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ABSTRACT. – We collected tissue samples from 41
nesting hawksbill turtles (Eretmochelys imbricata) at

Sandy Point National Wildlife Refuge, St. Croix, US

Virgin Islands, to characterize the genetic structure of

this rookery in terms of mitochondrial DNA; we

compared haplotype frequencies from this rookery to

those from Buck Island, another hawksbill nesting

beach on St. Croix. Pairwise FST comparisons showed

that Sandy Point was demographically distinct from

Buck Island (FST = 0.501, p , 0.001), a finding rein-

forced by significantly different haplotype frequencies

(v2 = 51.76, p , 0.001) and a lack of interchange of

nesting females between both sites based on mark–

recapture data. Our results support the delineation of

the nesting populations at Sandy Point and Buck

Island into separate units for the purposes of

management.

Female sea turtles return to their natal beaches to

complete the reproductive cycle, a behavior known as

natal homing. Individuals can migrate more than 2000 km

to reach nesting grounds (Luschi et al. 1998) and typically

make nesting migrations repeatedly over the course of

their lives (e.g., Dutton et al. 2005; Beggs et al. 2007). As

hatchlings, turtles are thought to imprint on the magnetic

field of their natal beaches and use this information to

navigate back to them as adults (Lohmann et al. 2008b). In

the vicinity of the nesting area, they may also rely to

various extents on auditory, chemical, and visual cues to

locate the nesting beach (reviewed in Lohmann et al.

2008a).

This natal beach philopatry has important conse-

quences for sea turtle population structure because it

defines nesting populations (Bowen et al. 2005). Members

of different nesting populations are reproductively isolated

from one another at nesting grounds because of fidelity to

their nesting locations. This has implications for manage-

ment because the loss of nesting females from a nesting

population would likely cause extirpation of the rookery.

Females from other populations would be unlikely to

repopulate it over ecologically relevant timescales because

of their nesting beach fidelity (Bowen et al. 1993).

Although sea turtles from other nesting populations could

colonize the beach (e.g., Reis et al. 2010; Finn et al. 2016),

their long maturation time would likely result in a drastic

reduction in the number of nesting females at the site for

several decades, rendering the rookery functionally

obsolete. Distinguishing separate nesting populations is,

therefore, necessary to ensure that conservation actions

adequately address the threats facing each nesting

population.

Matrilineally inherited mitochondrial DNA (mtDNA)

from nesting turtles can be used to differentiate nesting

populations and define management units (e.g., Dethmers

et al. 2006). Management units are entities that are

functionally independent because of low levels of gene

flow between them (Moritz 1994). Nest site fidelity results

in highly structured nesting populations in terms of

mtDNA (Bowen and Karl 2007), and rookeries with

significantly different mtDNA haplotype frequencies can

be considered independent management units (Moritz

1994; Komoroske et al. 2017). Defining such management

units is important for guiding conservation efforts for sea

turtles and is considered a priority in the recovery plans for

many species (e.g., National Marine Fisheries Service

1993; Hamann et al. 2010).

Molecular tools have been useful in clarifying the

boundaries between nesting populations because the

amount of nesting habitat used by a population varies

widely. As a result, there can be considerable spatial

variation in nesting population structure. This holds

especially true for hawksbill turtles (Eretmochelys imbri-
cata), which have a circumtropical nesting distribution.

Hawksbill rookeries on the leeward and windward side of

Barbados, for example, are genetically distinct, although

they are separated by only 30 km (Browne et al. 2010). In

the eastern Pacific, hawksbill rookeries separated by 115

km also have divergent mitochondrial haplotype frequen-

cies (Gaos et al. 2016). However, there is sometimes no

demographic distinction between more distant rookeries.

There is no genetic differentiation between rookeries in the

US Virgin Islands (USVI) and Barbados, despite being

located 750 km apart (LeRoux et al. 2012). Rookeries in

northern Queensland and the Northern Territory in

Australia, separated by 800 km, are also not genetically

differentiated (Vargas et al. 2015). Thus, hawksbill

population structure is characterized by connectivity
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between distant rookeries, whereas proximate rookeries

are sometimes not genetically similar (LeRoux et al.

2012). As a result, examining genetic structure between

nearby beaches to uncover potential fine-scale differenti-

ation is often warranted.

At St. Croix, USVI, hawksbills have been recorded

nesting on 31 beaches, but the density of nests is typically

low with fewer than 10 nests laid annually at most sites

(Mackay 2011). An exception is Buck Island Reef

National Monument, located to the north of St. Croix

(Fig. 1), which has between 500 and 1000 nesting

activities (i.e., nests and nonnesting emergences com-

bined) annually (Dow Piniak and Eckert 2011). Most

hawksbill research efforts on St. Croix have been focused

on Buck Island, and it has been the site of a saturation

tagging project for hawksbills since 1988 (Hillis-Starr and

Phillips 2002). Mitochondrial haplotypes have been

determined from hawksbills nesting at Buck Island and

have been used in several studies as representative of the

genetic structure of hawksbill rookeries in the USVI (e.g.,

Bowen et al. 1996, 2007; Blumenthal et al. 2009; LeRoux

et al. 2012; Cazabon-Mannette et al. 2016). However,

recent studies at Sandy Point National Wildlife Refuge, on

the southwest corner of St. Croix 40 km away from Buck

Island (Fig. 1), have revealed a substantial amount of

nesting at this location as well. The mean number of

nesting activities at Sandy Point is around 300 annually,

but in some years, it exceeds 500 (Hill 2014). Conse-

quently, Sandy Point falls in the top 7% of hawksbill

nesting beaches in the wider Caribbean based on numbers

of annual nesting activities (Dow Piniak and Eckert 2011).

In the Lesser Antilles, higher levels of nesting are only

reported from rookeries at Buck Island and Barbados

(Dow Piniak and Eckert 2011).

Despite the considerable level of hawksbill nesting

that occurs at Sandy Point, the genetic structure of this

nesting population has not been characterized. As a result,

it remains unclear whether the nesting populations at

Sandy Point and Buck Island are demographically distinct

and whether these 2 beaches should be considered discrete

units for the purposes of management. We analyzed the

genetic structure of the hawksbill rookery at Sandy Point

in terms of mtDNA and compared it with Buck Island. Our

objective was to determine whether there is genetic

differentiation among hawksbill rookeries on St. Croix

and whether they should be considered independent

management units.

Methods: Study Site. — Sandy Point National

Wildlife Refuge (17840035N, 6485405W) is a 155-ha

peninsula containing 3.2 km of continuous beachfront,

located on the southwest corner of St. Croix, USVI. The

shoreline of the refuge is one of the longest sandy beaches

in the USVI and was established in 1984 to protect critical

leatherback turtle (Dermochelys coriacea) nesting habitat

(Meibohm 1979; Evans 2010). Although there has been a

saturation tagging project of nesting leatherbacks at Sandy

Point since 1981 (Dutton et al. 2005), research on

hawksbill and green turtles (Chelonia mydas), which also

nest at the site, has been primarily restricted to

documentation of nesting activities. There has also been

sporadic tagging of these two species when encountered

during leatherback monitoring. In 2011, the US Fish and

Wildlife Service began nighttime surveys to tag nesting

green and hawksbill turtles and the data for this study were

collected in conjunction with these efforts.

Figure 1. Map of St. Croix indicating locations of Sandy Point National Wildlife Refuge, Buck Island Reef National Monument, and
East End Beaches.
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Tagging and Tissue Collection. — We patrolled

Sandy Point nightly during hawksbill nesting season (July

through September) during 2012 and 2013 to encounter

nesting turtles. During oviposition, we gave each turtle a

unique identification by attaching an Inconel tag on the

right front flipper and inserting a PIT tag in the left

shoulder. We used a 6.0-mm Acuderm biopsy punch to

collect tissue samples from the rear flipper (modified from

Dutton 1996). Only turtles that could be identified through

tagging were sampled to prevent collecting duplicates

from the same individual. Samples were stored in 1.5-ml

vials in 96% ethanol at �208C. Research methods were

carried out in accordance with Purdue Animal Care and

Use Committee Protocol 1206000656.

Laboratory Analysis. — We extracted DNA from

samples using a Qiagen DNEasy kit and then used the

primers LCM-15382 and H950g to amplify an 832-base

pair control region of the mitochondrial genome (Abreu-

Grobois et al. 2006). Our 25-ll polymerase chain reactions

(PCRs) consisted of water, 13 Thermopol buffer, 10 mM

dNTPs, 10 lM of each primer, 0.25 units of Taq

polymerase, and genomic DNA. The thermal cycling

profile consisted of the following: an initial DNA

denaturation for 2 min at 908C, followed by 30 cycles of

1) DNA denaturing at 948C for 50 sec, 2) primer annealing

at 568C for 50 sec, and 3) primer extension at 728C for 1

min, followed by a final primer extension at 728C for 5

min.

PCR products were confirmed using gel electropho-

resis in a 2% agarose gel stained with ethidium bromide.

Subsequently, PCR products were purified by combining 5

ll of PCR product with 2 ll of a combined Exonuclease I

and Shrimp Alkaline Phosphate solution (ExoSAP-ITt)

and incubating for 15 min at 378C, followed by 15 min of

incubation at 808C. Both forward and reverse strands were

sequenced using an ABI BigDyet Terminator v3.1 cycle

sequencing kit and analyzed with Applied Biosystems

Model 3730 automated genetic analyzer. The 12-ll cycle

sequencing reactions consisted of 1 lM primer, 1:1

BigDye/buffer, and 3 lL PCR product. Cycle sequencing

was performed under the following conditions: an initial

DNA denaturation at 968C for 1 min, followed by 30

cycles of 1) DNA denaturation at 968C for 10 sec, 2)

primer annealing at 508C for 5 sec, and 3) primer

extension at 608C for 4 min. Sequences were aligned,

edited, and cropped using the program SeqScapet v2.5

(Applied Biosystems). Haplotypes were designated by

comparing sequences to those previously documented for

hawksbills and publicly available via GenBank.

Statistical Analysis. — We used Arlequin v3.5

(Excoffier and Lischer 2010) to calculate haplotype and

nucleotide diversity for these samples. Based on previ-

ously published haplotype data from Buck Island (LeRoux

et al. 2012), we used Arlequin (Excoffier and Lischer

2010) to calculate pairwise FST comparisons (conventional

haplotype frequency based) between Buck Island and

Sandy Point. We also carried out exact tests of population

differentiation using 10,000 steps in the Markov chain and

10,000 dememorization steps. Haplotype frequencies were

also compared between rookeries using chi-square tests

with Monte Carlo resampling with 1000 iterations using

the program Chirxc (Zaykin and Pudovkin 1993).

Results. — We tagged and collected tissue samples

from 41 individual hawksbills. Five of these turtles had

been tagged previously at Sandy Point, whereas the

remaining 36 turtles had no tags when first encountered.

None of the hawksbills we tagged were recorded nesting

on Buck Island after being encountered at Sandy Point (I.

Lundgren, pers. comm., January 2015).

Haplotype diversity of the Sandy Point rookery was

0.3305 6 0.081 SD, and nucleotide diversity was 0.013 6

0.007 SD. The haplotypes consisted of EiA01 (n = 33),

EiA11 (n = 7), and EiA03 (n = 1) (Table 1). Sandy Point

was highly differentiated from Buck Island (FST = 0.501, p
, 0.001; exact test p-value , 0.0001), and haplotype

frequencies were significantly different (v2 = 51.76, p ,

0.001).

Discussion. — Our study demonstrated significant

demographic differentiation between Buck Island and

Sandy Point, the 2 main hawksbill rookeries on St. Croix.

The existence of 2 separate nesting populations on the

island is supported by genetic analysis based on fairly

robust sample sizes for comparison and by the lack of

interchange of nesting females between sites based on

mark–recapture data. Because Buck Island has had a

saturation tagging project of hawksbills for 30 yrs,

untagged turtles presumably would have been tagged

while nesting there. The high number of untagged turtles

we encountered suggests that these turtles had not nested

previously at Buck Island, and we also confirmed that the

turtles did not nest on Buck Island after we tagged them.

These findings provide another example of differen-

tiation between proximate hawksbill rookeries. This

pattern may not be uncommon for hawksbills, because it

has been documented throughout the geographic distribu-

Table 1. Mitochondrial DNA haplotypes of hawksbill sea turtles nesting at Sandy Point National Wildlife Refuge and Buck Island Reef
National Monument, St. Croix, US Virgin Islands.

Rookery EiA01 EiA03 EiA09 EiA11 EiA20 EiA23 n

Sandy Point 33 1 0 7 0 0 41
Buck Islanda 8 2 2 50 4 1 67

a From LeRoux et al. (2012).
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tion of their nesting range, including sites in the Atlantic

(Browne et al. 2010), Pacific (Gaos et al. 2016), and Indian

oceans (Martı́nez et al. 2009; Vargas et al. 2015).

Although differentiated from Sandy Point, located 40 km

away, Buck Island is not differentiated from a rookery in

Barbados that is 750 km away (LeRoux et al. 2012). This

pattern of differentiation is consistent with the idea that

there is no standard geographic distance between demo-

graphically distinct rookeries (Shamblin et al. 2012).

Similar patterns have been documented for other

species as well. For example, loggerhead turtle (Caretta
caretta) rookeries at 3 sites in Greece, each separated by

100 km or more, were not genetically differentiated

(Carreras et al. 2007). However, haplotype frequencies at

rookeries in eastern Turkey and northern Cyprus were

significantly different, despite being also separated by 100

km (Carreras et al. 2007). At some locations in Florida,

green turtles nesting at beaches 450 km apart are not

demographically distinct, whereas differentiation occurs at

other sites separated by less than 1 km (Shamblin et al.

2015). Our study reiterates the value of examining

population structure of proximate rookeries because there

can be differentiation even between rookeries separated by

relatively small distances of less than 50 km.

Our results support the delineation of hawksbills

nesting at Sandy Point and Buck Island into 2 separate

management units. They should be evaluated indepen-

dently to assess threats and population status, and recovery

plans should target the unique threats facing each rookery.

For example, mongoose predation on hawksbill nests is

prevalent on St. Croix (Pollock and Hairston 2013), but

eradication of mongoose at one of these sites will not incur

a substantial benefit to nesting populations at the other site.

Since individual females do not nest on both beaches, the

extirpation of hawksbills on Sandy Point would have long-

term effects because turtles from Buck Island would not be

expected to colonize Sandy Point in the near future

(Bowen et al. 1993). Conservation management plans for

the region could be enhanced by incorporating information

on population structure from this and future studies.

Genetic sampling of hawksbills nesting on the East

End of St. Croix (Fig. 1), where approximately 200 nesting

activities occur annually (Dow Piniak and Eckert 2011),

could provide additional information on population

structure. The East End beaches (composed of East End

Bay, Isaac’s Bay, and Jack’s Bay) are 30 km away from

Sandy Point and 10 km away from Buck Island. In contrast

to Sandy Point, hawksbills nesting on East End beaches

have also been documented nesting on Buck Island

(Iverson et al. 2016). It is possible that East End beaches

and Buck Island comprise a single nesting population

distinct from that at Sandy Point. Further sampling would

provide more precise information on the boundaries

between nesting populations on St. Croix and could reveal

differentiation between rookeries at a finer spatial scale

than we documented.

Demographic distinction between hawksbill rookeries

at Sandy Point and Buck Island also raises the possibility

of similar patterns of differentiation among other sea turtle

species nesting on St. Croix. More than 1000 green turtle

nesting activities occur annually at Sandy Point (King et

al. 2014), whereas there are 100–500 annual green turtle

nesting activities at Buck Island (Dow Piniak and Eckert

2011). Along the east coast of Florida, green and

loggerhead rookeries followed similar patterns of differ-

entiation, with lack of differentiation between 2 sites for 1

species often occurring in the other species as well

(Shamblin et al. 2015). The greatest shifts in haplotype

frequencies also occurred at the same locations for both

species (Shamblin et al. 2015). However, other studies

have documented dissimilar patterns in population struc-

ture between species at the same locations. For example,

loggerhead rookeries in eastern Australia and New

Caledonia were not demographically distinct, whereas

differentiation occurred between green turtle rookeries in

the same locations (FitzSimmons and Limpus 2014).

Determining nesting population structure of green turtles

on St. Croix could better inform management of the

species within the USVI and could lend further insight into

interspecies patterns of nesting population structure.

Finally, a single hawksbill nesting beach from the

USVI is not representative of all the genetic diversity in

the territory. The additional population structure we

discovered at St. Croix suggests a need to reexamine

previous hawksbill foraging ground assessments. Studies

of mixed stock analysis that were used to show the

contribution of USVI hawksbill rookeries to foraging

grounds have used data for Buck Island as the represen-

tative USVI rookery in baseline data sets (Bowen et al.

1996, 2007). These studies may have misrepresented

potential contribution of the USVI because only one of

multiple stocks of nesting hawksbills was included. Future

region-wide analyses should include baseline rookery data

from both Buck Island and Sandy Point to account for both

management units.
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