1 further illustrate how uncertainties
from the original data can propagate into the interpolation process. The choice of this
dataset with artifacts was to investigate the effect of multibeam artifacts on interpolation
uncertainty. Even though survey data may be affected by multibeam artifacts, they may
still meet the IHO specifications they were targeted for [43]. These findings underscore the
interplay between data quality, line spacing density, seabed morphology complexity, and
interpolation uncertainties.

In summary, the choice of interpolation method does not have a significant impact on
results, and the differences in uncertainties are generally not statistically significant. The
performance of interpolation methods varies across testbeds, suggesting that morphological
complexity should guide the density of set-line spacing surveys. This means that in rougher
and sloped terrains, such as those found in Testbeds 3 and 4, survey lines should be spaced
more densely to reduce interpolation uncertainty, whereas less complex terrains allow for
less dense spacing.

4.2. Relationship Among Predictors, Line Spacing, and Interpolation Uncertainty

Through varying line spacings, roughness was identified as the most important predic-
tor of uncertainty for Testbeds 3 and 4, followed by slope and distance to the nearest known
measurement. Conversely, for Testbeds 1 and 2, slope was the most significant predictor,
with roughness and distance to the nearest known measurement following. The observed
weak association among roughness and slope, as defined in this work, and distance to the
nearest known measurement with interpolation uncertainty using the ANN highlights the
complexity of estimating uncertainty in interpolated bathymetry. Machine learning does
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improve the predictive capability of the model, yet the combined predictors explain only
about, e.g., 40% of the variability in the data at a 16 m line spacing, as shown in Figure 13.

Distance to the nearest known measurement, being the least significant predictor
of uncertainty, contributes minimally to the overall estimation, as evidenced by both
linear regression and RF analysis. While distance shows a correlation with interpolation
uncertainty at wider line spacings, its impact remains limited.

Despite the importance of slope and roughness as a predictor of interpolation un-
certainty, their combined explanatory power is limited, as shown in [18], suggesting the
presence of unaccounted-for factors influencing uncertainty or a strong random compo-
nent within interpolation uncertainty. This outcome also suggests that the definitions of
roughness and slope, which were based on spatial scales close to the seafloor sampling
frequency, limited the range of the spatial scales of the analysis and contributed to the low
predictive capabilities of the machine learning models.

Notably, the introduction of machine learning techniques in this work enhanced our
understanding of the complexity of the problem and the weak relationship between in-
terpolation uncertainty, and the combined ancillary predictors signaled the necessity for
alternative approaches such as spectral analysis. This approach may help to better charac-
terize the seafloor across varying spatial scales and improve the prediction of interpolation
uncertainty. While additional predictors were considered, such as morphological aspects
and curvature, they exhibited no discernible relationship with interpolation uncertainty as
also found in [18] and, therefore, are not included in this study.

The slight improvement in the ANN’s model performance at tighter line spacings
across the testbeds underscores the importance of reasonable line spacings. Wider line
spacings correspond to increased interpolation uncertainty, and vice versa. Additionally, as
line spacing increases, the uncertainty model struggles to capture the subtle variations in
seabed morphology, leading to a reduction in predictive capability. This finding accentuates
the significance of strategic set-line survey designs, where appropriate line spacings can
enhance the estimation of interpolation uncertainty. This has implications for real-world hy-
drographic surveys targeted at a particular CATZOC level to maximize survey efficiencies,
cost, and time.

4.3. Examining Disparities in Testbed Predictive Performance of Interpolation Methods

The significant differences in predictive performance across the testbeds highlight
the context-dependent nature of interpolation uncertainty. Testbed 4 (rough and slopy)
demonstrated the highest predictive capability (though the lowest interpolation accuracy),
likely due to the greater spatial variability inherent in rough and slopy seabeds, which may
have contributed to a better model fit. The inclusion of slope and roughness as predictors
likely enhanced the model’s performance in Testbed 4.

Interestingly, Testbed 3 (slopy) performed nearly as well, with roughness identified
as the primary predictor of uncertainty. This suggests that other unexamined factors may
be influencing the results, underscoring the complexity of the relationship between these
predictors and predictive performance.

Testbed 2 (rough) performed slightly worse than Testbed 3, with slope emerging
as the most important predictor of uncertainty. This is likely due to the fact that the
rough and slopy testbed has some interactive effect on slope and roughness. For example,
Testbed 2, despite being defined as rough, has some slope in it. This suggests a disconnect
between seabed characteristics and predictive capability, emphasizing the complexity of
this relationship.

Finally, Testbed 1 (flat) showed the lowest predictive performance, affirming the
challenge of capturing variability in less complex terrains.
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These findings underscore the importance of considering the specific characteristics of
the seabed when developing and applying interpolation models, recognizing the intricate
interactions that influence predictive capability in diverse seabeds.

4.4. Importance of Predictors

A detailed analysis of the RF results, supported by the bootstrap statistical technique,
revealed that roughness holds the highest predictive importance for interpolation uncer-
tainty, followed by slope and distance to the nearest known measurement for Testbeds 3
and 4 while slope emerged as the most important predictor for Testbeds 1 and 2. Across all
testbeds, the consistently low importance of distance to the nearest known measurement
highlights its minimal contribution to the predictive models. In contrast, the strong influ-
ence of roughness and slope underscores the critical role that terrain characteristics play in
shaping interpolation uncertainties.

Interestingly, on Testbeds 1 and 2, slope emerged as the most important predictor
while competing with roughness, potentially due to the less complex morphology of
these seabeds. Conversely, on the more complex Testbeds 3 and 4, roughness dominated
as the key predictor. The use of the bootstrap statistical technique further supports the
reliability of these findings, confirming the statistical significance of the differences observed
among predictors.

Overall, these findings provide a deeper understanding of the key factors in predic-
tive models of interpolation uncertainties for set-line spacing surveys. Recognizing the
hierarchical importance of these predictors offers valuable insights into how uncertainty in
interpolated bathymetry can be effectively quantified in such surveys.

4.5. Limitations of the Study

This study focused on estimating interpolation uncertainty in operational settings,
where data-driven products are generated from large datasets. As a result, we excluded
geostatistical interpolation methods like Kriging, which, though providing uncertainty
estimates, are computationally demanding and require significant memory resources.

Additionally, the interpolation parameters used in our study were based on general
values from the existing literature, rather than being optimized for the specific characteris-
tics of each testbed. While parameter optimization might enhance accuracy, it was beyond
the scope of this research.

This study also focused solely on the uncertainty related to depth accuracy in CATZOC,
without addressing horizontal accuracy or factors related to seafloor feature detection, such
as expected feature size or seabed undulations.

4.6. Future Research Directions

Exploring sophisticated alternatives, such as spectral analysis for uncertainty estima-
tion, may advance this research area. While the results in this work do not model significant
predictive power for the strict definitions of roughness and slope used here, the spatial
scales associated with these definitions are closely tied to the spatial sampling frequency.
Spectral analysis may facilitate analysis over a broader range of spatial frequencies and
improve the model’s predictive power. The integration of spectral analysis with machine
learning techniques holds significant potential for improving interpolation uncertainty
estimates and the detection of seafloor features.

In this study, we assumed that the depth data from BlueTopo were free of measurement
uncertainty. However, it is important to recognize that depth measurements typically carry
uncertainty due to various factors (refer to [44]). Future research should aim to integrate
measurement uncertainty with interpolation uncertainty, which would enable a more
accurate assignment of CATZOC values for nautical charting.
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The testbeds in this study are confined to U.S. waters, although they address a useful
range of morphological characteristics. This confinement does not limit the generalizability
of the findings, as global nautical charting surveys adhere to the international guidelines
set by the International Hydrographic Organization (IHO) (see [22]). Future work should
expand to include broader geographic regions and diverse bathymetric characteristics to
enhance the applicability of these findings. Another important avenue for future research
is exploring how interpolation uncertainty can inform the optimization of set-line spacing
in hydrographic survey design to meet desired CATZOC standards. Such optimization
could improve survey efficiency in terms of both time and cost, while ensuring that the
necessary accuracy standards are met. These multidimensional investigations have the
potential to transform the methodologies used in hydrographic surveys.

Finally, future research should compare actual interpolation uncertainty with Kriging
uncertainty. This is particularly relevant as the interpolation uncertainty statistics observed
in this study diverge from key assumptions, such as homogeneity of variance, which are
central to the Kriging method.

5. Conclusions
This study aimed to identify the best bathymetric gap-filling interpolation method—

which minimizes interpolation uncertainty—and accurately quantify and characterize-
uncertainty in set-line spacing surveys. It sought to establish the relationship between
interpolation uncertainty and a suite of ancillary predictors—distance to the nearest known
measurement, slope, and roughness—across four testbeds in the United States, using tighter
and wider line spacings.

The findings revealed that Spline is the best interpolation method for Testbeds 2
(rough), 3 (slopy), and 4 (rough and slopy), followed by Linear and IDW. For Testbed 1,
Linear interpolation resulted in the least interpolation uncertainty, followed by Spline and
IDW. However, this study also showed the operational equivalence of accuracies produced
by different interpolation methods, as the differences observed are generally negligible from
an operational standpoint, reflecting uncertainties in centimeters that may not practically
impact CATZOC designations.

The weak relationship between the interpolation uncertainty and the predictors, rough-
ness, slope, and distance to the nearest known measurement highlighted the challenges
in estimating uncertainty in set-line spacing surveys. This in turn impacts the ability to
establish operational survey plans that will maximize accuracy for a minimum cost. The
introduction of machine learning techniques to combine the predictors into a single ANN
model provides marginal improvements, while RF reveals the dominance of roughness
and slope as the most important predictors, across the testbeds. Additionally, IDW better
captured the variability of interpolation uncertainty than the Spline and Linear methods
for most testbeds. The impact of appropriate line spacing on an uncertainty model’s ex-
planatory power is evident, diminishing effectiveness with tighter line spacings and wider
line spacings.

Moreover, the model performance varied across testbeds, with Testbed 4 (rough and
slopy seabed) yielding the best results (R2 of 0.4 at a 16 m line spacing), followed by
Testbed 3 (slopy seabed), Testbed 2 (rough seabed), and Testbed 1 (flat seabed). These
insights highlight the presence of unaccounted-for factors influencing uncertainty or a
strong random component within interpolation uncertainty.

Although this research focused on deterministic interpolation methods, the decision
not to optimize parameters for each testbed reflects the operational focus of the study, where
processing time and limited parameter adjustments are prioritized. This research advances
our understanding of how measurable factors contribute to uncertainty estimates in set-line
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spacing surveys, offering valuable perspectives for uncertainty estimation, hydrographic
survey planning, and future research and applications in this domain.
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Appendix A

Table A1. Summary of testbeds. NAD83—North American Datum of 1983 and UTM—Universal
Transverse Mercator.

Testbed Name Morphology Locality Depth Range
(m) BlueTopo Tiles NAD83 UTM

Zone

1 Flat
Low roughness
and low slope

Gulf of Mexico,
LA, USA −26–−52

BF2G62KP_20230505
16 N

BF2G72KP_20230505

2 Rough High roughness
and low slope

Florida Main
Channel, FL, USA −17–−28

BH4ST58G_20230607

17 N
BH4ST58H_20230607
BH4SV58G_20221125
BH4SV58H_20221125

3 Slopy High slope and
low roughness

Massa-chusetts
Bay, MA, USA −60–−200 BF2JK2MD_20230614 19 N

4
Rough

and Slopy
High slope and
high roughness

Gulf of Maine,
ME, USA −12–−102

BF2JK2MH_20230626
19 N

BF2JK2MG_20230418
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