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ABSTRACT: This study compares projected changes of precipitation characteristics in the U.S. Northeast in two analog-

based climate downscaling products, Multivariate Adaptive Constructed Analogs (MACA) and Localized Constructed

Analogs (LOCA). The level of similarity or differences between the two products varies with the type of precipitation

metrics. For the total precipitation amount, the two products project significant annual increases that are similar in mag-

nitude, spatial pattern, and seasonal distribution, with the largest increases in winter and spring. For the overall precipitation

intensity or temporal aggregation of heavy precipitation (e.g., number of days with more than one inch of precipitation, the

simple intensity index, and the fraction of annual precipitation accounted for by heavy events), both products project

significant increases across the region with strongmodel consensus; themagnitude of absolute increases are similar between

the two products, but the relative increases are larger in LOCAdue to an underestimation of heavy precipitation in LOCA’s

training data. For precipitation extremes such as the annual maximum 1-day precipitation, both products project significant

increases in the long-term mean, but the magnitude of both the absolute and relative changes are much smaller in LOCA

than in MACA, indicating that the extreme precipitation differences in the training data are amplified in future projections

as a result of the analog-based downscaling algorithms. The two products differ the most in the intensity and frequency of

rare extremes (e.g., 1-in-20-years events) for which MACA projects significant increases while the LOCA-projected

changes are inconclusive over much of the study area.
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1. Introduction

State and local governments and decision-makers across a

range of sectors including agriculture, transportation, energy,

and water are increasingly seeking place-based climate change

information to inform climate adaptation planning (Bierbaum

et al. 2013; Mach and Field 2017; Kirchhoff et al. 2019). Yet,

climate change projections derived from global climate models

(GCMs) with a typical spatial resolution of ;100–300 km, or

from dynamical downscaling using regional climate models

(RCMs) with a typical spatial resolution of 12–50 km (e.g.,

Giorgi et al. 2009; Giorgi 2019; Mearns et al. 2012; Ruti et al.

2016; Zobel et al. 2018), are often too coarse to inform local

adaptation decisions (e.g., Wilby and Dessai 2010). Finer-

resolution dynamical downscaling output is often limited to

small domain, short length of model integration, or small en-

semble size (e.g., d’Orgeville et al. 2014; Prein et al. 2017). The

computational efficiency of statistical downscaling, which is

based on empirical relationships between local variables and

large-scale features, enables the creation of downscaled data

for a large ensemble of GCMs and RCMs and correction of

systematic biases in surface meteorological variables in these

models (Maraun et al. 2010). Given these advantages, statis-

tical downscaling is frequently used to downscale GCMs and

RCMs projections (of precipitation and temperature in par-

ticular) to local scales that might be more directly usable by

state and local decision-makers (e.g., Maraun et al. 2010; Ning

et al. 2012; Abatzoglou and Brown 2012; Ahmed et al. 2013).

Statistical downscaling assumes that the present-day ob-

served relationship between local variables (predictant, e.g.,

precipitation, temperature) and large-scale features (predic-

tors, e.g., pressure field, circulation pattern, humidity, or

coarse-resolution version of the predictant) will hold in future

climate. Many different statistical downscaling approaches

have been developed, based on simple change factors, linear or

nonlinear regression, self-organizing maps, quantile mapping,

or analogs (e.g., Wood et al. 2004; Hewitson and Crane 2006;

Fowler et al. 2007; Maurer et al. 2010; Stoner et al. 2012;

Ahmed et al. 2013; Alder and Hostetler 2019). Some statistical

downscaling approaches were developed for climate fields at

monthly resolution, and some at daily resolution. For climate

variables at the daily resolution, some widely used down-

scaling approaches underestimate precipitation extremes and

fail to resolve the finescale spatial anomalies (see reviews in

Bureau of Reclamation 2013; Gutmann et al. 2014; Mizukami

et al. 2016). The constructed analogs approaches, including, forCorresponding author: Guiling Wang, guiling.wang@uconn.edu
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example, the Multivariate Adaptive Constructed Analogs

(MACA; Abatzoglou and Brown 2012) and the Localized

Constructed Analogs (LOCA; Pierce et al. 2014, 2015), were

developed to address such challenges. To downscale a GCM

future daily field (using daily precipitation as an example), for

each day of the model data, constructed analog techniques

such as LOCA and MACA first identify multiple historical

analog days (i.e., days from observational or reanalysis data

that have large-scale features similar to the model data), and

assume that the relationship between the regionally-averaged

precipitation (e.g., precipitation at the GCM resolution) and

precipitation at a particular point on the finer grid is the same

in the future as it was on the selected historical analog day(s).

A finer-resolution future precipitation field is then computed

as the weighted average of finer-resolution observed precip-

itation among the analog days (Pierce et al. 2015). LOCA is

considered an improved methodology over MACA in the

choices of analogs and in how bias corrections are applied

(see details in section 2). MACA and LOCA have been

applied to daily output from a large ensemble of Coupled

Model Intercomparison Project phase 5 (CMIP5) GCMs to

derive three fine-resolution future climate projection data-

bases for the United States: LOCA database using the

Livneh et al. (2015) data as observational reference,MACA-M

using gridMET (Abatzoglou 2013), and MACA-L using the

Livneh et al. (2015) data as observational references.

LOCA and MACA climate projection databases include

primary variables for surface climate (precipitation and tem-

perature, among others), and have seen widespread applica-

tion in climate change assessments and adaptation planning.

For example, the LOCA database was used in the Fourth U.S.

National Climate Assessment (Easterling et al. 2017) and the

Massachusetts state climate assessment (Northeast Climate

Adaptation Science Center 2018; https://necsc.umass.edu/

projects/massachusetts-climate-change-projections); MACA-M

was used in the U.S. Forest Service Resource Planning Act as-

sessment (Joyce et al. 2018) and the Connecticut state climate

assessment (e.g., Seth et al. 2019). Climate change assess-

ments are undertaken in collaboration with decision-makers

and other stakeholders to better align assessment outputs

with the needs of potential users of those outputs (Cash et al.

2003; Kirchhoff et al. 2019). Assessments are often used to

help decision-makers understand changes in future flood,

drought, and other risks that in turn rely on data for precip-

itation characteristics defined at short temporal scales (such

as precipitation intensity, frequency, and extremes at daily

or hourly resolution) that are challenging to downscale and

quantify. While the choice of database used in climate change

assessments and adaptation planning often depends on the pur-

pose of the assessment or the question being asked (Kotamarthi

et al. 2016), too often databases are chosen with very little

consideration of the effect that choice has on assessment

findings. Uncertainty analyses, if included at all, primarily

concerned GCM dependence and the representative con-

centration pathways (RCPs).

Independently of assessment processes, scholars have eval-

uated statistically downscaled datasets and found a strong de-

pendence of monthly and annual precipitation on the specific

downscaling method and observational reference data used

(e.g., Mizukami et al. 2016; Alder and Hostetler 2019).

Moreover, observational reference itself is subject to uncer-

tainties related to spatially and temporally distributing gauge-

based precipitation data to create a uniform, gridded product

(e.g., Livneh et al. 2015; Ahmadalipour and Moradkhani 2017;

Henn et al. 2018). Alder and Hostetler (2019) evaluated six

different downscaled datasets including among others the

MACA-M, MACA-L, and LOCA databases and compared

monthly temperature and precipitation in the western United

States. They found substantial differences in mountainous re-

gions between the monthly products using different down-

scaling methods as well as between products using the same

methods but different observational reference data, and attrib-

uted such differences to elevation-related bias correction and

the inclusion of high-elevation data (Alder and Hostetler 2019).

Independent of elevation, relative to monthly precipitation,

precipitation characteristics defined at short temporal scales

(such as precipitation intensity, frequency, and extremes at daily

or hourly resolution) are even more challenging to quantify and

are oftenmore sensitive to specific downscaling procedures (e.g.,

Bürger et al. 2012, 2013; Wootten 2018). While state and na-

tional climate assessments have used LOCA or MACA-M to

quantify changes in these precipitation characteristics related to

flood risks (Easterling et al. 2017; Seth et al. 2019), no direct

comparison of extreme indicators between the two databases

has yet been undertaken. As a result, it is not clear how differ-

ences in downscaling approach and observational reference data

may have influenced the final products and how the choice of a

particular product may have influenced the assessment results.

To fill this gap, the current study compares precipitation char-

acteristics and their future changes derived from the MACA-M

(simply referred to as MACA hereafter) and LOCA databases,

and elucidates what may have caused the differences between

these two products using the U.S. Northeast as a case study.

Theoretical analysis of Earth’s energy and water budgets

and atmospheric thermodynamics suggests that as global

temperature rises, global precipitation amount and extreme

precipitation intensity will increase, while precipitation fre-

quency will decrease with longer dry spells between precipi-

tating events (e.g., Trenberth 1999). This general notion has

been supported by results from global climate model experi-

ments (e.g., Kharin et al. 2013, 2018; Wang et al. 2017a; Pierce

et al. 2013; Polade et al. 2014; Badger et al. 2018) and in-

creasingly confirmed by observational evidence (e.g., Fischer

and Knutti 2016). Within the United States, the Northeast has

experienced the fastest regional increase of extreme precipi-

tation, and the projected future increase of extreme precipi-

tation is also the highest of the nation (Walsh et al. 2014;

Easterling et al. 2017). Numerous studies have investigated

the past and future changes of precipitation characteristics in

the Northeast, including spatially lumped analysis, individual

station-based analysis, and spatially distributed analysis using

gridded data (e.g., Keim andRock 2002; Groisman et al. 2004,

2005; Griffiths and Bradley 2007; Brown et al. 2010; Hodgkins

and Dudley 2011; Kunkel et al. 2013; Horton et al. 2014;

Janssen et al. 2014; Walsh et al. 2014; Thibeault and Seth 2014;

Ning et al. 2015; Easterling et al. 2017). Differences among
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past studies primarily concerned themagnitude and sometimes

seasonality of changes, which depended on the specific time

periods over which the changes were defined as well as the

source of observational data andmodels for future projections.

However, qualitatively, all past studies documented a shift

toward a more flood-prone condition, including an observed or

projected overall increase of precipitation amount and in-

crease of heavy precipitation frequency and intensity.

The U.S. Northeast is home to several major metropolises,

making the region especially vulnerable to extreme events

from a socioeconomic perspective. And while state- and city-

level climate change assessments (e.g., Boston, NewYork City,

Massachusetts, and Connecticut) (Kirchhoff et al. 2019) seek

to provide climate change information relevant to local met-

ropolitan issues such as flooding and water quality, those

tasked with undertaking climate assessments may lack infor-

mation or knowledge on whether existing datasets are suitable

for use in local assessments and how analytical results may

depend on which specific database is used. Through comparing

two major databases (MACA and LOCA) for the downscaled

U.S. climate using the Northeast as an example, this study at-

tempts to elucidate similarities and differences and their im-

plications, and identify research needs for further development

or improvement of climate downscaling methods and datasets

to better serve society. Note that bothMACA andLOCAhave

been independently documented elsewhere. The focus of this

study is not on their individual credential. Instead, we focus on

their similarity and differences as they relate to uncertainties in

climate assessment. Section 2 briefly describes the MACA

and LOCA data and methods and the global models chosen,

and section 3 describes the precipitation indices definition and

analysis method. Results are presented in section 4, followed

by discussion and conclusions in section 5.

2. Data description

This study compares precipitation characteristics and their

future changes derived from two statistically downscaled cli-

mate databases, LOCA and MACAv2-METDATA. Data

from both products are available at daily resolution, cover the

period 1950–2005 for historical runs and 2006–2100 for future

experiments, and include both RCP4.5 and RCP8.5 future

scenarios. LOCA, with a spatial resolution of 1/168 (;6 km),

was developed by applying the LOCA approach (Pierce et al.

2014, 2015) to 32 GCMs using the Livneh et al. (2015) data as

the observational reference for bias correction. MACAv2-

METDATA (referred to as ‘‘MACA’’ hereafter for con-

venience), with a spatial resolution of 1/248 (;4 km), was

developed by applying the MACA approach (Abatzoglou and

Brown 2012) to 20 CMIP5 GCMs using gridMET (formerly

known as METDATA; Abatzoglou 2013) during 1979–2012 as

the observational reference for bias correction. In addition, the

MACA approach was applied to the same 20 GCMs using

Livneh et al. (2015) during 1950–2011 as the observational

reference for bias correction, and the resulting product is re-

ferred to as MACA-L. LOCA and MACA-L share the same

training data, and MACA and MACA-L share the same

downscaling and bias correction method. While the focus of

this study is on comparing LOCA and MACA, data from

MACA-L are analyzed to help understand the differences

between LOCA and MACA.

Both LOCA and MACA are among the more sophisticated

statistical downscaling methods, involving bias correction

utilizing a training meteorological dataset (i.e., the observa-

tional reference) and spatial downscaling utilizing constructed

analogs. The two methods differ in the number of analogs used

to determine the climate variable (especially precipitation) at

each grid cell and the stages at which bias corrections are applied.

The MACA method (Abatzoglou and Brown 2012) includes

epoch removal and replacement at the beginning and end of the

procedure, constructed analogs for downscaling, and quantile

mapping approach to bias correction (before and after constructed

analog downscaling); the downscaling process involves weighted

averaging across multiple chosen analogs. The LOCA approach

(Pierce et al. 2014, 2015) features several improvements related to

the choice of analog(s) and how bias correction is conducted.

Instead of averaging across multiple analogs chosen based on

large-scale pattern, LOCA employs multiscale matching by first

identifying the top 30 best large-scale analogs and then choosing

among them a single analog that is the best match for the local

area around the grid cell being downscaled; moreover, LOCA

refines the bias correction approach to preserve each GCM’s

original climate change projections and to better represent vari-

ability and extremes at multiple time scales.

In addition to method, differences in training data also

contribute to the differences between the MACA and LOCA

databases. The gridMET data (Abatzoglou 2013; training data

for MACA) are available from 1979 to present day at a 1/248
resolution, and the Livneh et al. (2015) data (training data for

LOCA) are available from 1950 to 2013 at a 1/168 resolution.
Precipitation in both datasets are based primarily on publicly

available data from rain gauges. The two datasets have a very

similar monthly climatology based on the Parameter-Elevation

Regressions on Independent Slopes Model (PRISM; Daly

et al. 1994) product, but can exhibit large differences in day-to-

day variations based on the choice of stations used, gridding

assumptions, and treatment for temporal distribution.

We used independent daily precipitation data from ten sta-

tions at water supply reservoirs in southwest Connecticut

spanning the area 41.288–41.548N, 72.628–73.068W, to compare

with the two gridded datasets. These data were provided by the

Southwest Connecticut RegionalWaterAuthority (RWA) and

were from rain gauge stations not used in deriving either

gridded product. Figure 1 shows the comparison during several

extreme events, averaged across the RWA water supply area.

The daily precipitation in gridMET agrees quite well with

observations at the RWA stations, but the Livneh et al. (2015)

data tend to underestimate heavy precipitation and overesti-

mate precipitation on days immediately before and/or after

heavy precipitation events (Fig. 1). This qualitative observa-

tion based on individual events is confirmed by precipitation

statistics over the RWA area based on the three datasets

during their overlapping period 2001–13 (Table 1). For ex-

ample, in the RWA area, the Livneh et al. data overestimate

the number of rainy days by;40%, underestimate the number

of heavy precipitation days (with more than one inch of rain)
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by ;40%, and underestimate annual maximum 1-day precip-

itation by;30% (Table 1). The inaccuracy of the Livneh et al.

data is due to the use of a linear split of each recorded 24-h

precipitation amount into two calendar days in data pro-

duction (rather than using the simple nonoverlapping 24-h

records for which the exact calendar day does not matter).

When precipitation is aggregated over several days or a

longer time period, the difference between the two datasets

becomes negligible (Table 1). This comparison holds else-

where too. For example, averaged over the common period

of 34 years (1980–2013), the annual maximum 1-day pre-

cipitation (R1d) in the Livneh et al. (2015) data is much

lower than in gridMET (Fig. 2). However, the maximum

5-day precipitation is almost identical between the two, and

so is the annual total precipitation (Table 1 and Figs. 2

and 3).

Both MACA and LOCA include downscaled climate data

from a large number of global climate or Earth system models.

Global models are known to produce a large spread in their

future projections, due to model dependence of both the cli-

mate sensitivity (defined based on the global average temper-

ature response) and the spatial pattern of such response (e.g.,

Knutti et al. 2010; Tebaldi et al. 2011; Miao et al. 2014). A

multimodel ensemble average is considered more accurate and

reliable than output from any individual model, as errors and

natural variability from different models tend to offset each

other (Pierce et al. 2009; Deser et al. 2012). To compare

MACA and LOCA, eight models were chosen from each to

represent the full range of uncertainties in future projections

(Table 2). These models were chosen based on genealogy

(Masson and Knutti 2011; Knutti et al. 2013), performance in

simulating present-day climate over eastern North America

and the Northeast (Sheffield et al. 2013; Miao et al. 2014;

McSweeney et al. 2015; Karmalkar et al. 2019), global climate

sensitivity (Miao et al. 2014), and climate sensitivity for the

Northeast region (Table 2).

Data for both RCP4.5 and RCP8.5 scenarios are available

fromMACA and LOCA.While RCP8.5 was considered a high

emission scenario, emissions and observed CO2 concentration

have closely trackedRCP8.5 over the past decade. Considering

this recent trend and the climate security recommendation to

build for a higher magnitude of warming than the target of

international climate policy in case mitigation policies fail

(Mabey et al. 2011; Sanford et al. 2014), this study makes use of

the RCP8.5 scenario.

3. Precipitation indices and analysis method

To compare MACA and LOCA databases, we examine a

variety of precipitation characteristics. A large array of in-

dices have been proposed to quantify precipitation extremes

(e.g., Frich et al. 2002; Zhang et al. 2011). While many of

these indices have been widely used in climate change

studies (e.g., Ahmed et al. 2013; Thibeault and Seth 2014),

often only a subset of available climate indicators are used

in any given climate change assessment. The choice of which

indicators to include is often informed by assessment best

practices and interactions with stakeholders to define deci-

sion needs and interests. In this study, based on core indices

proposed by the joint CCl/CLIVAR/JCOMM Expert Team

(ET) on Climate Change Detection and Indices (ETCCDI)

(Karl et al. 1999) and considering stakeholder needs iden-

tified through the Connecticut state assessment (Seth et al.

2019; Kirchhoff et al. 2019), the following precipitation in-

dicators are analyzed:

TABLE 1. Precipitation indices (as defined in section 3) over the area of Connecticut Regional Water Authority (RWA) reservoirs from

different data sources.

Precipitation index Amount (mm yr21) Nwet (days) SII (mmday21) N_1inch (days) CDD (days) R1d (mm) R5d (mm)

RWA rain gauges 1306 105 12.4 14.3 18 80 125

gridMET 1325 114 11.5 13.1 16.3 78 115

Livneh et al. 1314 160 8.2 7.8 15.7 55 114

FIG. 1. (a)–(c) Spatial average of daily precipitation (mm) during

the month of several extreme events: from gridMET (green),

Livneh et al. dataset (orange), and rain gauges located at the

Connecticut Regional Water Authority reservoirs (black).
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FIG. 2. The 34-year (1980–2013) average of annual 1-day maximum precipitation (R1d) and 5-day max-

imum precipitation (R5d), from gridMET and Livneh et al. and differences between the two products. The

numbers written within each panel are spatial averages; units are millimeters.

DECEMBER 2020 WANG ET AL . 2743

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 06:10 PM UTC



AnnP, annual accumulation of precipitation amount;

N_wet, number of days (per year) with more than 1mm of

precipitation;

SII, simple intensity index (i.e., average amount of precip-

itation on each wet day);

CDD, maximum number of consecutive dry days for each

JJA season;

N_1inch, number of days per year with more than 1 in.

(25.4mm) of precipitation;

P99, the 99th percentile of daily precipitation in the histor-

ical climate;

N99, number of days each year with precipitation exceeding

the historical P99;

F99, fraction of annual precipitation accounted for by N99;

R1d, annual maximum 1-day precipitation;

R5d, annual maximum 5-day precipitation.

Note that in prior studies the maximum consecutive dry days

(CDD) is typically defined for each year. However, in the U.S.

Northeast, maximum CDD occurs during winter for most

years, while summer (June–August) is the season of the highest

water demand for agricultural and domestic usage. We there-

fore use the summer CDD for its regional relevance.

With the exception of P99 (which is estimated for the period

1970–99 only), all other metrics are estimated for each of the

three 30-year periods, including historical 1970–99, midcentury

2040–69, and late century 2070–99; the multimodel ensemble

mean of the projected changes by mid- and late century are

analyzed. In addition, to support the development of climate

adaptation strategies (e.g., revising infrastructure design cri-

teria), the size of rare events (with a recurrence interval of N

years) as well as the future recurrence interval of the past 1-in-

N-years events are also estimated for R1d and R5d, with N

equal to 5, 10, 20, 50, and 100, respectively. Despite of the

challenges and uncertainties associated with the estimation of

these extreme statistics, they are included here due to strong

stakeholder interest and practical importance related to risk

management.

The estimation of recurrence interval T of a given event size

and the estimation of the event size XN corresponding to a

given recurrence intervalN involves frequency analysis. This is

done by fitting a theoretical distribution to the 30 years of data

in each period for each model. For R1d and R5d, the gener-

alized extreme value (GEV) distribution is chosen, and the

L-moments method is used to estimate the location, scale, and

shape parameters of the GEV distribution following previous

studies (Hosking 1990; Kharin et al. 2013). These parameters

are then used to estimateXN for given recurrence intervalN in

different climates as well as the future recurrence interval T of

the past extremes.

For most precipitation indices analyzed in this study, pro-

jected future changes are defined as the eight-model ensemble

mean of the changes from the historical to midcentury and late

century. An ensemble mean of changes at a given grid cell is

estimated only if there is a high level of model consensus (de-

fined as at least six out of the eight models agree) on the direc-

tion of projected changes, and the significance of the ensemble

mean changes is tested using a one-sided t test with a 5 0.05.

Changes for which the degree of model consensus is low or the

magnitude of the ensemble mean does not pass the significance

test are considered inconclusive, and are excluded from both the

spatial distribution plotting and domain averaging.

4. Results

a. Observations and model historical climate

The observational data underlying the two databases, gridMET

and Livneh et al. (2015), are similar in temporally aggregated

precipitation but differ significantly in the day-to-day variation

of precipitation (Fig. 1), leading to significant differences in

most of the precipitation indicators examined in this study. As

the objective of a statistical downscaling method for the his-

torical period is to reproduce the statistics of the training data,

not surprisingly, the historical eight-model ensemble mean of

downscaled precipitation characteristics from MACA and

LOCA (Figs. 3–5) are almost identical to those from the

gridMET and Livneh et al. data, respectively, and differ sig-

nificantly between MACA and LOCA. For each database,

slight differences between the downscaled model climates and

the training data can be attributed to decadal variability and

model internal variability. The following description of his-

torical climate therefore focuses on the comparison of model

climate between LOCA and MACA (Figs. 3–5), with the un-

derstanding that these mostly reflect the differences between

the two training datasets.

The annual precipitation climatology for LOCA and MACA

during the historical period closely resemble each other in

spatial pattern (Fig. 3). This is expected due to the agreement

between the two training datasets in annual precipitation, both

of which were adjusted to reproduce PRISM (Daly et al. 1994).

The domain average of annual precipitation is slightly lower

in LOCA (1097mm yr21) than in MACA (1146mmyr21)

(Table 3). The 30-year average of daily precipitation charac-

teristics based on the eight-model ensemblemean substantially

differs between the two databases. Across the domain of

analysis, heavy precipitation is less frequent and less intense in

LOCA than in MACA (as reflected by N_1inch, F99, R1d)

(Figs. 3 and 4), which is consistent with the general under-

estimation of heavy precipitation in LOCA’s training data.

Relative to MACA, a similar amount of precipitation in

LOCA is distributed among a larger number of wet days,

leading to a lowermean intensity, with SII spatially averaged to

7.1mmday21 in LOCA and 8.7mmday21 in MACA (Table 3

and Fig. 3). There are fewer heavy precipitation days in LOCA

than in MACA (Fig. 4), with a spatial average of N_1inch at

;4.4 days compared to 8 days. Extremely heavy precipitation

(defined as events exceeding the 99th percentile of daily pre-

cipitation) accounts for a lower fraction of annual precipitation

in LOCA, with a spatial average of 11.6% for F99 (compared

to 14.2% in MACA) (Fig. 4). The annual maximum 1-day

precipitation is also significantly lower in LOCA, averaging to

45mm (compared to 58mm in MACA) (Fig. 5). For all these

precipitation metrics, despite the differences in magnitude,

LOCA and MACA demonstrate a similar spatial pattern,

which (with the exception of N_wet) features an increase from
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inland toward the coastal region and from low elevation to

high elevation.

In the Northeast, most of the rare and extremely rare pre-

cipitation events are related to tropical storms/hurricanes in

late summer and fall as well as nor’easters during winter.

The sizes of daily precipitation with a recurrence interval of

20 and 100 years, respectively, are presented in Fig. 5.

Consistent with other daily precipitation characteristics, the

magnitude of the 1-day precipitation during these rare

events is much smaller in LOCA than in MACA. In LOCA,

precipitation during these rare events follows a spatial

pattern similar to the average events, with a general coast–

inland contrast; in MACA, the large-scale spatial pattern of

precipitation during these rare events deviates from the

average events, with a northeast–southwest–oriented heavy

precipitation band slightly inland away from the coast. Both

products show a clear topographic fingerprint of rare daily

precipitation, with local maxima over the ridgeline of the

FIG. 3. Eight-model ensemblemean for the 30-year average of annual precipitation (AnnP), simple intensity index (SII), and the annual

wet days (N_wet) during the historical period (1970–99), fromMACA and LOCA, and differences between the two. The numbers written

within each panel are spatial averages.
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Catskill (New York), Green (Vermont), and White (New

Hampshire and Maine) Mountains.

In summary, for historical climate, MACA and LOCA are

similar in precipitation amount, but differ substantially in

the mean and extremes of daily precipitation characteristics.

These differences are mostly attributed to the underlying

observational datasets, and do not reflect differences in the

downscaling method.

b. Projected future changes

1) CHANGES IN PRECIPITATION AMOUNT

Results from the two products show remarkably similar

spatial pattern of projected changes in precipitation with

stronger increases over high altitudes than valleys, based on the

absolute changes (e.g., Figs. 6a1–a4); relative changes in both

products show little spatial variation (results not shown).

Table 3 lists the spatial average of annual and seasonal pre-

cipitation and projected changes for midcentury and late cen-

tury, based on the eight-model ensemble mean. Despite some

differences in the absolute amount, MACA and LOCA agree

well in projecting the relative changes. For example, the annual

total precipitation is projected to increase 7%–8% by mid-

century (2040–69) and approximately 10.5% by late century in

both products. These projected increases are due primarily to

increases in the winter and spring seasons. In both products,

there is a high degree of model consensus across the whole

domain in projecting a significant increase of precipitation in

winter and spring for both future periods. For summer pre-

cipitation over most of the domain, the degree of model con-

sensus on an increase is high for midcentury and low for late

century, suggesting a higher degree of uncertainty for warm-

season precipitation projections further into the future. For fall

precipitation during both future periods and in both products,

the eight models either disagree on the direction of changes or

project changes that are statistically not significant.

2) CHANGES IN PRECIPITATION CHARACTERISTICS

AND EXTREMES

For projected future changes of precipitation characteristics

(with the exception of annual maximum 1-day precipitation),

results from LOCA and MACA are generally similar despite

their significant differences in the historical climate. According

to both products, changes in N_wet and summertime CDD are

inconclusive for both future periods. Over most of the domain

the level of model consensus is low on the direction of changes;

over the small fraction of the region where the degree of model

consensus is high, summer CDD is projected to increase by

both LOCA and MACA while N_wet is projected to increase

in MACA and decrease in LOCA (Figs. 6c1–c4 and 7a1–a4).

For SII, N_1inch, and F99, both LOCA and MACA project

significant increases with a high degree of model consensus,

and their absolute changes are very similar between the two

products especially for the late century (Figs. 6b1–b4 and

7b1–c4). For the midcentury period, MACA projects slightly

larger increases than LOCA; the increase continues beyond

midcentury, but at a slower pace in MACA than in LOCA, ar-

riving at a similarmagnitude of total changes in the two products

by the late century. For all these threemetrics (SII, N_1inch, and

F99), historical reference is substantially lower in LOCA than in

MACA. As such, similar absolute changes translate to a larger

relative change in LOCA than in MACA (Table 4).

The projected changes in the long-term mean of annual

maximum 1-day precipitation (R1d) differ significantly be-

tween the two products, with LOCA projecting a much smaller

increase than MACA for both future time periods. This

statement holds for both the absolute and relative changes

(Fig. 8), and the differences between LOCA and MACA are

larger in magnitude than the standard deviation among the

eight GCMs (Table 4). MACA projects a faster increase from

the historical period to midcentury than LOCA and a slower

increase from midcentury to late century. Despite the sub-

stantial differences in magnitude, the spatial pattern of pro-

jected future changes is similar between the two products, with

the strongest changes along the Northeast corridor and the east

coast of New England. There is a high degree of model con-

sensus on the increase of average R1d across the domain in

MACA and over most of the domain in LOCA; there are

scattered small areas in LOCA where the degree of model

consensus in projecting the direction of changes is very low.

Relative to the projected changes in the multiyear mean of

R1d, the differences between LOCA and MACA in projecting

R1d changes during rare extremes (e.g., R1d_20, or 1-in-20-years

events) are larger (Fig. 8); within each product, differences

TABLE 2. The eight global models included in the analysis, development groups, global temperature sensitivity under RCP8.5,

Northeast (NE) annual temperature and precipitation changes (DT and DP) between reference (1970–99) and midcentury (2040–69)

under RCP8.5, and model biases over eastern North America (ENA) for simulating summer (JJA) temperature and precipitation.

Model name Development group

Time to global 12.08C over

preindustrial

NE

DT (8C)
NE

DP (mm)

Model biases over ENA for

JJA T (8C) and P (%)

CanESM2 CCMA (Canada) 2030 (high) 13.7 186 3.18C, 222.2%

HadGEM2-CC Met Office (United Kingdom) 2032 (high) 14.4 1134 1.08C, 20.04%

IPSL-5A-LR IPSL (France) 2042 (medium) 13.3 159 0.48C, 9.9%
CCSM4 NCAR (United States) 2043 (medium) 12.7 1115 1.28C, 7.7%
CSIRO-Mk3.6.0 CSIRO (Australia) 2045 (medium) 13.2 1150 1.38C, 217.3%

GFDL-ESM2M GFDL (United States) 2049 (low) 12.3 189 20.38C, 25.2%

BCC-CSM1.1 BCC (China) 2052 (low) 13.2 1120 0.168C, 220.6%

INMcm4 INM (Russia) 2060 (low) 11.9 14 21.78C, 17.9%
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among models are larger too, leading to a lower level of model

consensus in projecting the direction of changes of rare extremes

than the R1d mean (Fig. 8). Results for other recurrence inter-

vals are qualitatively similar. MACA projects a strong increase

of the intensity ofR1d_20with a high degree ofmodel consensus

over most of the domain; for rarer evens (e.g., 1-in-100-years,

results not shown), the areas are larger where projected changes

are inconclusive. Over areas of strongmodel consensus, MACA

projects larger increases of precipitation during rare events for

midcentury than for late century (e.g., 43% versus 31% for

R1d_20). While this is counter intuitive, it is consistent with the

slowdown of the average R1d increase from midcentury to late

century, and likely results from extra processing in the MACA

approach such as epoch removal and replacement (Wootten

2018). Strongmodel consensus in projecting future precipitation

changes in rare events in LOCA is limited to a much smaller

FIG. 4. Eight-model ensemblemean for the 30-year average of maximum consecutive dry days (summer, CDD), annual total number of

days with more than 1 in. of precipitation (N_1inch), and the fraction of total precipitation accounted for by extreme events with daily

precipitation exceeding the 99th percentile (F99), fromMACA and LOCA, and differences between the two. The numbers written within

each panel are spatial averages.
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portion of the domain than inMACA; however, where there is a

strongmodel consensus, an increase is projected. Different from

MACA, the magnitude of projected changes in LOCA con-

tinues to increase from midcentury to late century. For the

changes from historical to late century, the difference between

LOCA andMACA is small in projecting the relative changes of

R1d mean and R1d_20. The greatest differences between

LOCA and MACA (and the counter intuitive comparison be-

tween midcentury and late century in MACA) are related to a

very strong increase of annual maximum 1-day precipitation

from historical to midcentury in the MACA database. By mid-

century, the absolute increase projected byMACA is a factor of

2 higher than that projected by LOCA for the mean R1d, and a

factor of 3 for R1d_20; the relative changes in MACA are a

factor of 2 higher for both R1d and R1d_20. These differences

get attenuated by late century.

MACA and LOCA differ substantially in projecting the

frequency ofmajor precipitation events (Fig. 8). InMACA, the

TABLE 3. Eight-model ensemble of precipitation climatology (mm) during the historical period and the projected changes from his-

torical reference to midcentury and late century, averaged over the Northeast. The ensemble is presented as m6 s, where m is the mean

ands is the standard deviation among the eightmodels. Percentage values in parentheses are relative changes.A dash ‘‘—’’ indicates a low

degree of model consensus regarding the direction of changes and/or lack of statistical significance. Note that all changes are positive (i.e.,

precipitation increase).

1970–99 reference 2040–69 changes 2070–99 changes

Variables MACA LOCA MACA LOCA MACA LOCA

Annual total 1146 6 10 1097 6 12 95 6 44 (8.3%) 83 6 44 (7.6%) 120 6 61 (10.5%) 116 6 54 (10.6%)

Winter (DJF) 238 6 6 242 6 4 35 6 24 (14.7%) 36 6 24 (14.9%) 47 6 23 (19.7%) 45 6 21 (18.6%)

Spring (MAM) 289 6 5 274 6 6 29 6 18 (10.0%) 26 6 16 (9.5%) 51 6 12 (17.6%) 51 6 14 (18.6%)

Summer (JJA) 308 6 7 293 6 6 21 6 14 (6.8%) 19 6 12 (6.5%) — —

Fall (SON) 311 6 9 289 6 7 — — — —

FIG. 5. The eight-model ensemble mean of 1-day maximum precipitation corresponding to the 30-year average (R1d_mean), extreme

events with a recurrence interval of 20 and 100 years (R1d_20 and R1d_100), respectively, defined for the reference period 1970–99 based

on MACA and LOCA. The numbers written within each panel are spatial averages.
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FIG. 6. The eight-model ensemble mean of projected future changes for annual precipitation d(AnnP) (mm), simple intensity index

d(SII) (mmday21), and annual wet days d(N_wet) (days) by the midcentury and late century, based on MACA and LOCA. White areas

over land (with no shading) indicate a lack of model consensus on the direction of projected changes (i.e., the 8 models split 4-to-4 or

5-to-3); black hatching indicates changes that are statistically not significant. The numbers written within each panel are spatial averages

where model consensus exists over a substantial portion of the domain.
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FIG. 7. The eight-model ensemble mean of projected future changes for consecutive dry days in summer ‘‘d(CDD),’’ annual total

number of days withmore than 1 in. of precipitation ‘‘d(N_1inch),’’ and the fraction of total precipitation accounted for by extreme events

with daily precipitation exceeding the 99th percentile ‘‘d(F99)’’ by the midcentury and late century, based on MACA and LOCA. White

areas over land (with no shading) indicate a lack of model consensus on the direction of projected changes (i.e., the 8models split 4-to-4 or

5-to-3); black hatching indicates changes that are statistically not significant. The numbers written within each panel are spatial averages

where model consensus exists over a substantial portion of the domain.

2750 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 06:10 PM UTC



historical 1-in-20-years 1-day precipitation events are pro-

jected to occur every 5–10 years over most of the region in

mid- and late century. In LOCA, strong model consensus on

projecting more frequent occurrence of the previously 1-in-

20-years events is limited to amuch smaller fraction of the domain

than inMACA; over a large portion of the region, previously rare

events are projected to become even less frequent. In both

products, the projection for rarer events (e.g., 1-in-100-years) is

subject to a higher degree of uncertainty.

Using three metropolitan areas (Boston, New York City,

and Washington, D.C.) as examples, Fig. 9 compares the sta-

tistical distribution of the spatially averaged, annual maximum

1-day precipitation of LOCA and MACA based on the

quantile–quantile (Q–Q) analysis. These Q–Q plots effectively

summarize the heavy precipitation comparisons between the

two products and between past and future climates. From low

quantiles to high quantiles, the different lines of the same color

increasingly diverge, reflecting an increasing degree of model

uncertainty (or intermodel variation); despite of the model

uncertainties, the signal is clear that R1d is generally lower

in LOCA than in MACA (with most of the lines below the

1:1 line), and their differences (as reflected by the deviation

from the 1:1 line) increases from low quantiles (common

events) to high quantiles (rare events) and from historical to

future climates. While R1d in both future periods is clearly

higher than the historical reference, the differences between

the two future periods are small and subject to a great degree of

model uncertainty.

c. Potential causes for the differences between LOCA
and MACA

The most substantial differences between LOCA and

MACA in future projections are in the changes of annual

maximum 1-day precipitation. The downscaling approach, the

training data, and their interplay contribute to the differences

between LOCA and MACA. Using individual models as an

example, Table 5 compares the spatial averages of the histor-

ical reference, projected future changes from historical to

midcentury and late century among LOCA, MACA-L, and

MACA. Note that LOCA andMACA-L use the same training

data but differ in downscaling method; MACA-L andMACA

were produced using the same downscaling approach but

different training datasets. During the historical period, the

mean R1d in MACA-L is larger than in LOCA, which is a

result of both a slight difference in the specific time period of

the Livneh et al. data used as training and differences be-

tween the downscaling methods; the mean R1d in MACA is

the highest, which is expected based on the high R1d values in

the training data (gridMET, Fig. 2). The projected changes

are quite close between MACA-L and MACA, but differ

significantly between LOCA and MACA-L. This suggests dif-

ferences in the projected changes are primarily caused by dif-

ferences of the downscaling method, rather than the training

data used. For any given GCM (GFDL or CCSM4), the pro-

jected R1d changes by the late century are larger than by the

midcentury over most of the domain in LOCA, over about half

of the domain in MACA-L, and over a small fraction of the

domain in MACA (results not shown). From the historical pe-

riod to midcentury, R1d is projected to increase much faster in

MACA-L and MACA (;20%) than in LOCA (;10%); the

increase beyondmidcentury continues in LOCAbut slows down

or stalls in MACA-L and MACA (Table 5). This statement

holds qualitatively for the downscaled products of all individual

GCMs, although the spatial pattern and magnitude of the pro-

jected changes differ among them.

To understand the large differences between LOCA and

MACA in projecting changes for the midcentury, comparison

with the raw GCM output was conducted. Using CCSM4 as an

example, Fig. 10 compares the historical R1d and projected

midcentury changes derived from the GCM, LOCA, and

MACA. Note that the similarity of the R1d magnitude be-

tween LOCA and the GCM is a coincidence: LOCA under-

estimates R1d due to the underestimation in its training data,

while the GCM underestimates R1d due to its coarse resolu-

tion. The similarity between LOCA and the GCM in the pro-

jected relative changes, both in terms of the magnitude and

large-scale spatial pattern, is by design. The LOCA down-

scaling method attempts to preserve the GCM-predicted rel-

ative change evaluated as a percent of the GCM’s historical

climatology, and applies the GCM-derived percent change to

the training data to derive the future values. This intentional pres-

ervation of relative change together with the (coincidental)

CCSM4-LOCA similarity in historical statistics lead to the

CCSM4-LOCA similarity in the projected absolute changes.

The MACA algorithm includes a similar design for preserving

relative changes, but was implemented at a different time scale

(monthly, as opposed to yearly in LOCA) to improve the

precipitation seasonal cycle. As such, in MACA, the relative

TABLE 4. Eight-model ensemble of precipitation metrics on intensity and extremes during the reference period and the projected

changes fromhistorical reference tomidcentury and late century, averaged over theNortheast. The ensemble is presented asm6s, where

m is the eight-model mean and s is the standard deviation among the eight models. All changes are positive (i.e., increases). Percentage

values in parentheses are changes relative to reference.

Metrics

1970–99 reference 2040–69 changes 2070–99 changes

MACA LOCA MACA LOCA MACA LOCA

SII (mmday21) 8.7 6 0.06 7.1 6 0.06 0.7 6 0.27 (8%) 0.63 6 0.34 (9%) 0.9 6 0.47 (10.3%) 0.9 6 0.53 (13.6%)

N_1inch (days) 8 6 0.19 4.4 6 0.15 1.8 6 0.8 (22%) 1.6 6 0.8 (36%) 2.3 6 1.3 (29%) 2.3 6 1.1 (53%)

F99 (%) 14.2 6 0.2 11.6 6 0.1 4.6 6 1.9 (32%) 4.1 6 2.0 (35%) 6 6 2.8 (42%) 6 6 2.7 (52%)

R1d_mean (mm) 58 6 0.9 45.1 6 0.7 12 6 3.7 (21%) 5.8 6 2.7 (13%) 13 6 4.2 (22%) 8.3 6 3.1 (18%)

R1d_20yrs (mm) 104 6 5.6 82.6 6 2.6 43 6 17 (41%) 13.4 6 5 (16%) 31 6 13 (30%) 19 6 8.5 (23%)
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FIG. 8. The eight-model ensemble mean of projected future changes in the 30-year mean of (left) 1-day maximum precipitation

‘‘d(R1d)’’ and (center) 1-day maximum precipitation with a recurrence interval of 20 years ‘‘d(R1d_20),’’ by the midcentury and late

century based on MACA and LOCA; (right) future recurrence interval of events that occurred once every 20 years during the historical

period. The lack of shading over land indicates a lack of model consensus (i.e., the 8 models split 4-to-4 or 5-to-3) on whether the change is

an increase or decrease, or on whether the future recurrence interval is expected to be longer or shorter than 20 years; black hatching (if

present) indicates changes that are statistically not significant. The numbers written within each panel are spatial averages where model

consensus exists over a substantial portion of the domain and where spatial averaging is meaningful.
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changes from the GCM were preserved for the monthly mean

but not for the annual maximum 1-day precipitation. MACA

starts with a much higher historical R1d (due to the more re-

alistic training data gridMET), and also projects a much larger

(absolute and relative) increase of mean R1d than LOCA. The

projected increase in MACA follows a large-scale spatial

pattern similar to the historical mean (and bears more simi-

larity to the observed distribution of precipitation extremes),

leading to a ‘‘heavy-becomes-heavier’’ scenario. The spatial

pattern of precipitation and precipitation extremes from

GCMs often deviate from observations, as evident from

Fig. 10. The analog approach corrects these spatial biases by

taking the weighted average of precipitation observed on days

with similar large-scale features as the day to be downscaled.

This, together with the bias correction procedure, causes the

differences between the GCM and the downscaled products in

the spatial pattern of projected changes.

5. Summary and discussion

Statistically downscaled climate databases are often used in

climate change assessments to inform climate adaptation efforts

without much attention to how the choice of dataset may influ-

ence assessment findings. In this study, future changes of pre-

cipitation and precipitation extremes in the U.S. Northeast are

assessed based on two statistically downscaled climate databases

with fine spatial resolution and results are compared. A special

focus of this study is on interrogating the similarity and differ-

ences between the two databases, MACA and LOCA, and on

identifying potential causes for differences. Future changes are

defined with respect to the historical reference period of 1970–

99, for the midcentury (2040–69) and late century (2070–99)

corresponding to the RCP8.5 scenario based on the ensemble of

eight models. The main findings are summarized as follows:

1) Both MACA and LOCA project significant annual precip-

itation increases, and the projected changes are similar in

magnitude, spatial pattern, and seasonality. The largest

increases of precipitation are projected during winter and

spring, with smaller increases during summer and incon-

clusive changes during autumn due to the lack of model

consensus on the direction of changes.

2) Both MACA and LOCA project significant increases of

several precipitation intensity metrics across the region with

strong model consensus, including the number of days with

more than one inch of precipitation, the simple intensity

index, and the fractional of annual precipitation accounted

for by days of heavy precipitation (exceeding the 99th

percentile of daily precipitation). The two products are

similar in the magnitude of absolute changes, but the relative

changes are larger in LOCAdue to underestimation of heavy

precipitation intensity metrics in LOCA’s training data.

TABLE 5. The domain average of 30-year mean of maximum 1-day precipitation ‘‘R1d’’ (mmday21) for the historical period and the projected

changes for midcentury and late century (relative to historical reference), based on LOCA, MACA-L, and MACA for GFDL and CCSM4.

GFDL CCSM

Datasets Historical reference Midcentury changes Late-century changes Historical Midcentury changes Late-century changes

LOCA 45 5.5 (12%) 9.6 (21%) 45.5 4.6 (10%) 6.5 (14%)

MACA-L 51.2 9.9 (19%) 11.4 (22%) 50 9.5 (19%) 10.9 (22%)

MACA 58.5 11 (19%) 10.4 (18%) 57.5 11.6 (20%) 12.9 (22%)

FIG. 9. The eight-model ensemble of Q–Q plot for the annual

maximum 1-day precipitation (R1d; mmday21) between LOCA and

MACA in historical, midcentury, and late-century climates, for three

metropolitan areas: (a)Boston, (b)NewYorkCity, and (c)Washington,

D.C. Each solid line represents one model, and the 1:1 line is dashed.
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3) BothMACA and LOCA project significant increases in the

long-term mean of annual maximum 1-day precipitation

across the region and with a high degree of model consen-

sus. The magnitude of both the absolute and relative

changes in maximum 1-day precipitation are smaller in

LOCA than in MACA, due to differences in both the

downscaling method and training data.

4) MACA and LOCA show major differences in projecting

changes to the rare 1-day precipitation (e.g., 1-in-20-years).

In MACA, both the intensity and frequency of rare events

are projected to significantly increase, with a high degree

of model consensus across most of the domain. In LOCA,

model consensus is lacking over most of the domain; where

models do agree, the projected changes have a smaller

magnitude than in MACA.

5) In MACA, the annual maximum 1-day precipitation is pro-

jected to increase swiftly from present day to midcentury,

and then increase more slowly from the midcentury to late

century; in contrast, the projected trend of the maximum

1-day precipitation in LOCA is approximately linear.

FIG. 10. (left) The 30-year average of 1-day maximum precipitation ‘‘R1d’’ during the historical period and projected (center) absolute

changes and (right) relative changes ‘‘d(R1d)’’ by midcentury, based on (top) CCSM4 output and the corresponding downscaled data

from (middle) LOCA and (bottom) MACA.
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Despite differences betweenMACA and LOCA in both the

downscaling methodology and training data used, the pro-

jected future changes of precipitation and precipitation ex-

tremes from the two products are qualitatively similar for the

most part. The increase of precipitation amount and the in-

crease of heavy precipitation frequency and intensity found in

both products are qualitatively consistent with results from

many previous studies on trend and changes over the U.S.

Northeast (e.g., Keim and Rock 2002; Groisman et al. 2004,

2005; Griffiths and Bradley 2007; Brown et al. 2010; Hodgkins

andDudley 2011; Kunkel et al. 2013; Janssen et al. 2014;Walsh

et al. 2014; Thibeault and Seth 2014; Easterling et al. 2017). For

climate assessments in terms of informing the general direction

of local climate adaptation for flood risks, either one of the two

products is appropriate. However, quantitatively, the specific

magnitude of these increases (especially of those related to ex-

treme precipitation) is subject to a high degree of uncertainty.

When future projections from the same GCMs were downscaled

to local scales, the projected changes in extreme precipitation

varied substantially depending on the downscaling algorithm and

theobservational data used to train the downscaling algorithm.For

specific applications, the choice between usingMACAor LOCA

is therefore important. For example, for emergency planning and

infrastructure design crucial for climate change adaptation, it is

the extreme events that matter, and the two products differ the

most in projecting changes in the intensity and frequency of rare

extreme events, with significantly less intense and less frequent

precipitation extremes in LOCA than in MACA.

The substantial differences between MACA and LOCA in

projecting changes of extreme precipitation highlight the

challenges local and regional climate assessment efforts face to

provide reliable local climate projections to support adapta-

tion. In addition to the major sources of uncertainties in global

climate projections (emission scenario, model dependence,

and internal variability), downscaling techniques also imbue

uncertainties in local and regional projections like MACA

and LOCA. Subtle processes in statistical downscaling such as

tail/trace adjustments or the stage at which bias correction is

applied can introduce a large range of uncertainties to the skill

of a downscaling product in capturing the frequency and inten-

sity of precipitation extremes (Ahmed et al. 2013;Wootten et al.

2017; Wootten 2018). Further development and improvement

of the downscaling techniques are critically needed to provide

reliable local climate projections to meet the increasing need

for locally relevant climate information to support adaptation

(Bierbaum et al. 2013; Kirchhoff et al. 2019). In the long term, as

the capacity of high performing computers increases, dynamical

downscaling using fine-resolution regional climate models (e.g.,

Prein et al. 2017) or variable-resolution regionally refined global

models (e.g., Energy Exascale Earth SystemModel; Golaz et al.

2019) are becoming more feasible and may be more regularly

used in the future (e.g., Leung et al. 2013). However, all models

suffer from systematic biases, which necessitates bias correction

for both regional and global climate models (Ahmed et al. 2013;

Wang et al. 2017b). As such, high-quality high-resolution pre-

cipitation measurement and improvement of bias correction

techniques are also critical for producing reliable local-scale

climate data in support of future climate adaptation efforts.
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