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Abstract

Seagrass ecosystems, vital as primary producer habitats for maintaining high biodiversity

and delivering numerous ecosystem services, face increasing threats from climate change,

particularly marine heatwaves. This study introduces a pioneering methodology that inte-

grates Dynamic Bayesian Networks of ecosystem resilience with climate projections, aiming

to enhance our understanding of seagrass responses to extreme climate events. We devel-

oped cutting-edge metrics for measuring shoot density and biomass in terms of population

and site extinction, presented as annual ratios relative to their respective baselines. These

metrics include associated uncertainties and projected recovery times. This innovative

approach was applied in a case study focusing on Zostera muelleri in Gladstone Harbour,

Australia. Utilising five downscaled climate models with a 10 km resolution, our study encom-

passes a range of Shared Socioeconomic Pathways and emissions trajectories, offering a

comprehensive perspective on potential future scenarios. Our findings reveal significant vari-

ations in seagrass resilience and recovery times across different climate scenarios, accom-

panied by varying degrees of uncertainty. For instance, under the optimistic SSP1-1.9

scenario, seagrass demonstrated a capacity for recovery heat stress, with shoot density

ratios improving from 0.2 (90% Prediction Interval 0.219, 0.221) in 2041 to 0.5 (90% PI

0.198, 1.076) by 2044. However, this scenario also highlighted potential site extinction risks,

with recovery gaps spanning 12 to 18 years. In contrast, the more pessimistic SSP5-8.5 sce-

nario revealed a significant decline in seagrass health, with shoot density ratios decreasing

from 0.42 (90% PI 0.226, 0.455) in 2041 to just 0.2 (90% PI 0.211, 0.221) in 2048, and no

recovery observed after 2038. This study, through its novel integration of climate models,

Dynamic Bayesian Networks, and Monte Carlo methods, offers a groundbreaking approach

to ecological forecasting, significantly enhancing seagrass resilience assessment and sup-

porting climate adaptation strategies under changing climatic conditions. This methodology

holds great potential for application across various sites and future climate scenarios, offering

a versatile tool for integrating Dynamic Bayesian Networks ecosystem models.
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1 Introduction

Extreme climatic events have gained significant attention due to their notable effects on eco-

system structure and dynamics [1]. Marine heatwaves, a coherent area of warm sea surface

temperature (SST) that persists for days to months [2], have become more frequent and

intense over the past century [3–5], impacting the integrity of marine ecosystems globally [6].

Marine heatwaves can cause widespread mortality [7, 8], dramatic range shifts of marine spe-

cies, and community reconfiguration [9–11], and unexpected adverse effects on ecosystem ser-

vices associated industries, such as commercial fisheries [12]. In this context, projections of the

impacts of climate change on marine ecosystems are essential for the development of effective

adaptation strategies, but these projections come with uncertainty, complicating long-term

planning and risk assessment [13].

Seagrasses, marine flowering plants that provide vital ecosystem services and functions in

nearshore coastal environments (e.g., food through fisheries, control of erosion, and protec-

tion against floods) [14–16], are experiencing a worryingly global decline. Although the pri-

mary cause of this decline has been largely attributed to the degradation of water quality in

many areas (e.g., dredging, sediment loading, and eutrophication), increasing evidence indi-

cates that Extreme climatic events, such as marine heatwaves, have also played a significant

role [17–20]. Some recently observed marine heatwaves revealed the high vulnerability of sea-

grass and other coastal foundation species to such extreme climate events [21–23].

Although the resistance and recovery of seagrasses to heat stress induced by marine heat-

waves is not well understood, research has shown that these processes can vary across species

and possibly among populations of the same species within regions as a function of their ther-

mal tolerances [24]. Generally, meadows formed by slow-growing and long-living species typi-

cal of temperate climates, such as Posidonia, Amphibolis, and Zostera, are highly susceptible to

climate change disturbances, while smaller colonising species common of tropical regions,

such as Halodule, Halophila, and Syringodium, are more resistant to warming and marine

heatwaves [25].

Given the ecological importance of seagrass in maintaining high biodiversity and a range of

other ecosystem services, and with Extreme climatic events predicted to become more frequent

and intense [26], understanding their impacts on the marine ecosystem is critical for assessing

species’ adaptive capacity under future climate change scenarios. However, predicting natural

ecosystem responses to stressors can be particularly challenging due to their often highly vari-

able and complex nature and uncertainty surrounding their dynamic responses [27–30]. These

stressors rarely occur in isolation and generally cause impacts through the combinations of

multiple abiotic and biotic drivers. For example, elevated temperatures resulting from global

warming and heatwaves [22] can affect coastal ecosystems, which are frequently compounded

or intensified when combined with other stress factors [31, 32]. Cumulative impacts can play

an essential role in determining the current and future state of seagrass ecosystems and may

not be predicted from the individual effect of each variable operating in isolation [32–35].

Climate impact studies on marine ecosystems have increased in recent years due to the

availability of climate model simulations and various approaches for incorporating climate

forcing in predictive models. Earth System Models, General Circulation Models, and Regional

Climate Models connected to fishing and Marine Ecosystem Models are employed to assess

the impact of climate variability and change on Living Marine Resources [36–39]. These mod-

els attempt to capture ecosystem dynamics via species distribution models, ecological models

structured based on species interactions and energy transfer across trophic levels or using

hybrid models. While existing approaches to predict species and ecological responses to cli-

mate change offer valuable insights [40–43], they are not without limitations.
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Three key gaps exist in current marine ecosystem modeling approaches [40–43]. First,

existing models often focus on a limited set of processes affecting ecosystem dynamics, thereby

neglecting other potentially influential factors. Second, these models are generally not

equipped to capture or predict the non-linear and dynamic responses of entire marine ecosys-

tems to various perturbations. This is a significant limitation given that ecosystems are inher-

ently complex, characterized by non-linear dynamics, threshold effects, and limited

predictability. Third, the challenge of incorporating uncertainty from future climate data into

these predictive models remains largely unresolved. These gaps in the modeling structure

underscore the need for a more comprehensive approach that can account for the dynamic

nature of ecosystems, capture non-linear responses to environmental changes, and effectively

integrate uncertainties from climate projections.

In addition to the complexity of ecosystem responses to climate change described above,

there are also several sources of uncertainty in climate projections that can hinder the reliabil-

ity and accuracy of these models. These uncertainties arise from various sources in climate

projections, including model structural differences, initial conditions, scenarios, parameters,

and resolution/bias correction [44], and can limit the robustness and precision of the model

projections [45, 46]. When these projections are used to evaluate environmental systems, this

uncertainty can exacerbate ecological model uncertainty, which stems from the variability in

model type, design, and parameterization [47]. Knowledge of how to incorporate climate

uncertainty into ecological analyses remains challenging in climate change research [13, 45,

48–51].

Various techniques have been developed and applied to quantify different sources of uncer-

tainty associated with climate change. These techniques include multi-model ensembles,

model emulation, model sensitivity analysis, expert elicitation for the evaluation of structural

uncertainty, as well as Monte Carlo simulations for input data uncertainty evaluation [52, 53].

Ensemble modeling has emerged as a valuable method for capturing climate change impacts

and communicating uncertainties more effectively [54, 55]. This approach involves developing

a set of models, with each model member representing different working hypotheses or alter-

native formulations of uncertain processes.

Directly linking climate models with ecosystem models facilitates the development of man-

agement actions, enhances our understanding of potential causal pathways, and allows for an

explicit characterization of uncertainty. However, the process of coupling these models can be

particularly challenging due to their inherent complexities and the additional uncertainties

that arise when they are interconnected [45]. Although a fully integrated socio-ecological cli-

mate model can capture interactions across the complete systems-of-systems, such complexity

(i.e., large parameter space) makes robust calibration and evaluation of the model difficult [56,

57]. There is a need for more comprehensive treatments of uncertainty [58], including rela-

tionships/feedback between climate and its effects when linking climate and impacts. A signifi-

cant opportunity for innovation lies at the intersection of integrating climate models with

ecosystem models in a probabilistic framework. One promising approach is through the use of

Bayesian Networks coupled with climate models.

Bayesian Network (BN) has been applied as a tool for capturing different sources of uncer-

tainty in complex systems [49, 59–61]. BNs have been employed extensively across various

environmental sectors such as Integrated Water Resource Management, ecology, conservation,

maritime spatial planning, fisheries, and agronomy [62–73]. However, the application of BNs

for modeling ecological and environmental systems in the context of climate change remains

limited. A select number of studies [74–80] have utilized BNs to investigate the impact of cli-

mate change on essential natural resources. These studies have covered various issues, from

water scarcity and soil erosion to biodiversity loss, eutrophication, and sea-level changes. BNs
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have proven effective in exploring model uncertainty, assessing the impacts of management

interventions on climate scenarios, and even in predicting future conditions of coral reefs, as

demonstrated in studies by [49, 59–61].

However, a limitation of BNs is their inherent static characteristic, which restricts their

applicability in modeling temporal dynamics [59]. To address this, a coupling approach com-

bining System Dynamics and BNs has been developed to simulate the system over time [60].

While SD aids in understanding the non-linear behavior of complex systems, it is less adept at

handling uncertainty compared to BNs, which are capable of handling both quantitative and

qualitative data but may fall short of capturing feedback within a dynamic system. Further-

more, although Bayesian Network structures, direct acyclic graphs, can facilitate the systematic

identification of variables within multidisciplinary subsystems, it can still be challenging to

incorporate all the factors into the modeling procedure.

Dynamic Bayesian Networks (DBNs) provide one approach for integrating factors under

uncertainty for systems that require a dynamic representation over both time and space [79,

81]. DBNs are an extension of standard Bayesian Networks that use the Object-Oriented Pro-

gramming paradigm to divide the time period of interest into discrete stages and replicate the

network structure for each step [82]. These networks are then linked in such a way that infor-

mation can be transferred from one-time slice to the next one, allowing for a dynamic under-

standing of the system over time. One challenge with DBNs is the relative complexity and

specialized statistical skills required, which explains their scarcity in the current literature [79].

The primary aim of this paper is to develop a methodological framework that integrates

ecosystem DBNs with climate model projections to assess the resilience of seagrass ecosystems.

By doing so, we provide an explicit quantification of uncertainty as part of an end-to-end

model combining climate scenarios with ecosystem resilience responses to support manage-

ment. These tools contribute to enhanced risk modeling and interpretation of uncertainty for

climate impacts [83, 84]. The approach employed here accommodates both quantitative data,

results of empirical analyses, and qualitative data obtained from expert opinions. By utilizing

the inherent strengths of DBNs in the explicit modeling of factor relationships between factors

using conditional probability, we obtained the predicted probability of resilience outcomes

and the factors contributing to it, including the climate scenario. Such a method is particularly

advantageous for assessing cumulative effects involving multiple risk factors, as it provides

explicit modeling of uncertainty, which is essential in long-time-horizon predictions associ-

ated with climate change.

2 Materials and methods

2.1 Gladstone Harbour case study

Our case study includes a Zostera muelleri seagrass meadow located at Pelican Banks, Glad-

stone Harbour (latitude: 23˚4505800S and longitude: 151˚1803000E), Australia (Fig 1). As in the

broader Great Barrier Reef World Heritage Area, the rainfall distribution in Gladstone is

highly seasonal [85], with a summer wet season (December–April) followed by an extended

dry season (May-November) [86]. At this site, sea surface temperature (SST) varies between a

minimum of 19.2˚C (August) and a maximum of 29.7˚C (January), averaging 24.4˚C across

the year [87]. Gladstone Harbour is subtropical and reflects a transition zone between temper-

ate and tropical species. Pelican Banks represents the largest extent of seagrasses in Gladstone

Harbour, where the tropical subspecies Zostera muelleri forms a predominantly monospecific

intertidal seagrass meadow on mud banks.

Seagrass evolution in the Port of Gladstone is influenced by a multitude of environmental

and anthropogenic factors, including the local tidal and wave regimes. The area experiences
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variations in wave energy, with more energetic waves typically occurring during high tides,

which play significant roles in the dispersal patterns of seagrass propagules [88, 89]. Frequent

natural disturbances such as tropical storms, grazing by dugongs and turtles, and bioturbation

enhance local clonal diversity by creating gaps that seeds colonize, preventing monopolization

Fig 1. Map highlighting the study area in Gladstone, Pelican Bank, Australia. The locations are marked as follows:

1) Seagrass—Indicate Z. muelleri meadow location; 2) Wave Monitoring—Designates sites where sea surface

temperature data was collected at high sample rates through wave monitoring; and Climate Model: Marks where sea

surface temperature projections were made using an ensemble of climate models.

https://doi.org/10.1371/journal.pone.0298853.g001
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by competitively superior genotypes [90, 91]. Additionally, anthropogenic disturbances like

dredging, land reclamation, and nutrient enrichment often increase sexual reproduction and

genotypic diversity in seagrass meadows [92, 93]. High genotypic diversity is crucial for resil-

ience to disturbances [94]. Genetic surveys reveal significant structuring among sites, influ-

enced by the area’s hydrodynamic complexity, resulting in varying connectivity and isolation

[95, 96].

Projections indicate that sea-surface temperatures in the Great Barrier Reef could rise by

1˚C to 3˚C by 2100, with summer water temperatures potentially exceeding 33˚C, well above

the current distributional range of Z. muelleri [97]. Seagrass populations in Gladstone have

shown varying tolerance to heat stress. For instance, Z. muelleri from Gladstone exhibited high

sensitivity to 33˚C, suffering almost complete mortality after four weeks, whereas populations

from Midge Point showed greater heat tolerance, maintaining positive productivity at 35˚C

and increasing thermal optima to 37.3˚C [98]. Despite declines, such as those in southeast

Queensland, Z. muelleri meadows often recover within three years [99, 100].

2.2 Seagrass Dynamic Bayesian Network model

In this study, the seagrass DBN model is an extension of the general DBN framework for sea-

grass resilience (S1 Fig), as described by [101]. The original model, developed using data and

expert knowledge of 25 global sites across various seagrass genera, primarily evaluates seagrass

resilience to light and burial stressors associated with dredging. Recognizing the original mod-

el’s limitation in addressing heat stress, our study has extended the model to include the effects

of heat stress scenarios, especially those resulting from marine heatwaves. Moderate heat stress

can cause carbon imbalance in seagrasses, as their respiration increases proportionally more

than their photosynthesis. This can result in irreversible damage to their photosynthetic appa-

ratus if the stress exceeds certain thresholds, as noted by various studies [102–104].

Building on the methodology introduced by Hatum et al. [105], our model captures the

impact of marine heatwaves on seagrass resilience through two principal mechanisms. The

first mechanism focuses on the optimal temperature range essential for plant growth, detailing

the adverse effects on physiological status when temperatures deviate from this range. Such

deviations can impair normal plant functions and disrupt the seed recruitment process, with

younger plant stages being particularly vulnerable to elevated temperatures [106]. The second

mechanism, heat stress, accounts for mortality or a reduction in shoot density resulting from

temperatures that exceed the tolerance limits of the seagrasses. To model these effects, a tem-

perature node is linked to physiological status and seed recruitment, while a heat stress node

quantifies the loss in biomass, reflecting the direct impact of severe heat on seagrass mortality

(Fig 2).

The original model, designed for Zostera muelleri at Pelican Banks, Gladstone Harbour,

was developed with input from a group of experts and has had its structure and parameters val-

idated as reported in Wu et al. [107]. The model was updated and validated to incorporate the

effects of temperature and heat stress [105] based on the guidelines in Hatum et al. [108]. The

spatial-temporal resolution for this model is monthly timesteps, which correspond to the

growth dynamics of seagrass for inference purposes, and it is spatially calibrated for a single

seagrass meadow. The seagrass DBN model captures the conditional probabilistic relationships

among population variables (e.g., biomass, shoot density), factors relating to resistance (e.g.,

growth and physiology), recovery (e.g., physiology, seed, and vegetative growth), site condi-

tions (e.g., genera present and location characteristics such as depth, climate, and tidal regime)

and environmental factors (e.g., light and water quality) (Fig 2).
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2.3 Integrating climate model projections with the DBN model

2.3.1 Measurement and projections of temperature data. Our first step involves the

selection and preparation of the primary input parameters for the DBN model: temperature

and heat stress. These parameters serve as the two key mechanisms for capturing the impact of

marine heatwave on seagrass ecosystems. Daily sea surface temperature projections up to the

year 2100, considering four Shared Socioeconomic Pathways (SSPs) as described below, were

used in this study. The use of SSPs introduced a range of potential future climate conditions,

thereby adding a layer to assess one component of uncertainty, the uncertainty of future tem-

peratures based on climate models.

The Coupled Model Intercomparison Project Phase 6 (CMIP6) provides climate predic-

tions by integrating a combination of land-use scenarios and emissions. These predictions are

based on SSPs and revised versions of the Representative Concentration Pathways. These

SSPs, outlined in the latest IPCC assessment report, consider future socioeconomic changes

and climate mitigation strategies, thus expanding on the Representative Concentration Path-

ways concepts. For accurate local-scale projections, particularly in the shallow coastal waters

inhabited by seagrass, Jennifer K. McWhorter utilized the semi-dynamic downscaling tech-

nique from Halloran et al. [109] to refine five CMIP6 models (MRI-ESM2-0 [110],

EC-Earth3-Veg [111], UKESM1-0-LL [112], CNRM-ESM2-1 [113], IPSL-ESM2-0 [114]) to a

10 km resolution across four SSPs. This 1-D, semi-dynamic downscaling method inputs atmo-

spheric variables (winds, downwelling shortwave and longwave radiation, pressure, humidity,

air temperature) while accounting for local bathymetry and tidal conditions to perform a verti-

cal water column calculation outputting SSTs [109, 115, 116]. The projections employ an

ensemble mean, calculated as the average of all climate projections, with each projection being

referred to as an ensemble member. This was necessary as General Circulation Models typi-

cally have a 1˚ horizontal resolution, which lacks tidal mixing or near-shore dynamics. A spe-

cific grid cell was selected for the seagrass meadow under study, located at 23˚480S and 151˚

240E.

The five scenarios used in our study are also in the IPCC’s latest report [83] (SSP1.9, SSP1-

2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5), predicting temperature rises of 1.5˚C by 2040 and 3.3-5.7˚C

Fig 2. Dynamic Bayesian Network representation. Ovals represent nodes, and arrows indicate causal parent-child

relationships, with the absence of a link suggesting conditional independence. Subnetworks are shown in rounded

rectangles [77]. This representation is adapted from [101] and developed using GeNIe.

https://doi.org/10.1371/journal.pone.0298853.g002
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by 2100 under the highest emission scenario. Our study focuses on three SSP trajectories

(SSP1, SSP3, SSP5) and four emissions paths (SSP1-1.9, SSP1-2.6, SSP3-7.0, SSP5-8.5) [117],

with the latter numbers indicating peak radiative forcing (W/m2). SSP1-1.9, within SSP1, tar-

gets limiting warming to 1.5˚C using advanced CO2 removal technologies [118]. Notably, this

scenario overshoots the 1.5˚C target, approaching nearly 2˚C before returning to 1.5˚C by the

end of the century. SSP3 emphasizes regional rivalry and self-sufficiency, leading to slower

growth and increased inequalities. In contrast, SSP5 envisions a fossil-fuel-driven world with

robust economic and population growth driven by competitive markets. The CMIP6 datasets

used to inform these scenarios were accessed through the Centre for Environmental Data

Analysis. Additionally, downscaling details are available via the Zenodo repository, as outlined

in Halloran et al. [109]. The CMIP6 data can be accessed at https://catalogue.ceda.ac.uk, and

the downscaling information is available at Zenodo DOI: 10.5281/zenodo.4147559.

The downscaled CMIP6 climate models generate daily SST projections based on a range of

SSPs, offering appropriate estimates for the temperatures experienced by intertidal seagrasses.

Unlike their subtidal counterparts that remain continuously submerged, these intertidal spe-

cies are periodically exposed to air, but the models estimate their overall temperature exposure

using SSTs, not air temperature, even though they are calculated from air temperature [109].

Note that ‘daily average’ temperatures refer to the average computed for each individual cli-

mate model projection rather than an ensemble mean across all models. This methodology

tends to smooth out peak daily temperatures that might otherwise indicate potential heat

stress. Therefore, to supplement the CMIP6 models’ daily SST projections, we incorporated

high-frequency SST data from a wave-monitoring buoy near Gladstone, accessible via the

Coastal Data System—Waves website http://www.qld.gov.au/waves. These measurements,

taken every 30 minutes, covered 2014-2016 and 2021-2022, providing a detailed view of daily

temperature variations crucial for understanding the thermal stress on intertidal seagrasses.

Data from 2017 to 2019 were excluded due to formatting issues. High-frequency temperature

data facilitated the establishment of thresholds for temperature and heat stress nodes (Materi-

als and Methods, Section 2.3.3), effectively capturing daily variations. DBN inference discreti-

zation meets technical needs and identifies key decision thresholds, providing discrete

probabilities for risk assessment [107, 119]. This coarse method effectively captures system

uncertainties and knowledge [120].

Given the unpredictable nature of future human behavior, these scenarios present a spec-

trum of plausible climate futures, reflecting the outcomes of diverse policy choices. SSP1 advo-

cates for reduced emissions and a shift towards renewable energy, promoting a more

sustainable future [121]. In contrast, SSP3, which has a higher radiative forcing, suggests a

future marked by increased pollution and limited progress in health and education [122]. SSP5

envisions a heavy reliance on fossil fuels, resulting in significant increases in greenhouse gas

emissions [123]. It is important that these SSPs scenarios are not predictive and, therefore, do

not carry associated probabilities [124]. Their primary purpose is to provide decision-makers

with a range of potential outcomes derived from various plausible choices, thereby facilitating

informed decision-making. As an example of how these projections can be used, consider the

variability observed in the shoot density ratios of Z. muelleri under different SSP scenarios.

This variability serves as a vital indicator, guiding strategic resource allocation in times of

uncertainty and underscoring the importance of prioritizing interventions in regions most

likely to experience significant impacts.

2.3.2 Establishing thresholds for temperature and heat stress. Once temperature data

was secured, thresholds for temperature and heat stress variables were established using expert

elicitation and peer-reviewed literature. These thresholds convert continuous variables into

categorical variables relevant to environmental impact on plant physiology for management,
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such as optimal or sub-optimal temperatures. Given the complexity of the seagrass system and

the limitations of the data and knowledge about it, such discretization also reflects the resolu-

tion of information available. Thermal optima, as published for specific genera/species, served

as the basis for defining temperature states.

The temperature thresholds used in the analysis were particularly informed by research

conducted on Zostera muelleri in locations such as Cockle Bay and Picnic Bay on Magnetic

Island, and Moreton Bay near the northern Great Barrier Reef—areas geographically proxi-

mate to Gladstone. Recognizing the limitations stemming from relying on data exclusively

from these areas, especially given the absence of direct data from Gladstone itself, the thresh-

olds were refined and validated through expert opinions. Parameters specific to the location,

such as tropical or temperate distribution, were also factored in, given that certain seagrass

genera/species exhibit broad distributional ranges.

Since photosynthesis, like other biological processes, is temperature dependent, the photo-

synthetic rates of aquatic plants incrementally rise with temperature until a thermal optimum

is reached [103, 104]. Beyond this optimal point, the photosynthetic rates begin to decline at

higher temperatures [125]. According to Collier et al. [126], the thermal optimum for net

plant productivity of Z. muelleri was identified to be 24˚C. Consequently, the sub-optimal tem-

perature state was identified to fall above this value.

The second mechanism involves heat stress, which captures seagrass mortality during

marine heatwaves. This is achieved by assuming that the temperature thresholds for seagrass

mortality have been exceeded for a specified epoch of time (day(s) or month(s)). In a study

conducted by [127], a decrease in leaf growth rate from 27˚C was reported over a 5-day period,

resulting in plant mortality when exposed to a temperature of 33˚C for 30 consecutive days.

Our study obtained temperature data from a site different from the meadow in [127], specifi-

cally near Gladstone. Consequently, the temperature thresholds indicative of seagrass mortal-

ity, as delineated by [127], surpassed the levels recorded in the high-frequency data of this

study, wherein temperatures rarely reached or exceeded 33˚C. Therefore, a heat stress thresh-

old of 30˚C for anticipated shoot mortality has been established in this study.

2.3.3 Modelling temperature and heat stress. The climate projections for the designated

seagrass meadow include daily average temperature data. However, the DBN model operates

on a monthly timescale. Consequently, this necessitates converting mean temperature data to

align with the optimal temperature (thermal optimality) and shoot mortality thresholds (ther-

mal extremes). This section describes the methodology of this conversion process.

i. Thermal optimality. Let Td be a binary variable with states sub-optimal and optimal, which is

used to classify the temperature for a day d. Utilizing high-frequency logger data collected

every 30 minutes and applying a threshold of 24˚C, we classify a day as having an optimal

temperature if all recorded temperature measurements for that day are less than or equal to

24˚C. Conversely, the day is classified as sub-optimal if this condition is not met. Then, we

can model the daily temperature optimality given a projected mean daily temperature,

denoted as SSTd, using the following approach:

Td ¼ log
p

1 � p

� �

¼ b0 þ b1 � SSTd ð1Þ

where p is the probability of a day being sub-optimal. The coefficients are determined

through fitting. The probability pT
t of sub-optimal temperature for month t is estimated
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using the following equation:

pT
t ¼

1

nt

� �
X

8d2t

ðTdÞ ð2Þ

where t denotes month of a give year, nt represents the number of days within a given

month. During Monte Carlo simulations, samples for each month are generated with the

probability pT
t that the temperature for that month will be classified as sub-optimal; if not, it

is classified as optimal.

ii. Thermal extremes. Let Yd denote the maximum temperature for a day d, derived from

30-minute interval data collected by loggers. To estimate the relationship between Yd and

average daily temperature SSTd, we employed a simple linear regression model:

Yd ¼ b0 þ b1 � SSTd þ b2 � t ð3Þ

where t denotes the month of a given year and is incorporated as a factor to account for sea-

sonal variations in the maximum temperature Yd. SSTd is the average daily temperature,

and β0, β1 and β2 are the regression coefficients. A day is classified as experiencing heat

stress effect Zd = 1 if Yd� 30; otherwise, Zd = 0. Let us define:

Zt ¼
X

8d2t

Zd ð4Þ

where Zt denotes the number of days d exceeding maximum temperature Yd� 30 in a

month t. Given the extreme nature of marine heatwaves, we adopted a conservative

assumption that more than 15 days of heat stress in a month constitutes an entire month of

heat stress, leading to the following expression for the probability of heat stress:

pZ
t ¼

1 if Zt � 15

Zt

nt
if Zt < 15

8
><

>:
ð5Þ

where nt is the total number of days in the month. As before, during the Monte-Carlo simu-

lation, samples for each month are generated based on the probability pZ
t that a heat stress

effect occurs that month; otherwise, no heat stress is assumed. Note that this assumption

has limited influence on the outcomes of this specific one-month case study, rendering

shorter intervals unnecessary for our current analysis. However, this approach could be

modified to include shorter-duration marine heatwave assessments at other sites or to

investigate future deteriorations in the physiological conditions of this site.

2.4 Modelling seagrass resilience to heat stress

Ecological resilience serves as a crucial measure for evaluating the impact of climate change on

seagrass. Different seagrass species can exhibit diverse responses to global change stressors,

although species-specific characteristics may also influence the reactions. Key factors include

the characteristics of disturbances, environmental conditions, and the presence or absence of

feedback that impacts seagrass health, population structure, and reproductive capacity [25].

To quantify resilience, [107] focused on three significant ecological interactions extracted

from the literature. Firstly, resistance characterizes an ecosystem’s ability to withstand frequent

and intense disturbances [128, 129]. Secondly, recovery reflects the duration for an ecosystem

PLOS ONE Uncertainties in projecting the impact of marine heatwaves on seagrass meadows

PLOS ONE | https://doi.org/10.1371/journal.pone.0298853 November 27, 2024 10 / 35

https://doi.org/10.1371/journal.pone.0298853


to recover following a disruption [130]. Lastly, persistence assesses the probability of complete

degradation over time when compared to baseline conditions, with higher values indicating an

elevated risk of extinction [131, 132]. In this study, we defined two principal measures of resil-

ience: the shoot density ratio, denoted as r, and the recovery time, represented as q. The ratio r
serves a dual role, assessing resistance by comparing shoot density against immediate distur-

bances to baseline conditions and evaluating persistence through the long-term maintenance

of shoot density states (high, moderate, low, zero) under continuous heat stress. Further details

on these metrics are presented in the following section.

2.4.1 Annual changes in shoot density ratios. Shoot density ratios are defined within the

DBN for each state—high, moderate, low, and zero shoot density—as follows:

rSðtÞ ¼
pSðtÞ
pB

S ðtÞ
ð6Þ

where S represents the state (high, moderate, low or zero), B denotes the baseline scenario,

which is established as the year 2022, and t is measured in months.

The baseline year for this study was set as 2022, based on the availability of environmental

and biological ecosystem data. Significantly, 2022 marked the third consecutive year of good

condition for Gladstone Harbour’s seagrass meadows, following poor conditions from 2015 to

2018, making it an ideal reference for current and future assessments [133]. This choice recog-

nizes the potential for significant environmental and ecological shifts over extended periods,

underscoring the necessity to adjust the baseline in future studies to reflect these long-term

changes accurately and from a practical management standpoint.

The annual ratio is derived from the monthly ratios as their average, providing a more com-

prehensive view of the overall trajectory rather than merely reflecting seasonal variations:

rSðyÞ ¼
1

12

X

t2y
rSðtÞ ð7Þ

where y is the year. A high zero shoot density ratio (rzero(y)) is indicative of site extinction

when compared to baseline levels, whereas an elevated high shoot density ratio (rhigh(y)) signi-

fies a high population density.

2.4.2 Post-disturbance recovery time. Recovery time is calculated as the period,

expressed in years, within which the ratio first falls below 90% of the baseline and then rises to

reach or exceed 90% of the baseline. Let q(y) be the recovery time for year y, where y is the first

year when the ratio rS(y) falls below 90% of the baseline. Then y0 is the earliest subsequent year

when the ratio rS(y0) returns to or exceeds 90% of the baseline. The recovery time q(y) is calcu-

lated as q(y) = y0 − y, provided that y0 > y, rS(y)< 0.9, and rS(y0)� 0.9 (S4 Fig). This analysis

focuses primarily on the recovery times for states of high and moderate shoot density. This

focus is informed by the rationale that assessing recovery to zero and low states holds limited

analytical value, as these states predominantly signify a decline in the seagrass meadow.

The final uncertainty aspect in this model was addressed by conducting Monte Carlo simu-

lations for each climate scenario (n = 100). These simulations generate diverse outcomes

through random sampling from probability distributions, offering a comprehensive perspec-

tive on potential future scenarios and their risks. The simulation process produced a set of

ratios ri
SðyÞ for each year, with i ranging from 1 to 100, each representing individual samples.

From these samples, we calculate the mean and prediction intervals (PIs) to understand the

expected outcomes and their variability. To better comprehend and visualize the distribution

of rS(y), we consider two types of PIs. The first is a 90% interval, which spans from the 95th to

the 5th percentiles, and the second is a 50% interval, ranging from the 75th to the 25th
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percentiles (S1–S16 Tables). Additionally, we acquire the raw samples pi
xsðtÞ for each node

state xs at every month t for each sample i. This data is used for explanatory inference to help

infer what the most likely cause was for different resilience outcomes.

3 Results

The validation of the DBN model, as conducted by Wu et al. [101], involved a comparing its

predicted probabilities with those from external datasets not utilized during its training phase.

These external datasets were derived from studies focused on the effects of light deprivation on

seagrass, specifically simulating the impacts of dredging. Wu et al. [101] reported that the

mean-squared error (MSE) between the model’s predicted-state probabilities and the observed

values was in the range of 0.01 to 0.05. Prior to the integration of heat stress nodes, the model

results were calibrated to align with baseline conditions as established by Wu et al. [101]. Sub-

sequent to this calibration, the output from the DBN was subjected to qualitative evaluation

through expert judgment, as detailed in Kragt, M. E. [134]. Additionally, the simulations of the

downscaling climate models were validated using sea surface temperature data from satellite

and mooring observations. Halloran et al. [109] identified a slight temperature bias, which

may be attributed to the model operating as a one-dimensional vertical simulation that does

not account for horizontal processes.

Detailed in Materials and Methods, Section 2.3.3, we developed a framework adapting daily

average temperatures from climate models to our ecosystem model, using simpler yet effective

regression models. This includes a logistic regression with a McFadden’s R2 of 0.7997 and a

linear regression with an R2 of 0.9937. By integrating Monte Carlo simulations and innovative

resilience metrics, our framework enhances transparency and explainability and provides a

clear depiction of uncertainties. The resilience outcomes for shoot density ratios and recovery

times are presented in Sections 3.1 and 3.2, respectively, focusing on the case study of the Z.
muelleri seagrass meadow in Gladstone, Australia. To illustrate the resilience and associated

uncertainty in shoot density predictions relative to the baseline, the shoot density ratio for

each state has been plotted over time (Figs 3 and 4, S1 and S3 Figs).

3.1 Annual changes in shoot density ratios

Under the SSP1-1.9 scenario, the annual high shoot density ratios exhibit considerable vari-

ability across the evaluated years, experiencing both peaks and troughs. For instance, in the

year 2063, the annual density ratio reaches a high of 1.0008, while it plummets to a low of

0.2125 in 2067. Despite fluctuations, a general rebound is evident, especially after the mid-

2080s. Percentile spreads are narrow in specific years like 2033 and 2063 but widen notably in

the 2040s, 2070s, and late 2080s to early 2090s, indicating increased uncertainty during these

periods (Fig 3, S1 Table). This pattern is consistent with the SSP1-1.9 scenario, which over-

shoots to 2˚C of global average warming before returning to 1.5˚C by the end of the century.

In the SSP1-2.6 scenario from 2030-2099, annual shoot density ratios fluctuate but generally

recover, except in the mid-2040s and mid-2060s. By the 2090s, a decline was also evident.

Regarding PIs, they sometimes align closely with the annual ratio, for example, at the end of

the 2030s, suggesting low uncertainty. However, toward the end of the 2050s, wider percentile

spreads indicate elevated uncertainty (Fig 3, S2 Table).

The annual high shoot density ratio under the SSP3-7.0 scenario exhibits fluctuations until

the mid-2060s, after which a decreasing trend is observed. Despite a long-term downward

trend, averages rebound more frequently until the 2050s—a trend not observed in subsequent

years. Prediction intervals remain wide until the end of the 2060s, after which they narrow, sig-

nifying high uncertainty from the 2030s through the 2060s and a decrease toward the end of
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the century (Fig 3, S3 Table). Similar to the SSP3-7.0 scenario, the SSP5-8.5 scenario shows a

declining trend in annual high shoot density ratios. However, this decline began a decade ear-

lier, in the early 2040s, compared to the 2050s in the SSP3-7.0 scenario. Initially, from 2030 to

2034, the ratios vary between 0.38 and 0.99. This is followed by relative stability in the mid-

2030s. Post-2040s, the ratios generally decline to 0.25 or lower; although occasional minor

Fig 3. Annual projections for high shoot density ratio of Z. muelleri in Gladstone, Australia, depicting different socioeconomic pathway scenarios

from 2030 to 2100. Each colour corresponds to a distinct scenario: red (SSP1-1.9), green (SSP1-2.6), blue (SSP3-7.0), and purple (SSP5-8.5). The lines

represent key statistical measures: solid lines for the average, dashed lines for the 95th percentile (upper) and 5th percentile (lower), a grey area for the

75th percentile (upper) and 25th percentile (lower) derived from a dataset of 100 samples.

https://doi.org/10.1371/journal.pone.0298853.g003
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increases occur, they do not exceed 0.5. In the early 2030s, wider PIs indicate greater variabil-

ity, but these intervals narrow significantly in later years (Fig 3, S4 Table).

Under the SSP1-1.9 scenario, annual zero shoot density ratios display variability over time

without a consistent trend in average values. Although spikes occur, notably toward the end of

the 2050s and in the mid-2060s, the meadow appears unlikely to be driven to zero under this

scenario. As for the PIs, periods of high uncertainty generally coincide with peaks in the

annual zero shoot density ratios (Fig 4, S13 Table). For the SSP1-2.6 scenario from 2030 to

2099, the annual zero shoot density ratios demonstrate substantial variability over the years,

with no discernible upward or downward trend in average values. Specifically, the average val-

ues fluctuate significantly, ranging from a low of 0.8968 in the year 2050 to a peak of 3.0216 in

2051. Higher uncertainty is observed from the 2040s to the 2060s, followed by a narrower

spread in the distribution of results from the 2060s to the 2090s. After that, uncertainty

increases again (Fig 4, S14 Table).

In the SSP3-7.0 scenario, annual zero shoot density ratios generally remain around one

from 2030 to 2050. These ratios undergo a significant increase starting from the 2050s, with

values escalating and peaking in the 2090s. Alongside this upward trend, PIs widened begin-

ning in the late 2050s. Although the spread is narrow both up to 2050 and in the late 2090s, it

markedly widens from the 2050s onward. For example, the range between the 5th to 95th per-

centiles expands noticeably as we approach the end of the century (Fig 4, S15 Table). In the

SSP5-8.5 scenario, average values generally rise post-2040, peaking in the late 2090s with values

exceeding 7. This upward trend is similar to that in the SSP3-7.0 scenario, except it commences

a decade earlier. From the 2040s onward, a widening spread is evident in both the PIs, becom-

ing especially pronounced towards the end of the century (Fig 4, S16 Table).

Furthermore, our results indicate that even under the most adverse scenarios, the meadow

population does not drop to zero. This finding is somewhat reassuring, suggesting that com-

plete site extinction is not imminent. However, the increase in zero shoot density ratios, espe-

cially under the SSP3-7.0 and SSP5-8.5 scenarios, is a stark reminder of the potential risks.

This trend suggests that, in the absence of shoots, local populations of the species in question

could face extinction. The heightened uncertainty during these periods, as indicated by the

wide ranges between the PIs, signifies the ecosystem’s sensitivity to varying outcomes. For

instance, the rzero(2050) for the SSP5-8.5 scenario is 3.0451, a substantial rise of approximately

221% from the 2049 average of 1.3958. This increase underscores a greater risk of site extinc-

tion. Moreover, the narrowing of the interval between the 5th and 95th percentile from 1.0132

to 2.2772 in 2049 to 3.0109 to 3.1168 in 2050, which indicates a decreased uncertainty in the

zero shoot density ratio estimates, thereby providing a more precise indication of the site

extinction risk during this period.

Heatmaps provide a visual representation of seagrass resistance, illustrating its capacity to

endure increased severity and frequency of disturbance events (Fig 5). High and moderate

shoot density ratios over time under different climatic scenarios are represented on heatmaps

to assess resistance. Consistently maintaining high or moderate shoot density, for example,

might indicate strong resistance. Fig 5a shows that in the SSP1-1.9 scenario, there is a potential

to sustain higher population levels post-2060s. The SSP1-2.6 scenario presents a more moder-

ate trajectory, with a decline from the 2050s to the mid-2070s and another dip in the 2090s.

Despite this decline in high population density, it is less pronounced compared to the SSP3-7.0

and SSP5-8.5 scenarios.

The SSP3-7.0 scenario maintains high shoot density ratio values up to the 2050s, after

which a consistent decline ensues. Conversely, the SSP5-8.5 scenario begins a marked decline

in 2039, continuing through the end of the century. The SSP1-1.9 and SSP1-2.6 scenarios dis-

play elevated moderate shoot density ratios, suggesting that even with a decline in high shoot
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density ratios, moderate levels are more sustainable under these scenarios (Fig 5b). In contrast,

the SSP3-7.0 and SSP5-8.5 scenarios predict more challenging futures. The SSP5-8.5 scenario,

in particular, indicates a rapid decline, pointing to a steeper trajectory with significant reduc-

tions in moderate shoot density ratios as the century advances.

Fig 5c and 5d showcase the low and zero shoot density ratios over time for various SSP.

These heat maps provide a visual insight into the meadow’s resilience and the potential site

Fig 4. Annual projections for zero shoot density ratio of Z. muelleri in Gladstone, Australia, depicting different socioeconomic pathway scenarios

from 2030 to 2100. Each colour corresponds to a distinct scenario: red (SSP1-1.9), green (SSP1-2.6), blue (SSP3-7.0), and purple (SSP5-8.5). The lines

represent key statistical measures: solid lines for the average, dashed lines for the 95th percentile (upper) and 5th percentile (lower), a grey area for the

75th percentile (upper) and 25th percentile (lower) derived from a dataset of 100 samples.

https://doi.org/10.1371/journal.pone.0298853.g004

PLOS ONE Uncertainties in projecting the impact of marine heatwaves on seagrass meadows

PLOS ONE | https://doi.org/10.1371/journal.pone.0298853 November 27, 2024 15 / 35

https://doi.org/10.1371/journal.pone.0298853.g004
https://doi.org/10.1371/journal.pone.0298853


extinction risk. In the SSP1-1.9 and SSP1-2.6 scenarios, the meadow demonstrates a reduced

likelihood (represented in blue) of reaching zero or low population levels compared to the

SSP3-7.0 and SSP5-8.5 scenarios. Notably, under SSP3-7.0, there is a consistent annual low

and zero shoot density from the 2030s to the 2070s, followed by a gradual increase through

2099. The SSP5-8.5 scenario maintains a relatively stable ratio until the mid-2050s, after which

it begins to rise.

3.2 Post-disturbance recovery time

In Fig 6 and Table 1, the recovery times for high shoot density ratios reveal distinct trends

across SSPs. For SSP1-1.9, the average recovery time is 2.44 years, with the longest interval

between recoveries being 12 years. This pathway experienced 27 recovery events in total,

including four around the mid-2030s. After a 12-year gap, consistent recovery was observed

from 2052 through the century’s end. In the SSP1-2.6 pathway, two main recovery phases were

identified: one from the 2030s to mid-2040s and another in the 2080s. The first phase was

interrupted by a 12-year gap, concluding in 2058, and the second phase began 18 years later, in

2076, leading into the 2080s recovery period. This pathway averaged 3.53 years between recov-

eries, with a total of 16 events. The SSP3-7.0 pathway showed a faster recovery cycle, averaging

1.38 years between its 12 recorded events. In contrast, the SSP5-8.5 pathway had only four

recovery events, all between 2036 and 2038, indicating a less frequent recovery pattern.

Fig 5. Annual projections of Z. muelleri shoot density ratios in Gladstone, Australia, under various socioeconomic pathway scenarios from 2030

to 2100. (a) and (b) represent High and Moderate shoot density ratios, where light blue indicates greater levels and dark red is lower than baseline. (c)

and (d) represents Low and Zero shoot density ratios, where light blue indicates lower levels and dark red has greater levels than baseline.

https://doi.org/10.1371/journal.pone.0298853.g005
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Significant variations are visible when focusing on moderate shoot density ratio recovery

duration, as shown in Fig 7 and Table 1. The SSP1-1.9 pathway is remarkable for its 58

instances of returning to baseline conditions, which indicates a high frequency of recovery

events across the entire period. A singular 5-year gap is observed in the early 2060s. Similarly,

the SSP1-2.6 pathway exhibits an average recovery time of 1.69 years and is characterized by

extended maximum recovery periods, notably from the 2060s to the 2080s and again in the

Fig 6. Baseline return time for high shoot density ratios of Z. muelleri in Gladstone, Australia, depicting various socioeconomic pathway

scenarios from 2030 to 2100. Each color represents a distinct scenario, as follows: red (SSP1-1.9), green (SSP1-2.6), blue (SSP3-7.0), and purple (SSP5-

8.5). The lollipop graphs illustrate the years since the last event where the high shoot density ratio was equal to or exceeded 0.9.

https://doi.org/10.1371/journal.pone.0298853.g006
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2090s, in contrast to the SSP1-1.9 scenario. For the SSP3-70 pathway, a total of 28 recovery

events are observed. These events occur yearly from 2030 to 2049, after which they become

more sparse. The final recovery event takes place in 2073, following a 7-year gap. The SSP5-8.5

pathway exhibits an average recovery time of 1.48 years per event and is characterized by fewer

recovery instances, with 10 events recorded exclusively from 2030 to 2049.

When analyzing the recovery data for high versus moderate shoot density ratios, a notable

trend emerges: the mean number of recovery events tends to be lower for moderate densities.

Additionally, when comparing across the SSPs, optimistic scenarios (SSP1-1.9 and SSP1-2.6)

show a higher average of recovery events occurring throughout the study period with some

gaps. In contrast, pessimistic scenarios (SSP3-7.0 and SSP5-8.5) have fewer average recovery

events, mostly concentrated early in the study period and more closely spaced. This difference

in distribution and frequency of recovery events between optimistic and pessimistic scenarios

highlights the varying impacts of these scenarios on the recovery patterns of seagrass

meadows.

4 Discussion

This study introduces a novel methodological framework in response to the urgent need for

effective risk and uncertainty communication in decision-making about complex ecosystems

impacted by climate change. The framework is designed to enable long-term predictions of

seagrass resilience by integrating climate model projections with a DBN. Through this integra-

tion, the framework generates a range of scenarios that illustrate different heatwave conditions

within each SSP context of the case study. While the framework’s application has been limited

to a single location thus far, its effectiveness is evident. The framework not only demonstrates

the practicality of the approach but also indicates that the innovative metrics it employs can be

adapted for use in other regions and with different species, highlighting its broad applicability

in ecological studies.

A notable distinction between the current study and the one conducted by [107] is the tem-

poral scope for the model predictions and the resilience metrics derived from the model. [107]

limited their work to a 12-year simulation window, whereas this study extended it to a 70-year

projection. This extended timeframe consists of a 2-year model initialization phase, followed

by a 70-year projection that considers variations in temperature and heat stress across four

combinations of SSP scenarios (SSP1-1.9, SSP1-2.6, SSP3-7.0, and SSP5-8.5). To assess the

resilience of seagrass within the context of long-term future climate projections, it was neces-

sary to modify the existing resilience assessment framework. Given the seasonal dynamics of

seagrass and the extended decadal timescale of climate change, the resilience assessment tran-

sitioned from a monthly to a yearly temp-step size. Similar to [101], resilience is assessed with

Table 1. Recovery data for high and moderate shoot density ratios.

SSP1-1.9 SSP1-2.6 SSP3-7.0 SSP5-8.5

High Shoot Density Ratio

Mean Recovery Time (Years) 2.44 3.53 1.38 1.38

Max Gap in Recovery (Years) 12 18 2 2

Number of Recovery Instances 27 16 12 4

Moderate Shoot Density Ratio

Mean Recovery Time (Years) 1.19 1.69 1.48 1.48

Max Gap in Recovery (Years) 5 4 7 7

Number of Recovery Instances 58 39 28 10

https://doi.org/10.1371/journal.pone.0298853.t001
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respect to a baseline year, focusing on the primary response variable for management, realized

shoot density.

4.1 Annual changes in shoot density ratios

Annual projections for the seagrass shoot density ratio of Zostera muelleri in Gladstone are key

for assessing its resilience, measuring immediate response and long-term persistence under

Fig 7. Baseline return time for moderate shoot density ratios of Z. muelleri in Gladstone, Australia, depicting various socioeconomic pathway

scenarios from 2030 to 2100. Each colour represents a distinct scenario, as follows: red (SSP1-1.9), green (SSP1-2.6), blue (SSP3-7.0), and purple

(SSP5-8.5). The lollipop graphs illustrate the years since the last event, where the moderate shoot density ratio was equal to or exceeded 0.9.

https://doi.org/10.1371/journal.pone.0298853.g007
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environmental stress, and understanding its health in changing climates. The mean shoot den-

sity ratio at distinct time points t provides insight into the expected trajectory of Zostera muel-
leri. The utilization of 50% and 90% PIs serves to elucidate the distribution of the ratio. When

the bounds of these intervals are close, as illustrated in Fig 4 for 2033 under the SSP1-1.9 sce-

nario, it indicates a high degree of certainty regarding a ratio approximating the mean. Con-

versely, a substantial separation between the bounds, as observed in Fig 4 for 2046 under the

SSP1-1.9 scenario, denotes considerable uncertainty in those years. Uncertainty in ecological

predictions, often stemming from limited information, underscores the need for intensified

monitoring and additional research, especially during critical periods of uncertainty. These

efforts are crucial for filling knowledge gaps and refining models, ultimately leading to more

accurate and reliable ecological forecasting.

In the context of SSP1-1.9 and SSP1-2.6 scenarios—both of which project optimistic

human development and a transition to sustainability—the annual high shoot density ratios

for Z. muelleri exhibit considerable fluctuation over time. Despite this variability, the high

shoot density ratio often rebounds, a trend that aligns well with the sustainability-oriented

growth these scenarios anticipate and support with corresponding recovery time metrics. It is

important to note that variability in shoot density is a common characteristic of seagrasses;

thus, the observed fluctuations over time in the SSP1-1.9 and SSP1-2.6 scenarios align with

this trait. Specifically, the pattern of decline and subsequent rebound in shoot density ratios

has been historically documented in this region’s dynamic tropical seagrass meadows. How-

ever, such fluctuation patterns might not be as prevalent in regions with more stable environ-

mental conditions and steadier ecological trajectories, where seagrass meadows exhibit less

variability.

Given the lower emissions and enhanced environmental stewardship under these pathways,

conditions appear more favorable for Z. muelleri to thrive, corresponding to high resilience

overall. In the SSP1-1.9 and SSP1-2.6 scenarios, significant fluctuations in the high shoot den-

sity ratio are observed, with a corresponding increase in uncertainty. Following this phase of

high variability, the high shoot density ratio typically stabilizes to nominal levels, as exempli-

fied by the years 2041 and 2052 in the SSP1-1.9 scenario, illustrated in Fig 4. For instance, in

2041, the high shoot density ratio was 0.2 (90% PI of 0.0042) but increased to 0.5 (90% PI of

0.8742) in 2044 (S1 Table). Over time, this trend indicates a decline, with an increasing cer-

tainty in its trajectory. A detailed examination of the Monte Carlo simulation samples reveals

various heat stress event scenarios in the 2040s, which, through cumulative effects, contribute

to significantly different outcomes in shoot density and resilience (S7 Fig). Additionally, the

temperature optimality differed, further amplifying the impact on resilience.

Under the SSP1-2.6 scenario (Fig 4), the 2030s initially maintain baseline levels. However, a

noticeable downtrend emerges from the mid-2040s through the 2060s, accompanied by

increasing uncertainty. Within this scenario, carbon emissions are projected to decrease from

current levels, achieving net zero by approximately 2075. Concurrently, temperatures are fore-

casted to rise significantly in the short term (2021-2040), increasing by roughly 1.5˚C. This

warming trajectory is anticipated to persist, with temperatures escalating to 1.7˚C between

2041 and 2060 [135]. The marked decline in high population during the 2040s and 2060s can

plausibly be attributed to the SSP1-26 projections. The heightened uncertainty may arise from

variations among the samples, as depicted in S8 Fig, which presents three temperature projec-

tions for the 2050s.

Conversely, under the medium-high emissions and population growth scenario (SSP3-7.0),

as well as the highest emissions pathway (SSP5-8.5), a notable decline in the high shoot density

ratios of Z. muelleri is observed. Although the spread of values for these percentiles is initially

broad, it narrows as the century progresses. For instance, in the year 2030 SSP5-8.5 scenario,
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the interval between the 5th and 95th percentile is from 0.1365 to 0.4568, a range of 0.3203 PI

(0.9) (rhigh(2030) = 0.3759) (S4 Table). However, by the year 2050, this range has narrowed sig-

nificantly, with the 5th percentile at 0.1307 and the 95th percentile at 0.1344, resulting in a

much smaller PI(0.9) of 0.0037 (rhigh(2050) = 0.1327). This trend of contraction continues

such that by the year 2099, the PI(0.9) has reduced to less than 0.014 (rhigh(2099) = 0.0560),

indicating a more precise prediction towards the end of the century. The projected trend indi-

cates that by mid-century (2050) and end-of-century (2100), environmental conditions under

both scenarios will be less favorable for seagrasses, underscoring the importance of conserva-

tion planning in the face of climate change [136]. Adverse effects of climate change on sea-

grasses, as foundational species, could lead to the disruption of biological relationships among

other ecologically connected taxonomic groups [137, 138]. This may heighten their suscepti-

bility to ecological disturbances and evolutionary shifts, culminating in potential site extinc-

tion [138, 139].

4.2 Post-disturbance recovery time

According to the Environmental Protection Agency of Western Australia, a meadow is consid-

ered to be a permanent loss if the meadow does not recover within five years [140]. In the con-

text of high shoot density ratio recovery times, the SSP1-1.9 pathway presents the lowest risk,

featuring an average recovery time of 2.44 years. Nonetheless, during the 2040s, a 12-year gap

emerges where the meadow fails to recover, surpassing the 5-year threshold and thereby sig-

naling a potential risk of meadow extinction under specific conditions. Although the meadow

appears to recover until the mid-2040s, the SSP1-2.6 pathway presents a particularly concern-

ing situation in the mid-2050s and 2070s, with peaks in recovery time lasting 12 and 18 years,

respectively. If conditions continue to be favorable for the meadow through 2045 and mitiga-

tion measures are enacted at that point, the decline of seagrass might be slowed. Particularly

concerning are the SSP3-7.0 and SSP5-8.5 scenario, with fewer recorded recovery events that

persist until 2049 and 2038, respectively. Meadows under these scenarios face a significantly

elevated risk of being classified as extinct. The results suggest that seagrass meadows could face

varying degrees of site extinction risk depending on the SSP.

According to the Australian and New Zealand water quality guidelines [141], ecosystem

management frequently employs a reference site for comparison. Specifically, the median of a

managed site is evaluated against the 20th and 80th percentiles of a reference site(s) under the

‘moderate protection’ criterion. In accordance with [141], S5 and S6 Figs present the baseline

return times for high and moderate shoot density ratios, respectively, employing a threshold of

0.8 rather than the conventional 0.9. Despite employing an adjusted threshold, the findings

reveal that the most recent occurrences of high shoot density return times for the SSP3-7.0 and

SSP5-8.5 scenarios were logged in the years 2055 and 2038, respectively. Post-2038, the pros-

pect of returning to the baseline becomes untenable, culminating in an enduring diminution

of meadow populations. This trend is corroborated by a continuous escalation in the zero

shoot density ratio, as illustrated in Fig 5. Before 2038, the zero shoot density ratio consistently

hovers at approximately 1. However, a pronounced and consistent increase in the zero ratio is

observed in the following period. Conversely, for the SSP1-1.9 and SSP1-2.6 scenarios, a signif-

icant decrease in return times was observed, with heightened periods of risk specifically identi-

fied in the decades of the 2040s and 2060s.

4.3 Contributions and future research opportunities

Over the past century, there has been a significant increase in the duration and frequency of

marine heatwaves worldwide, with average increases of 17% and 34%, respectively. This has
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resulted in a concerning 54% rise in the annual number of marine heatwaves days [142].

Given that extreme climate events can induce significant ecological shifts [17], understanding

the direction and magnitude of these shifts is imperative. Increasing occurrences of marine

heatwaves, alongside their rising intensity and longer durations, have been extensively studied,

particularly their anticipated escalation throughout the 21st century due to climate change [5,

143]. However, many studies overlook factors beyond marine heatwave frequency and inten-

sity, failing to consider their broader impacts on marine ecosystems.

To address this gap, our study employs a DBN model known for its ability to integrate

diverse data sources into a dynamic, whole-of-system model [144, 145]. The primary contribu-

tion of this research lies in the novel integration of the DBN with climate models. We utilized

an ensemble of downscaled climate models specifically tailored for coastal areas. This ensemble

approach is expected to surpass the performance of individual model runs. This approach was

enhanced by integrating various SSP to represent different socio-economic futures. Addition-

ally, we developed a framework to translate mean temperature data into metrics aligned with

the thermal optimality for Z. muelleri. The study also advances the methodology by applying

Monte Carlo simulations and introducing novel resilience metrics, thereby creating a transpar-

ent and explainable model. While current metrics effectively evaluate resilience across various

scenarios, future research could benefit from examining additional metrics to enhance our

understanding of seagrass resilience, particularly under more challenging conditions.

The DBN presented provides a versatile tool for risk assessment that can be continuously

refined with new data, including observational and field data or updated model results, ensur-

ing the ongoing relevance and accuracy of the risk evaluations. The model design is not static;

it can be adapted to accommodate for new climate scenarios, applied to different regions, or

tailored to assess risks to various species beyond seagrass. To adapt the model, key steps

include downscaling the climate model for regional relevance, analyzing the relationship

between high-resolution temperature data and climate model data to apply correct thresholds,

and identifying the optimal temperature thresholds for targeted species, including the critical

temperature levels and durations that lead to shoot mortality. As scientific understanding

evolves, the DBN can be iteratively adjusted by integrating additional variables to capture

emerging characteristics or removing those no longer pertinent. This study highlights numer-

ous avenues for future research, particularly in identifying model parameters vulnerable to

uncertainty. Upon determining these parameters, probability distributions can be assigned to

each, reflecting the range of possible values. Expert judgment, empirical data, or an exhaustive

literature review can guide the choice of these distributions.

In this study, Monte Carlo simulations were employed to incorporate the uncertainty of cli-

mate projections into a DBN. It has been suggested that Markov Chain Monte Carlo methods

could be utilized for inference within a DBN to capture the uncertainty in both model parame-

ters and climate projections explicitly [146]. However, this approach presents significant

computational challenges and is considered an avenue for future research. The methodologies

applied in this study were conservative yet adequate for the scope of our research. In addition,

a more comprehensive study on forecasting methods for temperature and other environmen-

tal impacts on ecosystems represents another potential area for future research.

Furthermore, conducting sensitivity analyses would provide invaluable insights into the

robustness of the model, particularly in how thresholds are tested and validated. These analyses

aim to identify the parameters that most significantly impact overall risk estimates. Several

methods could be employed for this purpose, including calculating the partial derivatives of

the risk estimate with respect to each parameter or utilizing advanced techniques like vari-

ance-based sensitivity analysis. Incorporating expert knowledge in these analyses is crucial, as

it allows for the refinement of thresholds based on practical experience and insights that are
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not always captured by empirical data alone. This integration enhances the predictive reliabil-

ity of the model and guides future data collection and research efforts, ultimately contributing

to a more robust and adaptable decision-support tool for marine ecosystem management.

Future work could also extend the research to capture how different heatwave frequencies and

durations more comprehensively, and their variations over time might arise under different

SSPs and their impact on resilience.

Additionally, the current study did not explore variations in thresholds for estimating tem-

perature and heat stress state probabilities, akin to scenario assessments. Future research

should consider how adjustments in these thresholds, informed by expert knowledge and sen-

sitivity analysis outcomes, might influence model results. Such investigations would bridge

identified gaps and limitations, offering new opportunities for more detailed and comprehen-

sive findings in marine ecosystem management. These efforts are essential to ensure that the

model remains adaptable and responsive to emerging data and expert consensus, thereby

improving its utility as a decision-support tool.

5 Conclusion

For the conservation and survival of seagrass species, it is imperative that management strate-

gies are both flexible and adaptive in response to the uncertainties inherent in climate change

projections. The methodology employed in this study facilitates the identification of resilience

outcomes—ratios and recovery times—along with their fluctuations and associated uncertain-

ties. This study provides significant insights into the resilience of Z. muelleri under diverse SSP

scenarios, highlighting periods of high uncertainty that necessitate immediate action through

intensified monitoring or further research to mitigate potential risks. Determining that SSP1-

1.9 and SSP1-2.6 enable the best chance of recovery under future warming. The methods and

approaches outlined are versatile and adaptable, making them suitable for application across a

broad range of species, sites, climate scenarios, and ecosystems.

Supporting information

S1 Fig. Seagrass Dynamic Bayesian Network. A Bayesian Network (BN) is a class of graphical

models representing the probabilistic relationships among a set of variables (or nodes) with

directed arcs between them. These variables form a directed acyclic graph (DAG), and each

node in the DAG has a state that varies depending on the states of other nodes [147]. Informa-

tion about those states is transmitted throughout the DAG, and as a result, inferences may be

made by adding new data or evidence to the network. While BNs are suitable approaches for

inferring static processes, the Dynamic Bayesian Network (DBN), a BN extension in which

nodes represent variables at specific time slices, may be used to model temporally varying pro-

cesses in which the state of a variable may change over time [148]. When adding a dynamic

component to a BN and creating a DBN, the characteristic processes of complex systems,

including cumulative effects and feedback processes, can be captured. The DBN approach

allows us to predict the resilience of a system given the temporal dynamics of the components

of the ecosystem and their interactions with natural and anthropogenic stressors [101, 107].

The overall DBN network structure is depicted with ovals representing factors (or nodes) and

arrows indicating causal parent-child relationships. In this structure, a parent node (e.g.,

Meadow Type) exerts an influence on a child node (e.g., Location Type). Conversely, the

absence of a link between nodes signifies conditional independence. Rounded rectangles

denote subnetworks [77]. Note the presence of complex interdependencies and feedback loops

in the seagrass ecosystem. Node colors denote different categories: site condition (white),

recovery (purple), resistance (green), environmental (blue), and population (yellow). The
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following symbology is used in this figure: A node with a check mark: A node is ticked when

inference has been successfully executed. A curved arrow back onto itself: Denotes a link to the

node’s next time slice (i.e., t + 1). A double-headed arrow: Indicates that arcs are heading both

ways between two subnetworks. For example, a double-headed arrow between a node N and a

subnetwork S means that there is at least one node in S that depends on N and that there is at

least one node in S that influences N. An arrow labeled with a [1]: Indicates a connection to a

subsequent time slice (t + 1).

(PDF)

S2 Fig. Annual projections for moderate shoot density ratio of Z. muelleri in Gladstone,

Australia, depicting different socio-economic pathway scenarios from 2030 to 2100. Each

colour corresponds to a distinct scenario: red (SSP1-1.9), green (SSP1-2.6), blue (SSP3-7.0),

and purple (SSP5-8.5). The lines represent key statistical measures: solid lines for the average,

dashed lines for the 95th percentile (upper) and 5th percentile (lower), a grey area for the 75th

percentile (upper) and 25th percentile (lower) derived from a dataset of 100 samples.

(PDF)

S3 Fig. Annual projections for low shoot density ratio of Z. muelleri in Gladstone, Austra-

lia, depicting different socio-economic pathway scenarios from 2030 to 2100. Each colour

corresponds to a distinct scenario: red (SSP1-1.9), green (SSP1-2.6), blue (SSP3-7.0), and pur-

ple (SSP5-8.5). The lines represent key statistical measures: solid lines for the average, dashed

lines for the 95th percentile (upper) and 5th percentile (lower), a grey area for the 75th percentile

(upper) and 25th percentile (lower) derived from a dataset of 100 samples.

(PDF)

S4 Fig. Recovery time. The estimation of recovery time q(y) is calculated as q(y) = y0 − y,

where y is the first year when the high ratio rhigh(y) falls below 90% of the baseline. Then y0 is
the earliest subsequent year when the high ratio rhigh(y0) returns to or exceeds 90% of the base-

line.

(PDF)

S5 Fig. Baseline return time for high shoot density ratios of Z. muelleri in Gladstone, Aus-

tralia, depicting various socio-economic pathway scenarios from 2030 to 2100. Each color

represents a distinct scenario, as follows: red (SSP1-1.9), green (SSP1-2.6), blue (SSP3-7.0),

and purple (SSP5-8.5). The lollipop graphs illustrate the number of years since the last event

where the high shoot density ratio was equal to or exceeded 0.8.

(PDF)

S6 Fig. Baseline return time for moderate shoot density ratios of Z. muelleri in Gladstone,

Australia, depicting various socio-economic pathway scenarios from 2030 to 2100. Each

color represents a distinct scenario, as follows: red (SSP1-1.9), green (SSP1-2.6), blue (SSP3-

7.0), and purple (SSP5-8.5). The lollipop graphs illustrate the number of years since the last

event where the moderate shoot density ratio was equal to or exceeded 0.8.

(PDF)

S7 Fig. Predicted-state probabilities for high shoot density and the effect of heat stress on

Z. muelleri in Gladstone, Australia, under the SSP1-1.9 scenario. (a) The green line repre-

sents the baseline high shoot density, and the purple lines represent the projected high shoot

density. (b) The green line illustrates the baseline effect of heat stress, while the red lines depict

the projected impact of heat stress. No baseline is represented for heat stress, as its value is con-

sistently zero. (c) The green line portrays the baseline temperature effect, and the orange lines
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indicate the projected sub-optimal temperatures.

(PDF)

S8 Fig. Predicted-state probabilities for high shoot density and the effect of heat stress on

Z. muelleri in Gladstone, Australia, under the SSP1-2.6 scenario. (a) The green line repre-

sents the baseline high shoot density, and the purple lines represent the projected high shoot

density. (b) The green line illustrates the baseline effect of heat stress, while the red lines depict

the projected impact of heat stress. No baseline is represented for heat stress, as its value is con-

sistently zero. (c) The green line portrays the baseline temperature effect, and the orange lines

indicate the projected sub-optimal temperatures.

(PDF)

S1 Table. High shoot density ratio across years for SSP1-1.9 scenario: This table provides

an analysis of the high shoot density states, measured annually within the SSP1-1.9 sce-

nario. Avg: denotes the average high shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th

percentile indicating the value below which 95% of the observations are found.

(PDF)

S2 Table. High shoot density ratio across years for SSP1-2.6 scenario: This table provides

an analysis of the high shoot density states, measured annually within the SSP1-2.6 sce-

nario. Avg: denotes the average high shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th

percentile indicating the value below which 95% of the observations are found.

(PDF)

S3 Table. High shoot density ratio across years for SSP3-7.0 scenario: This table provides

an analysis of the high shoot density states, measured annually within the SSP3-7.0 sce-

nario. Avg: denotes the average high shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th

percentile indicating the value below which 95% of the observations are found.

(PDF)

S4 Table. High shoot density ratio across years for SSP5-8.5 scenario: This table provides

an analysis of the high shoot density states, measured annually within the SSP5-8.5 sce-

nario. Avg: denotes the average high shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th

percentile indicating the value below which 95% of the observations are found.

(PDF)

S5 Table. Moderate shoot density ratio across years for SSP1-1.9 scenario: This table pro-

vides an analysis of the moderate shoot density states, measured annually within the SSP1-

1.9 scenario. Avg: denotes the average moderate shoot density ratio per decade. Q25: repre-

sents 25th percentile, marking the value below which 25% of the observations fall. Q95: stands

for the 95th percentile indicating the value below which 95% of the observations are found.

(PDF)

S6 Table. Moderate shoot density ratio across years for SSP1-2.6 scenario: This table pro-

vides an analysis of the moderate shoot density states, measured annually within the SSP1-

2.6 scenario. Avg: denotes the average moderate shoot density ratio per decade. Q25: repre-

sents 25th percentile, marking the value below which 25% of the observations fall. Q95: stands
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for the 95th percentile indicating the value below which 95% of the observations are found.

(PDF)

S7 Table. Moderate shoot density ratio across years for SSP3-7.0 scenario: This table pro-

vides an analysis of the moderate shoot density states, measured annually within the SSP3-

7.0 scenario. Avg: denotes the average moderate shoot density ratio per decade. Q25: repre-

sents 25th percentile, marking the value below which 25% of the observations fall. Q95: stands

for the 95th percentile indicating the value below which 95% of the observations are found.

(PDF)

S8 Table. Moderate shoot density ratio across years for SSP5-8.5 scenario: This table pro-

vides an analysis of the moderate shoot density states, measured annually within the SSP5-

8.5 scenario. Avg: denotes the average moderate shoot density ratio per decade. Q25: repre-

sents 25th percentile, marking the value below which 25% of the observations fall. Q95: stands

for the 95th percentile indicating the value below which 95% of the observations are found.

(PDF)

S9 Table. Low shoot density ratio across years for SSP1-1.9 scenario: This table provides

an analysis of the low shoot density states, measured annually within the SSP1-1.9 sce-

nario. Avg: denotes the average low shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th

percentile indicating the value below which 95% of the observations are found.

(PDF)

S10 Table. Low shoot density ratio across years for SSP1-2.6 scenario: This table provides

an analysis of the low shoot density states, measured annually within the SSP1-2.6 sce-

nario. Avg: denotes the average low shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th

percentile indicating the value below which 95% of the observations are found.

(PDF)

S11 Table. Low shoot density ratio across years for SSP3-7.0 scenario: This table provides

an analysis of the low shoot density states, measured annually within the SSP3-7.0 sce-

nario. Avg: denotes the average low shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th

percentile indicating the value below which 95% of the observations are found.

(PDF)

S12 Table. Low shoot density ratio across years for SSP5-8.5 scenario: This table provides

an analysis of the low shoot density states, measured annually within the SSP5-8.5 sce-

nario. Avg: denotes the average low shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th

percentile indicating the value below which 95% of the observations are found.

(PDF)

S13 Table. Zero shoot density ratio across years for SSP1-1.9 scenario: This table provides

an analysis of the zero shoot density states, measured annually within the SSP1-1.9 sce-

nario. Avg: denotes the average zero shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th

percentile indicating the value below which 95% of the observations are found.

(PDF)
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S14 Table. Zero shoot density ratio across years for SSP1-2.6 scenario: This table provides

an analysis of the zero shoot density states, measured annually within the SSP1-2.6 sce-

nario. Avg: denotes the average zero shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th

percentile indicating the value below which 95% of the observations are found.

(PDF)

S15 Table. Zero shoot density ratio across years for SSP3-7.0 scenario: This table provides

an analysis of the zero shoot density states, measured annually within the SSP3-7.0 sce-

nario. Avg: denotes the average zero shoot density ratio per decade. Q25: represents 25th per-

centile, marking the value below which 25% of the observations fall. Q95: stands for the 95th
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34. Darling ES, Côté IM. Quantifying the evidence for ecological synergies. Ecology Letters. 2008; 11

(12):1278–1286. https://doi.org/10.1111/j.1461-0248.2008.01243.x PMID: 18785986

35. Grech A, Coles R, Marsh H. A broad-scale assessment of the risk to coastal seagrasses from cumula-

tive threats. Marine Policy. 2011; 35(5):560–567. https://doi.org/10.1016/j.marpol.2011.03.003

36. Cheung WWL, Dunne J, Sarmiento JL, Pauly D. Integrating ecophysiology and plankton dynamics

into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES

Journal of Marine Science. 2011; 68(6):1008–1018. https://doi.org/10.1093/icesjms/fsr012

37. Christensen V, Walters CJ. Ecopath with Ecosim: methods, capabilities and limitations. Ecological

Modelling. 2004; 172(2-4):109–139. https://doi.org/10.1016/j.ecolmodel.2003.09.003

38. Christensen V, Coll M, Buszowski J, Cheung WWL, Frölicher TL, Steenbeek J, et al. The global ocean
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