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Abstract: Due to the external environment and the buoyancy of cyanobacteria, the inhomogeneous
vertical distribution of phytoplankton in eutrophic lakes affects remote sensing reflectance (Rys)
and the inversion of surface chlorophyll-a concentration (Chla). In this study, vertical profiles of
Chla(z) (where z is the water depth) and field R;s (Rys_F) were collected and utilized to retrieve the
vertical profiles of Chla in Lake Chaohu in China. Chla(z) was categorized into vertically uniform
(Type 1: N = 166) and vertically non-uniform (Type 2: N = 58) types. Based on the validation of
the atmospheric correction performance of the Geostationary Ocean Color Imager (GOCI), a Chla(z)
inversion model was developed for Lake Chaohu from 2011 to 2020 using GOCI Rs data (Rys_G). (1)
Five functions of non-uniform Chla(z) were compared, and the best result was found for Chla(z) = a
x exp(b x z) + ¢ (R? = 0.98, RMSE = 38.15 pg/L). (2) A decision tree of Chla(z) was established with
the alternative floating algae index (AFAIR,s), the fluorescence line height (FLH), and wind speed
(WIN), where the overall accuracy was 89% and the Kappa coefficient was 0.79. The Chla(z) inversion
model for Type 1 was established using the empirical relationship between Chla (z = surface) and
AFAIg,s (R? = 0.58, RMSE = 10.17 ug/L). For Type 2, multivariate regression models were established
to estimate the structural parameters of Chla(z) combined with R,s_G and environmental parameters
(R? = 0.75, RMSE = 72.80 ug/L). (3) There are obvious spatial variations in Chla(z), especially from
the water surface to a depth of 0.1 m; the largest diurnal variations were observed at 12:16 and
13:16 local time. The Chla(z) inversion method can determine Chla in different layers of each pixel,
which is important for the scientific assessment of phytoplankton biomass and lake carbon and can
provide vertical information for the short-term prediction of algal blooms (and the generation of

corresponding warnings) in lake management.

Keywords: chlorophyll-a concentration; geostationary satellite; GOCI; vertical distribution;
diurnal variations
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1. Introduction

Influenced by human activities and climate change, the eutrophication of lakes has
increased [1], and the water-ecological problems caused by the decline in water quality and
increase in cyanobacteria blooms have become increasingly serious [2]. Chlorophyll-a (Chla)
is the main pigment in phytoplankton photosynthesis and an important parameter for de-
scribing the nutrient statuses of water bodies [3]. Satellite remote sensing can be conducted
rapidly and in real time, and the use of satellite remote sensing for water quality monitoring
yields superior results [4]. Numerous remote sensing inversion studies of surface Chla
have been carried out in inland and near-shore water bodies. The commonly used satellite
data include the Moderate Resolution Imaging Spectroradiometer (MODIS) [5], Landsat
series [6], Sentinel-3 Ocean and Land Colour Instrument (OLCI) [7,8], Medium-Resolution
Imaging Spectrometer (MERIS) [9], Geostationary Ocean Color Imager (GOCI) [10,11], and
Visible Infrared Imaging Radiometer Suite (VIIRS) [12] data. These satellite datasets have
been widely used in water quality monitoring and ecological environmental assessment at
different scales ranging from local to global.

The remote sensing inversion methods for Chla in water bodies are mainly empiri-
cal [13-17], semi-analytical [18,19], and analytical [20]. Empirical algorithms [13-17] are
established by measuring the spectral radiation characteristics of the water surface and
the Chla in water bodies, and typical models are pigmentation algorithms based on band
ratios [21]. The semi-analytical methods combine empirical equations and radiative transfer
models and usually require multi- or even high spectral resolution [22]. The analytical
methods are physical-model-based approaches that require more parameters and atmo-
spheric correction and provide more accurate estimates. However, most of these Chla
inversion models are based on the assumption of vertical uniformity, which affects the
magnitude and shape of R;s when the vertical distribution is non-uniform, thus affecting
the accuracy of Chla inversion determination [23]. To date, studies on cyanobacteria bloom
detection and surface Chla inversion have been carried out using GOCI [24]. However, the
nature of the diurnal variation of Chla(z) vertical profiles is still unclear.

Gaussian and improved Gaussian models are mainly used to describe Chla vertical
profiles in oceanic and coastal waters [25-27]. A vertical profile for Chla based on a Gaus-
sian normal distribution model rotated by 90° with global measured data was proposed
in [28]. Subsequent studies improved this model by adding gradient parameters and
applying it to different marine environments [29,30]. Meanwhile, the relationships between
sea surface Chla, sea surface temperature, and model parameters were determined [31].
Finally, based on global measurements, Gaussian-type quantitative expression models were
developed for accurate prediction [26]. These models provide important tools for studying
marine ecosystems.

In eutrophic shallow lakes, the optical properties of the water body are complex,
and external meteorological conditions such as wind speed (WIN), precipitation, and
temperature change rapidly [32]. Cyanobacteria can move vertically within the water
column by floating and sinking when external conditions change [33], leading to a vertical
non-uniform distribution of Chla. The study of the vertical profiles of Chla can improve the
accuracy of predicting Chla in the water column. The maximum value of Chla in shallow
eutrophic lakes is usually found in the surface layer but has different vertical distribution
functions, such as Gaussian, exponential, and power functions [34]. Four vertical profiles
of summer Chla fluorescence, including leapfrog, single-peak, increasing, and vertically
uniform, were observed in the coastal waters near Taiwan [35]. The vertical profiles of
Chla were classified into four types, namely, vertically uniform, Gaussian, exponential,
and negative power functions, in Lake Chaohu [36]. However, these functions introduced
many model parameters, which increased the difficulty of assessing Chla(z) inversion. To
solve the problem in which surface Chla does not fully reflect the eutrophication of water
bodies, inversions of algal biomass in the water column have been carried out based on
MODIS and OLCI [37,38]. But, these models were built based on the relationship between
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R,s and the total algal biomass in the water column, neglecting the vertical profiles of Chla
in each layer.

Lake Chaohu is a typical eutrophic shallow lake in China, and algal blooms occur
frequently in this lake. The aims of this paper are to (1) classify the vertical distribution of
Chla into vertically uniform or non-uniform types, (2) establish different Chla(z) inversion
models for each type, and (3) analyze the characteristics of diurnal, inter-monthly, and
inter-annual variations in Chla(z) in Lake Chaohu from 2011 to 2020. This paper is the first
to utilize GOCI for the inversion of Chla(z) with the vertical structural parameters in Lake
Chaohu. Effectively obtaining the vertical distribution characteristics of Chla is important
for the scientific assessment of phytoplankton and the estimation of lake carbon sinks and
can provide important information for the prediction of algal blooms in lake management
and the creation of corresponding warnings.

2. Data and Processing
2.1. Study Area

Lake Chaohu (31°25'28"~31°43'28"N, 117°16/54"'~117°51'46"E), located in the middle
of Anhui Province, in the lower reaches of the Yangtze River, is one of the five largest
freshwater lakes in China and has a water area of approximately 769.55 km? [32]. Under the
dual influence of climate change and human activities, the water quality of Lake Chaohu
has declined, and this lake is still in a state of eutrophication. The study region and the
spatial distributions of the samplings are shown in Figure 1.
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Figure 1. Location of Lake Chaohu in China. The spatial distributions of samplings are shown.

2.2. Field-Measured Data

A total of 224 samples were collected from Lake Chaohu from 2013 to 2017 (Figure 2).
Each sample included nine layers of water samples taken from the surface (the surface-
water depth was assumed to be 0.01 m) and at 0.1, 0.2, 0.4, 0.7, 1.0, 1.5, 2.0, and 3.0 m. The
water samples were collected using a homemade vertical water sample collector, which
includes a 10 cm diameter water pump, portable power supply, connecting pipe, and depth
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reference line. Surface water samples were collected directly using water bottles. The
water samples were stored in brown bottles and refrigerated at low temperatures and then
returned to the laboratory for indoor sample testing. A glass-fiber filter (pore size, 0.7 um;
diameter, 47 mm; Whatman GF/F) was used to filter the water and subsequently soaked in
90% acetone to extract the pigments [39]. The light absorbance of the extracted solution
was measured at 630, 645, 663, and 750 nm using a UV2600 spectrophotometer. Chla were
calculated using Equation (1) [40].

Conta = [11.64 x (Agsz — A750) — 2.16 X (Agss — A750) + 0.1 x (Agz0 — Ays0)]V1/V2 X L, 1)

where Ccy, is Chla (ug/L); Aeszo, Acas, Aess, and Azsg are the absorbance values at 630, 645,
663, and 750 nm, respectively; V1 is the volume of the extraction solution (mL); V2 is the
filtration volume of the water sample (L); and L is the optical path of the cuvette (given in
cm— 1 cm was used in this study).
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Figure 2. Number of samplings conducted between May 2013 and November 2017.

The reflectance spectral data of water were measured above the water’s surface [41],
and the measurement time was between 9:00 and 16:00 local time, when the weather was
clear and the sky was cloudless. A field dual-channel spectrometer (FieldSpec Pro Dual
VNIR, Analytical Spectral Devices, Inc., Longmont, CO, USA) from the American ASD
Company was used, with a measurement range of 350-1050 nm and an interval of 1 nm.
We took measurements using a solar azimuth angle of 135° and a field-of-view angle of
45°. The R,s_F was then estimated according to the total water-leaving radiance (Lsy), the
radiance of the gray plate (L,), and sky radiance (Lg,) according to Equation (2):

Rys = (st — Pw X Lsky) X Pp/Tpr/ (2)

where py, is assumed to be 0.028 based on the wind speed and sky conditions measured in
the field [42]. p, is the reflectance of the gray reference plate (30%).
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2.3. Satellite Image Acquisition and Processing

The GOCI Level-1B data used can be downloaded from the Korea Institute of Ocean
Satellite and Technology (KIOST) (http:/ /kosc.kiost.ac.kr/, accessed on 1 April 2023),
which was located in a target area of approximately 2500 km x 2500 km centered on
Korea (36°N, 130°E). The data were scanned from May 2011 to March 2021 with a spatial
resolution of 500 m and a temporal resolution of 1 h, providing eight field images daily
covering the period from 8:16 to 15:16 (UTC + 8). There are eight spectral bands used by the
GOCI sensor, including six visible bands and two near-infrared (NIR) bands. The central
wavelengths from B1 to B8 are 412, 443, 490, 555, 660, 680, 745, and 865 nm, respectively.
A total of 6377 cloudless images of the study region from 2011 to 2020 were collected
(Figure 3).
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Figure 3. Number of GOCI images of Lake Chaohu in different months.

The R;s_G values covering Lake Chaohu were processed by the NOAA (National
Oceanic and Atmospheric Administration) Ocean Color Science Team using the Multi-
Sensor Level-1 to Level-2 (MSL12) satellite data-processing system [43,44]. By combining
statistical samples and prior knowledge, when the conditions R;s_G(490) > 0.034 sr 1
R;s_G(555) > 0.04 sr~!, and R,s_G(865) > 0.023 sr—! were satisfied at the same time, a
pixel was classified as a cloud or sun glint, and cloud shadow pixels were masked when
Rys_G(555) < 0.0248 sr—!, in accordance with the method reported in a previous study [45].
By combining the characteristics of the AFAIR,s and the adjusted floating algae height
(AFAH) [46], when the AFAIR,s > —0.004 and AFAH < —0.0032, the corresponding pixel
was eliminated to reduce the interference of turbid water on the model estimation results.
Images with a large difference in the number of pixels on the same day after being masked
or images accounting for less than 15% of the total number of pixels were eliminated. In
addition, considering the impact of the adjacency effect in the nearshore area, a one-pixel
range along the boundary of the water was masked [47].
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A total of 4249 high-quality GOCI images were finally selected according to the above
rules. There are 129 match-up pairs between the field measurements and GOCI data
obtained to evaluate the atmospheric correction accuracy. GOCI R,s_G at 660, 680, 745, and
865 nm bands were validated with the in situ R;s_F in Figure 4. The R? values of the four
bands were greater than 0.59, indicating good performance.
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Figure 4. Validation results for GOCI R;s_G versus in situ Rys_F at the relevant bands: (a) 660 nm, (b)
680 nm, (c) 745 nm, and (d) 865 nm.

2.4. Meteorological and Hydrological Data

Data on the hourly WIN over Lake Chaohu from 2011 to 2020 were downloaded from
the European center for Medium-Range Weather Forecasts (ECMWF) ERAS dataset. This
dataset has a horizontal grid resolution of 0.25°, corresponding to around 31 km [48]. Data
on the hourly global horizontal irradiance (GHI) from 2011 to 2020 in Lake Chaohu were
downloaded from the National Solar Radiation Database (NSRDB), with a spatial resolution
of 4 km. Digital elevation model (DEM) data of Lake Chaohu with a spatial resolution of
30 m were obtained from the Lake-Watershed Science Data Center, National Earth System
Science Data Sharing Infrastructure, National Science & Technology Infrastructure of China
(http:/ /lake.geodata.cn, accessed on 1 January 2024), and resampled to 500 m. The daily
water level data of Lake Chaohu were obtained from the Hydrological Bureau of Anhui
Province. The water depth (m) data were obtained by subtracting the water level from the
DEM data.
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2.5. Accuracy Assessment

Four statistical metrics were used to evaluate model performance: the coefficient
of determination (R?), root mean square error (RMSE), mean absolute percentage error
(MAPE), and unbiased percentage difference (UPD). The coefficient of variation (CV) was
used as a statistic for sample screening and model validation. These metrics are defined

as follows:

1 N 5

RMSE =, | - ) (X;—Y;)", 3)
N:=
1 ¥ Xi -y .
MAPE -5 ; e x 100%, (4)
UPD = _1 f: [Xi =Y x 200%, and (5)
TN& X 1Y an
V 2N

x 100%, (6)

where N is the number of samples, X; and Yi are the corresponding values at point i, R; is
the value of j in a 3 x 3 window, and R is the mean value within the window.

3. Methods
3.1. Fitting the Chla Vertical Profiles Using Field-Measured Data

For the 224 field measured data, we used an approach from the literature [36]: When
the CV of the Chla vertical profiles was less than 20%, the vertical profile was classified
as vertically uniform (Type 1). Otherwise, the vertical profile was classified as vertically
non-uniform (Type 2).

From the previous research, five models (Chla(z) = a x exp(b x z) + ¢, Chla(z) = ap
x exp(by X z + ¢p), Chla(z) = az x exp(bs x z), Chla(z) = ag x zb% + ¢4, and Chla(z) = a5 x
zP5) were selected to fit the vertical profiles of Type 2. The function with the best fitting
performance was used to describe the Chla(z). The key steps in the following sections were
to estimate the vertical structure parameters of the Chla(z) fitting function using R;s_G and
environmental factors.

3.2. Correlation of Surface Chla with R,s_G

Referring to the previous Chla inversion model, AFAIR,s [49], normalized difference
vegetation index (NDVI) [50], fluorescence line height (FLH) [51], spectral index (SI) [52],
and X [53] calculated from R;s_G were used as exponential factors to invert the Chla model,
and the calculation methods are shown in Equations (7)—(11):

745 — 660

AFAIg, = Rys(745) — Rys(660) — (Rrs(865) — Rys(60)) x g2—20), )
FLH =Ry (680) — Ry (660) — ((Rys(745) — Ry (660)) x %), ®)
NV o) ®

S = (Retea) et ) ®

1 1
X = (Rrs(660) a R,s(680)> X Rys(745). (11)
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Based on the 129 match-up pairs between the field data and GOCI measurements,
Rys_G of each band were extracted, from which index factors were calculated. In previous
studies, it was reported that R;s at B5 and B8 bands were more related to Chla estima-
tion. Therefore, we correlated the B5-B8 and index factors of R,s_G with the measured
Chla(surface) in Table 1.

Table 1. Correlations between different factors and the measured Chla(surface) (r is the Pearson
correlation coefficient). R;s single-band factors and Chla(surface) (first two columns), index factor
and Chla(surface) (columns 3 and 4), and index factor and Chla(surface) (columns 5 and 6).

Single-Band Factor r Index Factor r Index Factor r
B5 (660 nm) —0.34 AFAlg,s (B7, B5, BS) 0.67 NDVI (B7, B5) 0.66
B6 (680 nm) —0.44 FLH (B6, B5, B7) —0.51 B8/B7 (B8, B7) 0.17
B7 (745 nm) 0.27 SI (B5, B8) —0.55 WIN —0.45
B8 (865 nm) 0.26 X (B5, B6, BY) —0.41

3.3. Decision Tree for Classifying Vertical Profiles

To better invert Chla(z) and analyze the patterns of vertical profiles, we needed to build
a decision tree to classify the vertical profiles. For the 129 match-up pairs between field
measurements and GOCI image data, we found the index factors (AFAlR,s, SI, FLH, NDVI,
WIN) with good correlations (as shown in Table 1), which were selected as parameters
for Chla(z) classification. These index factors were used as nodes of the tree to obtain the
best classification results by setting different thresholds. A decision tree was established to
classify Chla(z), using R,s_G and WIN.

We used ten-fold cross validation to estimate the decision tree classification accuracy,
where the data were divided into 10 equally (or nearly equally); training and validation
were each performed 10 times, with one dataset reserved for validation and the remaining
nine for training in each iteration [54]. Classification accuracy was assessed using an
error matrix, where the resulting classification classes were compared with measured data.
From the error matrix, overall accuracy, Kappa coefficient, user’s accuracy, and producer’s
accuracy were calculated [36].

3.4. Chla(z) Inversion Model Development

We propose a method (Figure S1) for inverting Chla(z) using the R,s_G, index factors
and meteorological data. The Chla(z) profiles were fitted to select a model with good
performance using field-measured data. Then, the index factors of R;s_G were calculated,
and the correlations between the index factors and Chla(surface) were analyzed. For the 129
match-up pairs between the field and GOCI data, we selected the variables as parameters
for Chla(z) classification. A decision tree was established to classify Chla(z), using R.s_G
and WIN. Then, Chla(z) profiles were classified as Type 1 or Type 2.

For Type 1 Chla(z), we used Guo et al. model [45] to estimate Chla. For Type 2 Chla(z),
we estimated the three vertical parameters (g, b, and c) in the equation. Then, we used a
multiple regression model (y =m X x; + 1 X xo +1 X x3+p X x4 + k, where m, n, [, p, and k
are constants) to invert parameters a, b, and c. To avoid overfitting the data (36 match-up
pairs between measured data and GOCI data), the coefficients of the multiple regression
model were calculated via Python using the Ten-fold crossover method, with 80% serving
as a training data set and 20% serving as a test data set. After obtaining the three vertical
parameters, the Type 2 Chla(z) inversion model was obtained, and Chla(z) values were
calculated using the new Type 2 Chla(z) model for each pixel.

4. Results
4.1. Fitting of the Field Chla(z) Profiles

According to the CVs of the measured 224 Chla(z) profiles, 166 Chla(z) profiles were
classified as Type 1 (CV < 20%), and 58 Chla(z) profiles were classified as Type 2 (CV >
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20%), as shown in Figure 5. For the Type 2 Chla(z) profiles (58 samples), the results of
the predicted Chla(z) and measured Chla(z) from the fitted models are shown in Table 2.
Model 1, which had high R? values and low RMSE, UPD, and MAPE values, was selected
as the best-fitting model. The corresponding parameters a, b, and ¢ for Type 2 Chla(z) were
obtained based on Model 1, wherein the range of coefficient @ was between 0 and 1500,
with an average of 398.03; the span of b ranged from —20 to 0, with an average of —6.93;
and the range of ¢ was between 20 and 40, with a mean of 29.36.
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Figure 5. Measured Chla(z) profiles in Lake Chaohu for (a) Type 1 model showing vertical uniformity
and (b) Type 2 model showing vertical non-uniformity (Different color represent each of the different
vertical profiles).

Table 2. Results of the predicted Chla(z) and measured Chla(z) from the fitted models. The models
with better performance are noted in bold (z is water depth).

Name Function R? RMSE (ug/L) UPD (%) MAPE (%)
Model 1 Chla(z) =a x exp(b x z) + ¢ 0.98 38.15 23.03 17.15
Model2  Chla(z) =ay x exp(by X z + c) 0.97 45.15 29.28 20.05
Model 3 Chia(z) = ag x exp(bs x z) 0.97 45.43 27.60 21.00
Model 4 Chla(z) = a4 X b4 4 Cy 0.92 96.28 51.35 37.41
Model 5 Chla(z) = a5 x z%° 0.97 38.08 26.44 21.14

4.2. Calibration and Validation of Chla(z)
4.2.1. Decision Tree of Chla(z)

A decision tree of the Chla(z) vertical profiles was established using R,s G and WIN
(Figure 6). The cases wherein (1) WIN > 3 m/s and AFAI < —0.002 or (2) WIN <3 m/s,
AFAI < 0.002, and FLH > —0.004 belonged to Type 1, and the rest of the cases belonged
to Type 2. The classification results followed an error matrix, with the numbers on the
diagonal being correct classifications. The classification accuracy of the decision tree was
assessed using the ten-fold cross validation method (Table 3), wherein the overall accuracy
was 89% and the Kappa coefficient was 0.79. The thresholds for the decision tree were
assessed, showing that WIN, AFAIR,s, and FLH in the decision tree were measured with
the highest accuracy (Figure 7).
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Figure 6. Decision tree of identifying Chla vertical profile classes based on AFAIg,s, FLH, and wind
speed, where AFAIR,s and FLH are the indices derived from the in situ measurements and “WIN”

represents wind speed.
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Figure 7. Sensitivity analysis of the threshold value of the decision tree for (a) classification accuracy
(%) with changing WIN, (b) classification accuracy (%) with changing FLH, (c) classification accuracy
(%) with changing AFAIR,s; (WIN > 3 m/s), and (d) classification accuracy (%) with changing
AFAIR,» (WIN < 3 m/s). The red markers (WIN = 3.0 m/s, FLH = —0.004, AFAIR,s; = —0.002, and
AFAIR,s = 0.002) are the thresholds with the highest classification accuracy. “OA” is overall accuracy.
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Table 3. Error matrix for Chla(z) classes of Lake Chaohu (68 randomly selected sample points), where
“Overall Accuracy” is the overall accuracy of validation, and “Kappa” is the Kappa coefficient.

Measured Class User’s
Type 1 Type 2 Total Accuracy
Type 1 28 5 33 85%
Predicted class Type 2 2 33 35 94%
Total 30 38 68
Producer’s Accuracy 93% 87%
Overall Accuracy 89% Kappa 0.79

4.2.2. Chla Inversion Model for Vertically Uniform

According to the Pearson correlation values in Table 1, AFAIR,s was chosen to construct
the Type 1 inversion model.

There were 93 match-up pairs between the field and GOCI data in Type 1, which
were randomly sorted to generate a random array, with one out of every three samples
serving as a validation set. Sixty-two samples were used for model training, and thirty-one
samples were used for validation. The Type 1 inversion model was Chla = 766.07 x exp
(7.99 x x) — 706.84 (Figure 8), where x is AFAIR,s, with the training data R? = 0.51 and the
validation data R? = 0.58. For Lake Chaohu, the AFAIR,.—Chlz model was able to estimate
Chla reasonably well when the vertical distribution of the water column was uniform.

f Chla = 766.07exp(7.99x) - 706.84 (a) 10 RMSE =10.17 pug/L (b) 4
60 RMSE=8.08 pg/L 60 MAPE =38.49 % ,
MAPE = 39.60 % ° | ~ UPD = 13.05% ’
UPD =25.63 % , = 504 N=31,R?=0.58 .7
501 N=62,R*=0.51 ! g 4
= o y T 40 /
g S T
§D40_ ° /, E ° 6/ [e] o o
o 7 o) o
‘E/ -7 O 304 0o /°/° 0 o°
E 304 oo§ oo o/d o° 8 e 9))0 °
O P60 = 20- %
201 ° o 4P ° = 0o &
° °ges® °  ° "2 10
10_ _,0—’68’ @éﬁo ° g Lu 0_ //
o 7
0 10 71:1 line
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Figure 8. Training and validation of the Type 1 inversion model for: (a) the training results from the
exponential equation with AFAIg,s and (b) the validation results from the exponential model.

4.2.3. Estimation of Chla(z) Inversion Model in the Non-Uniform Vertical Distribution

Due to weather conditions, solar angle, and the quality of GOCI images, only 36 match-
up non-uniform samples were used for Chla(z) validation. A correlation analysis was
conducted between single-band data, meteorological data (GHI, wind speed, temperature),
and index factors in the Chla inversion models with the vertical structural parameters in
Figure 9. It showed that B86, AFAIR,s, WIN, GHI, and X have good relationships with the
vertical structural parameters. The validation results regarding vertical non-uniformity
(36 samples) between the field data and predicted data are presented in Figure S2. After
calculating the coefficients of the multiple regression models using Python, the three
structural parameters were estimated using Equations (12)-(14). The training results for
three structural parameters were as follows: a: R? = 0.54, RMSE = 286.26; b: RZ = 0.46,
RMSE = 6.90; ¢: R? = 0.20, RMSE = 17.19; the validation results are shown in Figure 10a—c
(a: R? = 0.57, RMSE = 270.67; b: R? = 0.56, RMSE = 6.67; c: R* = 0.38, RMSE = 16.33). A total
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of 324 match-up pairs (36 samples, nine layers) were used to validate the model (R? = 0.75,
RMSE = 72.80 pg/L), as shown in Figure 10d.

a = 0.83 x GHI —26862.04 x AFAI +1175.93 x B86 — 123.63 x WIN +487.58 (12)
b = —0.01 x GHI +833.57 x AFAI —34.04 x B8 +2.89 x WIN — 18.69 (13)
c = 0.04 x GHI —76.59 x X —22.58 x B86 — 3.38 x WIN — 2.55 (14)
: 1.00
N <;/ BSS: (BS-BS)/(BS+BS3)
. ";/ s B86: (B8-B6)/(B3+B6) 0.80
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Figure 9. Relationships between the R;s at the single band, meteorological data, index factors, and the
vertical structural parameters 4, b, and c. Note that “Tem” is temperature and “WIN” is wind speed.
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Figure 10. Validation results for the Type 2 Chla(z) model for (a) structure parameter a, (b) structure
parameter b, and (c) structure parameter c, as well as (d) a scatter plot of measured Chla(z) versus
predicted Type 2 Chla(z). Note that the log-scale was used in plots and statistics were calculated
using the Chla values.
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4.3. Temporal and Spatial Variations in Chla(z)
4.3.1. Interannual Variation in Chla(z)

The annual average Chla of the above three layers (z = surface, 0.1, and 0.3 m) from
2011 to 2020 is illustrated in Figure 11. According to the mean values of all GOCI data
from 2011 to 2020, the highest Chla (55.47 £ 28.36 ng/L) was found in the surface layer,
while Chla were 47.85 & 20.57 ug/L and 36.28 & 8.60 ug/L at 0.1 m and 0.3 m, respectively.
The mean surface Chla was the highest in 2019, reaching 76.81 ug/L. In 2016, the mean
Chla was the lowest, at only 45.67 ug/L. The mean vertical Chla in other layers remained
consistent with that of the surface. In the 2011-2015 period, the average Chla(z) value had
a small peak in 2012 and then increased from 2013 to 2015, with a secondary peak in 2015
(61.18 pg/L), while the average Chla(z) decreased to the lowest value in 2016, and from
2017 to 2020, the average Chla(z) increased again, reaching a maximum, and then declined.
The annual average values of Chla(z) at 0.1 and 0.3 m had a trend similar to that of the
surface Chla. There were significant differences in the mean Chla(z) values among the
different years, but overall, the Chla(z) values in the western part of Lake Chaohu were
greater than those in the eastern part.

2012 2013 2014 2015

Surface

A

0.1m

0.3m

Surface

0.1lm

0.3 m

Figure 11. Yearly mean Chla(z) from 2011 to 2020 in the three vertical layers (surface, 0.1 m, and 0.3
m) of Lake Chaohu.

4.3.2. Monthly Variation in Chla(z)

The variation in the monthly average Chla(z) (where z = surface, 0.1 m, and 0.3 m)
from 2011 to 2020 is shown in Figure 12. The Chla(z) in each layer showed seasonal changes
that were high in summer and low in winter. Chla(z) (where z = surface) values were the
highest in summer (from June to August), reaching 75.10 nug/L, and the lowest in winter
(December to February of the following year), at only 36.38 ug/L.
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Figure 12. Monthly mean Chla (z = surface, 0.1 m, and 0.3 m) from 2011 to 2020 in Lake Chaohu.

The monthly spatial distribution of Chla(z) (Figure 13) showed that the highest mean
value of surface Chla(z) (95.86 ng/L) was recorded in September, followed by the second
highest value in August (79.17 ug/L), and lower mean values were in December (32.95
ug/L) and April (32.62 ug/L). The lowest value for the whole year was recorded in March
(32.24 pg/L). The trend of the monthly mean Chla values at z = 0.1 and 0.3 m was also
similar to that of the surface layer. From the overall inter-monthly trend, the monthly mean
Chla(z) reached its maximum in September and gradually decreased from October onward.
However, vertical inhomogeneity of Chla was not observed in the winter or early spring.

4.3.3. Diurnal Variations in Chla(z)

The diurnal mean Chla(z) for all the GOCI images from 2011 to 2020 showed signif-
icantly vertical variations (Figure 14). In terms of surface Chla, (1) Chla values were the
lowest from 8:16 to 10:16, with a mean value of 42.02 pg/L, and highest values were mainly
found near the western and the southeastern parts of the lake; (2) there was an overall
increase from 11:16 to 13:16, with a maximum mean value of 54.06 ng/L reached at 12:16;
and (3) there was a gradual decrease in Chla from 13:16 to 15:16, with a mean value of
47.21 ug/L. From a perspective of vertical Chla distribution, the mean Chla in the surface
layer fluctuated significantly within a day, while the change decreased with an increasing
water depth. The structural parameters a and c first increased and then decreased, while
the trend of b was the opposite, first decreasing and then slightly increasing. The structural
parameters a and c were higher, and b was lower, at 11:16, while the vertical direction of the
corresponding moments at this time showed large differences. Parameters 2 and c were
basically the same as Chla (same units), which gradually increased from 8:16 to a peak at
approximately 12:16 and then gradually decreased.

4.4. Dynamics of the Vertical Structural Parameters

The spatial distributions of the mean values of the vertical model structural parameters
(a, b, and c) are shown in Figure 15. The mean values had more obvious spatial differences:
the mean value of parameter a was greater in the central lake area, while the mean value of
parameter b was greater in the western lake area. Model parameter a reached a maximum
value of 463.53 in the spring (March-May), a minimum of 349.66 in the winter, 424.96 in the
summer, and 368.12 in the autumn (September-November). Model parameter ¢ had the
same seasonal trend as the value of parameter a, both of which had a maximum (34.52) in
the spring and a minimum (22.63) in the winter.
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Figure 13. Spatial distribution of monthly mean Chla (z = surface, 0.1 m, and 0.3 m) from 2011 to
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Figure 14. Hourly mean Chla(z) distribution results from 2011 to 2020 for (a—c) spatial distribution
results at surface, 0.1 m, and 0.3 m; (d) the diurnal variations in three layers; and (e-g) the vertical
structural parameters a, b, and c.
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Figure 15. Spatial distribution of the mean values of structural parameters for (a—c) the structural
parameters 4, b, and c, respectively.

The seasonal and diurnal variations in Chla(z) are illustrated in Figure 16. The curve
depicting Chla(z) was the steepest during the summer. The range of variation in Chla(z)
in Lake Chaohu was significantly larger in the summer and autumn than in the spring
and winter. In fact, the average rates of change in Chla(z) in the spring, summer, autumn,
and winter were 14.95, 43.95, 38.09, and 8.31 pg/ L-m 1, respectively. The mean vertical
Chla varied greatly from the surface to 0.5 m. The average rates of change in Chlz at 0, 0.1,
0.2,0.3,0.4, and 0.5 m were 76.48, 58.03, 15.96, 4.43, 1.22, and 0.53 ng/ L-m1, respectively.
When the depth was greater than 0.5 m, the mean Chla remained at a certain concentration
(25.73 pg/L) and no longer fluctuated. During the 8 h period from 8:16 to 15:16, the mean
Chla(z) in Lake Chaohu was more variable from 11:16 to 13:16. The Chla average rates of
change in diurnal variations from 8:16 to 15:16 were 9.69, 19.20, 25.64, 31.52, 31.49, 30.81,
26.32, and 16.96 ng/L-m~!, respectively.
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Figure 16. Vertical profiles of the mean Chla(z) for (a) seasonal variations and (b) diurnal variations.

5. Discussion
5.1. Advantages of the Proposed Chla(z) Inversion Model

Herein, an exponential function of Chla(z) is proposed to quantitatively characterize
the vertically non-uniformly distributed Chla values. By comparing the existing types, the
exponential vertical distribution function proposed in this paper can fit Chla(z) well, with
a reduced number of structural parameters. In addition, WIN and wave current affect
the horizontal and vertical movement of phytoplankton, and algae aggregate near the
water surface in certain conditions with low WIN [25,55]. Light is an important energy
source required by algae to carry out photosynthesis, which has a direct effect on their
vertical movement in the water column [38]. Therefore, using hourly WIN and light as
input parameters to estimate the structural parameters can improve model performance.
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The spatial and temporal dynamics of algal biomass under non-algal bloom conditions
in Lake Chaohu were investigated using the baseline normalized difference bloom index
(BNDBI) of MODIS data [56]. The Algal Biomass Index (ABI) was developed based on
MODIS data to estimate the total algal biomass of Lake Chaohu [57]. However, the cited
authors established the relationship between remote sensing signals and the total algal
biomass directly, ignoring the vertical distribution of Chla of each pixel. In addition, due to
the high temporal resolution of GOCI data, they can reflect the diurnal changes in Chla in
the vertical profiles.

We used 11 match-up pairs of MODIS and GOCI within + 0.5 h to compare their
performance in estimating algal biomass within the water column. The ABI algorithm
was used to calculate the total algal biomass of the whole lake (ABI-Bio) [57], and the
total algal biomass in this study was obtained by integrating the vertical Chla of each
pixel (Estimated-Bio) (Figure 17). The result indicated the existence of a linear relationship
(R? = 0.47) between ABI-Bio and Estimated-Bio, with an RMSE = 14.89 t. Note that the ABI-
Bio-algorithm-derived value was relatively low in conditions with total algal biomass > 80
t, in which the floating algal blooms were masked in the ABI-Bio algorithm. In addition, the

total algal biomass estimated in this study is theoretically a more accurate estimation and,
to a certain extent, reflects the phytoplankton distribution in three dimensions, which helps
to capture the dynamics of Chla in horizontal and vertical directions with high resolution.
The vertical distribution of Chla(z) in different layers is shown in Figure 18.
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Figure 17. Algorithm verification result based on the ABI-Bio algorithm (ABI-Bio) data.
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Figure 18. Vertical distribution of Chla(z) in different layers at the surface and at 0.3 m, 0.6 m, and

1.0 m for the case of (a) vertical uniformity on 4 December 2014 and (b) vertical non-uniformity on
24 October 2014.
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5.2. Drivers of Diurnal Variation in Chla(z)

According to the intraday distribution of Chla(z) in Lake Chaohu, Chla increased from
8:16 to 13:16 and then decreased from 13:16 to 15:16, which was consistent with the trend in
which algal blooms tend to increase and then decrease over one day under the combined
effects of light and WIN [49]. There were significant spatial differences in Chla(z) in Lake
Chaohu, but the western part of Lake Chaohu had larger Chla(z) values than those in other
parts of the lake [58].

The annual mean Chla(z) increased in 2014 due to the increase in mean annual tem-
perature and increase in nutrient inputs of nitrogen and phosphorus, and this trend was
consistent with the trend of the risk level of cyanobacteria blooms in Lake Chaohu [58].
Due to the lower mean annual WIN and greater light intensity in 2019, Chla(z) had a peak
in this year, which was consistent with a previous study [45]. Considering the effect of
wind speed, GHI, etc., on the structural parameters, a sensitivity analysis was conducted
(Figure 19). It indicated that the parameters a and ¢ were sensitive to GHI (with a rate of
change in a < 20% and rate of change in ¢ < 17%), the parameter b was sensitive to WIN
(rate of change < 20%), and the parameters 4, b, and c were insensitive to AFAIR,s/X.
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Figure 19. Sensitivity analysis of the structural parameter model conducted by changing the parame-
ters of WIN, GHI, B86, and AFAIR,s/X £20%, +£15%, +10%, and £5%, respectively, showing results
of a specific variable for (a) WIN, (b) GHI, (c) B86, and (d) AFAIR,s/X for parameters a, b, and c.

5.3. Uncertainties and Limitations

Due to differences in the sampling times between the field-measured and satellite-
obtained data and the problem of mixed pixels, there are limitations in the prediction
accuracy in the Type 1 model. If there are enough samples, we also recommend using the
Random Forest approach to calculate Chla. The model-derived structural parameters for
Type 2 were approximately the same as the spatial and temporal variations in Chla. But
the value of structural parameter a was not linearly correlated with Chla, which reached
a maximum value when a was approximately 400 and then decreased as parameter a
increased. As the inversion model of structural parameters involves multiple input factors,
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the complexity and uncertainty of the model will increase. Therefore, the range of surface
Chla applied in this study was 0-500 pug/L. When Chla was greater than 500 ug/L, the
function needed to be tuned using local measured data. In addition, although we used
the ten-fold cross validation method to validate the model, the performance of the model
still could not reach the high accuracy expected due to the limited number of samples. An
increase in the number of samples will improve this model’s performance.

Satellite data with different spatial resolutions can have an impact on the results of
algal bloom extraction and water color parameter inversion, and a 500 m spatial resolution
of GOCI may not detect more details in spatial variations of Chla. Although the atmospheric
correction method used in this study is more rigorous, the spatial and temporal variations
in atmospheric conditions and the uncertainty of observation conditions affect the accuracy
and reliability of the inversion results of Chla [31,59]. In addition, the surface features at
the land-water interface are highly variable, which may give rise to a mixed image problem
in remote sensing observations [60]. These mixed image problems are highly likely to
lead to the misidentification of cyanobacteria blooms or aquatic vegetation, which result
in high Chla at the boundary of Lake Chaohu [61,62]. GOCI-II can provide observation
data from 2021 to the present, with a higher spatial resolution (250 m) and more spectral
wavelengths, and these data are more applicable for the near-real-time monitoring of inland
water bodies.

In this study, we assumed that all in situ data (vertical distributions) could be well rep-
resented for the entire lake and then combined the GOCI data (only on surface/integrated
top layer information, constructing the GOCI data surface—verticality relationship) to invert
the distribution of Chla in the lake. However, this assumption may not be true for other
lakes. In addition, the environmental factors used in this study are WIN and GHI in Lake
Chaohu, but their spatial differences were not considered. In addition to WIN and light, wa-
ter temperature has a significant effect on the increase in algal biomass, but it is more related
to the seasonal and annual variations of phytoplankton in Lake Chaohu [60,63]. Therefore,
environmental factors related to the Chla vertical distribution may differ with varying
natural conditions [38,52], while environmental factors with high spatial resolutions will
improve the estimation of Chla vertical profiles.

6. Conclusions

An exponential model was proposed to simplify the types of Chla vertical profiles
using the fitting of the in situ-measured Chla data in Lake Chaohu. A decision tree was
constructed using AFAIR,s, FLH, and WIN. The Chla vertical profiles were classified into
two types (vertically uniform and vertically non-uniform), where the overall accuracy
of classification was 89% with a Kappa coefficient of 0.79. The results showed that the
model-derived Chla(z) had a significant correlation with the measured Chla(z) (R% = 0.68),
indicating that the Chla(z) estimation using the non-uniform vertical distribution model
in Lake Chaohu was reasonable. In addition, the spatial and temporal variations in the
vertical profiles of Chla(z) in Lake Chaohu from 2011 to 2020 were illustrated, providing
a useful tool for assessing the effectiveness of phytoplankton bloom management and
treatment in lakes. We believe that the strategy of combing R,s_G and environment factors
in a Chla(z) inversion model has the potential to be extended to other eutrophic lakes.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/rs16142611/s1, Figure S1: Flowchart of data processing and
model development; Figure S2: Comparison of vertically non-uniform (36 samples) between field
measured Chla(z) and predicted Chla(z) data at different water depth.
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