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ABSTRACT: The predictability of precipitation is hindered by finer-scale processes not captured explicitly in global
numerical models, such as convective interactions, cloud microphysics, and boundary layer dynamics. However, there
is growing demand across various sectors for medium- (3–10-day) and extended-range (10–30-day) quantitative pre-
cipitation forecasts (QPFs) and probabilistic QPFs (PQPFs). This study uses a novel statistical postprocessing tech-
nique, APPM, that combines analog postprocessing (AP) with probability matching (PM) to produce week-1 and
week-2 accumulated precipitation forecasts over Taiwan. AP searches for historical predictions that closely resemble
the current forecast and create an AP ensemble using the observed high-resolution precipitation patterns correspond-
ing to these forecast analogs. Frequency counting and PM are then separately applied to the AP ensemble to produce
calibrated and downscaled PQPFs and bias-reduced QPFs, respectively. Evaluation over a 22-yr (1999–2020) period
shows that raw ensemble forecasts from the GEFS of NOAA/NWS/Environmental Modeling Center, collected for the
subseasonal experiment, are underdispersive with a wet bias. In contrast, the AP ensemble spread well represents
forecast uncertainty, leading to substantially more reliable and skillful probabilistic forecasts. Furthermore, the AP-
based PQPF demonstrates superior discrimination ability and yields notably greater economic benefits for a wider
range of users, with the maximum economic value increasing by 30%–50% for the week-2 forecast. Compared to the
raw ensemble mean forecast, the calibrated QPF exhibits lower mean absolute error and explains 3–8 times more vari-
ance in observations. Overall, the APPM technique significantly improves week-1 and week-2 QPFs and PQPFs over
Taiwan.

SIGNIFICANCE STATEMENT: There are two significant challenges in improving precipitation forecasts beyond a
few days in Taiwan. First, large-scale numerical models often struggle with accurately predicting precipitation locations,
magnitudes, and providing sufficient detail. Second, probabilistic precipitation forecasts have been unreliable, failing to
convey accurate uncertainty information to users. In response to these challenges, this study has developed a relatively
simple yet effective technique that corrects the spatiotemporal distribution of predicted precipitation and downscales
the forecasts from a 18 to 1-km spatial resolution. Our results demonstrate that this technique significantly alleviates
these two issues, resulting in more accurate precipitation forecasts and more reliable probabilistic precipitation fore-
casts within a 2-week timeframe.
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1. Introduction

At present, most weather forecasts are based on output
from various numerical prediction models. These models
predict the future atmospheric state by solving a set of
governing equations, which explain changes in the atmo-
sphere, through dynamical relationships and statistical
parameterizations of finer-scale physical processes. There
are several limitations that users encounter when using
output from these models. First, systematic errors, which
are especially common near the surface in mountainous

areas,1 grow with increasing lead time. Second, numerical
models can describe the behavior of only a limited set of
variables within relatively large grid boxes.

Statistical postprocessing, which primarily refers to bias
correction and downscaling, can be used to address some limi-
tations of numerical prediction models. Bias correction in-
volves reducing or eliminating systematic errors (Mass 2003),
and downscaling involves interpreting large-scale model vari-
ables in terms of small-scale user variables that are of interest
to users but not directly provided by numerical prediction
models in sufficient detail. These user variables include

Denotes content that is immediately available upon publica-
tion as open access.

Corresponding author: Hui-Ling Chang, lingo@cwa.gov.tw

1 Near-surface environmental conditions (e.g., terrain and vege-
tation) and physical processes are usually simplified so that the
surface layer of the model cannot well reflect the influence of real
environment. Thus, it is difficult to correctly predict the near-
surface weather conditions.
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pointwise daily maximum and minimum temperatures near
the surface, wind gust speed, cloud cover percentage, visibil-
ity, the number of consecutive days without precipitation
(Mendoza et al. 2015), and many other variables, as well.

There have been several comprehensive reviews of statisti-
cal postprocessing methods (Li et al. 2017; Vannitsem et al.
2019, 2021). Vannitsem et al. (2019) specifically concentrated
on statistical postprocessing of ensemble forecasts, extending
the use of statistical corrections to traditional deterministic
forecasts. This book introduced important applications, par-
ticularly in hydrology, renewable energy, and long-range fore-
casts spanning months to decades. Li et al. (2017) conducted a
thorough review of statistical postprocessing methods for mete-
orological and hydrological forecasts, emphasizing approaches
addressing spatiotemporal and intervariable dependencies.
Vannitsem et al. (2021) provided a comprehensive overview of
statistical postprocessing for weather forecasts, covering theo-
retical advancements, challenges in operational implementa-
tion, and future prospects.

Various statistical postprocessing methods have been ap-
plied in precipitation forecasts, such as linear regression (Lu
et al. 2007; Yuan et al. 2008; Chang et al. 2012), logistic regres-
sion (Wilks 2006; Wilks and Hamill 2007), artificial neural net-
works (Yuan et al. 2007), quantile mapping (QM; Maraun
2013; Zhao et al. 2017), a frequency matching method (FMM;
Zhu and Luo 2015), and analog methods (Hamill and
Juras 2006; Hamill and Whitaker 2006; Hamill et al. 2015;
Horton et al. 2017, 2018). Quantile mapping (Maraun 2013)
effectively corrects biases between regional climate model
simulations and observations of similar resolution. However,
challenges arise when applying QM to observations of much
higher resolution, particularly for daily precipitation. The
downscaling process introduces problems such as distorting
temporal and spatial structures and overestimating area-mean
extremes. This is attributed to QM’s inability to introduce
small-scale variability. In addition, QM is a popular method
for postprocessing ensemble general circulation model fore-
casts (Hopson and Webster 2010). It effectively corrects bias
in raw forecasts but falls short in ensuring reliability and co-
herence. This is because it neglects the correlation between
raw ensemble forecasts and observations, resulting in nega-
tively skillful forecasts when significant positive correlation is
lacking (Zhao et al. 2017).

Analog techniques select historical analogs on the basis of a
similarity criterion, either matching initial conditions (Toth
1989; Van den Dool 1989; Zorita and von Storch 1999) or
forecasts from past events (Hamill and Juras 2006; Hamill and
Whitaker 2006; Hamill et al. 2013, 2015). By using higher den-
sity observations, analog procedures can implicitly downscale
low-resolution forecasts by imparting observed spatiotempo-
ral variability. Specifically, analog postprocessing (AP) methods
can significantly improve probabilistic precipitation forecasts
(Hamill and Whitaker 2006; Hamill et al. 2015; Ben Daoud et al.
2016). Hamill and Whitaker (2006) demonstrated that incorpo-
rating both forecast precipitation and precipitable water as pre-
dictors rather than using precipitation alone can improve the
precipitation forecast. In addition, long-range forecasts should
have larger search areas for pattern matching than short-range

forecasts. This is probably because only larger-scale features are
predictable at longer forecast lead time. Additionally, matching
the rank rather than the value of the mean forecast with the
rank of potential analogs and spatial smoothing of resulting
probability fields to reduce sampling noise slightly improves fore-
casting ability.

Horton et al. (2017) incorporated a moving time window
(MTW) approach into AP methods, allowing a time shift be-
tween target and candidate situations. This innovation im-
proved atmospheric circulation analogy, proving especially
advantageous for heavy precipitation days. In a subsequent
study, Horton et al. (2018) introduced a global optimization
approach using genetic algorithms to enhance AP for precipi-
tation forecasts. Unlike the traditional sequential method,
which faces limitations in selecting optimal parameters and
handling parameter dependencies, the global optimization ap-
proach automatically and objectively optimizes parameters. It
considers parameter interdependencies and enables explora-
tion of new degrees of freedom, resulting in improved fore-
cast performance, particularly in high precipitation scenarios.

A limitation of AP methods is that sufficiently large samples
of reforecasts (or hindcasts) with matching verifying observa-
tions are required to ensure analogs of good quality. However,
the observed climate and forecast quality may not be stationary
over long periods. Additionally, the rarer the event is, the more
difficult it is to find close forecast analogs (Hamill and Whitaker
2006). Logistic regression is an alternative technique that is less
prone to sampling error and generally has skill comparable to
AP methods (Hamill and Whitaker 2006). Additionally, logistic
regression can effectively calibrate medium-range precipitation
forecasts (Wilks and Hamill 2007). However, logistic regression
is more computationally expensive than AP methods because
regression coefficients need to be computed individually for
each precipitation threshold (Hamill and Whitaker 2006).

As precipitation often occurs on finer scales, its predictability
beyond a few days is limited. However, demand for medium-
range (3–10-day) and extended-range (10–30-day) precipitation
forecasts (MEPFs) has increased in agriculture, forestry, live-
stock, and water resource management. Given the large uncer-
tainty in precipitation forecasts, both quantitative precipitation
forecasts (QPFs) and probabilistic QPFs (PQPFs) are required.
QPFs are often used in sophisticated ex-ante decision-making
processes. For example, a single (deterministic) or ensemble
mean QPF was used as input to a hydrological model in reser-
voir inflow forecasting (Yang et al. 2023). This study developed
a statistical postprocessing technique combining AP and proba-
bility matching (PM; Ebert 2001) to generate a more accurate
single (deterministic) QPF and more reliable PQPF for medium
and extended ranges.

In our study, we adopted the AP method developed by
Hamill and Whitaker (2006). Some notable changes made in-
clude an extension of the forecast lead time from 6 to 14 days,
the use of 7-day instead of 24-h accumulation periods, and the
use of a high-resolution (1-km) observational precipitation
analysis based on rain gauge data in place of a coarse-scale
model reanalysis. Additionally, we considered both the mean
and spread of ensemble forecasts when selecting analogs and
generated postprocessed QPF in addition to PQPF. Our
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approach is to predict precipitation conditioned on the forecast
of the large-scale circulation which still retains predictability be-
yond a few days (i.e., conditional climatic distribution), instead
of a single prediction of individual precipitation events.

This paper is organized as follows. The data sources and vali-
dation methodology are introduced in section 2. The statistical
postprocessing methodology is described in section 3. Forecast
evaluation results and discussion are presented in sections 4 and 5,
respectively. Finally, the study is concluded in section 6.

2. Data sources and validation

This study uses both retrospective (i.e., reforecast) and op-
erational precipitation forecasts for lead times up to 14 days

from the National Oceanic and Atmospheric Administration/
National Weather Service/Environmental Modeling Center
(NOAA/NWS/EMC) Global Ensemble Forecast System
(GEFS) collected for the subseasonal experiment (SubX;
Pegion et al. 2019), over the period of January 1999–September
2020. EMC-GEFS is an operational model; thus, the real-
time operational forecasts and reforecasts were generated
using the same model. The number of ensemble members
for the reforecast (January 1999–December 2016) and real-
time operational periods (August 2017–September 2020)
is 10 and 20, respectively. Over both periods, the update
frequency is once per week, with forecasts initialized at
0000 UTC every wednesday. The horizontal resolution is
183 18 in latitude and longitude.

FIG. 1. Statistical postprocessing procedure of probabilistic and single (deterministic) precipitation forecasts.

FIG. 2. (a) Schematic diagram of AP and (b) search area for pattern matching (black outer box) and verification area
(Taiwan Island and its outer islands inside the red box).
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For training and validation, a gridded precipitation analysis
based on rain gauge data for the entire experimental period was
prepared using a variant of the simple kriging method (Ali et al.
2005). The horizontal resolution of the observational precipita-
tion analysis is 1 km. Hence, beyond bias correction, AP also
downscales the forecasts from 18 to 1-km spatial resolution. As

the ultimate source of finer-scale information, the observational
precipitation analysis plays a critical role in the calibration of
precipitation forecasts. Detailed information on gauge spacing
and estimation error is provided in appendix A.

To increase the number of samples, validation was performed
using a leave-one-out cross-validation procedure (Wilks 2011).

FIG. 3. Frequency distributions of 7-day accumulated precipitation evaluated over the entire 22-yr sample for
(a) 1–7- and (b) 8–14-day lead times for APEM (blue curve), APPM (red curve), and observation (black curve). Ver-
tical dotted lines from left to right mark accumulated precipitation at the 85th, 90th, and 95th percentiles.

FIG. 4. 1–7-day QPF [(a) RAW3 ensemble mean (REM), (b) REM-PM, (c) APEM, and (d) APEM-PM] and (e) observationally based
analysis for the period ending at 0000 UTC 11 Jul 2019 (Typhoon Mun).
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AP was separately trained to calibrate forecasts made in each
year of the full sample. As an example, for calibrating refore-
casts issued in 2005, training was based on data from 1999 to
2004 and 2006 to 2022. In addition, Taiwan has three distinct
weather regimes: summer (July–September), the winter half
year (October–April), and the mei-yu2 season (15 May–15 June).
To address seasonal variations, training was conducted sepa-
rately for three slightly overlapping periods: summer (16 June–
15 October), the winter half year (15 September–15 May), and
the mei-yu (15 April–15 July) season.

3. Methodology

This study produced calibrated 7-day accumulated precipi-
tation forecasts, including probabilistic and single (determinis-
tic) forecasting, using statistical postprocessing methods. The
statistical postprocessing procedures are shown in Fig. 1. First,
AP (Hamill and Whitaker 2006; Hamill et al. 2015) was used
to obtain historical forecast analogs that most resemble the
current ensemble forecast. We searched for the 20 past dates
where the ensemble forecast was most similar to the ensemble

forecast of today. The observations corresponding to the best
forecast analogs then served as a calibrated forecast ensemble
(referred to as the AP ensemble hereafter). Subsequently,
PM was applied to the AP ensemble to derive a single (deter-
ministic) forecast (called the APPM forecast), and frequency
counting was used to obtain probabilistic forecasts. That is,
the PQPF was generated using the relative frequency of the
event in the ensemble. For example, if 5 of the 20 ensemble
members at a grid point indicated greater than 50 mm of pre-
cipitation, the probability of that event was 25% (5/20).

a. AP

Pattern matching between the current forecast and historical
forecasts was conducted to identify the 20 closest historical fore-
cast analogs. The 20 sets of observational precipitation analysis
corresponding to the forecast analogs were used as a calibrated
forecast ensemble (AP forecast ensemble), representing possible
observed weather scenarios (Fig. 2a). The distance-based similar-
ity criterion D(t) [Eq. (1)], including ensemble mean x [Eq. (2)]
and ensemble spread [Eq. (3)] terms, is defined as follows:
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FIG. 5. (top) 1–7- and (bottom) 8–14-day analysis rank histograms for (a),(d) RAW ensembles for reforecast, (b),(e) RAW ensembles for
real-time forecast, and (c),(f) AP ensembles. Horizontal dashed lines denote frequency for uniform rank distribution.

2 Mei-yu season is the East Asian rainy season, also known as
the plum rain. The term “mei-yu” is derived from the Chinese pro-
nunciation, signifying the rain that falls during the ripening period
of plums. It is caused by precipitation along a persistent stationary
front, referred to as the mei-yu front, over Taiwan from mid-May
to mid-June. The wet season ends during the early summer when
the subtropical ridge strengthens enough to push this front north
of the region. These weather systems can result in heavy precipita-
tion and flooding.
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where x is the forecast variable, which is 7-day accumulated
precipitation in this study. Let tc be the current date and t be
the chosen date in the historical dataset whose forecast data
will be compared against the forecast at tc. The L is the num-
ber of grid points in the search area for pattern matching
(Fig. 2b), and M is the number of ensemble members. The
search domain is much larger than the verification domain,
which covers only the Taiwan land area. This is because large-

scale information is essential for pattern matching, given the
consideration of predictability.

As the range of predictable scales shrinks with increasing
lead time (Boer 2003), forecast skill also strongly depends on
spatial scales. In the extended range, only slowly changing
larger-scale features are predictable. The 7-day accumulated
precipitation, which is both a predictor and predictand in this
study, reflects slowly changing large-scale conditions and

FIG. 6. As in Fig. 3, but for RAW ensemble (blue curve), AP ensemble (red curve), and observation (black curve).

FIG. 7. Reliability diagrams for RAW (blue) and AP (red) PQPFs for (a),(d) 50, (b),(e) 100, and (c),(f) 150 mm week21 for (top)
1–7-day and (bottom) 8–14-day lead times, evaluated over the entire 22-yr sample. Horizontal dashed line indicates sample climatological
frequency.
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consequently has some predictability in the extended range.
The basic results from our study remain unchanged when
7-day accumulated precipitation as a predictor is replaced
with large-scale circulation indices (see appendix B) in the
search for analogs (not shown).

b. PM

PM (Ebert 2001; Su et al. 2014) was used to convert the AP
ensemble forecasts into a single (deterministic) forecast after
the spatial distribution of precipitation forecasts was cor-
rected by AP. For each forecast, consider the cumulative dis-
tribution functions of two components: 1) the ensemble mean
(EM) values at each grid point within a specified domain and
2) all perturbed members at each grid point across the same
domain. The PM value for each EM value (i.e., probability
matched mean) is determined by identifying the precipitation
value in distribution 2 that corresponds to the cumulative fre-
quency value of the EM precipitation value in distribution 1.
During the probability matching process, only the current PM
ensemble forecasts were used and historical forecast and cor-
responding observational precipitation analysis were not re-
quired. Therefore, the PM is not a downscaling method.

In essence, when applied to the mean of the AP ensemble,
PM relabels precipitation forecast values by using aggregated
ensemble member data to better match the frequency
distribution of forecast precipitation with corresponding

observations. The effect is illustrated in Figs. 3a and 3b. The
AP ensemble mean (APEM; blue curve) has lower and
higher frequency for heavy and light precipitation than the
observation, respectively, that is, because the averaging pro-
cess in computing an ensemble mean filters out extreme val-
ues and coarsens the data. Such a phenomenon is mitigated
in APPM (red curve)}its frequency distribution of accumu-
lated precipitation was very close to that of the observa-
tions. In other words, the range of forecasted values was
close to that in the observational dataset.

TABLE 1. 80th, 85th, 90th, and 95th climatological percentile
of observed 7-day accumulated precipitation over Taiwan for
winter half year, mei-yu season, and summer. The percentile
precipitation values are rounded to the nearest 5 mm week21.
The total number of 7-day periods between January 1999 and
September 2020 contributing to the statistics is indicated in
parentheses.

Accumulated
precipitation
(mm week21)

Winter
half year
(636 cases)

Mei-yu
(184 cases)

Summer
(283 cases)

80th percentile 30 100 100
85th percentile 40 125 150
90th percentile 50 150 210
95th percentile 95 240 330

FIG. 8. As in Fig. 7, but for ROC curves.
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As demonstrated by the case of Typhoon Mun in 2019
(Fig. 4), PM only corrects the frequency distribution of pre-
cipitation over the entire domain; however, it fails to address
the issue of misplaced precipitation caused by the model’s
coarse representation of orography and other limitations (cf.
Fig. 4a with Fig. 4b). On the other hand, AP corrects the posi-
tional error (Fig. 4c) and, with a PM application (Fig. 4d),
produces a forecast with a realistic range of precipitation
amounts (cf. Fig. 4d with the corresponding observationally
based analysis in Fig. 4e).

4. Forecast evaluation results

a. Distribution of ensembles

Analysis rank histograms (Hamill 2001), which are also
called Talagrand diagrams, can be used to evaluate whether
the spread of ensemble forecasts adequately represents the
underlying uncertainty. The results of an assessment of analy-
sis rank histograms indicated that the RAW ensemble fore-
cast was underdispersive (Figs. 5a,b,d,e). Approximately
33%–49% of the samples had observed precipitation values
that were lower than the entire range of ensemble forecasted
values (falling into rank 1), whereas 7%–14% of the samples
had observed values that were higher than the forecasted values
of all members (falling into the rightmost 11th or 21st ranks). In
contrast, the distribution of the downscaled AP ensemble was
calibrated with most of the bias removed (Figs. 5c,f).

The frequency distribution of accumulated precipitation for
the RAW ensemble indicated overforecasting for light precip-
itation and underforecasting for heavy precipitation (Fig. 6),
consistent with an overly high number of verifying cases fall-
ing into rank 13 (and to some extent, into the rightmost 11th
or 21st ranks of the analysis rank histograms) and overly low
number of cases falling into the middle ranks (Figs. 5a,b,d,e).
In other words, the RAW ensemble produced a narrower range
of precipitation values than the observed climatology; therefore,
it cannot contain the right tail of the precipitation spectrum. By
contrast, frequencies for the AP ensemble were much closer to
observed values compared with those for the RAW ensembles
(Fig. 6). In other words, the calibrated AP ensemble better repre-
sents the precipitation variability of the observed climatology.

b. 7-day probabilistic quantitative precipitation forecasts

Statistical reliability assesses systematic error (biases),
whereas statistical resolution measures predictive skill in
probabilistic forecast systems (Toth et al. 2006). Reliability
and resolution are independent attributes of forecast systems.
For probabilistic forecasts, reliability assesses how well the

FIG. 9. As in Fig. 7, but for potential EV curve as a function of a user’s cost/loss ratio.

3 For rank 1, a few samples (less than 0.5%) have zero precipita-
tion when all ensemble members forecast nonzero precipitation.
Such a situation is common in other models. However, this phe-
nomenon is not the main reason for the overly high frequency of
rank 1.
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forecast probabilities of an event correspond to the condition-
ally observed frequencies of the predicted event. The proxim-
ity of the observed frequency line to the diagonal line on
reliability diagrams provides a graphical assessment of reli-
ability (Hsu and Murphy, 1986). The reliability diagrams of
the RAW and AP PQPFs at different thresholds and lead
times are shown in Fig. 7. The RAW PQPF had no forecast
skill (Brier skill score , 0; as indicated by the reliability curve
not falling in the gray area) at almost every tested forecast prob-
ability threshold, whereas the AP PQPF had forecast skill at ev-
ery probability level. The RAW probability forecast values were
typically higher/lower than observed frequency for probability
values above/below the climatological frequency of the pre-
dicted events (indicated by the horizontal line in each panel of
Fig. 7). Precipitation events of 100 and 150 mm week21 were
rare in the winter half year, with the latter being at approximately
the 95th percentile of observed climatology in the mei-yu season
and the 90th percentile in the summer season (Table 1). Even for
such heavy and rare precipitation events as 150 mm week21, the
calibrated PQPF had better reliability compared with the RAW
forecasts (Figs. 7c,f).

One measure of the predictive skill used in this study
is relative operating characteristic (ROC; Mason and
Graham 1999; Jolliffe and Stephenson 2003). A forecast
system with good discrimination between observed events
and nonevents has an evaluation curve that is close to the
upper-left corner of an ROC plot. The ROC curves shown
in Fig. 8 indicate that the PQPF calibrated by AP had
higher skill in discrimination than the RAW PQPF. This
was because precipitation patterns were corrected in the
AP ensemble that in turn improved the predictive skill in
discrimination.

A system with higher predictive skill may benefit some
users more than others. This can be assessed by the poten-
tial economic benefit in decision-making processes of users
(Murphy, 1977; Katz and Murphy, 1997; Zhu et al. 2002).
Richardson (2000) defines relative economic value (EV) of
a forecast system as the reduction in expected expenses
over the use of climatological information relative to the reduc-
tion that would be obtained by using a perfect forecast. Poten-
tial EV is then defined as relative EV aggregated over the
entire range (0–1) of cost/loss ratios assuming that to maximize

FIG. 10. Spatial distribution of ME from the 1–7-day QPFs for (top) REM and (bottom) APPM for the (a),(d) summer, (b),(e) winter half
year, and (c),(f) mei-yu seasons, evaluated over the entire 22-yr sample.
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their relative EV, users base their decisions on the optimal
probability threshold corresponding to their specific cost/loss
ratio. With such a strategy, users exploit the full discrimination
ability of the system they use (Chang et al. 2015). An analysis
of relative EV (Fig. 9) reveals that for any threshold and at any
lead time, more users (i.e., a much wider spectrum of cost/loss
ratio) can obtain more benefits from the calibrated PQPF as
compared to the RAW PQPF, with a generally higher gain in
decision-making. Greater economic benefit is indicated by a
cost/loss ratio closer to 0 or 1. The relative EV of those users
turns from negative to positive if they change from using a
RAW to using an AP PQPF as the basis for their decision-
making.

c. 7-day quantitative precipitation forecasts

1) ADVANCEMENT OF APPM OVER REM

When evaluated statistically, APPM outperformed RAW
ensemble mean (REM). Figure 10 illustrates the spatial distri-
bution of forecast biases for week-1 QPFs from APPM and
REM in different seasons. Overall, while APPM exhibits ob-
vious overforecasting in regions experiencing heavy rainfall
across various seasons, its mean error (ME) is much closer to
zero compared to REM. In other words, APPM improves the
forecast bias compared to raw forecasts. The precipitation
areas in each season primarily reflect terrain effects, with
heavy precipitation occurring on the windward side of the
mountains. In summer and winter, Taiwan is influenced by
the southwest monsoon and the northeast monsoon, leading
to heavy precipitation in the mountainous regions of south-
western Taiwan and the northeastern corner, respectively. In
contrast, due to the insufficient resolution of global models

leading to the central mountain range being smoothed and in-
accurately positioned, the spatial distribution of mean error
from the REM QPF does not realistically reflect the terrain
effects.

Considering the uncertainty associated with sampling vari-
ability and the limitations in sample size, 95% confidence in-
tervals for the median of the correlation coefficient and mean
absolute error (MAE) for the entire evaluation period were
constructed through bootstrap resampling with replacement
(Chu 2002; Wilks 2011; Chang et al. 2017). The APPM QPF
had significantly better precipitation patterns than did the
REM QPF (Fig. 11a). For all seasons and lead times (except
the MAE for week-2 forecast in summer), the 95% intervals for
APPM and REM did not overlap, indicating that the AP algo-
rithm significantly improved forecast performance (higher cor-
relation and lower MAE; Fig. 11). This was further highlighted
by the 3- to 8-fold increase in the variance explained by the
APPM forecasts4 in the observed precipitation, as compared
with the REM forecasts (values in bold, Table 2).

2) IMPROVEMENT OF APPM OVER APEM FOR HEAVY

PRECIPITATION EVENTS

As cross-sectoral users are more concerned with heavy or
extreme precipitation events compared to light or moderate
precipitation events, bias ratios (Wilks 2011) at the 80th, 85th,

FIG. 11. (a) Correlation coefficient and (b) MAE calculated using forecast and observed precipitation. Data in
(a) and (b) are presented as median values with 95% confidence intervals based on 10 000 bootstrap samples for
the summer, winter half year, and mei-yu seasons, evaluated over the entire 22-yr sample. Confident intervals
represented by the blue line with a circle mark and the red line with a square mark correspond to results from
REM and APPM QPF, respectively. Solid and hollow marks denote confidence intervals for the 1–7-day and
8–14-day QPFs, respectively.

4 A boxplot analysis (not shown) revealed that the distributions
of correlations coefficients were asymmetrical; therefore, the me-
dian rather than the mean was used as the best estimate to calcu-
late the observation variance explained by the forecasts (Chang
et al. 2017).
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and 90th climatological percentiles (Fig. 12) are shown to fur-
ther explain why we opted for the PM instead of the ensemble
mean as a single-value forecast. In the summer and mei-yu
seasons, during which Taiwan frequently encounters substan-
tial precipitation, the APEM QPF exhibits underforecasting
beyond the 80th percentile. Moreover, the dry bias becomes
increasingly pronounced as climatological percentiles rise.
The bias ratios of APEM, approaching zero at the 85th and
90th percentiles, show that APEM rarely issues heavy or ex-
treme precipitation forecasts. In contrast, the APPM QPF ex-
hibits bias ratios closer to 1 (indicating unbiasedness) at each
threshold compared to the APEM QPF.

3) COMPARISON WITH THE PREVIOUS OPERATIONAL

CALIBRATION METHOD: FMM

The Central Weather Administration (CWA) in Taiwan
has been actively promoting climate services in recent years,
tailoring a variety of customized forecast products to meet
the needs of users across different sectors. In the fields of
agriculture and water resource management, there has been
a rapid increase in demand for MEPFs. Before the APPM
was implemented operationally in 2021, the CWA utilized
the FMM (Zhu and Luo 2015) to calibrate model bias in
MEPFs.

The FMM aims to eliminate the frequency bias in forecasts
by aligning the frequency distribution of each forecast with
that of the verifying analysis (Fig. 13). Both the forecast and
corresponding observed cumulative distribution functions
(CDFs) are updated using the decaying average method (Cui
et al. 2012) as follows:

CDFi (t) 5 (1 2 w) 3 CDFi (t 2 1) 1 w 3 CDFi(t), (4)

where CDFi (t) represents the decaying averaged CDF at
threshold i for the current date t, while CDFi (t2 1) is the

prior decaying averaged CDF at threshold i for the previous
date t 2 1. In this study, t 2 1 refers to the date 7 days ago.
The most recent CDF at threshold i for the current date t is
denoted as CDFi (t), and w is the decaying weight within the
range of 0 and 1. This weight controls how much influence or
contribution we give to CDFi (t) from both CDFi (t2 1) and
CDFi (t) Sensitivity tests are conducted to determine the op-
timal decaying weight. For instance, the optimal weight for
winter half-year forecasts has been found to be 0.05. This
implies that approximately 20 weeks of historical data
(1/0.05 5 20) from the target forecast date are used to calcu-
late a weighted average of CDF values over the land area of
Taiwan.

This northeast monsoon precipitation case was also used to
illustrate the limitation of the FMM in bias correction. The
precipitation pattern in the REM forecast was noticeably dif-
ferent from the actual precipitation pattern (Fig. 14b vs
Fig. 14e). This discrepancy can be attributed to the presence
of the Central Mountain Range, which covers a vast portion
of the land area of Taiwan (Fig. 14d). Consequently, the spa-
tiotemporal distribution (or pattern) of precipitation across
Taiwan area is primarily driven by interactions between com-
plex orography and surrounding large-scale circulations. As
orography in global models is quite smooth (Fig. 14a), raw fore-
casts often exhibit unrealistic precipitation patterns. Unfortu-
nately, the FMM can only correct pointwise amounts of
precipitation in raw forecasts, while ignores changes in its
spatiotemporal distributions (Fig. 14c). In other words, al-
though calibration methods such as the FMM adjust the pre-
cipitation amount at each grid point, they do not improve
overall spatial patterns of precipitation. This limitation se-
verely affects statistical postprocessing applications in Taiwan.
In contrast, the APPM method not only corrects the precipita-
tion pattern and magnitude but also provides fine-scale details
of precipitation (Fig. 14f).

5. Discussion

a. Sensitivity experiments on AP

1) IMPACT OF SIMILARITY CRITERION

Ensemble forecasts offer case-dependent forecast uncer-
tainty information to users, conveyed through the spread of
the ensemble (Toth et al. 2001). An ideal ensemble forecast
system should have a good spread–skill relationship, that is,
having the same magnitude of ensemble spread as their fore-
cast error at the same lead time to effectively represent fore-
cast uncertainty (Kalnay and Dalcher 1987; Zhu 2005).
Unfortunately, most ensemble forecasts are underdispersive;
the spread, however, typically rises with increased forecast
error.

In analog postprocessing, generally only the ensemble
mean forecast is used for pattern matching (Hamill and
Whitaker 2006; Hamill et al. 2015). To assess the impact of en-
semble spread on analogs, we introduced the ensemble spread
term into the similarity criterion to investigate whether better
analogs could be identified through the incorporation of this
forecast uncertainty constraint. Sensitivity results indicate

TABLE 2. Explained variance5 for different seasons and lead
times, along with the ratio of APPM to REM values (bold),
evaluated over the entire 22-yr sample.

Percentage of explained
variance

Summer
(285 cases)

Winter
(636 cases)

Mei-yu
(183 cases)

1–7 day REM 6.8% 13.7% 2.0%
APPM 17.6% 44.9% 16.8%
APPM/REM 2.6 3.3 8.4

8–14 day REM 2.9% 7.3% 2.9%
APPM 9.61% 41.0% 10.9%
APPM/REM 3.3 5.6 3.8

5 In statistics, explained variance measures the proportion to
which a model accounts for the variance of a given dataset. In
Table 2, “the percentage of explained variance” means “the per-
centage of observed precipitation variance explained by the
APPM or REM.” In a linear regression model (such as the one
used here to assess the linear relationship between observed and
forecast precipitation), the explained variance is quantified by R-
squared (R2), which is equal to the square of the correlation
coefficient.
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that integrating the ensemble spread term into the distance-
based similarity criterion led to an improvement in the accu-
racy of the accumulated precipitation frequency distribution
for the AP ensemble. Additionally, this incorporation margin-
ally increased the reliability, discrimination ability, and eco-
nomic value of the AP-based PQPFs.

2) IMPACT OF THE NUMBER OF ANALOGS

According to Hamill and Juras (2006), the number of ana-
logs should vary as a function of both forecast lead time and
how extreme the precipitation forecast is. The number of
analogs should be smaller for extreme cases and shorter
lead times, but larger for common cases and longer lead
times. Sensitivity experiments were conducted using differ-
ent numbers of analogs (10, 15, 20, and 25 for week 1 and
15, 20, 25, and 30 for week 2), and the results from evalua-
tion of rank histogram, reliability diagram, ROC, and poten-
tial EV showed that adopting 20 analogs was the optimal
choice for 1–7- and 8–14-day accumulated precipitation
forecasts.

3) IMPACT OF REFORECAST LENGTH

One limitation of AP methods is the necessity for suffi-
ciently large samples of reforecasts with matching verifying
observations to ensure high-quality analogs (Hamill and
Whitaker 2006). To assess the impact of reforecast length on
AP results, we divided the entire 22-yr sample into training
(before 2013) and validation periods (2013–20). In a sensitiv-
ity experiment, we varied the length of the training period
among three scenarios: 1) AP-T14y with a 14-yr training pe-
riod from 1999 to 2012, 2) AP-T7y with a 7-yr training period
from 2006 to 2012, and 3) AP-T3y with a 3-yr training period
from 2010 to 2012.

The results from the sensitivity experiment reveals that an
insufficient length of reforecasts (AP-T3y) is not suitable for
AP, as it adversely affects the reliability and discrimination
ability of calibrated probabilistic forecasts. Comparing
AP-T7y and AP-T14y indicates that doubling the training
sample size from 7 to 14 years may not significantly enhance
the results, as the benefits have already been achieved with a
7-yr sample size. A 7-yr reforecast sample is sufficient for
achieving good-quality bias correction, resulting in perfor-
mance close enough to optimal (Fig. 15).

FIG. 12. As in Fig. 11, but for bias ratios evaluated for (a) summer, (b) winter half year, and (c) mei-yu seasons, for three precipitation
thresholds along the x axis, from left to right: the 80th, 85th, and 90th climatological percentiles of observed 7-day accumulated precipita-
tion over Taiwan. Confidence intervals represented by the blue line with a circle mark and the red line with a square mark correspond to
results from APEM and APPMQPF, respectively.

FIG. 13. Illustration of the FMM using a northeast monsoon pre-
cipitation case. The red and blue curves are the CDFs at various
precipitation thresholds, denoted as CDFi (t) in Eq. (4), for a
1–7-day QPF and the corresponding observation starting at
0000 UTC 26 Jan 2000. These two curves depict the occurrence fre-
quency of events with 7-day accumulated precipitation greater
than each threshold on the x axis and were constructed using the
samples from all grids over Taiwan Island and its outer islands
(Fig. 2b). The forecast datasets used for forecast and observation
are the same as those used for the APPM in this study. Note that
the two curves overlap below the 0.5-mm threshold in this case.
The forecast CDF (red curve) will be adjusted to align with the ob-
served CDF (blue curve) through the FMM. Refer to the main text
for further details.
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b. Unique contribution of the research

While analog postprocessing (AP) and probability match-
ing (PM) have been documented in prior research, our unique
contribution lies in their application to address specific chal-
lenges related to MEPFs within the complex geographical
context of Taiwan. Our study addresses three key challenges:

1) PRODUCING OBSERVATIONAL ANALYSES

REFLECTING REAL PRECIPITATION SCENARIOS

To generate well-calibrated high-resolution MEPFs aligned
with user demands, a comprehensive set of high-resolution
precipitation analyses is crucial. We abandoned the existing ob-
servational analyses–Taiwan Station-based Analysis (TaiSA
v1.0), which utilized a consistent number of rain gauge observa-
tions for homogeneity in climatology analysis. Instead, we pro-
duced a new set of precipitation analysis based on all rain gauge
observations across Taiwan, ensuring a reflection of real precip-
itation scenarios under complex terrain (refer to appendix A
for detailed information).

2) DETERMINING CRITICAL PREDICTORS FOR MEPFS

Initially, three sets of large-scale circulation indices were
employed as predictors for pattern matching in the AP pro-
cess (see appendix B). Through sensitivity experiments, we
discovered that using 7-day accumulated precipitation as a

predictor yields comparable or even slightly better forecast
quality. This simplicity provides a more straightforward pre-
dictor with predictability for MEPFs.

3) INTEGRATING AP AND PM TO PRODUCE

REALISTIC QPFS

Unlike prior AP studies focusing solely on probabilistic
forecasts, our research combines AP and PM methods to de-
rive both PQPFs and QPFs. This integration is vital to meet
the urgent demand for realistic QPFs in water resources man-
agement, as it ensures accurate spatiotemporal distributions
of precipitation and a realistic range of precipitation amounts.

6. Conclusions

In Taiwan, MEPFs lack accuracy in predicting precipitation
locations and magnitude and provide insufficient detail. This
is mainly due to the fact that strong orographic effects are not
well captured by large-scale numerical models. In addition,
the underdispersion of ensemble members limits their ability
to adequately represent forecast uncertainty. In this study, we
integrate the AP and PM methods to mitigate these problems
and produce calibrated and downscaled QPFs and PQPFs.

We found that the calibrated forecast corrected the magni-
tude and large-scale distribution of precipitation and also pro-
vided valuable small-scale details influenced by orography.

FIG. 14. (a) Model orography from the EMC -GEFS for the SubX and 1–7-day QPF ending at 0000 UTC 3 Feb 2000 (northeast mon-
soon) for (b) REM, (c) REM-FMM, and (f) APPM. (d) Real orography and (e) corresponding observed precipitation analysis for the
same case.
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The calibrated single (deterministic) forecast (APPM) had a
lower MAE and explained approximately 3–8-fold more vari-
ance in the observational precipitation analysis in all seasons
and lead times than did the REM forecast. A detailed evalua-
tion showed that the RAW ensemble forecasts were underdis-
persive with an obvious wet bias, while the AP ensemble
spread well represented forecast uncertainty with bias re-
moved on a fine (1 km 3 1 km) output grid. The improved
AP ensemble spread contributed to better reliability in
the AP-based PQPF. Discrimination was also improved,
resulting in higher EV in the AP-based PQPF for a wider
range of users, compared with the RAW forecasts. In sum-
mary, precipitation forecasts downscaled and calibrated
by APPM substantially improved forecast quality and
value.

The methods, AP and APPM, have been applied to opera-
tional forecasting (Chang et al. 2022) and have also been used
to generate various customized precipitation products for ag-
riculture and stock farming (https://agr.cwa.gov.tw/NAGR/)
and water resources management sectors (https://qpeplus.
cwa.gov.tw/WRA/) in Taiwan. One of the customized forecast
products using the AP method is a probabilistic forecast of
consecutive clear days, which has been employed in the stock

farming industry for agricultural planning in the production of
dry hay (Chou et al. 2023). Importantly, APPM precipitation
forecasts have also been used as input for hydrological models
predicting reservoir inflow for water resource management
(Chang et al. 2023; Yang et al. 2023).
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FIG. 15. (top) Reliability diagram and (bottom) ROC for REM (blue curve) and APPM (red curves) at (a),(d) 50, (b),(e) 100, and
(c),(f) 150 mm week21 for 1–7-day lead time. Evaluation is conducted over an 8-yr sample period from 2013 to 2020. For the three APPM
curves, the orange solid curve represents AP-T3y and red dashed and solid curves represent the results from the experiment AP-T7y and
AP-T14y, respectively.
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APPENDIX A

Gridded Precipitation Analysis Based on Rain
Gauge Data

For climatology analysis, the CWA generated a series of
high-resolution station-based analyses using various kriging
methods for a set of meteorological variables. The specific
name assigned to these analyses is the Taiwan station-based
analysis, referred to as TaiSA v1.0. It encompasses observa-
tional analysis data spanning from 1998 to the preceding
year and is focused on six key meteorological variables:
temperature, precipitation, pressure, relative humidity, spe-
cific humidity, and dewpoint temperature. The data are
available in two resolutions, 2.5 and 1 km, respectively. To
ensure homogeneity in climatology analysis, the number of
meteorological stations (5319) used for observational anal-
ysis remains consistent every year.

However, the number of rain gauge stations has rapidly
increased from 351 to 608 between 1999 and 2000 (see
Fig. A1 and Table A1). To obtain well-calibrated high-
resolution precipitation forecasts, it is crucial to have a set
of precipitation ground truth reflecting real precipitation
scenarios. Consequently, we generated another precipita-
tion analysis based on all rain gauge observations over the
land area of Taiwan for the same period, utilizing the
same method as TaiSA v1.0. This dataset will be named
TaiSA v1.1, and the primary difference in precipitation
analysis between TaiSA v1.0 and v1.1 lies in the number
of rain gauge stations used for precipitation analysis.

The average spacing of the observation rain gauge in
2020 was approximately 3.8 km for plain areas (terrain
height , 500 m) and approximately 5.5 km for mountainous

areas (terrain height $ 500 m) over the land area of
Taiwan. For plain areas, the minimum spacing between
stations was 1 km, with only a few exceptions where the
distance between stations was slightly less than 1 km. In
addition, station density was significantly lower in moun-
tainous areas than in plain areas. The optimal resolution
for observational precipitation analysis needed to be
determined in order to capture the true precipitation
characteristics.

Figure A2 shows an example of the observational precipi-
tation analysis with different resolutions from a typhoon
case. If a resolution of 1 km (close to the minimum station
spacing; Fig. A2a) is adopted for observational precipitation
analysis, it does not introduce unrealistic precipitation char-
acteristics in the mountainous areas. Instead, it just presents
the precipitation characteristics on a spatial scale that can be
resolved by the density of rain gauges in the mountainous
areas. However, if we consider that the spacing of gauge
stations in the mountainous areas cannot support a 1-km res-
olution of precipitation analysis, and opt for a coarser resolu-
tion (e.g., a 20-km resolution; Fig. A2d), it would sacrifice
the ability to capture detailed precipitation characteristics in
areas with high-density stations. Considering these factors,
we generated a 1-km resolution of observational precipita-
tion analysis as the ground truth required for the AP in this
study.

We also used estimation error (estimated value 2 observed
value) to quantify how confident we can be in the analysis re-
sults. Because observed values are only available at stations,
the estimation error must be calculated at the station loca-
tions. Therefore, we conducted a shadowing experiment to
calculate the estimation error at all stations. We removed

FIG. A1. Spatial distribution of rain gauges over the land area of Taiwan in different years.

TABLE A1. Typical spacing of the observation rain gauges in plain and mountainous areas of Taiwan in different years.

1999 2006 2013 2020 Avg

Plain area (terrain height , 500 m) No. of gauges 256 276 357 436 331
Avg spacing of gauges 5.0 4.8 4.2 3.8 4.4

Mountainous area (terrain height $ 500 m) No. of gauges 95 136 141 172 136
Avg spacing of gauges 7.4 6.2 6.1 5.5 6.3
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(shadowed) the observed precipitation value (Ro) at station A
and used the remaining stations to estimate the precipitation
value at station A (Re). We could then calculate the estimation
error (Err) for station A (Err 5 Re 2 Ro). The average esti-
mation error is shown in Table A2, and the spatial distribution
of the average estimation error in different years is shown in
Fig. A3.

TABLE A2. Spatial (all grid points across the land area of
Taiwan) and temporal (52 weeks) average estimation error for
different years, including MAE and ME.

1999 2006 2013 2020 avg

MAE (mm week21) 12.1 12.5 10.5 9.6 11.2
ME (mm week21) 20.7 20.7 20.3 20.2 20.5

FIG. A2. (a) 1-, (b) 5-, (c) 10-, and (d) 20-km resolutions of observational analyses for daily precipitation ending at 0000 local standard
time (LST) 8 Aug 2021 (Typhoon Lupit).

FIG. A3. Spatial distribution of MAE and ME in different years.
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APPENDIX B

Large-Scale Circulation Indices for Pattern Matching

The large-scale indices used as an alternative for pattern
matching for the winter half year, mei-yu, and summer are
shown in Fig. B1 and described below.

a. Large-scale circulation indices for the winter half year
(October–April)

The two selected indices used for pattern matching were
TWRI1000 and TWRI850 (Figs. B1a,d). TWRI1000 5

V1000hPa,A 2 V1000hPa,B, where V1000hPa,A and V1000hPa,B are
the average meridional wind at 1000 hPa over areas A (1258–
132.58E, 12.58–17.58N) and B (117.58–1258E, 258–308N).
TWRI1000 reflects the low-level meridional convergence over
Taiwan. Positive TWRI1000 values indicate that Taiwan is in
a positive vorticity environment and is usually influenced by
frontal systems. TWRI850 5 V850hPa,A 1 V850hPa,B, where
V850hPa,A and V850hPa,B are the average meridional wind at
850 hPa over areas A (1208–1308E, 12.58–27.58N) and B
(1308–1408E, 158–308N). TWRI850 reflects the intensity of the
low-level southerly wind component near Taiwan. Positive
TWRI850 values indicate large-scale southerly winds that fa-
cilitate moisture transfer to Taiwan.

b. Large-scale circulation indices for the mei-yu season
(May–June)

The two selected indices used for pattern matching were
Hshear and Vshear (Figs. B1b,e). These indices were also
used as precipitation monitoring indices in the mei-yu sea-
son at the CWB. Hshear 5 U850hPa,A 2 U850hPa,B, where
U850hPa,A and U850hPa,B are the average zonal winds at 850 hPa
over areas A (1158–1258E, 17.58–22.58N) and B (1108–1208E,
258–308N). Hshear reflects the horizontal wind shear or
low-level circulation over Taiwan. Positive Hshear values
indicate that Taiwan is in a positive vorticity environment.
Vshear 5 U850hPa,A 2 U200hPa,A, where U850hPa,A and
U200hPa,A are the average zonal winds at 850 and 200 hPa
over area A (1108–1308E, 12.58–208N). Vshear reflects the
vertical wind shear. The transition of Vshear from negative
to positive represents a change in large-scale circulation
from winter to summer monsoon over Taiwan.

c. Large-scale circulation indices for the summer season
(July–September)

The two selected indices used for pattern matching were
Hshear and South China Sea summer monsoon (SCSSM;
Figs. B1b,c). SCSSM5 V1000hPa,A, which is the average meridio-
nal wind at 1000 hPa over area A (107.58–1208E, 7.58–208N).
SCSSMwas used to monitor the change of meridional wind over
the South China Sea. Positive SCSSM values indicate large-scale
southerly winds that facilitatemoister transfer to Taiwan.

FIG. B1. (a)–(e) Large-scale circulation indices used for pattern matching in the winter half year in (a) and (d), mei-yu season in
(b) and (e), and summer in (b) and (c). The definition of each index is shown in each plot, and red boxes in each plot display areas of the
meteorological fields used for each index.
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