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Projected Changes of Precipitation Characteristics Depend on Downscaling Method and Training
Data: MACA versus LOCA Using the U.S. Northeast as an Example
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ABSTRACT: This study compares projected changes of precipitation characteristics in the U.S. Northeast in two analog-
based climate downscaling products, Multivariate Adaptive Constructed Analogs (MACA) and Localized Constructed
Analogs (LOCA). The level of similarity or differences between the two products varies with the type of precipitation
metrics. For the total precipitation amount, the two products project significant annual increases that are similar in mag-
nitude, spatial pattern, and seasonal distribution, with the largest increases in winter and spring. For the overall precipitation
intensity or temporal aggregation of heavy precipitation (e.g., number of days with more than one inch of precipitation, the
simple intensity index, and the fraction of annual precipitation accounted for by heavy events), both products project
significant increases across the region with strong model consensus; the magnitude of absolute increases are similar between
the two products, but the relative increases are larger in LOCA due to an underestimation of heavy precipitationin LOCA’s
training data. For precipitation extremes such as the annual maximum 1-day precipitation, both products project significant
increases in the long-term mean, but the magnitude of both the absolute and relative changes are much smaller in LOCA
than in MACA, indicating that the extreme precipitation differences in the training data are amplified in future projections
as a result of the analog-based downscaling algorithms. The two products differ the most in the intensity and frequency of
rare extremes (e.g., 1-in-20-years events) for which MACA projects significant increases while the LOCA-projected
changes are inconclusive over much of the study area.
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1. Introduction models (Maraun et al. 2010). Given these advantages, statis-
tical downscaling is frequently used to downscale GCMs and
RCMs projections (of precipitation and temperature in par-
ticular) to local scales that might be more directly usable by
state and local decision-makers (e.g., Maraun et al. 2010; Ning
et al. 2012; Abatzoglou and Brown 2012; Ahmed et al. 2013).

Statistical downscaling assumes that the present-day ob-
served relationship between local variables (predictant, e.g.,
precipitation, temperature) and large-scale features (predic-
tors, e.g., pressure field, circulation pattern, humidity, or
coarse-resolution version of the predictant) will hold in future
climate. Many different statistical downscaling approaches
have been developed, based on simple change factors, linear or
nonlinear regression, self-organizing maps, quantile mapping,
or analogs (e.g., Wood et al. 2004; Hewitson and Crane 2006;
Fowler et al. 2007; Maurer et al. 2010; Stoner et al. 2012;
Ahmed et al. 2013; Alder and Hostetler 2019). Some statistical
downscaling approaches were developed for climate fields at
monthly resolution, and some at daily resolution. For climate
variables at the daily resolution, some widely used down-
scaling approaches underestimate precipitation extremes and
fail to resolve the finescale spatial anomalies (see reviews in
Bureau of Reclamation 2013; Gutmann et al. 2014; Mizukami
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State and local governments and decision-makers across a
range of sectors including agriculture, transportation, energy,
and water are increasingly seeking place-based climate change
information to inform climate adaptation planning (Bierbaum
et al. 2013; Mach and Field 2017; Kirchhoff et al. 2019). Yet,
climate change projections derived from global climate models
(GCMs) with a typical spatial resolution of ~100-300 km, or
from dynamical downscaling using regional climate models
(RCMs) with a typical spatial resolution of 12-50km (e.g.,
Giorgi et al. 2009; Giorgi 2019; Mearns et al. 2012; Ruti et al.
2016; Zobel et al. 2018), are often too coarse to inform local
adaptation decisions (e.g., Wilby and Dessai 2010). Finer-
resolution dynamical downscaling output is often limited to
small domain, short length of model integration, or small en-
semble size (e.g., d’Orgeville et al. 2014; Prein et al. 2017). The
computational efficiency of statistical downscaling, which is
based on empirical relationships between local variables and
large-scale features, enables the creation of downscaled data
for a large ensemble of GCMs and RCMs and correction of
systematic biases in surface meteorological variables in these

DOI: 10.1175/JHM-D-19-0275.1

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).
Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 06:10 PM UTC


mailto:guiling.wang@uconn.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

2740

example, the Multivariate Adaptive Constructed Analogs
(MACA; Abatzoglou and Brown 2012) and the Localized
Constructed Analogs (LOCA; Pierce et al. 2014, 2015), were
developed to address such challenges. To downscale a GCM
future daily field (using daily precipitation as an example), for
each day of the model data, constructed analog techniques
such as LOCA and MACA first identify multiple historical
analog days (i.e., days from observational or reanalysis data
that have large-scale features similar to the model data), and
assume that the relationship between the regionally-averaged
precipitation (e.g., precipitation at the GCM resolution) and
precipitation at a particular point on the finer grid is the same
in the future as it was on the selected historical analog day(s).
A finer-resolution future precipitation field is then computed
as the weighted average of finer-resolution observed precip-
itation among the analog days (Pierce et al. 2015). LOCA is
considered an improved methodology over MACA in the
choices of analogs and in how bias corrections are applied
(see details in section 2). MACA and LOCA have been
applied to daily output from a large ensemble of Coupled
Model Intercomparison Project phase 5 (CMIP5) GCMs to
derive three fine-resolution future climate projection data-
bases for the United States: LOCA database using the
Livneh et al. (2015) data as observational reference, MACA-M
using gridMET (Abatzoglou 2013), and MACA-L using the
Livneh et al. (2015) data as observational references.

LOCA and MACA climate projection databases include
primary variables for surface climate (precipitation and tem-
perature, among others), and have seen widespread applica-
tion in climate change assessments and adaptation planning.
For example, the LOCA database was used in the Fourth U.S.
National Climate Assessment (Easterling et al. 2017) and the
Massachusetts state climate assessment (Northeast Climate
Adaptation Science Center 2018; https://necsc.umass.edu/
projects/massachusetts-climate-change-projections); MACA-M
was used in the U.S. Forest Service Resource Planning Act as-
sessment (Joyce et al. 2018) and the Connecticut state climate
assessment (e.g., Seth et al. 2019). Climate change assess-
ments are undertaken in collaboration with decision-makers
and other stakeholders to better align assessment outputs
with the needs of potential users of those outputs (Cash et al.
2003; Kirchhoff et al. 2019). Assessments are often used to
help decision-makers understand changes in future flood,
drought, and other risks that in turn rely on data for precip-
itation characteristics defined at short temporal scales (such
as precipitation intensity, frequency, and extremes at daily
or hourly resolution) that are challenging to downscale and
quantify. While the choice of database used in climate change
assessments and adaptation planning often depends on the pur-
pose of the assessment or the question being asked (Kotamarthi
et al. 2016), too often databases are chosen with very little
consideration of the effect that choice has on assessment
findings. Uncertainty analyses, if included at all, primarily
concerned GCM dependence and the representative con-
centration pathways (RCPs).

Independently of assessment processes, scholars have eval-
uated statistically downscaled datasets and found a strong de-
pendence of monthly and annual precipitation on the specific
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downscaling method and observational reference data used
(e.g., Mizukami et al. 2016; Alder and Hostetler 2019).
Moreover, observational reference itself is subject to uncer-
tainties related to spatially and temporally distributing gauge-
based precipitation data to create a uniform, gridded product
(e.g., Livneh et al. 2015; Ahmadalipour and Moradkhani 2017,
Henn et al. 2018). Alder and Hostetler (2019) evaluated six
different downscaled datasets including among others the
MACA-M, MACA-L, and LOCA databases and compared
monthly temperature and precipitation in the western United
States. They found substantial differences in mountainous re-
gions between the monthly products using different down-
scaling methods as well as between products using the same
methods but different observational reference data, and attrib-
uted such differences to elevation-related bias correction and
the inclusion of high-elevation data (Alder and Hostetler 2019).
Independent of elevation, relative to monthly precipitation,
precipitation characteristics defined at short temporal scales
(such as precipitation intensity, frequency, and extremes at daily
or hourly resolution) are even more challenging to quantify and
are often more sensitive to specific downscaling procedures (e.g.,
Biirger et al. 2012, 2013; Wootten 2018). While state and na-
tional climate assessments have used LOCA or MACA-M to
quantify changes in these precipitation characteristics related to
flood risks (Easterling et al. 2017; Seth et al. 2019), no direct
comparison of extreme indicators between the two databases
has yet been undertaken. As a result, it is not clear how differ-
ences in downscaling approach and observational reference data
may have influenced the final products and how the choice of a
particular product may have influenced the assessment results.
To fill this gap, the current study compares precipitation char-
acteristics and their future changes derived from the MACA-M
(simply referred to as MACA hereafter) and LOCA databases,
and elucidates what may have caused the differences between
these two products using the U.S. Northeast as a case study.
Theoretical analysis of Earth’s energy and water budgets
and atmospheric thermodynamics suggests that as global
temperature rises, global precipitation amount and extreme
precipitation intensity will increase, while precipitation fre-
quency will decrease with longer dry spells between precipi-
tating events (e.g., Trenberth 1999). This general notion has
been supported by results from global climate model experi-
ments (e.g., Kharin et al. 2013, 2018; Wang et al. 2017a; Pierce
et al. 2013; Polade et al. 2014; Badger et al. 2018) and in-
creasingly confirmed by observational evidence (e.g., Fischer
and Knutti 2016). Within the United States, the Northeast has
experienced the fastest regional increase of extreme precipi-
tation, and the projected future increase of extreme precipi-
tation is also the highest of the nation (Walsh et al. 2014;
Easterling et al. 2017). Numerous studies have investigated
the past and future changes of precipitation characteristics in
the Northeast, including spatially lumped analysis, individual
station-based analysis, and spatially distributed analysis using
gridded data (e.g., Keim and Rock 2002; Groisman et al. 2004,
2005; Griffiths and Bradley 2007; Brown et al. 2010; Hodgkins
and Dudley 2011; Kunkel et al. 2013; Horton et al. 2014;
Janssen et al. 2014; Walsh et al. 2014; Thibeault and Seth 2014;
Ning et al. 2015; Easterling et al. 2017). Differences among
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past studies primarily concerned the magnitude and sometimes
seasonality of changes, which depended on the specific time
periods over which the changes were defined as well as the
source of observational data and models for future projections.
However, qualitatively, all past studies documented a shift
toward a more flood-prone condition, including an observed or
projected overall increase of precipitation amount and in-
crease of heavy precipitation frequency and intensity.

The U.S. Northeast is home to several major metropolises,
making the region especially vulnerable to extreme events
from a socioeconomic perspective. And while state- and city-
level climate change assessments (e.g., Boston, New York City,
Massachusetts, and Connecticut) (Kirchhoff et al. 2019) seek
to provide climate change information relevant to local met-
ropolitan issues such as flooding and water quality, those
tasked with undertaking climate assessments may lack infor-
mation or knowledge on whether existing datasets are suitable
for use in local assessments and how analytical results may
depend on which specific database is used. Through comparing
two major databases (MACA and LOCA) for the downscaled
U.S. climate using the Northeast as an example, this study at-
tempts to elucidate similarities and differences and their im-
plications, and identify research needs for further development
or improvement of climate downscaling methods and datasets
to better serve society. Note that both MACA and LOCA have
been independently documented elsewhere. The focus of this
study is not on their individual credential. Instead, we focus on
their similarity and differences as they relate to uncertainties in
climate assessment. Section 2 briefly describes the MACA
and LOCA data and methods and the global models chosen,
and section 3 describes the precipitation indices definition and
analysis method. Results are presented in section 4, followed
by discussion and conclusions in section 5.

2. Data description

This study compares precipitation characteristics and their
future changes derived from two statistically downscaled cli-
mate databases, LOCA and MACAvV2-METDATA. Data
from both products are available at daily resolution, cover the
period 1950-2005 for historical runs and 2006-2100 for future
experiments, and include both RCP4.5 and RCP8.5 future
scenarios. LOCA, with a spatial resolution of 1/16° (~6 km),
was developed by applying the LOCA approach (Pierce et al.
2014, 2015) to 32 GCMs using the Livneh et al. (2015) data as
the observational reference for bias correction. MACAvV2-
METDATA (referred to as “MACA” hereafter for con-
venience), with a spatial resolution of 1/24° (~4km), was
developed by applying the MACA approach (Abatzoglou and
Brown 2012) to 20 CMIP5 GCMs using gridMET (formerly
known as METDATA; Abatzoglou 2013) during 1979-2012 as
the observational reference for bias correction. In addition, the
MACA approach was applied to the same 20 GCMs using
Livneh et al. (2015) during 1950-2011 as the observational
reference for bias correction, and the resulting product is re-
ferred to as MACA-L. LOCA and MACA-L share the same
training data, and MACA and MACA-L share the same
downscaling and bias correction method. While the focus of
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this study is on comparing LOCA and MACA, data from
MACA-L are analyzed to help understand the differences
between LOCA and MACA.

Both LOCA and MACA are among the more sophisticated
statistical downscaling methods, involving bias correction
utilizing a training meteorological dataset (i.e., the observa-
tional reference) and spatial downscaling utilizing constructed
analogs. The two methods differ in the number of analogs used
to determine the climate variable (especially precipitation) at
each grid cell and the stages at which bias corrections are applied.
The MACA method (Abatzoglou and Brown 2012) includes
epoch removal and replacement at the beginning and end of the
procedure, constructed analogs for downscaling, and quantile
mapping approach to bias correction (before and after constructed
analog downscaling); the downscaling process involves weighted
averaging across multiple chosen analogs. The LOCA approach
(Pierce et al. 2014, 2015) features several improvements related to
the choice of analog(s) and how bias correction is conducted.
Instead of averaging across multiple analogs chosen based on
large-scale pattern, LOCA employs multiscale matching by first
identifying the top 30 best large-scale analogs and then choosing
among them a single analog that is the best match for the local
area around the grid cell being downscaled; moreover, LOCA
refines the bias correction approach to preserve each GCM’s
original climate change projections and to better represent vari-
ability and extremes at multiple time scales.

In addition to method, differences in training data also
contribute to the differences between the MACA and LOCA
databases. The gridMET data (Abatzoglou 2013; training data
for MACA) are available from 1979 to present day at a 1/24°
resolution, and the Livneh et al. (2015) data (training data for
LOCA) are available from 1950 to 2013 at a 1/16° resolution.
Precipitation in both datasets are based primarily on publicly
available data from rain gauges. The two datasets have a very
similar monthly climatology based on the Parameter-Elevation
Regressions on Independent Slopes Model (PRISM; Daly
et al. 1994) product, but can exhibit large differences in day-to-
day variations based on the choice of stations used, gridding
assumptions, and treatment for temporal distribution.

We used independent daily precipitation data from ten sta-
tions at water supply reservoirs in southwest Connecticut
spanning the area 41.28°-41.54°N, 72.62°-73.06°W, to compare
with the two gridded datasets. These data were provided by the
Southwest Connecticut Regional Water Authority (RWA) and
were from rain gauge stations not used in deriving either
gridded product. Figure 1 shows the comparison during several
extreme events, averaged across the RWA water supply area.
The daily precipitation in gridMET agrees quite well with
observations at the RWA stations, but the Livneh et al. (2015)
data tend to underestimate heavy precipitation and overesti-
mate precipitation on days immediately before and/or after
heavy precipitation events (Fig. 1). This qualitative observa-
tion based on individual events is confirmed by precipitation
statistics over the RWA area based on the three datasets
during their overlapping period 2001-13 (Table 1). For ex-
ample, in the RWA area, the Livneh et al. data overestimate
the number of rainy days by ~40%, underestimate the number
of heavy precipitation days (with more than one inch of rain)
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Fi1G. 1. (a)—(c) Spatial average of daily precipitation (mm) during
the month of several extreme events: from gridMET (green),
Livneh et al. dataset (orange), and rain gauges located at the
Connecticut Regional Water Authority reservoirs (black).

by ~40%, and underestimate annual maximum 1-day precip-
itation by ~30% (Table 1). The inaccuracy of the Livneh et al.
data is due to the use of a linear split of each recorded 24-h
precipitation amount into two calendar days in data pro-
duction (rather than using the simple nonoverlapping 24-h
records for which the exact calendar day does not matter).
When precipitation is aggregated over several days or a
longer time period, the difference between the two datasets
becomes negligible (Table 1). This comparison holds else-
where too. For example, averaged over the common period
of 34 years (1980-2013), the annual maximum 1-day pre-
cipitation (R1d) in the Livneh et al. (2015) data is much
lower than in gridMET (Fig. 2). However, the maximum
5-day precipitation is almost identical between the two, and
so is the annual total precipitation (Table 1 and Figs. 2
and 3).
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Both MACA and LOCA include downscaled climate data
from a large number of global climate or Earth system models.
Global models are known to produce a large spread in their
future projections, due to model dependence of both the cli-
mate sensitivity (defined based on the global average temper-
ature response) and the spatial pattern of such response (e.g.,
Knutti et al. 2010; Tebaldi et al. 2011; Miao et al. 2014). A
multimodel ensemble average is considered more accurate and
reliable than output from any individual model, as errors and
natural variability from different models tend to offset each
other (Pierce et al. 2009; Deser et al. 2012). To compare
MACA and LOCA, eight models were chosen from each to
represent the full range of uncertainties in future projections
(Table 2). These models were chosen based on genealogy
(Masson and Knutti 2011; Knutti et al. 2013), performance in
simulating present-day climate over eastern North America
and the Northeast (Sheffield et al. 2013; Miao et al. 2014;
McSweeney et al. 2015; Karmalkar et al. 2019), global climate
sensitivity (Miao et al. 2014), and climate sensitivity for the
Northeast region (Table 2).

Data for both RCP4.5 and RCP8.5 scenarios are available
from MACA and LOCA. While RCP8.5 was considered a high
emission scenario, emissions and observed CO, concentration
have closely tracked RCP8.5 over the past decade. Considering
this recent trend and the climate security recommendation to
build for a higher magnitude of warming than the target of
international climate policy in case mitigation policies fail
(Mabey et al. 2011; Sanford et al. 2014), this study makes use of
the RCP8.5 scenario.

3. Precipitation indices and analysis method

To compare MACA and LOCA databases, we examine a
variety of precipitation characteristics. A large array of in-
dices have been proposed to quantify precipitation extremes
(e.g., Frich et al. 2002; Zhang et al. 2011). While many of
these indices have been widely used in climate change
studies (e.g., Ahmed et al. 2013; Thibeault and Seth 2014),
often only a subset of available climate indicators are used
in any given climate change assessment. The choice of which
indicators to include is often informed by assessment best
practices and interactions with stakeholders to define deci-
sion needs and interests. In this study, based on core indices
proposed by the joint CCI/CLIVAR/JCOMM Expert Team
(ET) on Climate Change Detection and Indices (ETCCDI)
(Karl et al. 1999) and considering stakeholder needs iden-
tified through the Connecticut state assessment (Seth et al.
2019; Kirchhoff et al. 2019), the following precipitation in-
dicators are analyzed:

TABLE 1. Precipitation indices (as defined in section 3) over the area of Connecticut Regional Water Authority (RWA) reservoirs from
different data sources.

Precipitation index ~Amount (mm yr™') Ny (days) SII (mmday™') N_linch (days) CDD (days) R1d (mm) RS5d (mm)
RWA rain gauges 1306 105 12.4 143 18 80 125
eridMET 1325 114 11.5 13.1 16.3 78 115
Livneh et al. 1314 160 82 7.8 15.7 55 114
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FIG. 2. The 34-year (1980-2013) average of annual 1-day maximum precipitation (R1d) and 5-day max-
imum precipitation (R5d), from gridMET and Livneh et al. and differences between the two products. The
numbers written within each panel are spatial averages; units are millimeters.
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AnnP, annual accumulation of precipitation amount;

N_wet, number of days (per year) with more than 1 mm of
precipitation;

SI1, simple intensity index (i.e., average amount of precip-
itation on each wet day);

CDD, maximum number of consecutive dry days for each
JJA season;

N_linch, number of days per year with more than 1in.
(25.4 mm) of precipitation;

P99, the 99th percentile of daily precipitation in the histor-
ical climate;

N99, number of days each year with precipitation exceeding
the historical P99;

F99, fraction of annual precipitation accounted for by N99;

R1d, annual maximum 1-day precipitation;

R5d, annual maximum 5-day precipitation.

Note that in prior studies the maximum consecutive dry days
(CDD) is typically defined for each year. However, in the U.S.
Northeast, maximum CDD occurs during winter for most
years, while summer (June—August) is the season of the highest
water demand for agricultural and domestic usage. We there-
fore use the summer CDD for its regional relevance.

With the exception of P99 (which is estimated for the period
1970-99 only), all other metrics are estimated for each of the
three 30-year periods, including historical 1970-99, midcentury
2040-69, and late century 2070-99; the multimodel ensemble
mean of the projected changes by mid- and late century are
analyzed. In addition, to support the development of climate
adaptation strategies (e.g., revising infrastructure design cri-
teria), the size of rare events (with a recurrence interval of N
years) as well as the future recurrence interval of the past 1-in-
N-years events are also estimated for R1d and R5d, with N
equal to 5, 10, 20, 50, and 100, respectively. Despite of the
challenges and uncertainties associated with the estimation of
these extreme statistics, they are included here due to strong
stakeholder interest and practical importance related to risk
management.

The estimation of recurrence interval 7 of a given event size
and the estimation of the event size X corresponding to a
given recurrence interval N involves frequency analysis. This is
done by fitting a theoretical distribution to the 30 years of data
in each period for each model. For R1d and R5d, the gener-
alized extreme value (GEV) distribution is chosen, and the
L-moments method is used to estimate the location, scale, and
shape parameters of the GEV distribution following previous
studies (Hosking 1990; Kharin et al. 2013). These parameters
are then used to estimate X for given recurrence interval N in
different climates as well as the future recurrence interval 7 of
the past extremes.

For most precipitation indices analyzed in this study, pro-
jected future changes are defined as the eight-model ensemble
mean of the changes from the historical to midcentury and late
century. An ensemble mean of changes at a given grid cell is
estimated only if there is a high level of model consensus (de-
fined as at least six out of the eight models agree) on the direc-
tion of projected changes, and the significance of the ensemble
mean changes is tested using a one-sided ¢ test with a = 0.05.
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Changes for which the degree of model consensus is low or the
magnitude of the ensemble mean does not pass the significance
test are considered inconclusive, and are excluded from both the
spatial distribution plotting and domain averaging.

4. Results
a. Observations and model historical climate

The observational data underlying the two databases, gridMET
and Livneh et al. (2015), are similar in temporally aggregated
precipitation but differ significantly in the day-to-day variation
of precipitation (Fig. 1), leading to significant differences in
most of the precipitation indicators examined in this study. As
the objective of a statistical downscaling method for the his-
torical period is to reproduce the statistics of the training data,
not surprisingly, the historical eight-model ensemble mean of
downscaled precipitation characteristics from MACA and
LOCA (Figs. 3-5) are almost identical to those from the
eridMET and Livneh et al. data, respectively, and differ sig-
nificantly between MACA and LOCA. For each database,
slight differences between the downscaled model climates and
the training data can be attributed to decadal variability and
model internal variability. The following description of his-
torical climate therefore focuses on the comparison of model
climate between LOCA and MACA (Figs. 3-5), with the un-
derstanding that these mostly reflect the differences between
the two training datasets.

The annual precipitation climatology for LOCA and MACA
during the historical period closely resemble each other in
spatial pattern (Fig. 3). This is expected due to the agreement
between the two training datasets in annual precipitation, both
of which were adjusted to reproduce PRISM (Daly et al. 1994).
The domain average of annual precipitation is slightly lower
in LOCA (1097 mmyr~') than in MACA (1146 mmyr ')
(Table 3). The 30-year average of daily precipitation charac-
teristics based on the eight-model ensemble mean substantially
differs between the two databases. Across the domain of
analysis, heavy precipitation is less frequent and less intense in
LOCA than in MACA (as reflected by N_1linch, F99, R1d)
(Figs. 3 and 4), which is consistent with the general under-
estimation of heavy precipitation in LOCA’s training data.
Relative to MACA, a similar amount of precipitation in
LOCA is distributed among a larger number of wet days,
leading to a lower mean intensity, with SII spatially averaged to
7.1 mmday ' in LOCA and 8.7 mm day ' in MACA (Table 3
and Fig. 3). There are fewer heavy precipitation days in LOCA
than in MACA (Fig. 4), with a spatial average of N_linch at
~4.4 days compared to 8 days. Extremely heavy precipitation
(defined as events exceeding the 99th percentile of daily pre-
cipitation) accounts for a lower fraction of annual precipitation
in LOCA, with a spatial average of 11.6% for F99 (compared
to 142% in MACA) (Fig. 4). The annual maximum 1-day
precipitation is also significantly lower in LOCA, averaging to
45 mm (compared to 58 mm in MACA) (Fig. 5). For all these
precipitation metrics, despite the differences in magnitude,
LOCA and MACA demonstrate a similar spatial pattern,
which (with the exception of N_wet) features an increase from
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FIG. 3. Eight-model ensemble mean for the 30-year average of annual precipitation (AnnP), simple intensity index (SII), and the annual
wet days (N_wet) during the historical period (1970-99), from MACA and LOCA, and differences between the two. The numbers written
within each panel are spatial averages.

inland toward the coastal region and from low elevation to
high elevation.

In the Northeast, most of the rare and extremely rare pre-
cipitation events are related to tropical storms/hurricanes in
late summer and fall as well as nor’easters during winter.
The sizes of daily precipitation with a recurrence interval of
20 and 100 years, respectively, are presented in Fig. 5.
Consistent with other daily precipitation characteristics, the
magnitude of the 1-day precipitation during these rare

events is much smaller in LOCA than in MACA. In LOCA,
precipitation during these rare events follows a spatial
pattern similar to the average events, with a general coast—
inland contrast; in MACA, the large-scale spatial pattern of
precipitation during these rare events deviates from the
average events, with a northeast-southwest-oriented heavy
precipitation band slightly inland away from the coast. Both
products show a clear topographic fingerprint of rare daily
precipitation, with local maxima over the ridgeline of the
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TABLE 2. The eight global models included in the analysis, development groups, global temperature sensitivity under RCP8.5,
Northeast (NE) annual temperature and precipitation changes (AT and AP) between reference (1970-99) and midcentury (2040-69)
under RCP8.5, and model biases over eastern North America (ENA) for simulating summer (JJA) temperature and precipitation.

Time to global +2.0°C over NE NE
preindustrial

Model name Development group

Model biases over ENA for

AT (°C) AP (mm) JJA T (°C) and P (%)

CanESM2 CCMA (Canada) 2030 (high) +3.7 +86 3.1°C, —22.2%
HadGEM2-CC Met Office (United Kingdom) 2032 (high) +4.4 +134 1.0°C, —0.04%
IPSL-5A-LR IPSL (France) 2042 (medium) +33 +59 0.4°C, 9.9%

CCSM4 NCAR (United States) 2043 (medium) +2.7 +115 1.2°C,7.7%

CSIRO-MK3.6.0 CSIRO (Australia) 2045 (medium) +3.2 +150 1.3°C, —17.3%
GFDL-ESM2M GFDL (United States) 2049 (low) +2.3 +89 -0.3°C, =52%
BCC-CSM1.1 BCC (China) 2052 (low) +3.2 +120 0.16°C, —20.6%
INMcm4 INM (Russia) 2060 (low) +1.9 +4 -1.7°C, 17.9%

Catskill (New York), Green (Vermont), and White (New
Hampshire and Maine) Mountains.

In summary, for historical climate, MACA and LOCA are
similar in precipitation amount, but differ substantially in
the mean and extremes of daily precipitation characteristics.
These differences are mostly attributed to the underlying
observational datasets, and do not reflect differences in the
downscaling method.

b. Projected future changes
1) CHANGES IN PRECIPITATION AMOUNT

Results from the two products show remarkably similar
spatial pattern of projected changes in precipitation with
stronger increases over high altitudes than valleys, based on the
absolute changes (e.g., Figs. 6al-a4); relative changes in both
products show little spatial variation (results not shown).
Table 3 lists the spatial average of annual and seasonal pre-
cipitation and projected changes for midcentury and late cen-
tury, based on the eight-model ensemble mean. Despite some
differences in the absolute amount, MACA and LOCA agree
well in projecting the relative changes. For example, the annual
total precipitation is projected to increase 7%-8% by mid-
century (2040-69) and approximately 10.5% by late century in
both products. These projected increases are due primarily to
increases in the winter and spring seasons. In both products,
there is a high degree of model consensus across the whole
domain in projecting a significant increase of precipitation in
winter and spring for both future periods. For summer pre-
cipitation over most of the domain, the degree of model con-
sensus on an increase is high for midcentury and low for late
century, suggesting a higher degree of uncertainty for warm-
season precipitation projections further into the future. For fall
precipitation during both future periods and in both products,
the eight models either disagree on the direction of changes or
project changes that are statistically not significant.

2) CHANGES IN PRECIPITATION CHARACTERISTICS
AND EXTREMES

For projected future changes of precipitation characteristics
(with the exception of annual maximum 1-day precipitation),
results from LOCA and MACA are generally similar despite

their significant differences in the historical climate. According
to both products, changes in N_wet and summertime CDD are
inconclusive for both future periods. Over most of the domain
the level of model consensus is low on the direction of changes;
over the small fraction of the region where the degree of model
consensus is high, summer CDD is projected to increase by
both LOCA and MACA while N_wet is projected to increase
in MACA and decrease in LOCA (Figs. 6¢c1-c4 and 7al-a4).
For SII, N_linch, and F99, both LOCA and MACA project
significant increases with a high degree of model consensus,
and their absolute changes are very similar between the two
products especially for the late century (Figs. 6b1-b4 and
7bl-c4). For the midcentury period, MACA projects slightly
larger increases than LOCA; the increase continues beyond
midcentury, but at a slower pace in MACA than in LOCA, ar-
riving at a similar magnitude of total changes in the two products
by the late century. For all these three metrics (SIL, N_1linch, and
F99), historical reference is substantially lower in LOCA than in
MACA. As such, similar absolute changes translate to a larger
relative change in LOCA than in MACA (Table 4).

The projected changes in the long-term mean of annual
maximum 1-day precipitation (R1d) differ significantly be-
tween the two products, with LOCA projecting a much smaller
increase than MACA for both future time periods. This
statement holds for both the absolute and relative changes
(Fig. 8), and the differences between LOCA and MACA are
larger in magnitude than the standard deviation among the
eight GCMs (Table 4). MACA projects a faster increase from
the historical period to midcentury than LOCA and a slower
increase from midcentury to late century. Despite the sub-
stantial differences in magnitude, the spatial pattern of pro-
jected future changes is similar between the two products, with
the strongest changes along the Northeast corridor and the east
coast of New England. There is a high degree of model con-
sensus on the increase of average R1d across the domain in
MACA and over most of the domain in LOCA; there are
scattered small areas in LOCA where the degree of model
consensus in projecting the direction of changes is very low.

Relative to the projected changes in the multiyear mean of
R1d, the differences between LOCA and MACA in projecting
R1d changes during rare extremes (e.g., R1d_20, or 1-in-20-years
events) are larger (Fig. 8); within each product, differences
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FIG. 4. Eight-model ensemble mean for the 30-year average of maximum consecutive dry days (summer, CDD), annual total number of
days with more than 1in. of precipitation (N_1linch), and the fraction of total precipitation accounted for by extreme events with daily
precipitation exceeding the 99th percentile (F99), from MACA and LOCA, and differences between the two. The numbers written within

each panel are spatial averages.

among models are larger too, leading to a lower level of model
consensus in projecting the direction of changes of rare extremes
than the R1d mean (Fig. 8). Results for other recurrence inter-
vals are qualitatively similar. MACA projects a strong increase
of the intensity of R1d_20 with a high degree of model consensus
over most of the domain; for rarer evens (e.g., 1-in-100-years,
results not shown), the areas are larger where projected changes
are inconclusive. Over areas of strong model consensus, MACA

projects larger increases of precipitation during rare events for
midcentury than for late century (e.g., 43% versus 31% for
R1d_20). While this is counter intuitive, it is consistent with the
slowdown of the average R1d increase from midcentury to late
century, and likely results from extra processing in the MACA
approach such as epoch removal and replacement (Wootten
2018). Strong model consensus in projecting future precipitation
changes in rare events in LOCA is limited to a much smaller
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FI1G. 5. The eight-model ensemble mean of 1-day maximum precipitation corresponding to the 30-year average (R1d_mean), extreme
events with a recurrence interval of 20 and 100 years (R1d_20 and R1d_100), respectively, defined for the reference period 1970-99 based
on MACA and LOCA. The numbers written within each panel are spatial averages.

portion of the domain than in MACA; however, where there is a
strong model consensus, an increase is projected. Different from
MACA, the magnitude of projected changes in LOCA con-
tinues to increase from midcentury to late century. For the
changes from historical to late century, the difference between
LOCA and MACA is small in projecting the relative changes of
R1d mean and R1d_20. The greatest differences between
LOCA and MACA (and the counter intuitive comparison be-
tween midcentury and late century in MACA) are related to a

very strong increase of annual maximum 1-day precipitation
from historical to midcentury in the MACA database. By mid-
century, the absolute increase projected by MACA is a factor of
2 higher than that projected by LOCA for the mean R1d, and a
factor of 3 for R1d_20; the relative changes in MACA are a
factor of 2 higher for both R1d and R1d_20. These differences
get attenuated by late century.

MACA and LOCA differ substantially in projecting the
frequency of major precipitation events (Fig. 8). In MACA, the

TABLE 3. Eight-model ensemble of precipitation climatology (mm) during the historical period and the projected changes from his-
torical reference to midcentury and late century, averaged over the Northeast. The ensemble is presented as u * o, where u is the mean

and o is the standard deviation among the eight models. Percentage values in parentheses are relative changes. A dash

—”” indicates a low

degree of model consensus regarding the direction of changes and/or lack of statistical significance. Note that all changes are positive (i.e.,

precipitation increase).

1970-99 reference 2040-69 changes 2070-99 changes
Variables MACA LOCA MACA LOCA MACA LOCA
Annual total 1146 = 10 1097 = 12 95 + 44 (8.3%) 83 + 44 (7.6%) 120 = 61 (10.5%) 116 * 54 (10.6%)
Winter (DJF) 238+ 6 242 = 4 35 =24 (14.7%) 36 = 24 (14.9%) 47 = 23 (19.7%) 45 + 21 (18.6%)
Spring (MAM) 289 =5 274 = 6 29 = 18 (10.0%) 26 + 16 (9.5%) 51 =12 (17.6%) 51 = 14 (18.6%)
Summer (JJA) 308 =7 293 =6 21 = 14 (6.8%) 19 = 12 (6.5%) — —
Fall (SON) 311+9 289 =17 — — — —
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FIG. 6. The eight-model ensemble mean of projected future changes for annual precipitation d(AnnP) (mm), simple intensity index
d(SII) (mm day "), and annual wet days d(N_wet) (days) by the midcentury and late century, based on MACA and LOCA. White areas
over land (with no shading) indicate a lack of model consensus on the direction of projected changes (i.e., the 8 models split 4-to-4 or
5-to-3); black hatching indicates changes that are statistically not significant. The numbers written within each panel are spatial averages
where model consensus exists over a substantial portion of the domain.
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FIG. 7. The eight-model ensemble mean of projected future changes for consecutive dry days in summer “d(CDD),” annual total
number of days with more than 1 in. of precipitation “‘d(N_linch),”” and the fraction of total precipitation accounted for by extreme events
with daily precipitation exceeding the 99th percentile “d(F99)” by the midcentury and late century, based on MACA and LOCA. White
areas over land (with no shading) indicate a lack of model consensus on the direction of projected changes (i.e., the 8 models split 4-to-4 or
5-to-3); black hatching indicates changes that are statistically not significant. The numbers written within each panel are spatial averages
where model consensus exists over a substantial portion of the domain.
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TABLE 4. Eight-model ensemble of precipitation metrics on intensity and extremes during the reference period and the projected
changes from historical reference to midcentury and late century, averaged over the Northeast. The ensemble is presented as u = o, where

w is the eight-model mean and o is the standard deviation among the eight models. All changes are positive (i.e., increases). Percentage

values in parentheses are changes relative to reference.

1970-99 reference 2040-69 changes 2070-99 changes
Metrics MACA LOCA MACA LOCA MACA LOCA
SII (mm day ') 87x0.06 71x006 0.7*0.27(8%) 0.63 = 0.34 (9%) 0.9 047 (103%) 0.9 = 0.53 (13.6%)
N_linch (days) 8019 44=x015 1.8 = 0.8 (22%) 1.6 £ 0.8 (36%) 23 £13(29%) 23 x1.1(53%)
F99 (%) 14202 11.6 = 0.1 4.6 £1.9(32%) 41 x2.0(35%) 6+ 28 (42%) 6 +2.7(52%)
R1d_mean (mm) 5809 451=x07 12 = 3.7 (21%) 58 £2.7(13%) 13 = 4.2 (22%) 8.3 3.1 (18%)
R1d_20yrs (mm) 104 5.6  82.6 = 2.6 43 £ 17 (41%) 13.4 =5 (16%) 31 £13 (30%) 19 = 8.5 (23%)

historical 1-in-20-years 1-day precipitation events are pro-
jected to occur every 5-10 years over most of the region in
mid- and late century. In LOCA, strong model consensus on
projecting more frequent occurrence of the previously 1-in-
20-years events is limited to a much smaller fraction of the domain
than in MACA; over a large portion of the region, previously rare
events are projected to become even less frequent. In both
products, the projection for rarer events (e.g., 1-in-100-years) is
subject to a higher degree of uncertainty.

Using three metropolitan areas (Boston, New York City,
and Washington, D.C.) as examples, Fig. 9 compares the sta-
tistical distribution of the spatially averaged, annual maximum
1-day precipitation of LOCA and MACA based on the
quantile-quantile (Q-Q) analysis. These Q—Q plots effectively
summarize the heavy precipitation comparisons between the
two products and between past and future climates. From low
quantiles to high quantiles, the different lines of the same color
increasingly diverge, reflecting an increasing degree of model
uncertainty (or intermodel variation); despite of the model
uncertainties, the signal is clear that R1d is generally lower
in LOCA than in MACA (with most of the lines below the
1:1 line), and their differences (as reflected by the deviation
from the 1:1 line) increases from low quantiles (common
events) to high quantiles (rare events) and from historical to
future climates. While R1d in both future periods is clearly
higher than the historical reference, the differences between
the two future periods are small and subject to a great degree of
model uncertainty.

c. Potential causes for the differences between LOCA
and MACA

The most substantial differences between LOCA and
MACA in future projections are in the changes of annual
maximum 1-day precipitation. The downscaling approach, the
training data, and their interplay contribute to the differences
between LOCA and MACA. Using individual models as an
example, Table 5 compares the spatial averages of the histor-
ical reference, projected future changes from historical to
midcentury and late century among LOCA, MACA-L, and
MACA. Note that LOCA and MACA-L use the same training
data but differ in downscaling method; MACA-L and MACA
were produced using the same downscaling approach but
different training datasets. During the historical period, the
mean R1d in MACA-L is larger than in LOCA, which is a

result of both a slight difference in the specific time period of
the Livneh et al. data used as training and differences be-
tween the downscaling methods; the mean R1d in MACA is
the highest, which is expected based on the high R1d values in
the training data (gridMET, Fig. 2). The projected changes
are quite close between MACA-L and MACA, but differ
significantly between LOCA and MACA-L. This suggests dif-
ferences in the projected changes are primarily caused by dif-
ferences of the downscaling method, rather than the training
data used. For any given GCM (GFDL or CCSM4), the pro-
jected R1d changes by the late century are larger than by the
midcentury over most of the domain in LOCA, over about half
of the domain in MACA-L, and over a small fraction of the
domain in MACA (results not shown). From the historical pe-
riod to midcentury, R1d is projected to increase much faster in
MACA-L and MACA (~20%) than in LOCA (~10%); the
increase beyond midcentury continues in LOCA but slows down
or stalls in MACA-L and MACA (Table 5). This statement
holds qualitatively for the downscaled products of all individual
GCMs, although the spatial pattern and magnitude of the pro-
jected changes differ among them.

To understand the large differences between LOCA and
MACA in projecting changes for the midcentury, comparison
with the raw GCM output was conducted. Using CCSM4 as an
example, Fig. 10 compares the historical R1d and projected
midcentury changes derived from the GCM, LOCA, and
MACA. Note that the similarity of the R1d magnitude be-
tween LOCA and the GCM is a coincidence: LOCA under-
estimates R1d due to the underestimation in its training data,
while the GCM underestimates R1d due to its coarse resolu-
tion. The similarity between LOCA and the GCM in the pro-
jected relative changes, both in terms of the magnitude and
large-scale spatial pattern, is by design. The LOCA down-
scaling method attempts to preserve the GCM-predicted rel-
ative change evaluated as a percent of the GCM’s historical
climatology, and applies the GCM-derived percent change to
the training data to derive the future values. This intentional pres-
ervation of relative change together with the (coincidental)
CCSM4-LOCA similarity in historical statistics lead to the
CCSM4-LOCA similarity in the projected absolute changes.
The MACA algorithm includes a similar design for preserving
relative changes, but was implemented at a different time scale
(monthly, as opposed to yearly in LOCA) to improve the
precipitation seasonal cycle. As such, in MACA, the relative

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/

25 06:10 PM UTC



2752 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

12 (21%)

TN T T TN T oW e g TN 6OW B TW TN 6w
a2. d(R1d) (mm), Mid—century, LOCA b2. d(R1d_20)(mm), Mid—century, LOCA c2. T(R1d_20)(yrs), Mid—century, LOCA

TON 69w

7 75 74 7 2 W 0 C BY 6 t 7 Z 7N TOW

7 TR ™ T 6 :
b4. d(R1d_20)(mm), Late—century, LOCA

a4. d(R1d) (mm), Late—century, LOCA
- i -

FIG. 8. The eight-model ensemble mean of projected future changes in the 30-year mean of (left) 1-day maximum precipitation
“d(R1d)” and (center) 1-day maximum precipitation with a recurrence interval of 20 years “d(R1d_20),” by the midcentury and late
century based on MACA and LOCA; (right) future recurrence interval of events that occurred once every 20 years during the historical
period. The lack of shading over land indicates a lack of model consensus (i.e., the 8 models split 4-to-4 or 5-to-3) on whether the change is
an increase or decrease, or on whether the future recurrence interval is expected to be longer or shorter than 20 years; black hatching (if
present) indicates changes that are statistically not significant. The numbers written within each panel are spatial averages where model
consensus exists over a substantial portion of the domain and where spatial averaging is meaningful.
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FIG. 9. The eight-model ensemble of Q-Q plot for the annual
maximum 1-day precipitation (R1d; mm day ') between LOCA and
MACA in historical, midcentury, and late-century climates, for three
metropolitan areas: (a) Boston, (b) New York City, and (c) Washington,
D.C. Each solid line represents one model, and the 1:1 line is dashed.

changes from the GCM were preserved for the monthly mean
but not for the annual maximum 1-day precipitation. MACA
starts with a much higher historical R1d (due to the more re-
alistic training data gridMET), and also projects a much larger

the spatial pattern of projected changes.

5. Summary and discussion

Statistically downscaled climate databases are often used in
climate change assessments to inform climate adaptation efforts
without much attention to how the choice of dataset may influ-
ence assessment findings. In this study, future changes of pre-
cipitation and precipitation extremes in the U.S. Northeast are
assessed based on two statistically downscaled climate databases
with fine spatial resolution and results are compared. A special
focus of this study is on interrogating the similarity and differ-
ences between the two databases, MACA and LOCA, and on
identifying potential causes for differences. Future changes are
defined with respect to the historical reference period of 1970
99, for the midcentury (2040-69) and late century (2070-99)
corresponding to the RCP8.5 scenario based on the ensemble of
eight models. The main findings are summarized as follows:

1) Both MACA and LOCA project significant annual precip-
itation increases, and the projected changes are similar in
magnitude, spatial pattern, and seasonality. The largest
increases of precipitation are projected during winter and
spring, with smaller increases during summer and incon-
clusive changes during autumn due to the lack of model
consensus on the direction of changes.

2) Both MACA and LOCA project significant increases of
several precipitation intensity metrics across the region with
strong model consensus, including the number of days with
more than one inch of precipitation, the simple intensity
index, and the fractional of annual precipitation accounted
for by days of heavy precipitation (exceeding the 99th
percentile of daily precipitation). The two products are
similar in the magnitude of absolute changes, but the relative
changes are larger in LOCA due to underestimation of heavy
precipitation intensity metrics in LOCA’s training data.

TABLE 5. The domain average of 30-year mean of maximum 1-day precipitation “R1d” (mm day ) for the historical period and the projected
changes for midcentury and late century (relative to historical reference), based on LOCA, MACA-L, and MACA for GFDL and CCSM4.

GFDL CCSM
Datasets Historical reference Midcentury changes Late-century changes Historical Midcentury changes Late-century changes
LOCA 45 5.5 (12%) 9.6 (21%) 45.5 4.6 (10%) 6.5 (14%)
MACA-L 51.2 9.9 (19%) 11.4 (22%) 50 9.5 (19%) 10.9 (22%)
MACA 58.5 11 (19%) 10.4 (18%) 57.5 11.6 (20%) 12.9 (22%)

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 06:10 PM UTC



2754

al. CCSM4, R1d (mm), historical

JOURNAL OF HYDROMETEOROLOGY

b1. CCSM4, d(R1d) (mm), mid—century

VOLUME 21

c1. CCSM4, d(R1d)(%), mid—century

JM,-I' TIW  T6W  7SW 7AW TIW  T2W  T7IW

45N

N

42N4

4IN

39N

muw”ﬁ!m

a2. LOCA, R1d, historical

T6W  T5W T4N

b2. LOCA, d(R1d), mid—century

TN TN 7w TOW 69w

42n

4N

TOW  69W

3!!%,“ TIW  T6W  T5W  T4W

W T 7w

700 6w 7B T

c3. MACA, d(R1d)(%), mid—century

- " "

TIW  T2W  7IW 70N 6SW

FIG. 10. (left) The 30-year average of 1-day maximum precipitation “R1d” during the historical period and projected (center) absolute

changes and (right) relative changes “d(R1d)” by midcentury, based on (top) CCSM4 output and the corresponding downscaled data
from (middle) LOCA and (bottom) MACA.

3)

4)

Both MACA and LOCA project significant increases in the
long-term mean of annual maximum 1-day precipitation
across the region and with a high degree of model consen-
sus. The magnitude of both the absolute and relative
changes in maximum 1-day precipitation are smaller in
LOCA than in MACA, due to differences in both the
downscaling method and training data.

MACA and LOCA show major differences in projecting
changes to the rare 1-day precipitation (e.g., 1-in-20-years).
In MACA, both the intensity and frequency of rare events

are projected to significantly increase, with a high degree
of model consensus across most of the domain. In LOCA,
model consensus is lacking over most of the domain; where
models do agree, the projected changes have a smaller
magnitude than in MACA.

5) In MACA, the annual maximum 1-day precipitation is pro-

jected to increase swiftly from present day to midcentury,
and then increase more slowly from the midcentury to late
century; in contrast, the projected trend of the maximum
1-day precipitation in LOCA is approximately linear.
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Despite differences between MACA and LOCA in both the
downscaling methodology and training data used, the pro-
jected future changes of precipitation and precipitation ex-
tremes from the two products are qualitatively similar for the
most part. The increase of precipitation amount and the in-
crease of heavy precipitation frequency and intensity found in
both products are qualitatively consistent with results from
many previous studies on trend and changes over the U.S.
Northeast (e.g., Keim and Rock 2002; Groisman et al. 2004,
2005; Griffiths and Bradley 2007; Brown et al. 2010; Hodgkins
and Dudley 2011; Kunkel et al. 2013; Janssen et al. 2014; Walsh
et al. 2014; Thibeault and Seth 2014; Easterling et al. 2017). For
climate assessments in terms of informing the general direction
of local climate adaptation for flood risks, either one of the two
products is appropriate. However, quantitatively, the specific
magnitude of these increases (especially of those related to ex-
treme precipitation) is subject to a high degree of uncertainty.
When future projections from the same GCMs were downscaled
to local scales, the projected changes in extreme precipitation
varied substantially depending on the downscaling algorithm and
the observational data used to train the downscaling algorithm. For
specific applications, the choice between using MACA or LOCA
is therefore important. For example, for emergency planning and
infrastructure design crucial for climate change adaptation, it is
the extreme events that matter, and the two products differ the
most in projecting changes in the intensity and frequency of rare
extreme events, with significantly less intense and less frequent
precipitation extremes in LOCA than in MACA.

The substantial differences between MACA and LOCA in
projecting changes of extreme precipitation highlight the
challenges local and regional climate assessment efforts face to
provide reliable local climate projections to support adapta-
tion. In addition to the major sources of uncertainties in global
climate projections (emission scenario, model dependence,
and internal variability), downscaling techniques also imbue
uncertainties in local and regional projections like MACA
and LOCA. Subtle processes in statistical downscaling such as
tail/trace adjustments or the stage at which bias correction is
applied can introduce a large range of uncertainties to the skill
of a downscaling product in capturing the frequency and inten-
sity of precipitation extremes (Ahmed et al. 2013; Wootten et al.
2017; Wootten 2018). Further development and improvement
of the downscaling techniques are critically needed to provide
reliable local climate projections to meet the increasing need
for locally relevant climate information to support adaptation
(Bierbaum et al. 2013; Kirchhoff et al. 2019). In the long term, as
the capacity of high performing computers increases, dynamical
downscaling using fine-resolution regional climate models (e.g.,
Prein et al. 2017) or variable-resolution regionally refined global
models (e.g., Energy Exascale Earth System Model; Golaz et al.
2019) are becoming more feasible and may be more regularly
used in the future (e.g., Leung et al. 2013). However, all models
suffer from systematic biases, which necessitates bias correction
for both regional and global climate models (Ahmed et al. 2013;
Wang et al. 2017b). As such, high-quality high-resolution pre-
cipitation measurement and improvement of bias correction
techniques are also critical for producing reliable local-scale
climate data in support of future climate adaptation efforts.
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