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Abstract: The retrieval of continuous snow water equivalent (SWE) directly from passive microwave
observations is hampered by ambiguity, which can potentially be mitigated by incorporating knowl-
edge on snow hydrological processes. In this paper, we present a data assimilation (DA)-based SWE
retrieval framework coupling the QCA-Mie scattering (DMRT-QMS) model (a dense medium radia-
tive transfer (RT) microwave scattering model) and a one-dimensional column-based multiple-layer
snow hydrology model. The snow hydrology model provides realistic estimates of the snowpack
physical parameters required to drive the DMRT-QMS model. This paper devises a strategy to specify
those internal parameters in the snow hydrology and RT models that lack observational records. The
modeled snow depth is updated by assimilating brightness temperatures (Tbs) from the X, Ku, and
Ka bands using an ensemble Kalman filter (EnKF). The updated snow depth is then used to predict
the SWE. The proposed framework was tested using the European Space Agency’s Nordic Snow
Radar Experiment (ESA NoSREx) dataset for a snow field experiment from 2009 to 2012 in Sodankylä,
Finland. The achieved SWE retrieval root mean square error of 34.31 mm meets the requirements
of NASA and ESA snow missions and is about 70% less than the open-loop SWE. In summary,
this paper introduces a novel SWE retrieval framework that leverages the combined strengths of a
snow hydrology model and a radiative transfer model. This approach ensures physically realistic
retrievals of snow depth and SWE. We investigated the impact of various factors on the framework’s
performance, including observation time intervals and combinations of microwave observation
channels. Our results demonstrate that a one-week observation interval achieves acceptable retrieval
accuracy. Furthermore, the use of multi-channel and multi-polarization Tbs is preferred for optimal
SWE retrieval performance.

Keywords: snow water equivalent (SWE) retrieval; assimilation framework; ensemble Kalman filter
(EnKF); snow hydrology model; snow microwave remote sensing; dense medium radiative transfer
(DMRT) model; NoSREx

1. Introduction

Understanding the distribution and dynamics of snow water equivalent (SWE) is
important for meteorology, hydrology, the water cycle, and global climate change [1–3].
SWE retrieval plays an important role in streamflow estimation, water resource manage-
ment, and flood control in snowmelt-dominated watersheds [4,5]. As part of global water
cycles, the knowledge of seasonal snow distribution and its dynamics is limited [6]. SWE
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estimation strongly relies on remote sensing technologies due to the wide distribution of
seasonal snow in distant regions. Among existing remote sensing technologies, microwave
remote sensing is unique in that it is less affected by weather and illumination from the
sun, and it has been widely used to make established observations about the earth [1,2,7].

Continuous efforts are made to derive SWE from microwave remote sensing observa-
tions based on volume scattering at the X, Ku, and Ka bands. Chang et al. proposed an
empirical snow retrieval method [8] using horizontally polarized microwave brightness
temperatures (Tbs) at 18 GHz and 37 GHz. Using this method, a simple linear relation-
ship between snow depths and Tbs differences was established with limited accuracy.
There were also studies on SWE retrieval using microwave radiative transfer (RT) models.
Pulliainen et al. developed the Helsinki University of Technology (HUT) model [9] and
applied it to SWE retrieval through an optimization method [10,11]. This has been shown
to be more accurate than Chang’s empirical method. There are also some efforts to apply
advanced data-driven methods to derive snow information from microwave observations.
Pan et al. adopted the microwave emission model of layered snowpacks (MEMLS) to link
passive microwave observations with snow states and applied the Monte Carlo Markov
chain (MCMC) numerical method to retrieve the snow depth [12]. This method was tested
with experimental tundra snow data and was shown to be effective [13]. Forman et al. used
machine learning methods to analyze microwave remote sensing data and retrieve various
snow state variables using artificial neural networks (ANNs) and support vector machines
(SVMs) [14–16]. The above studies used only microwave remote sensing data to retrieve
SWE. However, due to complex environmental conditions in different regions of the world,
the retrieval of SWE from microwave remote sensing observations suffers from ill-posed
problems and low sensitivity issues under various snow conditions, such as thin, thick, and
wet snow [17,18]. The uncertainty in SWE retrieval comes from the fact that there is limited
knowledge about snow vertical profiles, snow/soil interfaces, plant coverages, and other
snow hydrological processes, which leads to the ambiguity issue.

On the other hand, snow hydrology models [19–21] can simulate the spatial distribu-
tion and temporal evolution of SWE. However, there are large uncertainties in weather
affecting datasets and snow hydrological processes, leading to unreliable forecasts of SWE
dynamics in space and time. Microwave remote sensing observations can help reduce un-
certainties in the physical properties of snow forecasted by hydrology models. Andreadis
et al. coupled a distributed snow hydrology model, the variable infiltration capacity (VIC)
model [20], with the quasi-crystalline approximation (QCA) dense medium radiative trans-
fer (DMRT) model using an ensemble Kalman filter (EnKF) assimilation algorithm [22,23]
for snow retrieval. However, in the adopted VIC model, the number of snow layers and the
snow grain size are constant and limited, while both vary over time in reality. Therefore,
the simulated brightness temperature is likely to be inaccurate, which ultimately affects
the assimilation results. This hindered its applicability to realistic SWE estimations. There
have also been some previous works on snow data assimilation (DA) [24,25]. Durand
et al. improved Andreadis’s work, as they formulated a Bayesian SWE reconstruction
method that combines time series of remote sensing estimations of the snow-covered area
(SCA) with a land surface model (LSM) [26]. They also tried a retrospective DA scheme
to estimate the SWE distribution in a storm, which used an LSM that considered three
layers of snow and applied Tbs at 18.7 GHz and 36.5 GHz to retrieve the snow depth [27].
Che et al. also assimilated passive microwave remote sensing data into the LSM to im-
prove estimation of the snow depth [28]. The errors due to neglecting stratigraphy in
forward and inverse passive microwave modeling of snow are characterized in [29]. Kim
et al. recently demonstrated snow modeling efforts to evaluate the uncertainties of SWE
simulations in North America [30]. Huang et al. [31] recently evaluated snow DA using
the EnKF for seasonal streamflow prediction in the western US. However, in [31], the
hydrology model’s forecasted snow grain size was directly fed into the RT models, while
recent studies [32] showed that the hydrology model-derived grain sizes could be different
from the grain sizes suitable for RT inputs, and this can yield significant errors in the Tb



Remote Sens. 2024, 16, 1732 3 of 23

forecasts. Recently, Kang et al. evaluated the sensitivity of Tbs to the physical properties
of the snowpack by coupling a column-based multilayer snow physics model with three
different microwave RT models: HUT, MEMLS, and DMRT [32]. These studies showed
that it is beneficial to combine a multilayer snow hydrology model with an RT model
in SWE retrieval for improved SWE retrieval performance. Thus, there is a need for a
systematic SWE retrieval framework that can connect advanced snow hydrology models
with state-of-the-art RT models.

This paper presents a novel snow retrieval framework that leverages the combined
strengths of a snow hydrology model, DMRT-QMS model, and the EnKF for data assimila-
tion [33]. By coupling the hydrology model with RT-based microwave retrieval, we ensure
that the retrieved snowpack properties remain physically realistic throughout the process.
Unlike in previous studies (e.g., [22–28]), our framework offers enhanced flexibility by
readily accommodating different combinations of snow hydrology and RT models. In this
study, we demonstrate its capabilities using the well-established multilayer DMRT-QMS
RT model [34] and a column-based snow hydrology model for realistic snowpack evolu-
tion [35,36]. Both models have been previously validated [32,37]. The hydrology model
accounts for the evolution of snowpack properties (grain size, density, depth, and liquid
water content) within a multilayer structure, ensuring a close representation of real-world
conditions [35,36]. To explore the framework’s potential, we investigate the impact of
several factors on retrieved SWE: the observation time interval frequency, combinations
of microwave observation channels, and the EnKF ensemble size. Finally, we validate
the framework’s performance using comprehensive data from the Nordic Snow Radar
Experiment (NoSREx) in Finland, which includes weather forcing data, ground snow
measurements, and ground-based passive microwave observations [38].

This paper is organized as follows. Section 2 presents a detailed description of the
EnKF-based framework for snow depth and SWE retrieval. It introduces the principles
behind each component of the framework and the experimental data used for validation.
Section 3 presents the model configuration and the evaluation of our framework. It specif-
ically discusses the selection of the grain size scaling factor that relates the hydrological
model to the DMRT mode and other built-in parameters for each model. It also presents
the evaluation of the proposed retrieval framework, including the impact of different obser-
vation frequencies, intervals, and EnKF ensemble sizes and a comparison with a commonly
used SWE retrieval algorithm. Section 4 delves into three key aspects: the influence of the
observation quality on snow depth and SWE retrieval over three years, the impact of the
assimilated snow depth on Tb predictions, and the potential application capabilities of the
proposed framework. The final section reports the key conclusions of this paper.

2. Materials and Methods
2.1. The NoSREx Experiment

In this study, the NoSREx data from the European Space Agency and the Finnish Mete-
orological Institute [38] were used to test the performance of the SWE retrieval framework.
This was carried out in Sodankyla, Finland (Figure 1) during the snow seasons (from 1
October to 30 September) of 2009–2012 to assess the potential of terrestrial snow remote
sensing with active and passive microwave observations to evaluate cold land hydrological
processes. There were three microwave sensors deployed in the intensive observation area
(IOA), including the SnowScat, Elbara II, and SodRad. SodRad is a passive microwave
radiometer operating from the X band to the W band (10.65, 18.7, 36.5, and 90 GHz). On
the ground, soil and snow were consistently sampled throughout the campaign’s duration.
Weather forcing datasets from ground-based weather stations were used as input for the
snow hydrology model. Observed snow depths from the automated snow sensors and SWE
from a manual snow survey were used to evaluate the results. In the snow pit observations,
snow grain sizes and snow microstructures were also recorded.

In this paper, the SodRad Tbs with observations every 3 h in 2009–2010 and every 4 h
in 2010–2012 was used to test the retrieval framework. The observation angle was 50◦. The
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six data channels taken included SodRad Tbs of the vertical and horizontal polarizations
at 10.65, 18.7, and 36.5 GHz, which have been proven to reflect changes in snow cover in
recent studies [32]. Figure 1 depicts the snow depth and SWE over three years, as well as
the corresponding Tb measurements at the X, Ku, and Ka bands. The blue-shaded periods
(mainly from 1 November to 31 March) represent the snow accumulation phases with dry
snow as examined in this paper.
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Figure 1. The observed snow depth and passive microwave data in the NoSREx dataset. The
blue-shaded areas are the dry snow periods studied in this experiment. (a) Snow depth (cm) from
automated snow sensors in Sodankyla from 2009 to 2012. (b) The SodRad Tbs (K) with vertical and
horizontal polarization at the X (10.65 GHz), Ku (18.7 GHz), and Ka (36.5 GHz) bands.

2.2. Proposed SWE Retrieval Framework

The framework of the coupled retrieval approach is illustrated in Figure 2. In this
framework, every hydrological year (from November to May of the following year, hereafter,
only the first three characters of the month (e.g., from NOV to MAY)) can be divided into
three periods: the disturbance period, the assimilation period, and the snowmelt period.
During the disturbance period, weather-driven variables (including snowfall, rainfall,
wind speed, and air temperature) were perturbed before input into the snow hydrology
model [35,36] to generate the initial ensembles of random snow states. The perturbations
followed a normal distribution with zero means and the specified standard deviations
listed in Table 1. The range of uncertainty was based on the NoSREx dataset. The number
of ensembles N was 100, which is determined in Section 3.3.3, to make the framework
statistically efficient and accurate.

Table 1. Weather forcing dataset error.

Standard Deviation Range Distribution

Rainfall ±5 mm Normal
Snowfall ±5 mm Normal

Air temperature ±6 °C Normal
Wind speed ±1 m/s Normal
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Next, these ensembles were used to drive the DMRT model [34] to simulate Tb en-
sembles at three frequency bands: 10.65 GHz, 18.7 GHz, and 36.5 GHz with both vertical
and horizontal polarizations, for a total of six channels. Meanwhile, microwave remote
sensing observations from these six channels were periodically introduced from the mi-
crowave radiometer observations into the DA system. The original observation interval for
microwave observations was three or four hours. The number of observed Tb ensembles,
generated from the NoSREx Tb standard deviation data, was 100, the same as the number
of snow state ensembles. Finally, the forecasted snow depth ensembles from the hydrology
model were improved by the radiometric measurements using the EnKF algorithm. The
EnKF learned the linear relationship between the differences in snow depth and the dif-
ferences in Tbs and applied this relationship to generate the posterior snow depth and Tb
ensembles. Afterward, the updated snow depth ensembles from the EnKF were used as the
initial conditions for the snow hydrology model in the next time step. With the update in
snow depths, the other snow state ensembles, including the snow density, grain size, and
temperature, would also be adjusted within the snow hydrology model in the next time
step. The updated snow depth and adjusted snow density were used to adjust the SWE.
The average values of the snow state ensembles were taken as final retrieval results at each
time step.
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2.2.1. Multilayer Snow Hydrology Model

This framework utilized the multilayer snow hydrology model developed by Kang
et al. [35,36]. The model has several applications to demonstrate the year-round behavior of
snowpack evolution [32,37]. Figure 3 shows a schematic view of a multilayered snowpack.
The properties of each snow layer include the layer thickness (sd), snow temperature (T),
SWE, volumetric liquid water content (lw), bulk snow density (ρ), and snow grain size
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(Do), which are also required inputs for the RT models. Heat and energy balance equations
are used to evaluate the temperature and mass quantities (snow depth, density, and SWE)
based on how the top layer interacts with the rest of the atmosphere.

The basic procedure for the adopted hydrology model is illustrated as follows. When
snowfall or precipitation occurs below 0 °C, new snow accumulates on top of the uppermost
layer of the snowpack. After the SWE reaches a threshold, the top layer is divided into
two layers to retain a fine vertical resolution. By solving the energy balance equation
as a function of the air temperature and heat conductivity of the top layer of snow, the
temperature of the top snow layer is determined. Subsequently, the temperatures of the
lower snow layers are governed by the heat conductivity of the snow medium and its
interaction with the soil temperature. When the top layer’s snow temperature is above
the melting point at 0 °C, liquid water is released. When melting occurs, the mass balance
equation allows the movement of liquid water from the top to the lower snow layers. For
the snow microstructure, Jordan formulated the snow grain size using a grain growth
function [39]. The derivative of the grain growth rate is defined as follows:

∂Do

∂t
=

g2

Do
(1)

where g is an adjustable grain growth factor, which is a hyperparameter, and Do is the mean
snow grain size. To characterize the temporal dynamics of Do, its initial value, represented
in Figure 2 as Dsnowi, is also needed. Changes in the snow grain growth factor g and the
initial grain size Dsnowi lead to variations in snow grain sizes and affect the microwave
responses to a given multilayered snowpack [39].

The inputs of the hydrology model were the weather forcing data and the initial snow
states at this time. Based on the mass and energy balances, the model calculated the snow
state at the next time.
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2.2.2. DMRT-QMS Model

DMRT-QMS [40–42] is a physical scattering model that is widely adopted for active
and passive microwave modeling of snowpacks based on the dense media radiative trans-
fer theory (DMRT) [34]. The DMRT theory predicts the microwave intensity scattering,
absorption, and propagation in a dense random media. In DMRT-QCA, the approach of
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quasi-crystal approximation (QCA) [34] is applied to characterize snow scattering charac-
teristics by solving the multiple scattering of densely packed sticky spheres with moderate
grain sizes. The QCA approach provides a broad range of frequency-, size-, and density-
dependent scattering characteristics with moderate forward scattering patterns. The size of
the snow grains, the stickiness of the snow, the snow density or equivalently the ice volume
fraction, and the temperature of the snow all affect these characteristics. In DMRT-QMS,
the discrete ordinate method with eigenvalue analysis is used to solve the radiative transfer
equation with multiple scattering effects among ice particles. DMRT-QMS computes both
the Tbs and the backscattering coefficients of a snowpack. In this paper, the DMRT-QMS
model was adopted to simulate the Tbs of the snowpack as synthesized by the snow
hydrology model.

2.2.3. EnKF Algorithm

The EnKF [43–46] is an assimilation method that is widely used to fuse multi-source
data in fields such as meteorology and hydrology [47,48]. The principle of the EnKF is to
minimize the autocovariance matrix of the forecasted ensembles by coupling observations

so that we can find the updated (i.e., posterior) ensembles
∼
Xi,t [43–46]. This paper applies

the EnKF algorithm to combine weather forcing data with microwave observations through
a hydrology model H(·) in cascade with a RT model D(·). The flowchart is illustrated in
Figure 3.

As shown in Figure 4, in our framework, the snow state Xi,t+1 was first forecasted by
the snow hydrology model H(·) as follows:

Xi,t+1 = H(
∼
Xi,t), i = 1, 2, · · · , N (2)

where each time step is 1 h. The ith snow state ensemble forecasted by the snow hydrology
model at this time step t + 1 is represented by Xi,t+1, and Xi is a column vector, with a
dimension of the total number of snow layers times the amount of snow depth to describe
each layer. To maintain the physical constraints among multiple snow state variables,
we opted to only update the snow depth of each layer in the EnKF algorithm. The other
variables were automatically determined by the hydrology model following the updated
snow depths. N is the number of random samples in the ensemble. The larger N is, the
more accurate the result is, while leading to a longer calculation time. H(·) is the operator

representing the snow hydrology model.
∼
Xi,t is the snow state updated by the EnKF at

time step t. The update at this time step t + 1, as driven by microwave observations of the
Tb, is illustrated as follows:

∼
Xi,t+1 = Xi,t+1 + Kt+1[Mt+1 − D(Xi,t+1) + vi,t+1] (3)

where Mt+1 is a vector that represents the microwave remote sensing observations at this
time step t + 1, D(·) is the operator representing DMRT to convert the snowpack state into
its corresponding microwave observations, and vi,t+1 is the ith observation error at this
time step, which is assumed to be a Gaussian random variable with a standard deviation
that characterizes the microwave sensor accuracy [38]. The Kalman gain at this time step is
calculated as follows [46]:

Kt+1 = Cov[Xt+1, D(Xt+1)]· [Cov[D(Xt+1), D(Xt+1)] + Rt+1]
−1 (4)

Cov[Xt+1, D(Xt+1)] =
1

N − 1∑ N
i=1

[
Xi,t+1 − Xt+1

]
·
[
D(Xi,t+1)− D(Xt+1)

]T
(5)

Cov[D(Xt+1), D(Xt+1)] =
1

N − 1∑ N
i=1

[
D(Xi,t+1)− D(Xt+1)

]
·
[
D(Xi,t+1)− D(Xt+1)

]T

(6)
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Rt+1 = Cov(vt+1, vt+1) =
1

N − 1

N

∑
i=1

vi,t+1vT
i,t+1 (7)

where Rt+1 denotes the observation error covariance matrix. If microwave observations are
not available at this time step, the EnKF correction is skipped until the next observation time.
In the EnKF algorithm, the Kalman gain matrix Kt+1 is estimated as shown in Equation (4)
from Cov[Xt+1, D(Xt+1)], the covariance matrix of the snow state ensembles and their
corresponding Tb simulations, and Cov[D(Xt+1), D(Xt+1)], which is the autocovariance
matrix of the simulated Tbs. Equations (5) and (6) provide estimations of the covariance
matrices, and they converge as the ensemble size N increases. This method is widely used
to solve nonlinear numerical assimilation problems [43–46].

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 23 
 

 

Cov[Dሺ𝑋௧ାଵሻ, Dሺ𝑋௧ାଵሻ] = 1𝑁 − 1 ෍ ቂD൫𝑋௜,௧ାଵ൯ − Dሺ𝑋௧ାଵሻቃே௜ୀଵ  ∙  ቂD൫𝑋𝑖,𝑡+1൯ − Dሺ𝑋𝑡+1ሻቃ𝑇   (6)

𝑅௧ାଵ = Covሺ𝑣௧ାଵ, 𝑣௧ାଵሻ = 1𝑁 − 1 ෍ 𝑣௜,௧ାଵ𝑣௜,௧ାଵ்ே
௜ୀଵ      (7)

where Rt+1 denotes the observation error covariance matrix. If microwave observations are 
not available at this time step, the EnKF correction is skipped until the next observation 
time. In the EnKF algorithm, the Kalman gain matrix 𝐾௧ାଵ is estimated as shown in Equa-
tion (4) from Cov[𝑋௧ାଵ, Dሺ𝑋௧ାଵሻ], the covariance matrix of the snow state ensembles and 
their corresponding Tb simulations, and Cov[Dሺ𝑋௧ାଵሻ, Dሺ𝑋௧ାଵሻ], which is the autocovari-
ance matrix of the simulated Tbs. Equations (5) and (6) provide estimations of the covari-
ance matrices, and they converge as the ensemble size 𝑁 increases. This method is widely 
used to solve nonlinear numerical assimilation problems [43–46]. 

 
Figure 4. The EnKF flow chart in the proposed framework. 

2.2.4. Snow Layer Adjustment 
Since this framework uses a time-varying multilayer snow hydrology model, the in-

troduction of disturbances may lead to inconsistencies in the number of snow layers be-
tween different ensembles at the same time point, which causes the matrix to have a dis-
satisfaction rank. While the calculation of the Kalman gains 𝐾 with Equation (4) requires 
matrix inversion, we propose an optimization to make the snow layers consistent in each 
ensemble. The idea of layer optimization is shown in Table 2 and Figure 5, which refer to 
the compact and divided snow layer logic of the snow hydrology model [35,36]. The top 
layer determines the number of layers of compacted or divided snow. 

Figure 4. The EnKF flow chart in the proposed framework.

2.2.4. Snow Layer Adjustment

Since this framework uses a time-varying multilayer snow hydrology model, the
introduction of disturbances may lead to inconsistencies in the number of snow layers
between different ensembles at the same time point, which causes the matrix to have a
dissatisfaction rank. While the calculation of the Kalman gains K with Equation (4) requires
matrix inversion, we propose an optimization to make the snow layers consistent in each
ensemble. The idea of layer optimization is shown in Table 2 and Figure 5, which refer to
the compact and divided snow layer logic of the snow hydrology model [35,36]. The top
layer determines the number of layers of compacted or divided snow.

Table 2. Optimization of snow ensemble layers.

Divide Compact

Snow density ρ Same as top layer Weighted average by SWE
Snow depth sd Average Sum
Grain size Do Same as top layer Weighted average by SWE

Snow temperature T Same as top layer Weighted average by SWE
SWE Average Sum
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2.3. Selection of Undetermined Model Parameters

There are several remaining issues to be addressed to streamline the retrieval frame-
work. First, the snow hydrology model has input parameters (e.g., the grain size parameters
g and Dsnowi) which are not directly available from measurements. Second, the DMRT
model requires more inputs than those provided by the hydrology model. For example, the
snow/soil interface roughness parameters and the soil moisture mv are neither predicted
by the hydrology model nor fully available from in situ observations. However, all of these
parameters will affect the Tb predictions by the DMRT model, and we need a systematic
approach to specify these parameters. This is converted into an optimization problem by
tuning the hydrology model outputs to match the in-situ observations while minimizing
the error between the DMRT-predicted Tbs and microwave observations [28].

Specifically, these undetermined parameters include the effective snow grain size,
grain growth rate, and adjustment factor from the snow hydrology model, as well as the
snow/soil interface roughness parameters and soil moisture volumetric fraction value from
the DMRT-QMS model. First, we will establish appropriate ranges for these parameters
using a combination of a literature review, empirical studies, and sensitivity analysis. To
initiate the optimization process, the known parameters and initial values for undetermined
parameters (e.g., grain size and growth rate) are fed into the framework. These initial
values are chosen from within the established ranges for each undetermined parameter.
The optimization algorithm will then iteratively adjust the parameters within their defined
ranges by minimizing the root mean square error (RMSE) between the simulated Tbs from
the DMRT-QMS model and the actual observed Tbs from the NoSREx dataset. In essence,
this approach establishes a link between the undetermined parameters and the accuracy of
the Tb simulation.

2.4. Evaluation of Porposed Framework

This section covers more detailed evaluation of the proposed framework. More
comparisons are made regarding how changing the built-in parameters affects the assim-
ilation results: the combination of observation frequencies, the time intervals between
observations, and the number of ensembles. Also, in order to evaluate the feasibility of
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this framework, the assimilation results will be compared with the commonly used SWE
retrieval algorithm.

3. Results
3.1. The Grain Size Scaling Factor and Internal Parameters of the Model

This framework was established such that the outputs of the snow hydrology model
could drive the DMRT model, which converted the snow states obtained from the snow
hydrology model into simulated Tbs so that they could be compared with the microwave
observations. Among the key parameters that affect the Tb are the snow grain size Do,
snow depth sd, and snow density ρ. Inspired by earlier works [34–36], we adopted a linear
factor κ to link the snow grain size predicted by the hydrology model Do Hy to the snow
grain size taken by the DMRT model Do DMRT:

Do DMRT = κ · Do Hy (8)

This is to account for the fact that the hydrology model and the DMRT model as-
sumed different conventions in defining the grain sizes. The coefficient κ is a parameter to
be determined.

Aside from those standard variables, which the two models share, the other internal
parameters of the two models are equally important. Among the input variables of the
snow hydrology model are two control parameters: the snow grain factor g and the initial
snow grain size, which are called dsnowi in Figure 3. These two factors are used to calculate
the snow grain size for the snow hydrology model. The former is to control the growth rate
of the grain size, and the latter is to set the initial snow grain size. The ranges of these two
values were taken from previous works [35,36] and could update themselves at each time
step. On the other hand, the DMRT-QMS model also has some internal hyperparameters
for the surface roughness parameters Q and H and soil moisture mv. For the snow/soil
surface roughness parameters, we adopted a Q/H model [34] to represent the effects of
roughness on microwave emission, yielding another two free parameters, Q and H, to be
determined. The details of these parameters were presented in a previous work [32]. In
this paper, the soil moisture mv = 0.051 is referenced to the average value shown in the
NoSREx [38]. This value ought to vary with time, but we only took the more desirable
average value from experience in this paper.

Figure 6a,d,g shows that the Tb decreased with increasing snow depths at each fre-
quency band and was almost linear at 10.65 GHz and 18.7 GHz. While 36.5 GHz was more
sensitive to light snow, which is less than 50 cm, the sensitivity decreased with increasing
snow depths, which does not reflect the variation of deep snow. This is because when the
snow is deeper (>50 cm), the scattering effect of the snow saturates the high-frequency
Tbs so that the information on the surface under the snow is not available. Meanwhile,
different snow grain size scaling factors κ had a significant effect on the Tb. When κ = 1, it
was equivalent to directly substituting the snow grain size of the snow hydrology model
into the DMRT model to obtain simulated Tbs. As κ decreased, the sensitivity of the Tb
to the variation in snow depth at low frequencies decreased, and the sensitivity of deep
snow at high frequencies increased, which was gradually consistent with the changes in
the NoSREx data [38].

Figure 6b,c,e,f,h,i shows that the effects of the surface roughness (Q,H) and soil mois-
ture mv on the Tb decreased with increasing snow depths. Because of the deep snow, snow
scattering accounted for most of the Tbs, weakening the effects of surface roughness on
the Tbs. And we can see that the effect of these two parameters on the Tb at 36.5 GHz was
negligible. These two parameters’ effect was only about ±5 K at 10.65 GHz and 18.7 GHz,
which is smaller compared with the effect of the scaling factor κ and is insensitive to the
snow depth.
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Figure 6. Single-variable model parameter testing. (a,d,g) The effect of various snow grain size scaling
parameters on the Tb. Tbs were simulated via DMRT-QMS at three bands, with both polarizations for
different snow grain size scale factors κ with increasing snow depths. Fixed parameters: snow grain
size Do = 2.0 mm, snow density ρ = 276 kg/m3, ground temperature Tg = 270 K, snow temperature
T = 260 K, incidence angle θ = 50◦, surface roughness Q, H = 0, and soil moisture mv = 0.051.
(b,e,h) The effect of different roughness parameters Q, H on the Tb. Fixed parameters: κ = 0.285, and
the rest of the parameters are the same as above. (c,f,i) The effect of various soil moistures mv on the
Tb. Fixed parameters: the same as above.

These experiments also showed that Tbs at different frequency bands could vary with
the snow depth, and thus it is a reasonable choice to improve the snow depth estimation
through microwave remote sensing of Tbs. Meanwhile, the scaling factor κ had a great
influence on the Tb. It is significant to choose a suitable scaling factor κ so that the Tbs
simulated by DMRT can be the same as the microwave observation Tbs when the forecasted
snow depth from the hydrology model is the same as the observation of the snow depth.
To determine this scaling factor κ, we chose the period at the beginning of the second
year, when the snow depth forecasted by the snow hydrology model was generally the
same as the observed snow depth. A suitable scaling factor κ was optimized when the
Tbs simulated by DMRT closely matched the observed Tbs. It was appropriate to use this
period to determine the best scaling factor κ and the other internal parameters for these two
models, and these parameters would remain constant throughout the entire snow season.
An example from the 2010–2011 snow year is shown in Figure 7.
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Figure 7. Optimal hyperparameter experiment. (a) RMSE for Tbs using various κ values. (b) V-pol
and H-pol of 10.65 GHz. (c) V-pol and H-pol of 18.7 GHz. (d) V-pol and H-pol of 36.5 GHz. The
DMRT model simulated three frequencies (10.65, 18.7, and 36.5 GHz) compared with the observed
Tbs. The blue line is the best match for the observations. Best parameters: scaling factor κ = 0.285,
surface roughness Q = 0.25, H = 0.11, and soil moisture mv = 0.051.

Figure 7 illustrates the procedure to determine the grain size scaling factor κ in the
retrieval framework. Figure 7a shows the RMSE of using the different scaling factor
κ, which is the difference between the DMRT-simulated determination of these optimal
parameters, the simulated Tbs, and the observed Tbs for each band. It can be seen that at
the red dashed line, where κ = 0.285, the RMSEs of all three bands was at its minimum
value. When κ > 0.285 in the 10.65 GHz and 18.7 GHz bands, the RMSE increased when κ
increased, while at 36.5 GHz, when κ > 1, the RMSE decreased instead, which was different
from the other two bands. Figure 7b–d shows the Tbs simulated by DMRT compared
with the observed Tbs when choosing the best scaling factor and internal parameters. It
shows that when no scaling factor (κ = 1) was used, there was a large gap between the
simulated Tbs and the observed Tbs, during which the forecasted snow depth was the
same as the observed snow depth. Therefore, it was necessary to use the scaling factor
κ and to determine the internal parameters of the two models so that the simulated Tbs
could correspond to the observed Tbs well. After several tests and comparisons, the best
scaling factor and internal parameters were obtained (scaling factor κ = 0.285, surface
roughness Q = 0.25, H = 0.11, and mv = 0.051). It can be seen that after determining these
optimal parameters, the simulated Tbs coincided with the observed Tbs such that the snow
depth could be improved using our framework through the microwave remote sensing
observation of the Tb. Finally, the internal parameters of the snow hydrology model and
DMRT are shown in Table 3.
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Table 3. The optimized internal parameters of the snow hydrology model and DMRT.

Hydrology Model DMRT-QMS

Grain factor g 1.5 surface roughness Q 0.25
dsnowi 1.65 surface roughness H 0.11

Scaling factorκ 0.285 soil moisture mv 0.051

3.2. Assimilation Results for Snow Depth and SWE

In this section, we conduct a comprehensive analysis of snow depth and SWE dispari-
ties across three key components: hydrologic model forecasts, framework enhancements,
and actual observations. Employing an optimized model parameter and rigorous testing,
the assimilation periods were strategically chosen based on meticulous considerations.
During 2009–2011, the disturbance period predominantly spanned from November to
December, with assimilation exclusively occurring between December and March. As the
DMRT-QMS model cannot simulate wet snow, the snowmelt period from March to May
was excluded from consideration during this time frame. From 2011 to 2012, the disturbance
period shifted from November to February, constraining assimilation opportunities to the
period from February to March. Therefore, the refined temporal alignment ensured that
assimilation activities were synchronized with the relevant climatic conditions, enhancing
the accuracy and applicability of the results.

Figure 8 presents the comparison of the best assimilation results for snow depth and
SWE through the EnKF with the hydrologic model forecast and actual observation. It shows
that the forecast ensemble range (yellow) was consistent with the range of the improved
ensemble (green) during the disturbance period (NOV–DEC) and that this period was just
preparation for the initial data of the framework in the next stage. During the assimilation
period, each forecast ensemble was adjusted at the observed time points when microwave
observation was available. In the period from 2009 to 2011, it is shown that the error range
(green) of the improved posterior ensembles shrunk rapidly while the error range (yellow)
of the forecasted prior ensembles was unchanged, which is shown in the details in the
blue circle. This implies that the EnKF algorithm reduced the error range of the ensemble
through microwave observation. During 2011–2012, the Tb observations were missing in
the early period, which led to less information about the environment in the early snow
season. The results were, therefore, worse compared with the first two years. It can be
seen that the assimilated snow depth and SWE using the EnKF method were closer to the
observations than the forecasted snow depth and SWE.

Table 4 shows the comparison statistics of the assimilated snow depth and SWE over
the dry snow periods (JAN–APR) of three years. The following RMSEs were computed
from the ensembles’ mean snow depth and SWE through the EnKF or open-loop model
(blue line and black line, respectively, in Figure 8) with actual observations. All the RMSEs
of the improved snow state decreased compared with the RMSEs of the open-loop snow
hydrology model. During 2010–2011, the EnKF showed the RMSE of the snow depth
decreasing to 28.12 mm and the SWE RMSE decreasing to 12.43 mm. Due to the most
comprehensive microwave observations in this year with limited missing observations,
it achieved the best performance. However, the results from 2011 to 2012 are not reliable
because of the snow hydrology model forecast and extensive missing microwave data for
this year. Overall, the SWE retrieval was better than the snow depth retrieval because
the improved snow density was adaptively calculated by the hydrology model using the
improved snow depth in the next time step. In these three years, the achieved SWE retrieval
average RMSE was 34.31 mm, which meets the reference requirements of NASA SCLP and
ESA CoReH2O [49,50], and it was about 70% lower than the open-loop snow hydrology
model’s forecast error.
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Figure 8. Snow depth and SWE assimilation results (only in the snow accumulation period) in So-
dankyla for the hydrological years during 2009–2012. (a,d) 2009–2010. (b,e) 2010–2011. (c,f) 2011–2012.
The blue line shows the posterior ensembles’ mean after being improved by the EnKF and obser-
vations, and the green area is the range of the posterior ensembles. The black line shows the prior
ensembles’ mean from the open-loop hydrology model, and the yellow area is the range of the prior
ensembles. The red line shows the real observation. The small panel on the left side shows the details
at the beginning of the assimilation circled in blue.

Table 4. RMSE of snow depth and SWE compared with actual observations over dry snow periods
(JAN–APR) of three years.

Year
RMSE of Snow Depth (mm) RMSE of SWE (mm)

Open Loop EnKF Open Loop EnKF

2009–2010 103.05 53.12 63.42 39.34
2010–2011 153.79 28.12 90.77 12.43
2011–2012 270.46 143.93 187.25 51.16

3.3. Evaluation of Proposed Framework
3.3.1. Combination of Different Observation Frequencies

According to the analysis in Section 3.1, the sensitivity of different frequency bands
corresponds to different snow depths. Previous studies also used different combinations of
frequency bands, such as Chang’s work using a combination of 18.7 and 36.5 GHz V-pol to
retrieve the SWE [8]. This section tests the effect of different polarization combinations at
different frequency bands on the assimilated snow depth results in 2010–2011. Partially
successful results are shown in Figure 9.

Figure 9 demonstrates that when using only 18.7 and 36.5 GHz, the retrieval of snow
depth performed well in shallow snow but not in deep snow because the Ku (18.7 GHz) and
Ka (36.5 GHz) bands were more sensitive to snow depth changes in the shallow snow case
and less sensitive to snow depth changes in the deep snow case. This finding is consistent
with the previous analysis in Section 3.1. In addition, V-pol reflects changes in snow depth
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more quickly than H-pol, which is why V-pol was mostly used in the previous works.
To improve the low sensitivity of deep snow, we added the 10.65 GHz band (X band) to
the combination because the band at 10.65 GHz had a similar linear trend to the change
in snow depth. In Table 5, we also find that only using V-pol may have overestimated
the change in snow depth, resulting in results lower than the observations. While H-pol
may reflect some features that V-pol does not reflect, which can reduce noise, it can also
make use of sensitivity to changes in snow density after new snowfall. Therefore, it was
necessary to combine the respective characteristics of V-pol and H-pol to obtain the new
observation combination (i.e., V-pol and H-pol at 10.65 + 18.7 + 36.5 GHz). The RMSEs of
the above experiments were calculated as shown in Table 5. The results show that the RMSE
of 28.12 mm was the lowest when using 10.65 + 18.7 + 36.5 GHz V-pol and H-pol. When
other band combinations were used, the retrieval was not as good, but the retrieval results
were improved compared with the open-loop forecast. This again shows that combining
microwave observations can improve the snow depth forecast.
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Table 5. RMSEs of snow state compared with observations for different frequency combinations.

Frequency Combination RMSE of Snow Depth (mm) RMSE of SWE (mm)

Open Loop 153.79 90.77
18.7 + 36.5 GHz V 63.28 30.02
18.7 + 36.5 GHz H 97.43 45.77

18.7 + 36.5 GHz V+H 48.98 28.33
10.65 + 18.7 + 36.5 GHz V 106.25 52.52

10.65 + 18.7 + 36.5 GHz V+H 28.12 12.43

3.3.2. Observation Time Intervals

Garnaud et al. noted that the improvement in snow depth retrieval by the EnKF is
sensitive to observation time intervals [51]. Common microwave observation by satellite
does not have such short time intervals as the NoSREx ground-truth observations, and it is
likely to observe an area only once every few days or even several weeks. It is necessary to
discuss the effect of the observation time interval on the results in the framework. According
to the principle of the EnKF algorithm, the revisit time may affect the effectiveness of the
assimilation results. Shorter observation time intervals indicate that the EnKF combines
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microwave observations to update the snow depth more frequently. The short time interval
directly affects the final assimilation results. This section shows experiments conducted to
discuss the effect of the observation time interval on the results during 2010–2011. It thus
discusses different time intervals from 4 h to 3 weeks and compares the differences among
them, as shown in Figure 10.

Figure 10 shows that the assimilation results became worse as the observation time
interval increased, which would result in the snow depth not being adjusted timely ac-
cording to the microwave remote sensing observation. Meanwhile, a large time interval
resulted in only the snow hydrology model dominating between two observation moments.
As the time interval changed from 4 h to 3 weeks, the assimilation results approached
the open-loop forecast. This implies that the information obtained from the microwave
observations became weaker, and the forecast part of the snow hydrology model gradually
became the dominant part. Table 6 shows the RMSEs for the four sets of time interval
experiments. It implies that although the RMSEs increased with increasing observation
time intervals, they were still improved and closer to the actual observations than the
open-loop forecast using the hydrology model alone. Therefore, the framework can still
optimize for snow states even at a larger observation time interval, which can be used for
reality retrieval in the future. Moreover, the shorter the observation time interval chosen,
the longer the calculation time, but the more accurately the assimilation was achieved.
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Table 6. RMSEs of snow state compared with different microwave observation intervals.

Observation Time Intervals RMSE of Snow Depth (mm) RMSE of SWE (mm)

Open Loop 153.79 90.77
Per 4 h 28.12 12.43

Per 1 day 69.47 36.82
Per 1 week 73.62 40.13
Per 3 weeks 113.48 52.96
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3.3.3. The Size of the Ensemble

The number of ensembles N in the EnKF affects the accuracy and computational effi-
ciency of the assimilation results. Since the goal of the EnKF is to minimize the covariance
matrix of the assimilation results, a larger N value is desired to yield results closer to the
real situation according to the central limit theorem (i.e., the principle of estimating the total
from a sample). However, a larger N value also affects computational efficiency, and thus
there is a trade-off between efficiency and accuracy. This part discusses how the number of
ensembles N affects the RMSE of the final assimilation snow depth. Figure 11 shows that
when N was rather small, the RMSE of the snow depth estimation was larger, while when
N = 100, the RMSE of the snow depth tended to be stable. When N > 100, the RMSE also
decreased slightly, and the calculation became overburdened. Thus, from a computational
efficiency perspective, the suitable number of ensembles in the framework we chose was
N = 100.
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3.3.4. Comparison of EnKF Approach with the Commonly Used SWE Retrieval Algorithm

As the measurements for snow pits and microwave observations were intensive during
2010–2011, the SWE assimilation results from 2010–2011 were compared with Chang’s
retrieval algorithm (Equation (9)), which has been widely used in global SWE retrieval [8]:

SWE [m] = 0.0159 ∗ (Tb18H − Tb37H) ∗ ρ
[
g/cm3

]
(9)

Figure 12 shows that Chang’s algorithm overestimated the SWE in the early snow
accumulation season and underestimated the SWE in the late snow accumulation season
due to lack of consideration of snow grain growth. This suggests the disadvantage of
retrieving SWE through Tbs observations only. SWE from the proposed framework that
combined the snow hydrology model with microwave observations matched better with
the observation than the commonly used Chang’s algorithm.
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4. Discussion
4.1. Impact of Observation Quality on Snow Depth and SWE Retrieval over Three Years

The precision of the in situ and ground-based remote sensing observations utilized
plays a crucial role in influencing the accuracy of the proposed framework’s retrieval of
SWE. Specifically, it was expected that the passive microwave Ku and Ka bands would
exhibit a more pronounced negative correlation with increasing snow depths in contrast
to the X band. However, this relationship was primarily evident during the 2010–2011
period in the NoSREx. In the preceding year (2009–2010), while there existed a general
negative correlation between the Ka and Ku bands and snow depth, the strength of this
correlation was not as pronounced as that observed in 2010–2011. This is potentially
linked to the year-to-year variations in snow grain size likely contributing to the varying
sensitivity of the microwave observations of snow depths. In the work by Kang et al. [32],
the evolution of the snow grain size in the snow seasons (as reported in Figure 6 of the
paper) indicated that the winter of 2009–2010 in general had smaller grain sizes than those
in the winter of 2010–2011. Thus, the volume scattering in the years 2009–2010 was weaker,
leading to reduced correlation between the brightness temperatures and snow depths. It is
also imperative to acknowledge that issues with the Tb measuring device were reported
between 2011 and 2012, introducing potential errors and uncertainties into the collected Tb
data [28]. Consequently, the variability in Tb observations across different bands became
unstable during this period, raising concerns about potential data contamination.

The EnKF algorithm updates the modeled snow depth from the Kalman gain and the
differences between the modeled and observed Tbs. The covariance of the modeled Tbs
and snow depth is one of the key components in computing the Kalman gain. Thus, the
accuracy of snow depth and SWE retrieval using the EnKF method relies on the accuracy
of the Tbs observations and the actual relationship between the Tbs and snow depths.
In 2010–2011, the observed Tbs and snow depths showed similar negative correlations
(Figure 1) to the modeled correlation (Figure 6), resulting in good retrieval results for the
snow depth. In contrast, the relationships between the observed Tbs and snow depths
were not obvious in 2009–2010 or 2011–2012, resulting in limited improvement in the snow
depth retrieval results in these two years.

Further examinations are needed when generalizing the approach to handling satel-
lite observations. Satellite observations entail more complexities that are not present in
ground measurements, including a coarse resolution, intricate terrain features, forest cover,
atmospheric attenuation at high frequencies, frozen ground conditions, and mixed pix-



Remote Sens. 2024, 16, 1732 19 of 23

els [28,52,53]. Testing the performance of the proposed approach in such scenarios is
needed, with potential improvements in the modeling capability and observation channel
diversity.

4.2. The Impact of the Assimilated Snow Depth on Tb Predictions

To assess the extent to which an updated snow depth improved the Tbs’ simulation,
the Tbs were updated by running the DMRT model using the assimilated snow depth.
Figure 13 displays a comparison of the horizontal polarization brightness temperatures
(Tbs) for 2010–2011. Given the similarity of the changes between vertical polarization and
horizontal polarization, we present analysis solely for the horizontal polarization. The
updated Tbs represent Tbs computed from the updated snow depth. Notably, the updated
Tbs (depicted by the blue line) exhibited a slightly closer alignment with the observed
values (indicated by the red line) when compared with the open-loop Tbs (illustrated by the
black line). However, it is worth noting that the improvement at 10.65 GHz was negligible.
This was attributed to the lower sensitivity of the X band (10.65 GHz) to variations in
snow depth when κ = 0.285, aligning with the diminished sensitivity of the observed
values, as demonstrated in Figure 6 (Left column). In contrast, the Tbs at both 18.7 GHz
(Ku) and 36.5 GHz (Ka) exhibited improvements over time, with 36.5 GHz showing a
better enhancement. Nevertheless, a notable disparity persisted between the observed and
simulated Tbs. While the model can provide a reasonable approximation of the relationship
between Tbs and variations in snow depth, imperfect model accuracy may introduce errors
in the reconstructed snow cover parameters. Further, the snow depth is not the sole snow
property that the Tb is sensitive to. The snow grain size and density may have more impact
on the Tb response during snow accumulation.

The snow hydrology model parameters can potentially impact the accuracy of snow
retrievals. Kang et al. [28] performed separate calibrations of the snow hydrology model for
each year in the ESA NoSREx dataset to account for variations in snow properties. These
dataset-specific calibrations might lead to overfitting and limit generalizability of the data
assimilation framework. For real applications, the dataset to calibrate the snow hydrology
model each year might not be available. Thus, the calibrated parameters in 2011 were
used for the snow hydrology model over all three years in this paper. It is worth noting
that fixed parameters within the DMRT model and the lack of year-specific calibration
for these snow hydrology model parameters could impact the framework performance
across different years, allowing us to examine the sensitivity of the DA framework to model
parameter tuning.
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Figure 13. Forecasted Tbs by hydrology model and posterior Tb (improved by EnKF) in 2010–2011
compared with observed Tbs. (a) H-pol. at 10.65 GHz, (b) 18.7 GHz, and (c) 36.5 GHz. The black line
is the forecast Tbs, which is DMRT simulating through the average of the ensembles of the forecast
snow states. The blue line is the posterior Tbs, which is from the average of the DMRT simulations
using the posterior ensembles of the snow states. The red line is the observed Tbs.
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5. Conclusions

This paper presented a retrieval framework that adopted the DA algorithm and the
EnKF to improve the accuracy of SWE estimation by combining the 1D multilayer snow
hydrology model and the passive microwave forward model (one of the available RT
models: DMRT-QMS). The framework can reduce the RMSE in the SWE predicted by the
hydrology model. The principle of the framework is to take into consideration the variation
of forecast ensembles and the variation of observation ensembles to minimize the variance
of the final assimilation ensembles, which leads to an optimal estimation combining all
the information at each observation time. We used the ESA NoSREx dataset to verify the
performance of the framework. The assimilation results showed that the achieved SWE
retrieval RMSE averaged over the three years was 34.31 mm, which exceeded the reference
requirements of the NASA SCLP and ESA CoReH2O missions and was about 70% lower
than the open-loop snow hydrology model’s forecast. In general, this paper presented
a novel framework for retrieving SWE that leverages the combined strengths of a snow
hydrology model and a radiative transfer model. This approach ensures physically realistic
snowpack properties throughout the retrieval process. We further investigated the impact
of several factors on the framework’s performance, including the observation time intervals,
combinations of microwave observation channels, and size of the ensemble. A few detailed
findings of these applications are summarized as follows:

1. The relationship of the snow grain size between the snow hydrology model and
the DMRT model can be established by a scaling factor κ. In this framework, the
established parameter was κ = 0.285 from the ESA NoSREx dataset analysis. In
this study, a constant soil moisture mv = 0.051 and surface roughness parameters
Q = 0.25, H = 0.11 were assumed.

2. The framework presented more flexibility in choosing the appropriate passive mi-
crowave observation channel combinations. The six channel observations (V- and
H-pol at 10.65 GHz, 18.7 GHz, and 36.5 GHz), when applied together, worked better
than other combinations for SWE retrieval.

3. Different observation time intervals affected the assimilation results, and the longer
the time interval, the more the assimilation results were biased toward the open-loop
forecast values. In our test, the framework performed well for observation intervals
less than seven days.

4. The presented 1D framework can be extended to a wide spatial domain using a large
spatial coverage of experimental data (for example, Environment Canada data [54] and
NASA data [55]), where a distributed snow hydrology model is required [56,57]. More-
over, a more advanced RT model such as the DMRT-bicontinuous media model [58] can
be adopted in the framework to improve the retrieval accuracy of SWE. The framework
can also improve the performance of SWE retrieval for future applications that use both
active and passive microwave observations.
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