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ABSTRACT: Flash droughts are rapidly developing subseasonal climate extreme events that are manifested as suddenly
decreased soil moisture, driven by increased evaporative demand and/or sustained precipitation deficits. Over each climate
region in the contiguous United States (CONUS), we evaluated the forecast skill of weekly root-zone soil moisture
(RZSM), evaporative demand (ET,), and relevant flash drought (FD) indices derived from two dynamic models [Goddard
Earth Observing System model V2p1 (GEOS-V2p1) and Global Ensemble Forecast System version 12 (GEFSv12)] in the
Subseasonal Experiment (SubX) project between years 2000 and 2019 against three reference datasets: Modern-Era Retro-
spective Analysis for Research and Applications version 2 (MERRA-2), North American Land Data Assimilation System,
phase 2 (NLDAS-2), and GEFSv12 reanalysis. The ET, and its forcing variables at lead week 1 have moderate-to-high
anomaly correlation coefficient (ACC) skill (~0.70-0.95) except downwelling shortwave radiation, and by weeks 34, pre-
dictability was low for all forcing variables (ACC < 0.5). RZSM (0-100 cm) for model GEFSv12 showed high skill at lead
week 1 (~0.7-0.85 ACC) in the High Plains, West, Midwest, and South CONUS regions when evaluated against GEFSv12
reanalysis but lower skill against MERRA-2 and NLDAS-2 and ACC skill are still close to 0.5 for lead weeks 34, better
than ET, forecasts. GEFSv12 analysis has not been evaluated against in situ observations and has substantial RZSM anom-
aly differences when compared to NLDAS-2, and our analysis identified GEFSv12 reforecast prediction limit, which can
maximally achieve ACC ~0.6 for RZSM forecasts between lead weeks 3 and 4. Analysis of major FD events reveals that
GEFSv12 reforecast inconsistently captured the correct location of atmospheric and RZSM anomalies contributing to FD
onset, suggesting the needs for improving the dynamic models’ assimilation and initialization procedures to improve sub-
seasonal FD predictability.

SIGNIFICANCE STATEMENT: Flash droughts are rapidly developing climate extremes which reduce soil moisture
through enhanced evaporative demand and precipitation deficits, and these events can have large impacts on the eco-
system and crop health. We evaluated the subseasonal forecast skill of soil moisture and evaporative demand against
three reanalysis datasets and found that evaporative demand skill was similar between forecasts and reanalyses while
soil moisture skill is dependent on the reference dataset. Skill of evaporative demand decreases rapidly after week 1,
while soil moisture skill declines more slowly after week 1. Case studies for the 2012, 2017, and 2019 United States flash
droughts identified that forecasts could capture rapid decreases in soil moisture in some regions but not consistently,
implying that long-lead forecasts still need improvements before being used in early warning systems. Improvements in
flash drought predictability at longer lead times will require less biased initial conditions, better model parameteriza-
tions, and improved representations of large-scale teleconnections.

KEYWORDS: Drought; Evapotranspiration; Soil moisture; Forecast verification/skill; Model comparison;
Model evaluation/performance

1. Introduction therefore, it is important to accurately predict their occurrence
to mitigate these harmful effects (NCEI 2020; McEvoy et al.
2020; Jin et al. 2019; Christian et al. 2020; Pendergrass et al. 2020;
Banerjee et al. 2013; Gerken et al. 2018; Abadi et al. 2022).
FD can be driven, from local or remote sources, by conditions
which create or sustain high temperatures and high vapor
pressure deficit and/or low initial soil moisture, which, in con-
junction with below-normal precipitation, can promote land—
atmosphere feedbacks causing rapid changes in evaporative
demand (ET,) and root-zone soil moisture (RZSM) leading
to evaporative and water stress, respectively (Gerken et al.
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Flash droughts (FDs) are rapidly developing subseasonal
climate phenomena that reduce water availability and can pose
long-lasting impacts on agriculture, ecosystems, and other natural
and human systems globally. Widespread FD can cost billions
of dollars in economic or ecological losses through crop and
livestock losses, wildfire propagation, depletion of reservoirs,
reduced streamflow, or increases in heat-related morbidity;

growth and productivity are inhibited or damaged, which
undermines ecosystems and agriculture, increases wildfire
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losses incurred (Banerjee et al. 2013; NCEI 2020; Kunkel et al.
2018; McEvoy et al. 2020).

Traditionally, droughts are considered long-lasting and
slowly developing events creating water deficits over land
(Mishra and Singh 2010; Van Loon et al. 2016; Hao et al.
2018; Wilhite et al. 1985), whereas FDs are a newly recog-
nized drought subclass, which intensify more rapidly com-
pared to traditional droughts. FD development occurs at the
Subseasonal to Seasonal Prediction project (S2S) time scale
(~2-8 weeks), particularly during the warm season (March—
November) in which crop growth is prevalent and tempera-
tures are higher (Pendergrass et al. 2020). Numerous indices
have been utilized to classify FD onset, and no single index
generalizes all events across the United States (Osman et al.
2021, 2022). Commonly used FD indices include the soil mois-
ture percentile drop (SMPD) in which FD onset is defined
when a rapid decrease in RZSM occurs within 3 weeks or less
(Osman et al. 2021; Ford and Labosier 2017) and heatwave/
precipitation deficit FD classification by examining RZSM
with concurrent changes in temperature, evapotranspiration
(ET), and precipitation (Mo and Lettenmaier 2015, 2016),
and other researchers have identified rapid changes with re-
spect to standardized ratios between ET and ET, with the
evaporative stress index (ESI) or standardized evaporative
stress ratio (SESR) (Christian et al. 2019; Otkin et al. 2014;
Edris et al. 2023; Otkin et al. 2018). The evaporative demand
drought index (EDDI), an early warning FD tool, details anom-
alous ET, over a user-defined time window (Hobbins et al.
2016; McEvoy et al. 2016), and finally, satellites have revealed
the total water content in vegetation or changes in 5-cm soil
moisture, which can provide a near-real-time FD monitoring
(Christian et al. 2022; Sehgal et al. 2021). While uncertainty ex-
ists regarding an optimal index that can be used for all regions
and seasons, these indices exhibit strong signals for identifying
high-impacting contiguous United States (CONUS) FDs as each
index captures rapid changes occurring over land, which impact
water availability and ecosystem stress (Osman et al. 2022).

FD onset can be induced by persistent atmospheric patterns
associated with quasi-stationary Rossby waves producing al-
ternating high and low pressure systems or by more isolated
high pressure systems which reduce cloud cover and increase
radiative heating of the surface; increase descending dry air,
which compresses and warms air temperatures; and increase
vapor pressure deficits, and these combined factors can increase
ET, and decrease RZSM through land-atmosphere coupling
(Ford and Labosier 2017; Schubert et al. 2021; Deangelis et al.
2020; PaiMazumder and Done 2016; Hoerling et al. 2014;
Jong et al. 2022). ET,, also known as potential evapotranspi-
ration, describes the atmospheric capacity to evaporate water
from Earth’s surface, and under conditions of high ET,,
RZSM can be rapidly decreased through enhanced ET, which
increases water stress. Hobbins (2016) identified that high
ET, can be used as a proxy for low ET because of their com-
plementary relationship under water-limited conditions, and
J. Zhang et al. (2021) identified that high ET, can induce plant
stress despite concurrent high RZSM due to the coregulation
of stomata by both RZSM and ET,,. The central United States
has been identified as an area where there is a strong coupling
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between RZSM and precipitation, and ET, can mediate these
feedbacks by promoting aridity when RZSM becomes low
(Koster et al. 2004a; Seneviratne et al. 2010). The relationship
between RZSM, ET, ET,, and precipitation feedbacks is com-
plex and varies by topography, season, anomaly strength, and
initial conditions, as well as being influenced by large-scale cir-
culation patterns (Seneviratne et al. 2010; Guo and Dirmeyer
2013). For example, local negative precipitation anomalies and
higher ET, can occur if either water evaporated from the land
surface is advected out of the system and enhanced by large-
scale circulations which sustain the vapor pressure deficit or if
RZSM matric potential becomes too negative and plants can-
not exert a strong enough force to capture soil water which in-
hibits ET and increases the vapor pressure deficit (Wang et al.
2007; Brubaker et al. 1993; Gavande and Taylor 1967; Senevir-
atne et al. 2010). Under energy-limited conditions, an increase
in ET, causes ET to increase and RZSM to decrease, and
once water becomes unavailable, the shift to water-limited
conditions causes ET to decrease and ET, to increase through
enhanced surface heat fluxes. Under dry RZSM conditions, ra-
diative energy is largely partitioned into sensible heat which
heats air parcels and increases atmospheric water holding ca-
pacity, thereby increasing the vapor pressure deficit and ET,
(Zhou et al. 2019; Berg et al. 2016), but under wet RZSM con-
ditions, evaporated water can decrease ET,, due to atmospheric
moisture convergence, which forms clouds and increases precip-
itation likelihood (Findell et al. 2011). Studies have identified
that antecedent RZSM conditions are lower and ET,, conditions
are higher prior to FD onset; therefore, ET, and RZSM are
suitable indicators for FD prediction due to land-atmosphere
coupling feedbacks, which promote rapid drying of soils (Christian
et al. 2019; Osman et al. 2022).

Subseasonal flash drought prediction is challenging due to
the weather—climate prediction gap (Mariotti et al. 2018).
Weather forecasting is generally driven by initial atmospheric
conditions (Vitart et al. 2017), whereas climate (seasonal)
forecasting is strongly influenced by boundary conditions,
such as sea surface temperatures or soil moisture (Koster et al.
2004b). At the subseasonal scale, the effects of forecast initial
conditions are diminished and not long enough to be strongly
influenced by oceanic boundary conditions. It has been identi-
fied that subseasonal forecast skill can be increased when
models are initialized with dry or wet soil moisture anomalies
and research agrees on the importance of land surface initiali-
zation and its effects on energy and water fluxes (Koster et al.
2004b; Deangelis et al. 2020; Koster et al. 2010; Dirmeyer et al.
2018; Liang and Yuan 2021; Koster et al. 2020). Additional
challenges impacting subseasonal prediction skills include the
biases in initial conditions combined with unresolved parame-
terizations of lower resolution models (Mariotti et al. 2018).
To address these challenges, two multimodel subseasonal fore-
cast projects have been initiated, including the S2S project and
the Subseasonal Experiment (SubX) project, which generated
retrospective forecasts (reforecasts) and real-time forecasts en-
capsulating ensemble forecasts from different coupled numeri-
cal models (Pegion et al. 2019; Vitart et al. 2017). These
reforecasts have been used to better understand S2S predict-
ability related to the Madden-Julian oscillation (MJO)
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(Kim et al. 2019; Du et al. 2023), atmospheric rivers (Cao et al.
2021), precipitation (Li et al. 2021; Park and Kam 2023), temper-
ature (Vitart and Robertson 2018), and cyclone activity (Zheng
et al. 2021) with a general emphasis on understanding model
representation of complex teleconnections, which drive physical
processes and extreme phenomena. SubX evaluation of the
2012 central U.S. FD identified that most models at weeks 34
had low skill in predicting temperature and precipitation anoma-
lies due to 1) bias in initialized soil moisture anomaly and 2)
poor representation of the quasi-stationary cross-Pacific Rossby
wave train that lingered over central United States (Deangelis
et al. 2020). Lorenz et al. (2021) evaluated week 3-4 changes in
both RZSM and the ESI using the European Centre for Me-
dium-Range Weather Forecasts (ECMWF) model and identi-
fied low skill due in part to autocorrelation. Autocorrelation
typically increases predictability because of dependence from
previous days, but for rapid changes in RZSM or ESI, which are
FD indicators, this autocorrelation diminishes prediction of ex-
tremes due to the models’ relaxation toward climatology at lon-
ger leads. More specifically, the relaxation toward climatology
implies that the model will more often predict the climatological
mean state rather than abrupt deviations associated with FD.
Lorenz et al. (2021) utilized ECMWF atmospheric conditions
to forecast RZSM changes from soilMERGE reanalysis and
identified moderate-to-high correlation (0.47-0.80) during
June and August months between 2010 and 2018, but they did
not examine soil moisture forecast skill directly derived from
coupled subseasonal forecast models, which can help us im-
prove understanding of model deficiencies.

When compared to observations, both reanalysis and fore-
casts can be biased due to model-specific parameterizations or
initialization errors. For example, seasonal ET forecasts can
be biased due to precipitation and net radiation biases within
atmospheric general circulation models (AGCMs), which im-
pact soil moisture memory and land-atmosphere feedback
representations within a single land surface model (LSM)
(Mahanama and Koster 2005), and research comparing sev-
eral LSMs against in situ observations identified RZSM biases
that vary by spatial and temporal time scales (Dirmeyer et al.
2016). When multiple LSMs were driven with the same meteo-
rological forcings, large variability was observed between out-
puts indicating uncertainty of land—atmosphere interactions
between models (Dirmeyer et al. 2006; Ashfaqur Rahman et al.
2018). LSM epistemic uncertainty has been noted to be related
to model-specific parameterizations for factors such as dy-
namic demographic vegetation, land-use/land-cover change,
urbanization, irrigation, and surface energy fluxes whose pro-
cesses occur at subgrid scale and impact hydrological processes
(Fisher and Koven 2020). Uncertainty has also been identified
between reanalysis products, which use different AGCMs, spe-
cifically for precipitation and temperature extremes (Angélil
et al. 2016). Therefore, an objective evaluation of model fore-
casts should include a comparison between multiple validation
datasets to understand uncertainties associated with imperfect
reanalyses.

Although research has explored model skill in predicting
week 3—-4 temperature, precipitation, evaporative stress, and
RZSM anomalies associated with FD (Deangelis et al. 2020;
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Lorenz et al. 2021; Abatzoglou et al. 2023), the forecast skill
of RZSM, ET,, and FD onset within GMAO-V2pl and
Global Ensemble Forecast System version 12 (GEFSv12) sub-
seasonal coupled dynamic models and across CONUS regions
has not been comprehensively evaluated over a long period.
DeAngelis et al. (2020) identified the importance of accurate
land initialization when predicting the weeks 3-4 tempera-
ture, precipitation, and RZSM anomalies for 2012 drought
but did not assess model performance in capturing rapid de-
creases in RZSM which indicate FD onset and their analysis
was only for the 2012 central U.S. FD. Accurate prediction of
rapid decreases in RZSM over a long time period can aid op-
erational agencies in providing regional early warning alerts
and mitigate potential impacts associated with FD. Due to the
relationship between ET, and RZSM during FD intensifica-
tion (Hobbins et al. 2016), an investigation into the model
representation of anomalous ET, and its primary drivers can
also provide additional early warning of FD onset and identify
limitations of current forecasts. To improve our understand-
ing of flash drought predictability from state-of-the-art nu-
merical models at the subseasonal time scale, the objectives of
this study are to 1) evaluate the forecast skill of RZSM and
ET, between weeks 1 and 4, 2) assess the utility of an RZSM-
based index in predicting high-impacting FD events, and 3)
identify differences in skill between verification datasets.

2. Data and methods
a. CONUS regions

To explore FD predictability under different regions in
CONUS, we utilized the National Climate Assessment—
Land Data Assimilation System (NCA-LDAS) USDM re-
gions mask (Fig. 1). CONUS is separated into six regions,
which include the West, Midwest, High Plains, South, Southeast,
and Northeast regions with Wyoming and Colorado belonging to
both the west and High Plains regions, respectively. The NCA-
LDAS USDM mask was regridded from 0.125° to 1° resolution
to match the SubX model resolution, and our analysis uses the
regridded mask to average results within each region.

b. Observational reference data

For the observational reference, we used three different
datasets, including National Aeronautics and Space Adminis-
tration Modern-Era Retrospective Analysis for Research and
Applications, version 2 (NASA MERRA-2; Gelaro et al.
2017), National Oceanic and Atmospheric Administration
GEFSv12 reanalysis (NOAA GEFSv12; Hamill et al. 2022),
hereafter referred to as GEFSv12-obs, and North American
Land Data Assimilation System, phase 2 (NLDAS-2; Xia et al.
2012).

MERRA-2 is a global atmospheric reanalysis that assimi-
lates satellite and conventional observations to represent the cur-
rent state of the atmosphere and land and covers the period from
1980 to the present with a latency of ~3 weeks after the end of
each month at an approximate resolution of 0.5° X 0.625° for
72 hybrid-eta model levels (or 42 pressure levels) from the sur-
face to 0.01 hPa. MERRA-2 is produced with the Goddard Earth
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FIG. 1. Six USDM regions on NCA-LDAS grid. The West region (region 1) contains both
Colorado and Wyoming (orange colored); the High Plains region (region 3) also contains
Colorado and Wyoming; Midwest (region 4); South (region 5); Southeast (region 6); Northeast

(region 7).

Observing System version 5.12.4 (GEOSv5.12.4) atmospheric
data assimilation system, and the key components of the system
are the GEOS AGCM and the Gridpoint Statistical Interpola-
tion analysis scheme (Gelaro et al. 2017). Land surface variables
are generated by forcing the Catchment LSM with bias-corrected
precipitation, surface downward shortwave radiation, surface
downward longwave radiation, humidity, temperature, wind, and
surface pressure at the lowest model level taken from the GEOS
AGCM (Reichle et al. 2017). We obtained daily mean fields
for 2-m mean, maximum, and minimum temperature (7ipeans
Tmaxs and Tpypn), 2-m dewpoint temperature, 10-m zonal wind
speed, 10-m meridional wind speed, surface downwelling short-
wave radiation, geopotential height at 200 hPa (z200), bias-
corrected total precipitation, and RZSM (0-100 cm). All variables
were bilinearly interpolated to a 1° X 1° grid over CONUS be-
tween 1 January 2000 and 31 December 2019. For all variables
and grid cells, a 7-day rolling mean was applied to reduce day-
to-day fluctuations, and anomalies were constructed by remov-
ing the climatology from the 7-day average. The climatology
was created for each grid cell and each forecast date by taking
the average of all values within a =42-day window of the fore-
cast date for each grid cell. Therefore, the daily climatology is
the average of 85 days centered on the forecast date.
GEFSv12-obs is an atmosphere-only reanalysis with 590
variables produced four times daily at 0000, 0600, 1200, and
1800 UTC at a resolution of 0.25° X 0.25° between the years
2000 and 2019. The primary purpose for the creation of
GEFSv12-obs was for GEFSv12 retrospective forecast (refor-
ecast) initialization so that its initial conditions will be consis-
tent with the operational data assimilation system Global
Forecast System, version 16 (GFSv16), which produces real-
time forecasts. The data assimilation procedure used is a hy-
brid 4D ensemble variation and includes the GFSv15.1
AGCM for model physics (Kleist and Ide 2015). Land surface
variables are generated by forcing the GFS Noah LSM with
precipitation, radiation, and temperature. Note that unlike
MERRA-2, GEFSv12-obs does not bias correct its precipita-
tion using observations before using it to drive Noah LSM,
which may adversely affect the quality of GEFSv12-obs esti-
mate of land surface state (e.g., soil moisture). We obtained

the same variables as MERRA-2, and data were bilinearly in-
terpolated to a 1° X 1° grid and restricted the domain to
CONUS. Because each variable is generated at 0000, 0600,
1200, and 1800 UTC, we added all four time steps and took
the mean for each variable (with the exception of Tiax, Tmin,
and precipitation). For Tpax and T, We obtained the max-
imum and minimum values of the four time steps, respec-
tively. For precipitation, we obtained the accumulated sum
for the four time steps. We generated a weighted average of
0-100-cm RZSM and created anomalies for all variables
with the same methodology as MERRA-2 between 2000
and 2019.

NLDAS-2 is an offline data assimilation system using un-
coupled land surface models which are driven by observation-
based atmospheric forcings (Xia et al. 2012). Four different
LSMs (Noah, Mosaic, Variable Infiltration Capacity, and Sac-
ramento Soil Moisture Accounting) are forced with assimi-
lated observations and model data from the North American
Regional Reanalysis with each LSM having different model
parameterizations to simulate hydrologic fluxes (Xia et al.
2012; Wood et al. 1997; Pinker et al. 2003). For our analysis,
we utilized Noah, Mosaic, and Variable Infiltration Capacity
models, which produce hourly forecasts over a portion of the
North American continent, including CONUS and northern
Mexico, which are generated at 1/8° resolution between 1979
and the present (Mitchell et al. 2004). Using an ensemble ap-
proach has been shown to produce better approximations
than any individual model (Xia et al. 2014). Each LSM is
forced by assimilated soil moisture initial state, wind, temper-
ature, humidity, pressure, bias-corrected shortwave radiation
(Pinker et al. 2003), longwave radiation, and bias-corrected
total precipitation (same as MERRA-2). Additional forcings
include a fraction of total precipitation that is convective and
convective available potential energy, which is retrieved from
the North American Regional Reanalysis. We obtained the
same variables as MERRA-2 from NLDAS-2 forcing file A
with the exception of z200, which was obtained from North
American Regional Reanalysis. For RZSM, we obtained the
0-100 cm from Noah, Mosaic, and Variable Infiltration Capac-
ity LSMs and took the mean of the three models. We created
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TABLE 1. List of SubX models assessed, information about hindcast ensemble size, and initialization frequency. Additional details
about the SubX models and references for individual models are provided in Pegion et al. (2019). All models are analyzed at a
spatial resolution of 1° X 1°. Model component A = atmosphere, O = ocean, I = sea ice, and L = land.

Model Model components Ensemble members Forecast length Initialization frequency
NOAA GEFSv12 A, L 35 days Every Wednesday
NASA GEOS-V2pl A, O, ILL 45 days Every 5 days

anomalies for all variables with the same methodology as
MERRA-2 between 2000 and 2019.

c. SubX retrospective forecasts (reforecasts)

The SubX project is a multimodel subseasonal prediction
experiment designed around operational requirements, and
its unique feature is the inclusion of both research and opera-
tional models, which facilitates feedbacks between agencies to
promote model development (Pegion et al. 2019). Eight global
numerical models have produced more than 23 years of refore-
casts and real-time forecasts (1999-2023) and are archived at the
the International Research Institute for Climate and Society
(IRI) Data Library (IRIDL) (https://iridl.ldeo.columbia.edu/
SOURCES/.Models/.SubX/), or for NOAA GEFSv12 refore-
cast (GEFSv12-fcst), data are split between IRIDL and Amazon
Web Services (https://noaa-gefs-retrospective.s3.amazonaws.
com/index.html) (Guan et al. 2022). For our analysis, we use
SubX models GEFSv12-fcst and Global Modeling and Assimi-
lation Office Goddard Earth Observing System model V2pl
(GEOS-V2pl) (Table 1) because they are the only two fore-
cast models that provide data needed for this study. Data re-
trieved include Tinean, Tmaxs Imin, accumulated precipitation,
downwelling shortwave radiation, zonal and meridional wind
speed, z200, 2-m dewpoint or specific humidity, and RZSM.
Dewpoint and specific humidity were converted to actual
vapor pressure. For each variable, anomalies were calculated
using the same method as MERRA-2 for each ensemble
member and lead time from weeks 1 to 4 and the average of
all days within weeks 3 and 4.

Soil moisture data are available within four SubX models,
including GEOS-V2p1, ESRL-Finite-Volume Cubed-Sphere
Model rlpl (FIMrlpl), Rosenstiel School of Marine and
Atmospheric Science (RSMAS)-CCSM4, and GEFSv12-fcst.
Vertically integrated soil moisture is provided within GEOS-
V2pl, ESRL-FIMrlpl, and RSMAS-CCSM4 with depths
ranging between 1.5 and 3.0 m across all grid cells, whereas
volumetric soil moisture content is provided within GEFSv12-
fest for individual layers 0-10, 10-40, 40-100, and 100-200 cm.
Although no specific rooting zone depth has been deemed op-
timal for FD identification within soil moisture indices, the up-
per 95th percentile rooting depth for 11 temperate agricultural
crops was observed to be ~1.02 m (Fan et al. 2016), indicating
that for FD analysis, SubX models providing vertically inte-
grated soil moisture depths between 1.5 and 3.0 m may be too
deep and unable to capture rapid changes in the layers in which
crop roots predominately exist; therefore, only GEFSv12-fcst is
considered for the soil-moisture-based FD analysis. Although
FD is not specific to agriculture, during the growing season, this
sector is highly impacted by moisture stress, and knowledge

of rooting depths throughout the growing season can better
inform the selection of RZSM datasets (Ford and Labosier
2017). In our analysis, we utilized GEFSv12-fcst volumetric
soil moisture content and calculated a weighted average of
the top three layers to obtain 0-100-cm RZSM.

GEOS-V2pl was analyzed in its native spatial resolution of
1° X 1° across CONUS. GEFSv12-fcst produced data at 0.25°
resolution (first 10 days) and 0.5° (11-35 days) and was bili-
nearly interpolated to 1° X 1°. Anomalies were calculated us-
ing the same method as MERRA-2 for each ensemble
member and lead time from weeks 1 to 4 and the average of
all days within weeks 3 and 4. While GEOS-V2p1 reforecasts
are producing data up to the present day, GEFSv12-obs only
spans 2000-19; therefore, all analyses were performed be-
tween 2000 and 2019.

d. Soil moisture FD index

To identify FD onset, the SMPD index was utilized describ-
ing rapid changes in RZSM from “above the 40th percentile
to below the 20th percentile in 3 weeks or less.” We also im-
plemented a variant of this definition when RZSM drops
from “above the 30th percentile to below the 10th percentile
in 3 weeks or less” to examine FD onset that leads to more in-
tense land surface impacts (Ford and Labosier 2017; Osman
et al. 2021). FD duration has been suggested to persist for a
minimum duration of 3 weeks in which drought impacts are
more pronounced (Otkin et al. 2022), but this suggestion can-
not be directly implemented into GEFSv12-fcst using the
SMPD index. GEFSv12-fcst has a 5-week forecast, and classi-
fication of FD onset using the SMPD within 3 weeks only al-
lows for maximum drought persistence of 2 weeks if FD
intensification occurred over a 3-week time interval. It is pos-
sible for FD onset to occur within 2 weeks and the duration to
last 3 weeks, but for our analysis, we are only interested in en-
suring that the FD persists for at least 2 weeks. When longer
lead forecasts become available, the FD duration methodology
can be altered to the suggested minimum duration of 3 weeks.

For observational data, RZSM anomalies were converted
into percentiles, and the three-dimensional (time, latitude, and
longitude) time series was reformatted to a five-dimensional
(initialized date, model, lead, latitude, and longitude) time se-
ries that matches the same lead time format as GEFSv12-fcst.
The initialized date dimension for observations is merely a
placeholder ensuring a common format because observations
do not have an initialization date. For each reforecast initial-
ized date and lead time, we selected the observation date
which corresponds to the lead time difference from the initial-
ized date. This produces a new dataset in which the observa-
tion dates are matched with the forecast lead dates at the
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appropriate time step. Because we only have a single observa-
tion for each date and lead time, each model dimension has the
same observational data. This preprocessing step is necessary
because once FD onset occurs within the three-dimensional
time series, the duration of the event persists until RZSM is above
the lowest threshold. This duration continuation of FD leads to
an inconsistent spatiotemporal comparison for identifying when
RZSM depletes rapidly over the same time interval (results not
shown). Our reformatting of observational data into the same
lead time format as GEFSv12-fcst ensures that the classification
of FD onset is equitably compared. FD was classified when the
RZSM percentile decreased from above the highest threshold
(40th or 30th percentile) to below the lowest threshold (20th or
10th percentile) within 3 weeks or less. For GEFSv12-fest, we cal-
culated the anomaly for each ensemble member, converted it to
percentiles, and classified FD onset to identify probabilistic skill.
We also computed the ensemble mean of anomaly which was
converted into percentiles and FD classified. For both reforecast
and reanalyses, once FD onset is classified, the drought persists
into future days if RZSM is below the lowest threshold.

e. Evaporative demand (reference evapotranspiration)

To investigate atmospheric conditions that increase plant
stress through excessive moisture loss or reduce plant effi-
ciency through stomatal closures, we computed ET,, using the
Food and Agriculture Organization (FAO) of the United
States Irrigation and Drainage Paper 56 (FAO-56) Penman-—
Monteith equation (Allen et al. 1998). For our applications,
the Penman-Monteith ET, method determines ET, from a
short-grass, well-watered reference surface and provides a
standard for comparison of ET, in different periods of the
year or in other regions that is independent of crop type, crop
development, and management practices. The ET, reference
crop surface assumes a crop height of 0.12 m, the fixed surface
resistance of 70 s m~ ', and an albedo coefficient of 0.23. The
FAO-56 Penman-Monteith ET, equation is

900
- 0.408A(R, — G) + Vm”z(es —e,)

ET, A+ y(1 + 0.34u,) ’

where ET, is the reference evapotranspiration (mm day™!),
R, is the net radiation, G is the soil heat flux, e, is the satu-
rated vapor pressure, e, is the actual vapor pressure, (e; — e,)
is the vapor pressure deficit of the air, u, is the 2-m mean
wind speed, T is the 2-m mean temperature, A is the slope of
the saturation vapor pressure curve, and vy is the psychromet-
ric constant. The 10-m uas and vas are combined to produce
wind speed and interpolated to 2 m using the logarithmic con-
version factor (Allen et al. 1998). Due to the diurnal cycle of
heat transfer, G was assumed to be zero. For detailed descrip-
tions of each input and parameter estimation, the readers re-
fer to Allen et al. (1998).

f- Mean absolute error

To compare differences between reanalyses, we compute the
mean absolute error (MAE) between each set of reanalyses for
each grid cell and observation date between 2000 and 20109.

VOLUME 25
1 n
MAE, = r_l]; by, =,

where i is the grid cell, j is the observation date, y is the first
reanalysis, and y is the comparison reanalysis.

g Anomaly correlation coefficient

One metric to evaluate deterministic forecast is the anomaly
correlation coefficient (ACC) which describes the correlation
between a forecast anomaly relative to forecast climatology and
a verifying observation anomaly relative to observation clima-
tology. ACC indicates the strength of association for both
direction and magnitude of forecasts relative to observations
with values falling between +1 and —1.

%

(f = Nlo,, —0)
ACC, = !

M M
2 (f,, =/ 2 (o, — o7

m=1

122

where i is the grid cell, M is the total number of time samples,
. is the forecast, f is the forecast climatology, o0, is the obser-
vation, and 0 is the observation climatology. According to the
ECMWEF, ACC values approaching +1 indicate strong positive
agreement where forecasts have value; ACC values > +0.6 indi-
cate synoptic prediction skill for large weather patterns; ACC
values approaching +0.5 indicate the forecast errors are similar
to errors from a forecast of the climatological average; and ACC
values around 0 indicate the forecast has no value (Santoalla
2018). For each grid cell, we calculated the ACC using the mean
of all ensemble members for the average of individual weeks 1-4
as well as the average of all days between weeks 3 and 4.

h. True positive, false positive, and critical success index

FD onset is a binary categorical event, where 1 indicates
FD is present and 0 indicates FD is absent. Forecasts are eval-
uated using a contingency table in which each forecast lead
time is verified against observations from the same day where
the random variable true positive (TP) indicates the forecast
and observation both classified FD, false positive (FP) when
the forecast predicted FD but the observation did not, false
negative (FN) when the forecast forecasted no FD when ob-
servations classified FD, and true negative (TN) when both
forecast and observations had no FD. Using these random
variables from forecasts allows for assessment of overall skill
in correctly or incorrectly predicting FD and for identification
of areas where forecast performance needs to be improved.
The true positive rate (TPR), also known as sensitivity, is a
performance measure commonly used to assess the percent-
age of correct forecast predictions of a categorical time series
compared to all predicted events, including events that did
not occur in observations [World Weather Research Pro-
gramme (WWRP) 2017].

> TP

=——— X 100,

TPR.(%
(%) >TP + X FN
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where i is the grid cell and TPR values range from 0% to
100%, where 100% indicates that all flash droughts were cor-
rectly identified with no FN forecasts. We calculated TPR for
each grid cell and averaged results by region for each SMPD
variant [(i) decrease in RZSM from above the 40th to below
the 20th percentile and (ii) decrease in RZSM from above the
30th to below the 10th percentile]. The false positive rate
(FPR) assesses the percentage of predictions that were incor-
rectly classified as positive and is the ratio of incorrectly fore-
casted events when FD occurred to the total number of actual
negative events (WWRP 2017). FPR measures how fre-
quently a forecast wrongly predicts FD when it did not occur:

FPR,(%) = 2FP

== X100,
YFP + > TN

where i is the grid cell and FPR results were averaged by re-
gion for each SMPD variant. The critical success index (CSI)
is used to measure the accuracy of correctly predicted fore-
casts when TN has been removed (Schaefer 1990):

TP

> TP + XFP + > FN

CSIL(%) = X 100,

where i is the grid cell and results are averaged by region for
each SMPD variant. CSI is dependent on climatological fre-
quency with lower CSI percentages obtained for rarer events
with a score of 100% indicating a perfect forecast (WWRP
2017). The CSI has been applied for various meteorological
events such as tornadoes, drought, and winter thunderstorms
(Gerapetritis and Pelissier 2004; Schaefer 1990; Hobeichi et al.
2022), but currently, there is no CSI threshold which informs
users of forecast skill across all meteorological events, and ex-
pert judgment must be employed. For FD, there is currently
no threshold for TPR, FPR, or CSI, which indicates that fore-
casts are highly skillful, but rather higher percentages implic-
itly refer to forecasts, which more accurately forecast FD.

3. Results
a. Forecast skill of ET, and its forcing variables

For each SubX model, CONUS region, season, and vari-
able (including ET,, 7200, Tmean, Tmaxs Tmin, Wind speed,
downwelling shortwave radiation, accumulated precipitation,
and actual vapor pressure), we examined anomaly skill of the
ensemble mean for each lead time from the weekly average
of individual weeks 1-4 as well as the average of days between
weeks 3 and 4. Week 1 skill was high (~0.60-0.95 ACC) for
ET,, 72200, Thean, Tmax>» Imin, Wind speed, and actual vapor
pressure (avp) for both SubX models when referenced against
GEFSv12-obs, MERRA-2, and NLDAS-2 (Fig. 2; Figs. S1-S6
in the online supplemental material). GEFSv12-fest is more
skillful than GEOS-V2pl1 for ET,, z200, shortwave radiation,
and Trean (spring and fall seasons). GEOS-V2pl is more skillful
for Tinean during summer, T,,;, for the Southeast and Northeast
regions, and precipitation for all regions during the spring.
Radiation was less skillful (~0.50-0.68 ACC) with the highest
skill agreement between GEFSv12-fest and GEFSv12-obs for
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most regions and seasons (Fig. S7). Precipitation skill was vari-
able between SubX models and reanalyses (~0.25-0.65 ACC),
and during spring, GEOS-V2pl was more skillful for all
regions, but GEFSv12-fcst has higher skill for summer and
fall (Fig. S8). The fall season was most skillful for precipitation
at lead week 1.

Between weeks 3 and 4, summer has higher skill for z200,
Tmean> Tmaxs Tmin, and avp (Figs. S1-S4 and S6). ET, and
shortwave radiation skill is highest in the fall season (Fig. 2;
Fig. S7), and wind speed has the lowest skill in the fall
(Fig. S5). During summer, high variability exists between
SubX models and reanalyses for Ty,,x and ET, with GEFSv12-
fest having the highest skill. Shortwave radiation also has high
variability between SubX models and observations during fall.
The highest skill is observed during summer for Tihean, Tmaxs
Tinin> and 7200 (~0.5 ACC), which is the threshold for deter-
mining when forecast errors equal errors when using the cli-
matological average. ACC for ET, ranges from 0.00 to 0.55;
shortwave radiation ranges from 0.0 to 0.5; wind speed ranges
from 0.0 to 0.2; and precipitation ranges from 0.0 to 0.15. For
all variables, no region is observably more skillful than other
regions, but Southeast ET, is least skillful during summer and
the Northeast is least skillful during spring. Averaging anoma-
lies between weeks 3 and 4 has induced slightly higher skill
than individual weeks 3 or 4, while the averaging only in-
creases skill beyond the 0.5 threshold for ET,, during fall, z200
during summer, and T hean, Tmax and T, during summer. We
further examined the ET, skill of individual grid cells be-
cause averaging by region masks individual grid cells and
may not be suitable for understanding spatial forecast vari-
ability (Fig. S9). The ET, skill is >0.5 during individual
weeks 3-4 for the Northwest during summer and fall, the
Northeast coastal regions during fall, and portions of the
Southwest during fall.

b. Comparison of RZSM between reanalyses

We first investigate the representation of seasonal RZSM
anomalies between MERRA-2, NLDAS-2, and GEFSv12-
obs to assess similarities and differences over spatial and tem-
poral scales (Fig. 3). The mean absolute error between
MERRA-2 and NLDAS-2 is the smallest in all comparisons,
and results indicate that spring season differences are higher
in the Southeast and West regions, while the summer season
has higher differences in the central United States. The largest
difference exists when comparing MERRA-2 and GEFSv12-
obs with the highest difference occurring during spring in
the eastern and western regions, while summer has the high-
est difference in the central United States and a smaller dif-
ference during fall in the central United States. The mean
absolute error between GEFSv12-obs and NLDAS-2 shows
a high difference in the western United States during spring,
central United States during summer, and central/eastern
United States during fall. When compared to NLDAS-2,
GEFSv12-obs performs better than MERRA-2 in the spring
in the eastern United States, and GEFSv12-obs performs
similarly to MERRA-2 in summer and fall in the West and
Northeast.
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FI1G. 2. FAO-56 Penman-Monteith ET, ACC skill for GMAO-V2pl and GEFSv12-fcst when referenced against GEFSv12-obs,
NLDAS-2, and MERRA-2 reanalyses. Data are separated by season, region, and weekly leads 1-4 as well as the average of weekly leads
3—4 for years 2000-19. The spring season contains months of March, April, and May; the summer season contains months of June, July,
and August; and the fall season contains months of September, October, and November.
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FIG. 3. RZSM anomaly MAE between MERRA-2, NLDAS-2, and GEFSv12-obs. MAE is computed between each reanalysis
and comparisons separated by season with MAM (spring) being March, April, and May; JJA (summer) being June, July, and August;
SON (fall) being September, October, and November; and All_seasons being all months between March and November.

¢. RZSM forecast skill

GEFSv12-fcst was more correlated with GEFSv12-obs than
with MERRA-2 or NLDAS-2 with week 1 differences in
ACC between reanalyses ranging from 0.15 to 0.50 with the
highest differences observed in the Midwest, Northeast, and
Southeast regions (Fig. 4). Weeks 3-4 ACC differences
against three reanalyses are minimized and ranged from 0.00
to 0.25. GEFSv12-fcst against GEFSv12-obs has the highest
skill across all leads. For week 1, ACC skill ranged between
0.75 and 0.85 across regions with minimal seasonal differ-
ences. Between weeks 3 and 4, the High Plains and South re-
gions retained the highest skill of all regions (~0.6-0.7 ACC

in summer and fall) followed by the Midwest, West, and
Southeast regions (~0.45-0.60 ACC), and the Northeast was
the least skillful (~0.29-0.37 ACC). The skill of anomalies for
the average of weeks 3—4 was slightly higher than the skill of
individual week 3 or 4 for all regions/seasons.

We further examined the RZSM skill of individual grid
cells because averaging by region masks individual grid cells
and may not be suitable for understanding spatial forecast
variability, and we only examined results between GEFSv12-
fest when referenced against GEFSv12-obs (Fig. 5). For week 1,
the central and western United States has the highest skill
during spring and summer (0.85-0.95 ACC), and during fall,
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F1G. 4. RZSM ACC skill from GEFSv12-fest when referenced against MERRA-2, GEFSv12-obs, and NLDAS-2 reanalysis. Data are
separated by region, season, and weekly leads 1-4 as well as the average of leads 3—4. The spring season contains months of MAM, the
summer season contains months of JJA, and the fall season contains months of SON.
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F1G. 5. GEFSv12-fcst RZSM ACC when referenced against GEFSv12-obs. Data are separated by season and lead times 14 and the average
of leads 34.

the Southeast has similar skills. During weeks 3—4, the highest
skill is observed in the western United States and Northeast
during spring, the central United States and Northwest during
summer, and the central United States and Southeast during
fall. The state of Florida and the southeast Atlantic coast
have low skill. The average of weeks 3—4 has higher skill than
individual week 3 or 4 with spatial skill patterns similar to
week 3. For all regions during summer, reforecast week 1
anomalies are generally wetter than the observation anoma-
lies, which is indicated by the median value being below zero,
and week 4 anomalies during fall tend to be drier than obser-
vations (Fig. 6). Density plot comparisons between GEFSv12-
fcst, MERRA-2, and NLDAS-2 indicate that MERRA-2 and
NLDAS-2 have larger anomaly differences for weekly leads 1
and 4 when referenced against GEFSv12-obs with the High
Plains and west regions having the smallest bias among all
three reforecasts (Figs. S10 and S11). For GEFSv12-fcst dry
anomalies, the skill was assessed using soil moisture percen-
tile thresholds for U.S. Drought Monitor drought categories
(Table S1) with results indicating for weeks 3 and 4, very
dry anomalies between the Oth and 10th percentile are more

RZSM bias - Week 1
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™
T 0.05
5
2 000 1 {}{)0 A AL
]
@ -0.05
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-0.15
-0.20
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Region

predictable (~0.50-0.85 ACC) than anomalies between the
11th and 30th percentile (~0.20-0.55 ACC) (Fig. 7). Across
all leads, skill was lowest when anomalies were between the
21st and 30th percentiles.

d. Soil moisture flash drought index

We first assessed TPR, FPR, and CSI rates between GEFSv12-
obs and GEFSv12-fest for weeks 3 and 4 for the SMPD index
using the ensemble mean when RZSM drops from above the
40th to below the 20th percentile in 3 weeks or less (Fig. 8).
TPR percentages range from 4% to 33% across regions and
seasons with the Northeast having the highest TPR during
spring (28%-33%). The West has similar TPR across all seasons
but slightly higher during summer (15%-18%), the Midwest has
the highest TPR in spring (13%-15%), the High Plains has the
highest TPR during summer (15%-18%), the South has the
highest TPR during spring (16%-19%), and the Southeast has
the highest TPR during fall (17%). FPR was always less than
TPR for each region with the fall season generally having higher
FPR across all regions with percentages ranging from 1% to
5%. CSI percentages range from 1% to 15% across regions and
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F1G. 6. GEFSv12-fcst RZSM anomaly biases for weeks 1 and 4 when referenced against GEFSv12-obs. Data are
separated by season and region. Bias is calculated by subtracting reforecast anomaly from reanalysis anomaly.
Negative values indicate reforecast conditions were wetter than reanalysis, and positive values indicate reforecast con-
ditions were drier than reanalysis. The white dots for each region and season are the median.
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FIG. 7. GEFSv12-fcst ACC skill between 2000 and 2019 separated by season, region, and weekly lead time when referenced against
GEFSv12-obs. RZSM_all displays the skill for all anomalies, DO is the skill when anomaly is between the 21st and 30th percentile, D1 is
the skill when anomaly is between the 11th and 20th percentile, D2 is the skill when anomaly is between the 6th and 10th percentile, D3 is
the skill when anomaly is between the third and fifth percentile, and D4 is the skill when anomaly is between the zeroth and second

percentile.

seasons with the Northeast having the highest CSI during
spring. TPR, FPR, and CSI for SMPD from above 30th to be-
low 10th percentile were similarly distributed, but rates were al-
ways lower for all three performance measures (Fig. S12).
Probabilistically, we observe that taking the ensemble mean
(Fig. 8) for the “above 40th to below 20th,” SMPD criteria are
more skillful for almost all regions, seasons, and leads when
compared to using individual models and classifying FD when
at least 30%, 50%, or 70% of the ensemble members agree
(Figs. S13-S15). When evaluating results between GEFSv12-

fest, MERRA-2, and NLDAS-2 (Figs. S16 and S17), TPR was
similar to GEFSv12-obs (Fig. 8), but all regional and seasonal
CSI rates were less than GEFSv12-obs indicating poorer
agreement.

e. Flash drought onset case studies

To first establish the agreement between MERRA-2,
NLDAS-2, and GEFSv12-obs, we evaluate the progression of
RZSM anomalies during May—July 2012, and we discuss find-
ings only within the central United States (Figs. S18-S23).
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F1G. 8. TPR, FPR, and CSI for the SMPD index when RZSM dropped from above the 40th percentile to below the
20th percentile in 3 weeks or less. Data are separated by region, season, and weekly leads 3 and 4.
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The 2012 central U.S. FD began in May and continued pro-
gression through July across various parts of central CONUS
with the lowest RZSM occurring around mid-July (Lesinger
and Tian 2022; Jin et al. 2019; Deangelis et al. 2020; Basara
et al. 2019; Hoerling et al. 2014). May 2012 anomalies varied
across reanalyses (Fig. S18), but in general, we observe that
during the first week of May, all three reanalyses have similar
RZSM spatial anomalies. Using NLDAS-2 as the ground
truth, the difference in May anomalies is more pronounced
between GEFSv12-obs than with MERRA-2, indicating that
GEFSv12-obs can be highly divergent and is not strongly rep-
resentative of conditions in which other reanalysis generally
agree (Fig. S19). During week 2, MERRA-2 and NLDAS-2
are in agreement, while GEFSv12-obs had more wet anomalies
in the east-central United States; during week 3, all reanalyses
are similar with the exception of a strong wet tongue in
GEFSv12-obs in the south-central United States; week 4 had
closer agreement between MERRA-2 and NLDAS-2 in the
east-central United States, while NLDAS-2 and GEFSv12-obs
were more similar in the west-central United States; and week 5
had closer agreement between GEFSv12-obs and NLDAS-2.
During weeks 3-5 west of the 96th meridian, MERRA-2 under-
estimated RZSM anomalies, whereas GEFSv12-obs overesti-
mated anomalies.

During June 2012 weeks 1-4 (Fig. S20), spatial RZSM
anomalies were similar between all three reanalyses with the
exception of wet tongues in GEFSv12-obs that were present
in northern and southern portions of the central United
States. Assuming NLDAS-2 to be the ground truth, MERRA-
2 had higher similarities in anomaly strength and direction
than GEFSv12-obs (Fig. S21). During July 2012, wet tongues
were not present in GEFSv12-obs, and we observed that all
three reanalyses had strong agreement in the location of
the highest RZSM dry anomalies in the central United States
(Fig. S22). In the central United States, GEFSv12-obs overes-
timated RZSM dry anomalies, and MERRA-2 underesti-
mated anomalies (Fig. S21). Overall, we observe that the
progression of spatial RZSM anomalies, as well as intensities,
was varied between reanalyses and that GEFSv12-obs had per-
formance issues regarding wet tongues in June, but GEFSv12-
obs May and July anomalies were well captured in the central
United States. Across CONUS, GEFSv12-obs had several
instances in which regional anomalies were of the opposite
sign when compared to MERRA-2 or NLDAS-2 such as in
the lower High Plains region (Fig. S20). MERRA-2 cap-
tured strong negative RZSM anomalies in the east-central
United States and generally underestimated west-central
U.S. negative anomalies.

Our evaluation of GEFSv12-obs and GEFSv12-fest is bene-
ficial for understanding the maximum achievable skill of
GEFSv12-fest under perfect forecast conditions, and we exclu-
sively analyzed FD onset for major FD events in 2012, 2017,
and 2019 between GEFSv12-obs and GEFSv12-fest because of
higher long-lead skill (Fig. 4), adequate performance in repre-
senting central U.S. RZSM anomalies (Figs. S18-S23), and
higher flash drought metric scores (Fig. 8; Figs. S16 and S17).
It should be noted that our methodology only captures the
rapid decrease in RZSM which indicates FD and does not
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provide information on preexisting areas in FD. We chose
to investigate three different initialized dates separated by
3 weeks using the SMPD variant “above the 40th to below
the 20th percentile in 3 weeks or less” (Fig. 9). Because of
land surface heterogeneity across CONUS, choosing initiali-
zation dates separated by 3 weeks allows for better visualiza-
tion of FD onset, which affected different regions at different
times.

For initialization on 9 May 2012 and forecast lead week 3
(Fig. 9a), the SMPD index was able to capture FD across Lou-
isiana, Arkansas, and Iowa, which was likely induced by low
precipitation and high ET, associated with a high pressure
ridge, but the upper Midwest was not predicted correctly due
to the slight misplacement and intensity of the ridge when
compared to observations. Week 4 predictions show a contin-
uation of week 3 FD in most areas, but a high number of FP
classifications occurred due to the misplacement of the high
and low pressure z200 anomalies, which decreased ET, and
provided a small amount of precipitation in certain regions.
The large number of FP classifications that are grouped
around TP classifications does provide some reassurance that
the model can identify areas where FD may be induced, but
the forecast currently lacks grid cell specificity. For initializa-
tion on 30 May 2012 and forecast lead 3 (Fig. 9b), FD was cor-
rectly classified for a few grid cells in the Midwest but missed
other surrounding areas due to the misalignment of z200
anomalies as well as ET, intensity and precipitation improp-
erly forecasted. Week 4 predictions accurately forecast some
FD in the eastern Midwest, but we observe that these areas
were already classified as being in FD during week 3 indicat-
ing that the forecast was 1 week late in correctly predicting
FD. For initialization on 20 June 2012 and forecast lead 3
(Fig. 9c¢), portions of the central United States are correctly
predicted, but FD development in the southern United States
was incorrectly predicted due to no precipitation being fore-
casted, which was present in observations. The misrepre-
sented precipitation in week 3 continued to impact FD
forecasts during week 4 in the South with a large area falsely
identified as being in FD, and in the Northwest, FD was
falsely identified because week 4 precipitation was incor-
rectly forecasted.

The 2017 northern Great Plains FD is noted to have a
decrease in RZSM from above the 80th to below the 17th per-
centile between 18 May 2017 and 8 June 2017 with low precip-
itation being the primary driver, and regions most affected
include eastern Montana and western North Dakota (Hoell
et al. 2019). Initialization on 19 April 2017 showed almost no
SMPD signal except for lead 4 in northern Minnesota with
large differences between reforecast and reanalysis for ET,,
7200, and precipitation anomalies (Fig. 10a). Reforecast ini-
tialization on 17 May 2017 also failed to predict FD in the
northern High Plains with the z200 ridge misaligned and pre-
cipitation incorrectly forecasted (Fig. 10b). We observe that
GEFSv12-fcst predicted a large area of FD in the Southeast
for forecast lead 4, which did not occur due to heavy preci-
pitation within observations during forecast lead 3, which
increased RZSM. No other initializations captured signals
for the northern High Plains for dates between 18 May and
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FIG. 9. FD onset classification for lead weeks 3 and 4 separated by 3-week initialization dates: (a) 9 May 2012, (b) 30 May 2012, and

8 June 2017. Drought conditions worsened across the Northwest
during July 2017, and we observed a moderate agreement for
initialization on 21 June 2017 for lead 3 for z200, precipita-
tion, ET,, and RZSM and a strong positive agreement for FD
classification at forecast lead 4 (Fig. 10c).

(c) 20 Jun 2012. Average weekly anomalies of 2200, precipitation, ET,,, and RZSM are displayed beneath each TP, FP, and FN plot.

The 2019 Southeast FD began intensification in mid-September
(Schubert et al. 2021), and we investigated weekly initializa-

tions

between 21 August and 4 September 2019. Initialized fore-

casts on 21 August 2019 identify that GEFSv12-fcst missed the
early stages of FD at weekly lead 3 due to the misplacement of the
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FIG. 10. As in Fig. 9, but for initialization dates (a) 19 Apr 2017, (b) 17 May 2017, and (c) 21 Jun 2017.

high pressure ridge further north than observed, which directly im- 4. Discussion
pacted ET, forecasts (Fig. 11a). Week 4 forecasts also had the 2200
ridge intensity misrepresented, and ET, was incorrectly fore-
casted. For initialized forecasts on 28 August and 4 September We identified a large variation in RZSM skill when evaluating
2019, we observed no FD signal with all anomalies (except pre-  GEFSv12-fcst against MERRA-2, GEFSv12-obs, and NLDAS-2,
cipitation) not well represented in the Southeast (Figs. 11b,c). with the highest skill obtained when GEFSv12-fcst was referenced

a. Factors influencing RZSM forecast skill
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FIG. 11. As in Fig. 9, but for initialization dates (a) 21 Aug 2019, (b) 28 Aug 2019, and (c) 4 Sep 2019.

against GEFSv12-obs (Fig. 4). The large RZSM skill variation
between reanalyses and forecasts results from differences
between 1) AGCMs, 2) atmospheric and land state initializa-
tions, 3) LSMs, and 4) model spatial resolution. We observe
that different reforecast-reanalysis outputs from different
AGCMs created minor skill differences for 2200, Tiean, Tmins

actual vapor pressure, precipitation, and wind speed with
larger skill differences in shortwave radiation, ET,, and Tyax.
This implies that many variables are similarly predicted across
reforecasts, but because some of these deterministic outputs
are used as background forcings within LSMs, atmospheric devi-
ations can inhibit RZSM forecast fidelity through mechanisms
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such as misidentifying convective triggers associated with pre-
cipitation (Suhas and Zhang 2014) or improper representation
of cloud cover and associated radiative feedbacks (Arakawa
2004; Park et al. 2006). Therefore, long-term statistics of atmo-
spheric components may provide some relevant information
concerning the degree to which RZSM forecasts are skillful,
but because flux biases can negatively impact forecasts, more
research is needed to verify the sources of highly biased pre-
dictions for early lead subseasonal forecasts, particularly for
precipitation and radiation, which are primary components
of the global water and energy cycle influencing drought.
Research has identified spatiotemporal variations between
boundary and initial conditions, which increase monthly pre-
cipitation skill over North America and Northern Hemisphere
between weeks 1 and 6 (Sun et al. 2022; Dutra et al. 2021), but
an in-depth analysis into sources of precipitation or radiation
biases within subdaily subseasonal forecasts (e.g., GEFSv12-
fcst) has not been quantified and could be explored in future
research to improve long-lead predictions.

While estimates of RZSM between reanalyses are subject
to the performance of their individual AGCM and LSM in
simulating land surface processes, the accuracy of atmo-
spheric and land surface forcing initial conditions also plays a
role (Materia et al. 2014; Koster et al. 2010). MERRA-2 and
NLDAS-2 use CPC bias-corrected precipitation, whereas
GEFSv12-obs uses CPC nonbias-corrected Merged Analysis
of Precipitation, which may adversely impact GEFv12-obs es-
timate of RZSM and potentially lead to less accurate RZSM
forecasts. GEFSv12-fcst is more correlated with GEFSv12-
obs, and the high skill of GEFSv12-obs against GEFSv12-fcst
is expected due to the common AGCM and LSM used in
these two products, whereas MERRA-2 and NLDAS-2 have
different AGCMs and LSMs. One limitation of GEFSv12-fcst
is that GEFSv12-obs initial land state forcing includes neither
direct data assimilation of RZSM nor insertion of RZSM ini-
tial state from GLDAS reanalysis, meaning that RZSM is
simulated throughout the entire reanalysis (Hamill et al.
2022). Because RZSM is simulated, this implies that the
GEFSv12-fcst theoretical maximum attainable skill for week
lead 4 is ~0.6 ACC and that future analysis can verify the ac-
tual skill based on ground-based observations (Fig. 4). Simu-
lated RZSM could imply that GEFSv12-obs land surface
initial conditions are of poorer quality, but we have identified
that GEFSv12-obs RZSM initial state has low differences for
many regions when compared to NLDAS-2 (Figs. S18-S23).
NLDAS-2 is assumed to be the most accurate reanalysis over
CONUS due to high spatial and temporal resolution, focused re-
gional calibration, and bias-corrected precipitation forcings (Xia
et al. 2012, 2014). Assuming NLDAS-2 to be the least biased re-
analysis, GEFSv12-obs has less bias in the eastern United States
during spring season when compared to MERRA-2, and when
averaged over all warm seasons, biases between NLDAS-2/
GEFSv12-obs and NLDAS-2/MERRA-2 are similar in the
eastern United States (Fig. 3). But high biases exist between
GEFSv12-0obs and NLDAS-2 in the central United States, in-
dicating that GEFSv12-obs and GEFSv12-fcst may be less
credible in these regions. We have shown that GEFSv12-obs
can potentially provide low-bias RZSM initial forcings into
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GEFSv12-fcst LSM, but the effect from forcing with nonbias-
corrected precipitation and nonassimilated RZSM may im-
pact long-lead forecast quality and interpretations of forecast
integrity.

The GEFSv12-fcst Noah LSM has several limiting factors,
including the inability to account for subgrid-scale hetero-
geneity, which is necessary to account for processes such as
runoff, infiltration, and interception (Torres-Rojas et al. 2022;
Gehne et al. 2019). Additionally, parameterizations within the
LSM such as soil hydraulic conductivity, stomatal resistance,
or vegetation fraction are fixed and not calibrated for indivi-
dual regions which leads to the growth of biases and has
impacts on energy and mass exchanges between land and at-
mosphere (Gehne et al. 2019). Improvements in parameter-
izations should increase predictability, but previous research
which downscaled and bias-corrected SubX models and forced
a Noah-multiparameterization model showed that drought on-
set along the U.S. West Coast for lead weeks 1-2 had usable
drought onset skill, while lead weeks 3—4 had little to no skill
regardless of drought severity (Su et al. 2023). They observed
that precipitation skill for all models after downscaling was
<0.3 ACC, which negatively impacted drought forecasts, and
this implies that FD forecasts would also be hindered by inac-
curate precipitation forecasts and that improving the LSM
must be jointly improved with the AGCM.

Spatial resolution can impact the fidelity of reanalyses and
subsequent forecasts by better resolving energy, mass, mo-
mentum, and carbon fluxes. GEFSv12-fcst is currently the
highest-resolution SubX model for days 0-10, and the skill
performance is noticeably higher than GMAO-V2p1 (which
produces a 0.5° X 0.5° forecast for all lead times) for atmo-
spheric variables, including 2200, 7Thean, Tmax, Wind speed, ac-
tual vapor pressure, shortwave radiation, and precipitation
(Figs. S2, S3, and S5-S8). GEFSv12-fest has also been identi-
fied to have higher probabilistic skill when compared with
other SubX models for both precipitation and temperature
across different global regions, indicating AGCM parameter-
izations are likely better resolved and allow for higher pre-
dictability (Robertson et al. 2023). It has been shown that
models with 50-km horizontal spatial resolution produce more
accurate precipitation forecasts and more realistic weeks 3—4
predictions of teleconnections when compared with 104-km
horizontal resolution models (de Andrade et al. 2019), and
additional researchers identified improvements from higher-
resolution models in representing stratosphere and ocean
processes, which are important for LSM forecasts (Seo et al.
2014; Roff et al. 2011; Roberts et al. 2022; Richter et al.
2020). Higher-resolution precipitation estimates increase
LSM accuracy through more realistic land surface storage
fluxes, and stratospheric circulation anomalies can influence
tropospheric precipitation variability across CONUS through
chemical-radiative—dynamical feedbacks. Stratosphere-atmo-
sphere coupling in GEFSv12-fcst has been identified to agree
well with the ECMWF ERAS reanalysis with enhanced MJO
and North Atlantic Oscillation predictive skill, which impact
CONUS precipitation variability (Lawrence et al. 2023). The
importance of stratosphere—troposphere feedbacks has been
identified in the midlatitudes with spring stratospheric ozone
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anomalies disrupting the atmospheric radiation balance and
cause poleward shifts of the midlatitude jet (Ma et al. 2019;
Smith and Polvani 2014). Therefore, a better resolved strato-
sphere can enhance precipitation forecasts and potentially im-
prove predictions of FD onset related to precipitation deficits.

Atmospheric initial conditions are most important for
short-term subseasonal forecasts, but air—ocean thermody-
namic feedbacks are important for extended multiweek fore-
casts (Li et al. 2001; Ling et al. 2015). GEFSv12-fcst only has a
coupled atmosphere and land model with the ocean boundary
conditions derived from a two-tiered sea surface temperature
and near sea surface temperature approach (Zhu et al. 2018,
2017; Guan et al. 2022). This limits predictability because of
the impact ocean anomalies have on precipitation predictabil-
ity primarily during El Nifio-Southern Oscillation (ENSO)
and MJO phases (Sun et al. 2022; Tian et al. 2017; Li et al.
2021; Vigaud et al. 2017). Ocean models with increasing reso-
lutions are better able to simulate subsurface heat fluxes and
have increased precipitation predictability along with im-
proved MJO simulations stressing the importance of air-ocean
feedbacks (Seo et al. 2014). The next GEFSv12-fest update is
scheduled to include a fully coupled atmosphere—ocean—
wave-ice model, and improvements in RZSM and FD forecast
skill can be assessed when this becomes available.

b. Errors influencing RZSM forecast skill

For predicting RZSM within GEFSv12-fcst Noah LSM, the
three primary forcings include temperature, radiation, and
precipitation, and their accumulated errors jointly affect
RZSM forecasts. Except for radiation in the fall season and
temperature during summer (Figs. S2 and S7), no primary
forcings show substantial predictability at longer leads which
suggests weeks 3-4 RZSM errors are driven by inadequate
representations of all primary forcings with precipitation in-
troducing the largest errors (Fig. S8). When GEFSv12-fcst is
referenced against all reanalyses, it has higher precipitation
skill than GMAO-V2pl1 for summer and fall seasons for most
regions, indicating that short-lead LSM predictions in these
regions could also be more skillful and GEFSv12-fcst could
be a resource for water resource managers. However, we do ob-
serve that RZSM skill between GEFSv12-obs and GEFSv12-
fest at week 1 has the same skill during spring and fall seasons,
yet precipitation skill has large differences (Fig. 4; Fig. S8). In
spring, precipitation ACC is ~0.3-0.4, while RZSM ACC is
~0.8-0.9, but in fall, precipitation ACC is ~0.50-0.65, while
RZSM ACC s still ~0.8-0.9. This may indicate the relative im-
portance of initialized RZSM state and persistence of RZSM
anomalies, and the effect of low-quality precipitation forecasts
does not begin to degrade RZSM forecasts until after week 1.
Although RZSM skill plateaus at ~0.5 ACC for lead weeks 34,
this skill is significantly better than precipitation (<0.3 ACC),
indicating the added value of using RZSM predictions for FD
forecasts rather than using precipitation. Solar radiation pro-
vides energy inputs for land, atmosphere, and ocean processes
(Kalogirou 2004), while cloud cover and feedback processes
which directly impact surface radiation are difficult to estimate in
models, which impacts RZSM and precipitation predictability

LESINGER ET AL. 983

(Klein and Hall 2015). Temperature also suffers from a lack of
predictability in the subseasonal time scale with research improv-
ing short-lead predictions over the climatological baseline, but
long-lead deterministic forecasts are still highly unpredictable
(He et al. 2021). Therefore, improvements to LSMs must identify
ways to reduce errors from all three sources because of their im-
pact on long-term predictability.

Another error-inducing mechanism is RZSM initialization
error, which has been shown to impact predictions of seasonal
soil moisture and streamflow (Koster et al. 2014) and subsea-
sonal temperature and precipitation anomalies associated
with the 2012 Central U.S. FD (DeAngelis et al. 2020; Liang
and Yuan 2021). Initialization biases can stem from interpolation
issues or observation error, and if initialization errors are large
enough and combined with errors from primary drivers, skillful
long-lead forecasts become difficult to achieve (Ni-Meister et al.
2005). It has been identified that under near-perfect initial condi-
tions using high-resolution models, midlatitude weather has in-
trinsic predictability limits between 10 and 15 days for synoptic
precipitation and temperature systems due to the chaotic nature
of the atmosphere, which cannot be improved upon, which may
limit skill SubX RZSM forecasts regardless of initial condition
(Zhang et al. 2019).

c¢. Flash drought predictability

RZSM was used as our primary FD indicator because of its
success in classifying major events using the SMPD frame-
work (Lesinger and Tian 2022; Osman et al. 2021). The
SMPD index has low-to-medium skill in predicting rapid
changes in RZSM for the 2012 central United States and por-
tions of the 2017 northern High Plains FD but no skill for
2019 Southeast FD (Figs. 9-11). Larger ensemble size models
have been shown to improve probabilistic prediction (Tippett
and Barnston 2008; Richardson 2001; Smith et al. 2015), which
should be considered for future research on probabilistic FD
forecasts. Although GEFSv12-fcst successfully classified FD
in some CONUS areas, the TPR, FPR, and CSI rates do not
support confidence in relying explicitly on GEFSv12-fcst for
issuing FD early warning alerts. While the CSI can be a useful
evaluation criterion for early warning, there is currently no
threshold which indicates the trustworthiness of forecasts, and
it has been noted that for winter storm warnings, the FPR has
the greatest impact on CSI skill and that optimization of the
CSI does not necessarily lead to more effective warnings
(Gerapetritis and Pelissier 2004). A comparison study of met-
rics may be needed to evaluate FD prediction skill as it pertains
to FD intensity and severity. Accurate FD onset predictions can
allow regions ample mitigation time which can reduce cost-
related impacts (Shreve and Kelman 2014), but conversely, false
positive forecasts can incur unneeded costs and reduce user trust
on future forecasts (Burgeno and Joslyn 2020; de Elia 2022).

RZSM initial conditions were shown to be important for
predicting weeks 3-4 temperature and precipitation anoma-
lies, and it has been identified that less-biased RZSM forcings
reduce temperature and precipitation biases (DeAngelis et al.
2020). DeAngelis et al. (2020) identified the increase in skill was
largely dependent on initial dry soil conditions, which amplified
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land-atmosphere feedbacks and were better captured in the
model. From a bottom-up perspective, improved local-scale
modeling has immediate consequences on reducing meso-
scale and synoptic errors, and the reduction of errors can
improve model representation of global teleconnections
such as Rossby wave trains. Therefore, it can be inferred
that RZSM and associated land-atmosphere feedbacks in-
fluence teleconnection skill and FD predictability. Although
GEFSv12-fcst dry anomalies were most predictable (Fig. 7),
it is difficult to estimate the impact of initialized RZSM on
forecast quality due to GEFSv12-obs forcing having consid-
erable anomaly deviations when compared to NLDAS-2
(Fig. 3). RZSM is known to have high autocorrelation (per-
sistence), which can impart predictability from initial condi-
tions, but this persistence varies by region and season (Jacobs
et al. 2020; Kumar et al. 2019; Koster and Suarez 2001). We
identified that ACC skill of deeper soil layers is higher than
shallow layers (Fig. S24), and this is related to longer soil
moisture memory as identified by Kumar et al. (2019) who
also found that deeper layer soil moisture anomalies can
propagate into shallower layers and can influence drought on
interannual time scales. Research has not fully explored
CONUS FD onset and its relation to lagged anomalies in indi-
vidual soil layers, and this may provide an additional source
of FD predictability.

It is important to note that the 2012 and 2019 CONUS FDs
had preexisting dry conditions present before FD onset, but
FD intensification was amplified by propagating Rossby
waves, but it is not known if both events had similar source re-
gions for wave initiation. The 2019 Southeast FD had wave in-
itiations from anomalous SSTs in the Indian Ocean, which
increased deep convection and forced anticyclonic flow over
the Southeast (Schubert et al. 2021), while the 2012 central
U.S. FD wave origins have not yet been identified. We ob-
served that z200 anomalies were not well forecasted for the
2019 Southeast drought (Fig. 11), while the 2017 northern
High Plains z200 anomalies were better predicted (Fig. 10).
Future research can identify the origination source of Rossby
waves during other notable FD events, wave propagating fea-
tures, and characteristics of the forecast models, which enable
accurate predictions (e.g., North Pacific jet stream repre-
sentation). It should be noted that the USDM did classify
the Northwest as being abnormally dry during July 2017
(Fig. S25), which is in agreement with GEFSv12-fcst predic-
tions of decreased RZSM (Fig. 11), but moderate drought
was never officially classified. Summer in the Northwest is
climatologically the driest when compared to all seasons,
and dry conditions during this time period may be normal
and have lesser environmental impacts (Guirguis and
Avissar 2008). However, under future warming scenarios,
rapid drying associated with FD is projected to become
more frequent which may place these regions at higher risk
(Christian et al. 2023). These findings indicate that the cur-
rent SMPD framework may not be universally suitable dur-
ing all seasons because of regional climatologies and the
projected impacts, suggesting a potential need for localized
FD classifications.
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d. Skill of ET, and comparison with RZSM

We identified that atmospheric variable skill was moder-
ately similar between SubX models against the three reanaly-
ses with summertime z200 and temperature having the
highest ACC values at leads 34 (~0.25-0.5) (Figs. S1 and S2).
These values lie below the ECMWF recommended 0.5 ACC
threshold in which prediction errors are empirically similar to
forecast errors based on the climatological average; thus, pre-
dictability is still minimal. CONUS is differentially impacted
by ET, drivers with research identifying regional drivers of
ET, being temperature in the eastern United States and along
the West Coast, humidity in the western and Southeast United
States, radiation in the Southeast, and wind speed in the
Southwest (Hobbins 2016). Although FD is not explicitly rep-
resented by ET,, poor representation at leads 3—4 may hinder
the fidelity of early warning forecasts, which could identify re-
gions susceptible to FD. We show that GEFSv12-fcst generally
has the highest model skill during summer and fall for all re-
gions and GMAO-V2p1 has higher model skill during spring.
Additional increases in skill are obtained by taking the aver-
age of weeks 34 anomalies, and these forecasts can be useful
for agriculture or water resource managers whom are reliant
on biweekly accurate predictions (Fig. 2). Abatzoglou et al.
(2023) identified that subseasonal ET, forecast skill varied be-
tween April and October, and we find strong agreement with
our results for week 3 regarding higher skill in the South, cen-
tral, and western United States (Fig. S9). Seasonal ET, fore-
cast skill is known to be increased when forecasts are
initialized during moderate and strong ENSO events, indicat-
ing some portion of predictability stems from initial state of
tropical Pacific SSTs (McEvoy et al. 2016). Future research
can explore the increase in model skill during initialized
ENSO phases as well as other modes of variability, including
the MJO, North Atlantic Oscillation, or Pacific-North Ameri-
can pattern, which can influence CONUS weather patterns
through atmospheric blocking (Lupo 2021).

RZSM generally shows higher skill than ET,. It is worth
noting that RZSM influences energy and mass exchanges be-
tween the land and atmosphere, which may influence ET,,
while a positive relationship between RZSM and ET, skill
does not appear consistently across all regions. For weeks 3—4
during fall, higher RZSM skill is accompanied by higher ET,
skill for Midwest, South, and Southeast regions, and this same
pattern emerges during summer for the Midwest and High
Plains (Figs. 2 and 3). Regional variations are likely the result
of climatological relationships between RZSM and ET.
Koster (2004a) identified that stronger coupling between
RZSM and precipitation occurs in summer in the central
United States. The central United States is in a transitional
climate regime between semiarid and humid conditions, and
seasonal variations based on RZSM mean state can influence
ET and ET,. More humid regions like the Southeast have en-
ergy-limited regimes most seasons, and ET, and RZSM cou-
pling is typically of a lower magnitude, and it has been
previously identified that fall season FDs are more common
in the Southeast during fall and associated with La Nifia
(Brown and Degaetano 2013; Lesinger and Tian 2022). The
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stronger skill association between ET, and RZSM during fall
in the Southeast and summer in both the Midwest and High
Plains is jointly accompanied with increased FD predictabil-
ity, which may indicate the source of these models’ better pre-
dictions (Fig. 8). The desiccation of soils during summer and
land-atmosphere feedbacks may serve to increase ET, in the
Southeast in the fall season, and this is better captured by
models when compared to other seasons. Given the joint
effects of RZSM and ET, on crop yields (Rigden et al. 2020),
future research could develop a joint index combining RZSM
and ET, for FD monitoring and prediction.

e. Predictability by seasons as influenced by
teleconnections

For accurate hydroclimate predictions at the subseasonal
scale, the representation of global teleconnections is neces-
sary because predictability imparted from initial conditions di-
minishes at longer leads. Specific regions which generate
teleconnections influencing CONUS climate include the In-
dian, Pacific, and Atlantic Oceans as well as the Arctic strato-
spheric polar vortex. In general, winter surface and circulation
anomalies have higher predictability imparted by sudden
stratospheric warmings (SSWs) causing deviations in normal
stratospheric polar vortex (SPV) state impacting jet stream
motion. SSWs can be promoted equally by El Nifio and
La Nifia phases which introduce Rossby waves into the tropo-
sphere, breaking down the SPV (Butler and Polvani 2011).
Additional winter skill within the troposphere is obtained dur-
ing MJO and ENSO events, which strongly modulate CONUS
weather (Tripathi et al. 2015; Wang et al. 2020; Toniazzo and
Scaife 2006). Summer predictability is inhibited by lower am-
plitude MJO and ENSO events and a weakened SPV, which
is less influenced by the troposphere. We observe that for
7200 and temperature, summer is slightly more predictable
than spring or fall for weeks 34 forecasts, but SubX model
variability is higher. The higher predictability in FD onset in
summer and fall in the western United States may be due to
this region being climatologically dry with low soil moisture
variability with ENSO impacting FD severity during fall
(Guirguis and Avissar 2008; Lesinger and Tian 2022), and for
the Southeast, the fall highest predictability may be associated
with ENSO, Pacific decadal oscillation, Western Hemisphere
warm pool, or the Southern Oscillation index (Sehgal and
Sridhar 2018). Seasonal spring forecasts are noted to be inhib-
ited by a “spring predictability barrier” in which forecasts ini-
tialized during spring produce less skillful results for future
seasons—particularly for predicting ENSO, which is a leading
mode of interannual variability across the globe (Jin et al.
2022; Duan and Wei 2013; Bushuk et al. 2022). The jet stream
transitions rapidly in between winter and spring; this process
may not be well captured within models, but under conditions
where ENSO state and North Pacific jet structure is ade-
quately resolved in models, then springtime mass transport
processes are improved (Breeden et al. 2021). The spring pre-
dictability barrier has been noted to be more prevalent during
the growth phases of El Nifio (Duan and Wei 2013), and our
observations across different variables and seasons may imply
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that the spring predictability barrier could be a relevant issue
within subseasonal forecasts and can be caused by jet stream
shifts that may be influenced by ENSO. Better representation
of ocean-troposphere—stratosphere interactions will be needed
to further enhance FD predictability. It has been identified that
during summer, when El Nifio is transitioning to La Nifia, a
warming signal occurs over the central United States and is
related to suppressed convection in the Pacific Ocean and de-
velopment of propagating Rossby waves (Anderson et al. 2017;
Jong et al. 2020). These signals may be useful indicators of
future FD likelihood and can be explored in future work as
researchers continue to locate windows of opportunity for
enhanced predictive skill.

Previous research has identified that for most CONUS re-
gions, FD occurs more often during Atlantic multidecadal os-
cillation positive phase and during La Nifia due to increased
Atlantic convection, which provides drier air to the Pacific
Ocean through background easterly winds and increasing the
Pacific Walker circulation (Lesinger and Tian 2022). Other os-
cillations which slightly increase FD frequency include the
North Atlantic Oscillation, Arctic Oscillation, and Pacific de-
cadal oscillation. One teleconnection not explored for FD
predictability is the East Asian monsoon which is known to
cause alterations in the North Pacific jet stream and increase
CONUS rainfall variability by promoting anticyclonic block-
ing over regions such as the U.S. Great Plains (Lopez et al.
2019; Zhu and Li 2018). These modes of variability are not
comprehensive, and additional circulations could exist across
the globe and should be further explored to improve FD pre-
dictability. Our assessment only considers two SubX models
(GMAO-V2pl and GEFSv12-fest), mainly for deterministic
forecast skill. There are a total of eight SubX models available
that generate large ensemble members. This information
could be explored in the future for probabilistic FD forecasts.

5. Conclusions

In this study, we comprehensively analyzed the subseasonal
forecast skill of RZSM, ET,, and flash drought onset, as well
as the primary forcing variables in two SubX models. Results
indicate that drier RZSM anomalies have the highest skill,
while the predictability can be attributed to persistence from
initial conditions, which does not always lead to accurate
prediction of rapid decreases in RZSM. RZSM accuracy is in-
hibited by poor predictions of temperature, radiation, and
precipitation which drive land surface model fluxes with tem-
perature being the most skillful variable followed by radiation
and precipitation. The large difference between RZSM skill
against three reanalyses were more pronounced than atmo-
spheric forcing variables, highlighting the impact of verifica-
tion dataset on perceived RZSM skill. GEFSv12 reanalysis
shows high biases in the central United States when compared
to MERRA-2 and NLDAS-2, but biases are smaller in the
eastern United States. The evaluation of GEFSv12 reforecast
against the GEFSv12 reanalyses revealed its prediction limit,
which can achieve ACC of RZSM forecasts as high as 0.6 for
lead weeks 3-4. ET, is another indicator of flash drought with
skill generally lower compared to RZSM forecasts due to
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unskillful forecasts of radiation, temperature, wind speed, and
vapor pressure. RZSM forecast skill often remains higher
than ET, through week 3 or 4, given the longer memory of
soil moisture, suggesting that it could be a better proxy used
to predict flash droughts, rather than ET,. In the western
United States, during summer and spring, ET,, has higher skill
than RZSM and can be useful as a regional flash drought
early warning indicator. Case studies of major United States
FDs indicate their onset is rarely predicted at weeks 34,
which is mainly due to limited skill of precipitation, 200-hPa
geopotential height, and ET, at longer leads. To further im-
prove flash drought forecasts, future research must jointly im-
prove skill of temperature, precipitation, and radiation to
provide better land surface model forcings. Accurate flash
drought forecasts allow for early warning alerts from opera-
tional agencies to effectively mitigate drought impacts. While
subseasonal forecasts have potential to inform users of im-
pending extreme climate events, more research is needed to
improve dynamical forecast systems by reducing model biases
and improving forecast initializations, which currently impede
accurate flash drought forecasts, and better understand pre-
dictability limit of flash drought events.
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