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ABSTRACT

The role of soil moisture in NWP has gained more attention in recent years, as studies have demonstrated
impacts of land surface states on ambient weather from diurnal to seasonal scales. However, soil moisture
initialization approaches in coupled models remain quite diverse in terms of their complexity and observa-
tional roots, while assessment using bulk forecast statistics can be simplistic and misleading. In this study, a
suite of soil moisture initialization approaches is used to generate short-term coupled forecasts over the U.S.
Southern Great Plains using NASA’s Land Information System (LIS) and NASA Unified WRF (NU-WRF)
modeling systems. This includes a wide range of currently used initialization approaches, including soil
moisture derived from “off the shelf”” products such as atmospheric models and land data assimilation sys-
tems, high-resolution land surface model spinups, and satellite-based soil moisture products from SMAP.
Results indicate that the spread across initialization approaches can be quite large in terms of soil moisture
conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and temporal
dynamics when compared against high-resolution land surface model and in situ soil moisture estimates. Case
studies are analyzed using the local land-atmosphere coupling (LoCo) framework that relies on integrated
assessment of soil moisture, surface flux, boundary layer, and ambient weather, with results highlighting the
critical role of inherent model background biases. In addition, simultaneous assessment of land versus at-
mospheric initial conditions in an integrated, process-level fashion can help address the question of whether
improvements in traditional NWP verification statistics are achieved for the right reasons.

MAy 2019

1. Introduction

The role of the land surface in numerical weather pre-
diction (NWP) has been traditionally overlooked by the
atmospheric modeling community (Santanello et al.
2018), who often employ primitive initialization ap-
proaches for soil moisture and temperature based on
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coarse atmospheric model products. These surface con-
ditions have been treated simply as lower boundary condi-
tions, with early LSM development driven by the atmospheric
communities and little emphasis on the accuracy and ob-
servability of land surface states and processes (Dirmeyer
and Halder 2016). However, recent studies have demon-
strated the critical role of the land surface, and in partic-
ular soil moisture, in terms of impacts on precipitation
(Welty and Zeng 2018; Ford et al. 2015; Taylor et al.
2012; Koster et al. 2004; Findell and Eltahir 2003),
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temperature and humidity (Kala et al. 2015; Seneviratne
et al. 2013; Mueller and Seneviratne 2012), and land—
atmosphere coupling as a whole including the planetary
boundary layer (PBL) (Johnson and Hitchens 2018;
Dirmeyer and Halder 2016; Santanello et al. 2007, 2005).
In particular, the initial condition (IC) of soil moisture
has been shown to influence predictability on near-term
(Dirmeyer and Halder 2016; Santanello et al. 2016, 2013a)
and seasonal (Rajesh et al. 2017; Xiang et al. 2018; Hirsch
et al. 2014; Koster et al. 2010) scales. Thus, quantification

ASM — AEF — APBL — AEnt — AT, , Q, = AP, cloud,
(iv)

@ @) (iii)

where the links i-iv represent the sensitivities of (i) evap-
orative fraction (EF;i.e., surface fluxes) to soil moisture
(SM), (ii) PBL evolution to surface fluxes, (iii) entrain-
ment (Ent) fluxes to PBL evolution, (iv) the collective
feedback of the free atmosphere on ambient weather, and
the cumulative support of these links on cloud and
precipitation formation. By parsing out the stepwise
impact of soil moisture on surface fluxes and, likewise,
the vertical coupling impacts of surface fluxes on PBL
development and entrainment feedbacks, an understand-
ing of the interaction of the coupled model sensitivities
to soil moisture can be ascertained.

To this end, the LoCo community has been developing
metrics to quantify the links in the chain of Eq. (1) that
can also be used to better understand traditional “‘bulk”
statistics of ambient weather [e.g., 2-m temperature (75y,)
and humidity (Q,,,), RMSE, and bias] commonly used by
operational centers as benchmarks, in the context of the
influence of soil moisture on model accuracy and devel-
opment. Such approaches have been previously employed
to assess the coupling behavior in modern global climate
reanalysis products (Santanello et al. 2015), to quantify the
impact of LSM calibration and assimilation on short-term
coupled forecasts (Santanello et al. 2013a, 2015), and to
intercompare the coupled behavior of different parame-
terization combinations in regional NWP (Santanello
et al. 2013b).

These studies assumed that the land surface IC was
based on an offline, high-resolution, high-quality, long-
term spinup of soil states from a land data assimilation
system (LDAS) such as NASA’s Land Information
System (LIS; Kumar et al. 2008). However, despite
their advantages, such spinup approaches are still not
the norm outside of the land modeling community. In
addition, with recent advances in satellite-based soil
moisture retrievals such as those from SMOS and SMAP,
and long-term in situ networks such as those comprising
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of the sensitivity of coupled models to the soil mois-
ture initialization approach is an often overlooked,
but potentially high-impact, exercise that should be
performed by model evaluation and development
communities.

From a process-level perspective, the connection of soil
moisture to ambient weather and precipitation can be
considered using the GEWEX local land-atmosphere
coupling (LoCo; Santanello et al. 2018) paradigm and
“process chain,” as follows:

Q)

the International Soil Moisture Network (Dorigo et al.
2011), there are now additional observationally driven
initialization approaches that need to be considered
(Dirmeyer et al. 2018, 2016). Overall, there is a wide
array of soil moisture IC approaches that are being used
across the NWP and climate modeling communities
(both research and operational), ranging in complexity,
resolution, quality, and observability.

In this paper, we assess the impacts of soil moisture
IC approaches in an NWP context using the NASA Uni-
fied WRF model (NU-WRF; Peters-Lidard et al. 2015),
focused on an integrative, process-level assessment of
land-atmosphere coupling and ambient weather im-
plications. Specifically, we intercompare a suite of ini-
tializations of high-resolution (1 km) short-term weather
forecasts using ‘‘off the shelf” soil moisture products
from large-scale atmospheric and land surface reanalysis
products, high-resolution LIS spinups, and SMAP satel-
lite retrievals, which range in horizontal resolution
from 1 to 33 km. Section 2 reviews the current suite of
soil moisture IC approaches being used by the com-
munity. Section 3 describes the model and observation
products used for initialization, and the LIS and NU-WRF
modeling systems, along with case study and site de-
scriptions for the coupled experiments. Section 4 presents
an offline intercomparison of SMAP soil moisture with
that of in situ networks and LIS-based simulations over
the domain of interest. Section 5 then presents the full
suite of coupled NU-WREF experiments with varying ICs,
and corresponding LoCo analysis and ambient weather
evaluations. Discussion and conclusions then follow in
section 6.

2. Review of soil moisture initialization approaches

Figure 1 shows the suite of soil moisture initialization
approaches for NWP and regional modeling commonly
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Common Soil Initialization Approaches
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FIG. 1. Suite of soil moisture and temperature initialization approaches used by the weather and climate com-
munities, including example applications and models, and representative resolutions for regional models.

used by the operational and research communities.
Despite their wide range in complexity, studies using
each of these approaches have been published recently,
and the typical usage by the community tends to favor
the lower complexity approaches.

Going from least to most complex (in Fig. 1), while a
uniform (homogeneous) soil moisture IC may have been
commonly employed decades ago during the early years
of atmospheric and land-atmosphere coupled model
development, this approach lacks an accurate repre-
sentation of surface heterogeneity and likely leads to
poor NWP results in terms of surface flux partitioning
and impact on PBL and atmospheric processes. There
remain a few regional modeling applications (including
operational) that employ homogeneous soil moisture
ICs, such as those using RAMS (Gomez et al. 2016,
2015), where only recently has the sensitivity to varying
ICs been evaluated in a systematic manner (Gomez et al.
2018). These studies affirm that there are significant
impacts of soil moisture IC values on NWP, and point to
the potential for satellite data to inform on improved,
heterogeneous IC approaches. It should also be noted
that homogeneous and idealized surface conditions are
still the norm for the LES and cloud resolving model
communities (focused on ~100-m scales).

Next, from an observational perspective, in situ soil
moisture measurements are direct measurements at
fixed depths while satellite measurements are indirect
and only sensitive to a thin layer near the surface typi-
cally less than a few centimeters. The in situ measure-
ments are typically considered truth in the development
and parameterization of the soil models themselves.

Therefore, soil moisture ICs based on a dense in situ
network that covers the model domain would be an ideal
approach. Such networks are rarely dense enough to
meet NWP application requirements. One example is
the DOE’s ARM Southern Great Plains (ARM-SGP)
observatory covering Oklahoma (OK) and Kansas (KS),
where ~20 sites measuring soil moisture are available.
Even in this dense network, 20 observations across a
domain with 250000 grid cells is hardly representative of
land surface and soil type heterogeneity, and interpolation
procedures and assumptions do not readily apply to obtain
distributed estimates. Recent examples of utilizing a
dense in situ network in the context of NWP ICs do exist
(e.g., Massey et al. 2016), but remain limited due to the
heterogeneous nature of soil properties.

The next grouping of ICs in terms of complexity is
what are deemed off-the-shelf products, where soil mois-
ture is extracted from existing LDAS or atmospheric
modeling systems. Atmospheric-based products are sim-
ply the soil moisture fields derived from the land surface
component of the commonly used initial/boundary con-
dition datasets for NWP. These atmospheric models in-
clude GFS, ECWMF, NARR, NAM, and others, and the
advantage of using these land ICs is that they are in-
herently consistent (spatially and temporally, as well as
climatologically) with the atmospheric ICs. The dis-
advantage is that these atmospheric models are quite
coarse spatially (~25-40 km) relative to the grid size of
the NWP or WRF application (e.g., 1-3km in this
case). Thus, initializing a domain with 1-km horizontal
grid spacing with data that has 30-km resolution will
miss some crucial heterogeneity and likely does not
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capture the true nature of the local land-atmosphere
coupling. Another caveat to this approach is when the
LSM used in the NWP application differs from that in
the atmospheric product, as soil moisture climatologies
differ across LSMs and thus are not easily transferable.
In addition, any inherent biases (e.g., precipitation) in
the atmospheric model will be reflected in the land
states (e.g., soil moisture) as well.

From an LDAS perspective, the GLDAS (Rodell et al.
2004) and the NLDAS version 2 (NLDAS-2; Xia et al.
2012) are examples of uncoupled environments, run
routinely at 25km and 12.5km, respectively. Both are
offline LSMs driven by high-quality, ground-observation-
based atmospheric forcing and parameters, though there
is still a significant gap in resolution compared with the
target model (1 km versus 12.5-25 km). The land ICs from
LDAS systems are likely to be more accurate and het-
erogeneous versus atmospheric model-based ICs de-
scribed above, however there may be inconsistency
issues with the LSM used in the LDAS and that used in
the NWP application (e.g., soil or vegetation parameters).
These “canned’” spinups have been largely underutilized
by the NWP community and represent a spinup shortcut
that does not require a multiyear spinup or access to
forcing data. A recent study from Dillon et al. (2016)
compared the impacts of using GLDAS versus GFS soil
moisture ICs on short-term WRF forecasts, and neither
approach consistently outperformed the other over
South America. Gomez et al. (2018) updated RAMS
with spatially distributed soil ICs from GLDAS, and
found significant improvement in ambient weather
forecasts. Jacobs et al. (2017) used an Australian LDAS
[Australian Water Availability Project (AWAP); http:/
www.csiro.au/awap/] to generate a 5-km gridded soil
moisture IC product for WRF heatwave simulations,
and found that forecasts improved significantly over
those using ERA-I-based soil moisture ICs, as AWAP
corrected for the cool, wet bias inherent in ERA-I. Lin
and Cheng (2016) also compared the impacts of GLDAS
versus GFS-based ICs on WRF forecasts over Taiwan,
and showed improvements over certain regions where
GFS was biased and where soil exerts more control over
surface fluxes. Overall, these studies demonstrate gen-
eral improvement from LDAS-based ICs over those of
coarser atmospheric-based products.

In terms of model-observation fusion, LSM spinup
approaches, as described earlier, can generate high-
resolution, accurate ICs at the resolution of the target
model using observed forcing and parameter data.
LSM spinups are necessary to generate soil moisture and
temperature profiles that have equilibrated over time,
and thus are often on the order of a few years to de-
cades in length leading up to the time of coupled model
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initialization (Rodell et al. 2005). Spinups are facilitated
by systems such as LIS and the High-Resolution LDAS
(HRLDAS; Chen et al. 2007) and require multiyear off-
line simulations driven by high-quality forcing data. As a
result, the advantages are in resolution, representative-
ness, and quality (including consistency of LSM states
with observed meteorology), but can be limited by the
availability of accurate forcing data and computational
demand. As compared to LDAS systems, LSM spinups
can further resolve spatial heterogeneity down to 1km
or less, and in coupled systems such as LIS/NU-WREF,
will ensure identical LSM settings in both the offline
spinup and coupled simulations. To date, LSM spinups
have been employed in numerous regional (WRF)
modeling studies, but are typically only employed by
those in the land (LIS and HRLDAS) communities
(Santanello et al. 2013a,b; Case et al. 2011, 2008; Kumar
et al. 2008; Rajesh et al. 2017; Hirsch et al. 2014), while
atmospheric modelers have been much less inclined to
invest in this approach.

Recent advances in satellite retrieval of land surface
states now allow for soil moisture ICs to be fully or partly
derived from satellite data. Satellites such as SMAP can
provide gridded products comparable in spatial resolu-
tion to that of the off-the-shelf products described above
(e.g., SMAP 9- and 36-km products). However, using
satellite products directly as ICs is not currently advis-
able, due to differing climatologies and biases inherent in
satellite versus LSM-based soil moisture. As satellite soil
moisture becomes more accurate (as is the case with
SMAP), and LSM soil moisture becomes more ‘“‘ob-
servable,” opportunities to directly employ satellite
products as ICs will become apparent. The traditional
method to incorporate satellite-based soil moisture
into ICs has been through data assimilation after utilizing
bias correction techniques such as CDF matching to ac-
count for the satellite versus LSM biases (Reichle and
Koster 2004). Assimilation incorporates some of the sat-
ellite signal that the LSM may miss, but impacts are typi-
cally muted due to the low random error present in
satellite and LSM products, and high accuracy of at-
mospheric (i.e., precipitation) forcing of the LSM.
Recent efforts at NCEP and Environment Canada have
employed SMAP data assimilation during LSM spinup to
improve soil moisture ICs for NWP, with results showing
inconsistent improvements across large continental do-
mains. These approaches and results will be discussed in
more detail in sections 5 and 6 in the context of the
results presented in this study.

An additional IC approach that does not fall neatly
into the categories in Fig. 1 is that of “‘self-spinup,” as
described by Angevine et al. (2014) and performed by Dy
and Fung (2016). In self-spinup, the NWP or regional
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model of interest can be initialized with coarse atmospheric-
based soil moisture ICs, then cycled over months or
years at a time (resources permitting), which improves
the spatial resolution as it responds to precipitation and
other forcing at the finer target model resolution. A dis-
advantage is that the accuracy of resulting soil moisture is
entirely dependent on the free running model perfor-
mance and precipitation accuracy, which likely is less
than that of the observationally constrained atmospheric
models. As with other IC approaches, there are tradeoffs,
and in this case that is gaining spatial heterogeneity but
perhaps losing the spatial accuracy of soil moisture
anomalies.

Also not considered in the suite of ICs in Fig. 1 are basic
sensitivity studies that vary the soil moisture IC, often
uniformly, in “brute force” fashion in order to assess
impacts on NWP (e.g., Kalverla et al. 2016; Ament and
Simmer 2006; Daniels et al. 2015; Collow et al. 2014).
There have been a host of studies in this regard, each
emphasizing a different aspect of coupled impacts, typi-
cally focusing on singular impacts on temperature or
precipitation. Overall, these sensitivity studies highlight
the importance of soil moisture ICs, and underscore the
need for high-quality and high-resolution ICs (preferably
from satellite or LSM spinup).

3. Experimental design

The suite of soil moisture IC approaches in Fig. 1 will
be intercompared in this study using SMAP for satellite
observations, LIS for LSM spinup, and NU-WREF as the
coupled forecast model, along with the standard off-the-
shelf products from NARR, GFS, and NLDAS-2 and
in situ evaluation data from the ARM-SGP network.

a. SMAP soil moisture

NASA’s SMAP mission was launched in January 2015
and has been providing passive microwave retrievals of
soil moisture from April 2015 to present. SMAP soil
moisture has performed well to date, reaching the mis-
sion target of +0.04m> m > accuracy over most regions
(Chan et al. 2018), and with higher temporal consistency
(i.e., less noise) and overall information content than
other passive microwave-based soil moisture products
from missions such as SMOS, AMSR-E, and ASCAT
(Kumar et al. 2018). SMAP soil moisture also exhibits
wetting and drydown responses that are consistent with
those modeled by LSMs (Shellito et al. 2018) and has
been useful in detecting the timing and spatial extent of
irrigation (Lawston et al. 2017). In addition, SMAP has
been used successfully in data assimilation studies by
operational and research centers (e.g., Fang et al. 2018;
Carrera et al. 2019). In this study, we use the SMAP L3
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enhanced soil moisture retrieval, based on the 33-km
retrieval algorithm but posted at 9-km spatial resolution
after utilizing the oversampling of the SMAP footprint.
Section 4 presents a comparison of SMAP products
against in situ and modeled soil moisture in order to
assess any relative biases or observability issues among
these products before they are infused into offline or
coupled modeling applications.

b. LIS and NU-WRF modeling systems

As mentioned in section 1, we now have the ability to
generate high-resolution, high-quality, long-term in-
tegrations in offline land data assimilation systems such
as LIS, which incorporate high-resolution, observed
forcing and satellite parameter and state datasets. LIS,
with its choice of LSMs, parameter and forcing data, and
assimilation and calibration modules, can be run in off-
line (uncoupled) mode for multiyear spinups that can
then be used to initialize coupled models such as
NU-WREF.

NU-WRF is NASA GSFC’s version of the community
WRF-ARW model and is essentially a superset of the
ARW model that includes unique NASA assets and
physics capabilities including radiation, microphysics,
chemistry, and land surface (via LIS). In addition to
providing the soil ICs via LSM spinup, LIS is also cou-
pled to NU-WREF and can be used as the LSM during
fully coupled simulations. This is advantageous in terms
of utilizing the identical model, grid, and configuration
in the offline spinup as during the coupled experiment.
The LIS/NU-WRF coupling (Kumar et al. 2008) has
been used extensively in research focused on quantifying
forecast impacts of different land cover (Case et al. 2011,
2008), irrigation (Lawston et al. 2015), soil condition
(Zaitchik et al. 2013), atmospheric forcing (Santanello
et al. 2016), LSM calibration (Santanello et al. 2013a),
and land data assimilation formulation (Santanello
et al. 2016; Huang et al. 2018; Carrera et al. 2019), and
serves as an ideal test bed to examine the sensitivity to soil
moisture initialization approaches. For this study, LIS
version 7 (LISv7.0; https:/lis.gsfc.nasa.gov/) is employed
with the Noah LSM, version 3.3 LSM (Ek et al. 2003)
and coupled to NU-WREF, version 8 patch 4 (https:/
nuwrf.gsfc.nasa.gov/).

c¢. Off-the-shelf products

The Global Forecast System (GFS; Environmental
Modeling Center 2003) is an operational, global spectral
model driven by the Global Data Assimilation System
(GDAS), which incorporates satellite, surface, aircraft,
and other observations from across the globe into a grid-
ded model space. The land component of GFS was up-
graded to the Noah LSM version 2.7.1 in the mid-2000s,
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reducing prominent biases in snowpack, evaporation,
and precipitation. The GFS analyses are generated at
6-hourly intervals and gridded at 0.25° spatial resolu-
tion (available via rda.ucar.edu/datasets/ds084.1). The
North American Regional Reanalysis (NARR; Mesinger
et al. 2006) uses the Eta model, the Noah LSM, and ad-
vances in data assimilation to create long-term, consistent
weather data at 32-km spatial resolution and 3-hourly
intervals (available via rda.ucar.edu/datasets/ds608.0).
NARR was the first reanalysis to include precipitation
assimilation and shows considerable improvement over
the previous NCEP reanalysis system (Kennedy et al.
2011). Finally, NLDAS-2 provides near-real-time, 1/8°
(~12-km) resolution, quality-controlled datasets of at-
mospheric forcing needed to run LSMs, as well as LSM
output from four different models driven by these data.
We use both the NLDAS-2 meteorological forcing (to
drive LIS offline simulations) and the NLDAS-2 model
output from the Noah LSM (version 2.8) for land initial
conditions, discussed further in the experimental design.

d. Experimental design

An extensive survey of potential coupled case study
dates was performed over a regional modeling domain
over the U.S. SGP region (Nebraska, Kansas, Oklahoma,
and Texas). The initial time of the case studies was limited
to those that had full coverage from SMAP at 0600 local
time (LT), and due to the geographical location and
SMAP orbital pattern, this occurred every ~6 days. A
relatively clear-sky morning, with weak synoptic flow
and potential locally induced convection in the after-
noon was desirable. This would allow local land effects
due to surface and soil moisture heterogeneity to be
maximized. In addition, contrasts in soil moisture
across the domain were deemed as advantageous to the
goals of this study in terms of highlighting differences
in ICs captured by approaches in Fig. 1. Last, the
Enhanced Soundings for Local Coupling Studies (ESLCS;
Ferguson et al. 2016) campaign took place in summer
2015, which was composed of 12 IOP days with hourly
radiosondes launches during the daytime that were
deemed useful for model validation. Taking all of these
factors into account, 11 July 2015 was chosen as the pri-
mary coupled case study for this study, with 10 June 2015
as a secondary case to support any conclusions made from
the July case.

Thus, LIS and NU-WREF are run on a single 750 km X
1100km domain over the SGP at 1-km spatial resolution
(Fig. 2) using a 3-s time step, GSFC microphysics, GSFC
long- and shortwave radiation, Mellor—Yamada—Nakanishi—
Niino (MYNN) PBL scheme, and Monin—-Obukhov
surface layer scheme. NARR and GFS data were used
for atmospheric initialization for different simulations
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FIG. 2. (a) MODIS-based land cover and (b) STATSGO-based
soil type datasets used in the 1-km LIS and NU-WRF simulations,
along with the ARM-SGP ECOR flux (X), STAMP soil moisture
(0), and Ellis, KS, and Lamont, OK, (star) profiling sites across the
Great Plains domain.

that will be discussed below, with 3-hourly lateral bound-
ary condition nudging, and 61 vertical levels. Simulations
were initialized at 1200 UTC on the morning of 11 July
and run for 24 h.

Each of the soil moisture IC approaches was implemented
as in Table 1 for a total of eight coupled simulations. The
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TABLE 1. Suite of offline LIS simulations with input datasets, along with suite of coupled NU-WREF simulations with atmospheric forcing
and soil layering configurations.

Offline simulations

Coupled simulations

Experiment type Atmospheric Atmospheric Soil layer
and name forcing GVF Land conditions initial/boundary conditions  thickness (cm)

Off-the-shelf

NARR — — NARR NARR 10, 30, 60, 100

GFS — — GFS GFS 10, 30, 60, 100

NLDAS-2 — — NLDAS-2 NARR 10, 30, 60, 100
LIS

LIS-Control NLDAS-2 Climatology ~ LIS-Control NARR 10, 30, 60, 100

LIS-GDAS GDAS Climatology ~ LIS-GDAS NARR 10, 30, 60, 100

LIS-VIIRS NLDAS-2 VIIRS LIS-VIIRS NARR 10, 30, 60, 100
SMAP-infused

SMAP+NARR — — SMAP (top) and NARR NARR 5, 35, 60, 100

SMAP+NLDAS — — SMAP (top) and NLDAS-2 NARR 5, 35, 60, 100

off-the-shelf ICs from NLDAS-2, NARR, and GFS
were performed by using the soil moisture (and tem-
perature) profile ICs from those atmospheric model
products. Three LIS spinups were performed beginning
from 1 January 2010 through 31 December 2016, the
domain of which along with input land cover and soil
type data as well as ARM-SGP site locations are shown
in Fig. 2. The LIS-Control run used NLDAS-2 atmo-
spheric forcing along with default climatological green-
ness vegetation fraction (GVF) data from NCEP. Two
permutations of LIS spinup were also performed, one
using GDAS atmospheric forcing data (LIS-GDAS) in-
stead of NLDAS-2, and the other with real-time GVF
data from the VIIRS satellite (LIS-VIIRS) instead of
climatological GVF. The goal of the LIS suite of runs was
to create a mini-ensemble of the range of IC spread
that would be generated from different LSM spinup
approaches and forcing/parameter data quality. At-
mospheric forcing was varied to provide spread based
on uncertainty in precipitation forcing, while GVF
was varied to account for uncertainty in soil moisture
due to vegetation amount and evaporation. For the
three spinup runs, NU-WRF was then run coupled to
LIS throughout the 24-h simulation, thus ensuring con-
sistency from spinup through coupled forecast in terms of
the LSM configuration. The off-the-shelf ICs were taken
as described above from the NLDAS-2, GFS, and NARR
products which provided the four layers of soil moisture
and temperature data to the Noah LSM in NU-WRF.
Each of these runs employed climatological GVF during
the coupled NU-WREF.

The model-data fusion approaches to ICs were per-
formed using SMAP data and direct insertion. The SMAP
overpass provided nearly complete spatial coverage of the
domain, but where necessary, a nearest-neighbor approach

was used to interpolate for missing values. For these runs,
SMAP was used as the top 5-cm soil moisture data on top
of existing NARR and NLDAS-2 soil moisture profiles
(identical to those taken off-the-shelf above), which were
used for the remaining three soil layers (see Table 1 for
layer specifications). While direct insertion is certainly not
an advisable practice for operational purposes due to the
relative biases of SMAP and LSM soil moisture climatol-
ogies, it serves a distinct purpose here to provide an upper
bounds on what could be expected from data assimila-
tion (where increments would ultimately be much smaller
than what is seen here), as well as to see if the biases and
noise of SMAP are indeed small enough to begin to
consider such approaches as direct insertion. It is possible
that introduction of SMAP on top of modeled profiles
will result in a shock to the system and cause issues with
equilibrium of the soil profile and associated fluxes and
states, which also can be examined here. It should be
noted that assimilation of SMAP into LIS spinups is an area
of active research, and one that deserves independent
treatment in future studies. Nonetheless, based on prior soil
moisture assimilation experiments we would expect that
such a spinup would fall somewhere near or within the
spread of the three existing LIS spinups produced here.

e. In situ/evaluation data

For the offline evaluation of the LoCo metric applica-
tion over the SGP domain, data are acquired from the
ARM-SGP network of sites and instruments at the Cen-
tral Facility (CF) in Lamont, OK, the Plains Elevated
Convection at Night (PECAN; Geerts et al. 2017) site
at Ellis, KS, and 16 ARM Extended Facilities (EFs)
across OK and KS (see Figs. 2a,b) These include high-
quality, nearly continuous meteorological, surface flux,
and atmospheric profile measurements going back to the
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mid-1990s. Specifically, soil moisture from the recently
installed Soil Temperature and Moisture Profile (STAMP)
in situ probes at the CF and 16 EFs are used and
represent a major improvement in ARM-SGP mea-
surements of soil moisture quality and ancillary data
(Cook 2018). Surface sensible and latent heat flux
data from the Eddy Correlation Flux Measurement Sys-
tem (ECOR) towers at the CF and 7 EFs are also used.
Temperature and humidity data at 2m is taken from
the meteorological sites at CF and EFs. Vertical profiles
of temperature and humidity are acquired at the CF
and Ellis, KS, sites. CF typically provides 4 times daily
(2 daytime) launches, but as a result of the ESLCS cam-
paign, 11 July produced hourly profiles from radiosonde
that could be utilized in the LoCo analysis. Likewise, the
Ellis, KS, site was a supersite of the PECAN field cam-
paign in summer 2015, which took additional measure-
ments from ground-based lidar (Weckwerth et al. 2016)
to produce temperature and moisture profiles almost
continuously during the daytime of 11 July. The radio-
sondes at CF and differential absorption lidar (DIAL) at
Ellis were then used to characterize the diurnal structure
and evolution of the PBL, derive PBL height estimates,
and compare with NU-WRF simulations using LoCo
metrics.

f- LoCo metrics

The integrative nature and application of LoCo met-
rics to NWP and NU-WREF studies has been described in
detail in Santanello et al. (2009, 2011, 2013a,b, 2015).
This includes the mixing diagram approach and evapo-
rative fraction versus PBL height metrics that are em-
ployed in this study to better understand the impacts of
soil moisture ICs on the coupled system, including the
PBL response and the relative influence of atmospheric
ICs as well. The reader is referred to Santanello et al.
(2018) for an overview of LoCo metrics, and resources
for the community.

4. Offline soil moisture intercomparison

We first assess the behavior of near-surface soil mois-
ture derived from SMAP, LIS, and in situ measurements
during the offline spinup period, followed by an in-
tercomparison of the suite of soil moisture ICs and the
coupled case study impacts.

Time series of near-surface soil moisture from the
SMAP retrieval, LIS simulations, and in situ STAMP
probes are shown in Fig. 3 for three ARM-SGP ex-
tended facilities during summer 2016. Overall, SMAP
shows a comparable dynamic range to in situ measure-
ments, responding to precipitation events and drydown
periods with little evidence of noise or spurious (outlier)
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values. To this end, the temporal consistency and ab-
solute value of SMAP soil moisture appear realistic,
and comparable to the STAMP measurements. Note
that none of these sites were used as part of SMAP
calibration/validation activities, and this is a true in-
dependent test of SMAP performance across sites with
varying vegetation and soil characteristics.

The LIS simulations, on the other hand, have a dis-
tinct time series at E33 (Newkirk, OK) and E38 (Omega,
OK) that shows a much narrower dynamic range and
values on the wetter end of the soil moisture spectrum
(relative to SMAP and STAMP). The spread across the
three LIS simulations is rather small overall, but there are
brief periods where the quality of atmospheric forcing
(GDAS versus Control; particularly in July and August)
and, to a lesser extent, vegetation greenness (VIIRS
versus Control) do impact the soil moisture values.
Regardless, the envelope of soil moisture across these
simulations is one that is narrow, and it is bounded by a
maximum (during precipitation spikes), and a mini-
mum (during dry periods). The time scale of the drying
events is controlled by the Noah LSM soil type and
hydraulic parameters as specified by the lookup table at
each site. At E33 and E38 [and the remaining 17 sites
(not shown)], it is apparent that these parameters do
not permit the model to dry down at a steep enough
rate to reach the drier soil moisture levels observed by
SMAP and STAMP.

Site E31 (Anthony, KS; Fig. 3¢) is shown as an outlier,
where LIS soil moisture tracks very close to that ob-
served in terms of absolute range and drydown behavior.
Interestingly, this is a site where the prescribed soil type
in LIS is sand, but the observed type is silt loam. The
hydraulic parameters corresponding to sand are the
most extreme in terms of allowing for rapid drying and
overall drier wilting point and minimum soil moisture
values. So in a sense, at E31 the model obtains a better
result for the wrong reasons by designating the site as sand
in order for it to exhibit behavior like that of silt loam.

Figure 4 presents scatterplots of the time series data in
Fig. 3, and compares the in situ STAMP data directly
with that of LIS and SMAP. The higher range of soil
moisture values in LIS is apparent at E33 and E38, as are
the comparable SMAP and STAMP values. The higher
peaks during precipitation events in SMAP are also
evident, and not unexpected as L-band sensing depths are
much shallower during wet conditions (Liu et al. 2012;
Escorihuela et al. 2010) and retrievals characterize a
wetter and more dynamic quantity of soil moisture im-
mediately after rainfall than at other times (Schneeberger
et al. 2004; Rondinelli et al. 2015).

The linear slopes that can be seen in the data (e.g.,
Fig. 4a) actually reflect the inherent drying rates in each
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FIG. 3. Time series of near-surface (0-5 cm) soil moisture during JJA 2016 from the suite of

LIS simulations, in situ STAMP data, and SMAP 9-km enhanced retrievals at the ARM-SGP
(a) E33, (b) E38, and (c) E31 sites.
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FIG. 4. Scatterplots of (left) LIS vs STAMP and (right) SMAP vs STAMP near-surface (0-5 cm) soil moisture
from Fig. 3 during JJA 2016 at the ARM-SGP (a),(b) E33; (c),(d) E38; and (e),(f) E31 sites.
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product. For example, at E33 LIS has a much lower
drying rate (as seen in Figs. 3a,b) compared with
STAMP, which is reflected in the lesser slope of Fig. 4a
(less than 1:1) as compared to that seen in Fig. 4b (nearly
1:1). The greater scatter seen at E38 in Fig. 4c is the
result of mismatches in the number of modeled pre-
cipitation events versus those observed locally at this
site (as in Fig. 3b). At E31 (Fig. 4e), the tighter re-
lationship and slope approaching 1:1 is the result of the
unrealistic sandy soil parameters, as discussed above.

A summary of the performance of LIS and SMAP
versus that of STAMP at all 17 ARM-SGP sites is pre-
sented in Table 2 in terms of bias, unbiased RMSE, and
RMSE statistics over the JJA 2016 period. At 13 of the
sites, SMAP bias is within +0.04m>m > and unbiased
RMSE is within 0.06m>m >, not far from the mission
target of +0.04m’>m~> at the SMAP calibration/
validation sites, which is impressive given these sites are
independent (uncalibrated) and varied in terms of soil
type and land cover characteristics. The performance of
LIS is largely inconsistent, with quite large bias and
RMSE values (>0.10m>m ) at a number of sites pos-
sibly due to mismatches in soil type versus those observed
and the rigid parameter values that determine the overall
soil moisture climatology in the Noah LSM. Other po-
tential influences are the rooting depth, litter, and GVF in
the LSM not matching what is observed at these sites. The
unbiased RMSE statistics for LIS are much better, fur-
ther indicating the importance of reducing the systematic
error in the LIS results and the potential benefit of LSM
calibration and parameter estimation approaches.

As discussed in section 1, the ultimate impact of soil
moisture on coupled NWP is felt through the surface flux
connections of latent and sensible heat. Thus, it is not only
important to intercompare the different soil moisture
products as above, but also to assess what the implications
of those soil moisture characteristics (and climatologies)
are in terms of the surface energy balance and transfer of
heat and moisture to the atmosphere. In Fig. 5, fluxes
from the LIS simulations (averaged across the Control,
GDAS, and VIIRS runs) at the three sites in Figs. 3 and 4
are shown versus those observed by the ARM ECOR
stations. Averaged daytime diurnal cycles (hourly data)
are calculated for the JJA 2016 period, and they show that
at E33 and E38 there is a distinct overestimation of la-
tent heat flux by LIS-Noah. Sensible heat fluxes are
generally comparable between the model and flux towers.

When looking at all six ECOR sites (Fig. 5d), the
overestimation of latent heat flux is more apparent,
with differences approaching 200 Wm 2. However,
there is not the typical Bowen ratio compensation of
lower sensible heat flux, which indicates (and is confirmed
in Fig. 5e) that there is a significant overestimation of
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TABLE 2. Bias, unbiased-RMSE, and RMSE statistics for the
average soil moisture of the three LIS simulations and the 9-km
enhanced SMAP-based soil moisture vs those observed at the
ARM-SGP STAMP sites during JJA 2016 as grouped by soil type
as reported at the STAMP sites and taken from in situ soil samples.

Bias ub-RMSE RMSE
SMAP LIS SMAP LIS SMAP LIS

Sandy loam

E12 -0.04 -0.03 005 0.04 007 0.05

E15 0.08 014 0.04 003 009 015

E36 0.01 0.04 004 004 004 0.05
Silt loam

E13 —0.02 001 004 005 005 0.05

E31 -0.02 -0.05 005 0.03 006 0.06

E33 0.02 0.06 007 004 007 0.07

E37 —0.04 001 0.05 005 0.07 0.06

E38 —0.00 006 005 004 005 0.07

E39 —0.04 002 0.05 005 006 0.05

E40 -0.09 -0.02 006 0.04 011 0.05

E41 -0.10 -0.08 008 0.06 013 0.10
Loam

E9 0.02 0.04 0.07 005 0.07 0.06

El1 -0.04 —0.11 0.06 005 0.08 0.12
Silty clay loam

E21 0.03 0.09 007 007 008 0.1

E32 —0.02 001 0.07 007 0.08 0.07

E34 —0.00 0.03 006 004 006 0.05
Clay loam

E35 -0.09 -0.03 006 0.05 010 0.06

available energy in LIS at these sites. The tendency for
LIS to have ample soil moisture then leads to the parti-
tioning of excess available energy into latent, rather than
sensible, heat flux. A detailed radiation analysis at these
sites indicates that the extra available energy in LIS is a
result of slight phase differences in downward shortwave
radiation from LIS (NLDAS-2 forcing) versus observed,
in combination with a lower albedo in LIS versus ob-
served over this region. Overall, these higher evaporation
rates into the atmosphere should have coupled land—
atmosphere implications, which may lead to reduced PBL.
growth, more humidity, and lower temperatures near the
surface and in the PBL, and could impact moist processes
and feedbacks that support clouds and precipitation.

5. Coupled case study results
a. Intercomparison of soil moisture ICs

Near-surface soil moisture from the suite of IC ap-
proaches discussed in section 2 are shown in Fig. 6,
valid at 1200 UTC 9 June, 11 July, and 28 August 2015.
Although the coupled case study focuses on 11 July, the
June and August dates are shown to compare soil
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FIG. 6. Near-surface soil moisture from SMAP, the three LIS permutations, and off-the-shelf products from NLDAS-2, GFS, and NARR
valid at 1200 UTC (a) 9 Jun, (b) 11 Jul, and (c) 28 Aug 2015. Stars indicate the locations of the ARM CF (Lamont, OK) and Ellis, KS sites.

moisture conditions earlier and later in the summer
season, both before and after the typical seasonal
drydown in the SGP region. The spatial heterogene-
ity of SMAP across the domain is comparable to that
of the other products in terms of overall variability
and range of soil moisture (from dry to wet). The LIS
simulations have the highest spatial resolution (1 km)
and therefore depict more local-scale features, many
of which reflect the soil type dataset. The off-the-shelf
products show only coarser features, limited by the model
resolution in each (ranging from 12.5 to 33 km). SMAP also
shows regions of higher soil moisture (compared to other
products) just after precipitation events (e.g., 11 July in
eastern Kansas), which is consistent with the behavior seen
in Fig. 3 regarding the precipitation peaks in SMAP being
larger than observed or modeled using thicker soil layers.

Generally, over dry regions SMAP tends to be drier
than the other products, while GFS and NARR tend to
be wetter. SMAP is known to dry down faster than the
Noah LSM (Shellito et al. 2016), and likely has a true
retrieval depth that is shallower than the published
“5cm,” as near-surface soil layers (top 2-3 cm) dry down
much faster than the 5-10-cm layer. The true SMAP re-
trieval depth is further complicated by vegetation effects

and the soil moisture itself, and likely varies both in time
and space as a result. The coarse model products (using
Noah LSM and the 0-10-cm layer) are wetter. This is
likely due to a combination of a deeper top soil layer
(0-10-cm depth), inaccuracy of the soil hydraulic pa-
rameters, and the coarse horizontal model resolution,
which all contribute to restricting the model’s response
to higher-resolution land surface data. LIS, on the other
hand, shows regions of very dry soil (consistent with the
SMAP patterns) as a result of retaining the 1-km soils
information as well as local vegetation and precipitation
patterns that allow for more extensive dry downs (par-
ticularly in late August).

It should be noted that it is not possible to objectively
evaluate which is the most accurate soil moisture IC.
Each IC approach provides a representation of soil
moisture that is reliant on (physical or retrieval) model
assumptions, and in situ data is too sparse to convinc-
ingly validate each across a large 1-km-resolution do-
main. However, understanding the differences and what
causes them (resolution, SMAP retrieval, layer depth,
input parameters, etc.) is key to understanding the po-
tential coupled impacts of each IC. To better parse out
these differences, Fig. 7 presents PDFs of the soil
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FIG. 7. Spatial PDFs of near-surface soil moisture at 1200 UTC (a) 9 Jun, (b) 11 Jul, and (c) 28 Aug 2015 from the
suite of products and across the full domains shown in Fig. 6.

moisture ICs in Fig. 6 on each of the three dates. SMAP is
skewed toward drier values, as discussed above, and the
coarser products are much wetter (GFS, NLDAS) with
the LIS runs in between. On 11 July, there is a bimodal
distribution in SMAP and the LIS runs, as a result of each
capturing the spatial heterogeneity generated by recent
localized precipitation over part of the domain creating
distinct wet and dry regimes. Notably, the coarser prod-
ucts (GFS) do not capture this bimodal distribution
nearly as well. Another striking difference can be seen on
28 August, where GFS is much wetter and more narrowly
distributed as compared to LIS, SMAP, and NLDAS-2.

Opverall, there are three important takeaways from
Figs. 6 and 7, in that 1) the climatologies of soil moisture

differ significantly based on the source of the IC (i.e.,
SMAP, high-resolution LSM spinup, or off-the-shelf
products), 2) ICs based solely on SMAP tend to be
drier overall, but capture the spatial variability of the
region, and 3) stark differences in spatial distributions
suggest that the choice of IC is likely to have significant
downstream coupled impacts across the domain.

b. Coupled case study: 11 July 2015

1) LoCO ANALYSIS

Coupled NU-WRF simulations, initialized by the
suite of soil moisture conditions in Fig. 6b, were per-
formed for 24-h beginning at 1200 UTC 11 July 2015. As

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 06:52 PM UTC



MAY 2019

described in section 3, SMAP soil moisture values were
directly inserted as the top layer soil moisture in the
NLDAS-2 and NARR profiles and are referred to as
SMAP+NARR and SMAP+NLDAS. The impact of
each IC is reflected in the process chain [Eq. (1)] vari-
ables that connect soil moisture to evaporation (sensible
and latent heat flux), PBL evolution (mixed-layer tem-
perature, humidity), PBL height, ambient weather (2-m
temperature and humidity), and clouds and precipitation.
Seven hours into the simulation (1900 UTC), there are
large differences across the runs in each of these vari-
ables, reflecting the relative impact of wetter soil mois-
ture conditions on increased evaporation, decreased PBL
growth, lower temperature, higher humidity, and modi-
fication of precipitation intensity and location. An ex-
ample is shown in Fig. 8 in terms of soil moisture I1C
differences between NARR and LIS-GDAS at 1200 UTC
and the downstream impacts on latent and sensible heat
flux (~200-300 W m~2), PBL height (~800-1000 m), and
2-m temperature and humidity (~2-3K; ~3-4gkg !,
respectively) in midafternoon (1900 UTC). The impact of
the soil moisture IC differences and drier (wetter) regions
can clearly be seen carried through toward higher (lower)
sensible (latent) heat fluxes, larger (reduced) PBL growth,
warmer (cooler) temperatures, and lower (higher) hu-
midity at 2m. The relatively drier LIS-GDAS conditions
overall support higher sensible heat flux, PBL heights, and
temperatures later in the day throughout much of the do-
main, illustrating the coupled impacts of soil moisture ICs.

While Fig. 8 presents a standard single variable as-
sessment, the integrated metrics of LoCo can be used
for a more qualitative and comprehensive assessment of
the fully coupled impacts of soil moisture ICs. Figure 9
presents the mixing diagram analyses at the ARM CF
and Ellis, KS, sites for each simulation, along with the
derived Bowen and entrainment ratios (as in Santanello
etal.2009). As shown in Fig. 6b and based on SMAP, the
CF site is located in a wet region having just received
precipitation and Ellis is in the western much drier part
of the domain, so there is a natural contrast in conditions
at these two sites. At the CF site, the mixing diagram
signatures are vertically oriented with little change in
humidity throughout the day, as a result of only mod-
erate PBL growth and entrainment and little spread
across simulations (Figs. 10a, 11a), as might be expected
for a wet site. There is only small divergence in the co-
evolution of 2-m temperature and humidity across the
runs, with the exception of the GFS simulation, which
employs GFS atmospheric IC/BCs, whereas the re-
mainder of the simulations use NARR. Thus, soil
moisture does not seem to impact the results nearly as
much as the choice of GFS or NARR atmospheric data
at this location.
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At the Ellis site, there is much larger diurnal vari-
ability in temperature and humidity, and larger en-
trainment fluxes of dry and warm air into the PBL, as
would be expected at a dry site. Bowen ratios also vary
from 0.73 to 2.55 depending on the choice of soil
moisture IC. Once again, GFS is the outlier and evolves
differently over time. Overall, the soil moisture ICs are
directly reflected in the surface Bowen ratio and EFs
(Fig. 9b) with the SMAP-based runs (driest soil mois-
ture) having the lowest EF (high sensible heat flux) and
the wetter off-the-shelf products (GFS, NLDAS-2)
producing the highest values (high latent heat flux).
These differences in surface energy balance are am-
plified at Ellis (versus that seen at CF) by the much
larger PBL growth and spread across simulations
(Figs. 10b, 11b). At this site, the wetter ICs of GFS and
NLDAS tend to limit PBL growth while the SMAP and
LIS-GDAS runs easily reach over 3 km. It should also be
noted that all runs tend to overestimate PBL height at both
sites throughout the daytime period, so those with wetter
ICs overall that limit PBL growth are closer to observed.

Opverall, these two contrasting sites demonstrate that
soil moisture ICs can impact PBL and land-atmosphere
coupling, but the magnitude depends on the relative
range and spread of soil moisture (and atmosphere versus
soil limited regime) across the ICs, and whether the PBL
is sensitive to the surface flux partitioning. A look at the
four Noah LSM soil layers for each of the simulations
provides further insight as to the potential role of soil
moisture ICs. At the CF site (Fig. 12a), the second
layer of soil moisture is generally similar across all IC
products and greater than 0.25m”m . This second
layer (10-40cm) represents more of the root zone,
and thus controls the majority of evapotranspiration.
These soil moisture values are all in the atmosphere-
limited regime, and there is little difference across simu-
lations with each producing high evaporative fraction that
limits PBL growth.

On the other hand, at the Ellis site (Fig. 12b) con-
ditions are much drier, particularly in the root zone, for
the LIS and NARR ICs, but wetter in the second layer
in NLDAS and GFS. This creates a disparity in EF
(Fig. 10b) across ICs. Furthermore, the SMAP direct
insertion into NLDAS-2 versus NARR produces dif-
ferent surface flux and resultant PBL growth as a result
of the wet (NLDAS-2) versus dry (NARR) root zone of
each. At this site, it is not the dry SMAP near-surface
soil moisture that controls the surface energy balance,
rather the deeper soil layers, which in this case are de-
rived from NLDAS-2 and NARR. This is an important
result in that it highlights the potential limited role of
SMAP on land-atmosphere coupling if combined with
other products that are not consistent (and why a direct
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F1G. 8. Difference in (a) soil moisture ICs (LIS-GDAS — NARR) at 1200 UTC, and corresponding differences at 1900 UTC in NU-WRF
simulated (b) sensible heat flux, (c) latent heat flux, (d) PBL height, (e) 2-m temperature, and (f) 2-m humidity.

insertion approach is not recommended), even when atmospheric ICs as well, given the outlier behavior of
SMAP is much drier than the layers below. the GFS simulation seen in Fig. 9. Figure 13 shows mixing
diagrams and evaporative fraction versus PBL height
analyses, for only the GFS and NARR simulations, at

Having parsed out the soil moisture IC impacts, it is the CF and Ellis sites in addition to two other sites
worthwhile isolating and examining the impact of the (36.0°N, 100.0°W; 39.0°N, 97.0°W) across the domain

2) LAND VS ATMOSPHERIC IC IMPACTS

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 06:52 PM UTC



MAY 2019
(@)  11.JuL 2015 ARM—CF
1 NARR Bon
315000 - LIS—Control -1.19
{ LIS=VIIRS -1.10
1 LIS-GDAS -1.07
1 -0.96
2> 310000 - SMAP+NARR
o { NLDAS-2 -1.21
~ 1 -1.33
- 1
=~ 305000 -
- |
2 1 \
) 1 & >
(5 300000 &
{ Ale  An % B
o 1-0.75 1.71 0.53
o 1-0.90 1.72 0.58
295000 —{—0.67 1.60 0.45
1-0.99 1.64 0.58
1-0.89 2.15 0.50
290000 < -0.74 2.13 0.46
— —_— —_—
10000 20000 30000 40000 50000
Moisture Energy (J kg™")
(b) 11 JuL 2015 Elis, KS
1 NARR ge§7
315000 - LIS—Control -
{ LIS=VIIRS -0.36
1 LIS-GDAS -0.34
1 -0.40
<7 310000 - SMAP+NARR
o { NLDAS-2 —0.39
~ 1 -0.36
- 1
=~ 305000 -
- |
> 1
|- §
o 1
300000 |
u { Ale  An B
° 1-8.53 1.87 1.67
o 1-8.18 1.80 1.63
295000 -{—7.53 1.71 1.49
1-12.75 2.58 2.00
1-14.14 2.16 2.55
290000 — -4.49  2.20 0.73
— —_— —_—
10000 20000 30000 40000 50000

Moisture Energy (J kg™")

FI1G. 9. Mixing diagrams and associated Bowen and entrainment
ratios (as in Santanello et al. 2009) at the (a) ARM-SGP CF and
(b) Ellis, KS, sites derived from each of the NU-WRF simulations
valid from 1200 UTC 11 Jul to 0000 UTC 12 Jul 2015.

that represent different surface and atmospheric con-
ditions. Mixing diagrams can be used to show the di-
urnal behavior of humidity (x axis) and temperature
(y axis) simultaneously with the surface latent and
sensible heat flux vectors and atmospheric response
(PBL entrainment and advection) vectors. In Fig. 13,
the mixing diagram plots show an initial dry bias in
GFS 2-m humidity at 1200 UTC (0700 LT) relative to
that of NARR and that observed at CF and Ellis. The
ensuing daytime evolution of temperature and hu-
midity then differs considerably across the sites. At the
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F1G. 10. Mean daytime evaporative fraction vs PBL height de-

rived from the simulations in Fig. 9 at the (a) ARM-SGP CF and
(b) Ellis, KS, sites.

CFsite, GFS and NARR remain parallel to each other,
with the initial dry GFS bias persisting throughout the
day (with comparable temperature evolution in each).
Figure 13b shows that the EF (i.e., land ICs) and PBL
height (i.e., initial atmospheric profiles) are similar in
GFS and NARR, and hence there was no coupled
mechanism to impact the GFS humidity bias during
the day. In addition, low-level winds were weak and
variable, thus limiting any potential impact of hori-
zontal advection.

In contrast, at Ellis the initial dry bias in GFS is over-
come by NARR by the end of the day, with NARR
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FiG. 11. Diurnal cycle of PBL height at for each of the simulations in Fig. 9 and observed at the
(a) ARM-SGP CF and (b) Ellis, KS, sites.

drying out significantly. This can be explained by the
drier soil moisture IC at this site in NARR, which pro-
motes lower EF, combined with significant PBL growth
and dry air entrainment, and generates a PBL with lower
humidity. NARR humidity ends up further from the
observations at this site, likely due to a dry IC of soil
moisture. As NARR atmospheric IC/BCs were used to
drive all the soil moisture IC permutations except for
GFS, this is an important result particularly as the LIS
and SMAP ICs tend to be even drier than the default
NARR ICs (and thus even further from observed 2-m
humidity).

At the third site (Figs. 13e,f), the GFS initial dry bias is
apparent, but then erodes over time with GFS approaching
similar humidity values of NARR (which does not dry
out during the day). Each has similar soil moisture ICs
at this site, so the land influence is eliminated. However, a

closer look at the vertical profiles of temperature and
humidity (not shown) indicate that in GFS the PBL
grows more slowly and into a more humid layer than
NARR, which tends to increase and cap the overall hu-
midity in the PBL including at 2m. At the final site
(Figs. 13g,h), the GFS dry bias is also reduced over
time as a combination of afternoon moistening in GFS
and drying in NARR, despite having similar soil moisture
ICs and evaporative fraction. This can be attributed to a
combination of deeper PBL growth and dry air entrain-
ment in NARR, along with GFS eventually reaching a
phase of PBL growth into a more humid layer in the af-
ternoon (not shown).

Overall, these results demonstrate that land, atmo-
spheric and PBL ICs and processes can have varying
relative impacts on land-atmosphere coupling and
ambient weather prediction. They also suggest that it
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FIG. 12. Initial near-surface soil moisture values at each of the
four Noah LSM soil layers for each of the simulations in Fig. 9 at
the (a) ARM-SGP CF and (b) Ellis, KS, sites.

is unlikely that changes in a single component of ini-
tialization (e.g., soil moisture) will have uniform or
spatially/temporally consistent impacts on NWP across
the domain of interest, and will still be modulated by
the land or atmospheric conditions (and inherent
biases) being introduced elsewhere in the coupled
system.

3) AMBIENT WEATHER STATISTICS

Following this approach, typical NWP benchmark-
ing statistics can now be examined under the context of
LoCo and land versus atmospheric ICs. The LoCo anal-
ysis in Figs. 9-12 focused on two well-instrumented sites
with contrasting soil moisture conditions. However, as
shown in Fig. 8, there are widespread and larger im-
pacts seen across the full domain particularly with
respect to 2-m temperature (~2-6K) and humidity
(~2-6gkg™'). It is these ambient weather impacts
that are particularly important to NWP operational
centers in terms of forecast performance and improve-
ment, as well as public perception.
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Figure 14 shows the 2-m RMSE and bias statistics time
series for temperature and humidity from each of the
coupled NU-WREF simulations, for the 24-h period be-
ginning at 1200 UTC 1 July 2015. These statistics were
calculated hourly based on the NCEP Automated Data
Processing (ADP) Global Upper Air Surface Weather
Observations (https:/rda.ucar.edu/datasets/ds337.0/) data-
set that includes 153 sites sampled across the SGP do-
main. This is a typical NWP center approach, focused
on sensible weather impacts that are readily observ-
able, when assessing the impacts of new datasets, pa-
rameters, physics, ICs, and data assimilation. A bird’s
eye assessment of Fig. 14 in this context may be that soil
moisture ICs do not have large or systematic impacts
on temperature and humidity forecasts, and in effect it
would be difficult to conclude which is the “best” IC.
For the daytime period (0700-1900 LT), it could be
argued that NLDAS-2 and GFS have the lowest RMSE
values and biases, and that SMAP and the LIS runs
have the largest. This would be counterintuitive to the
idea that NLDAS-2 and GFS are coarse, default, and
off-the-shelf products whereas LIS and SMAP are
higher resolution and observationally driven. This may
lead to conclusions that improved land ICs do not
improve NWP.

However, based on the knowledge gleaned in the prior
sections using integrated LoCo metrics, we can better
understand these results in the context of the role of
land versus atmospheric ICs, in particular that of soil
moisture and SMAP. The lowest daytime temperature
errors (Figs. 14a,b) are seen in GFS and NLDAS-2, and
the highest are in the SMAP+NARR simulation. As
GFS and NLDAS are the wettest ICs in terms of soil
moisture, these act to reduce the overall warm bias
across the domain, while the SMAP and NARR runs
are the driest, which tends to amplify the warm bias
over the domain. In terms of temperature bias overall,
there is a slight warm bias at initialization that is then
amplified throughout the day, which is likely a result
of a net radiation (driven by downward shortwave and
underestimation of localized cloud cover) overestimation
at the surface driven by the NU-WRF (GSFC) radiation
and microphysics schemes in combination with lower
than observed surface albedo in LIS (as in the offline
case). However, while the temperature biases (Fig. 14b)
appear to remain relatively constant over the daytime in
each of the runs, the actual locations of these biases shift
significantly over time from the northern to southern part
of the domain (Figs. 15b—e).

The humidity statistics (Fig. 14d) also indicate that
NLDAS-2 tends to have the lowest bias and that all the
NARR-driven runs tend to dry out rapidly during the
daytime despite higher quality atmospheric ICs, with
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FIG. 13. (left) Mixing diagrams and (right) evaporative fraction (unitless) vs PBL
height (m) analyses for the NU-WRF simulations with GFS and NARR initialization
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FI1G. 14. Time series of 2-m temperature (T2) and specific hu-
midity (Q2) RMSE and bias statistics from the suite of NU-WRF
simulations vs observations at the 153 pairs of sites across the
SGP domain.

the driest (SMAP+NARR) runs performing worst.
The GFS run and the IC dry bias can be clearly seen
here, even across all 153 sites in this analysis, and
overall remains constant during the daytime. Once
again, the wetter soil moisture ICs tend to perform
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best, as they are countering an inherent warm, dry bias
in the coupled system. The envelope of RMSE and
biases in these plots is generally narrow, but these are
averages across many points and a large domain.

The inflection point seen in the temperature bias at
0700-2100 LT is a notable feature as well in these re-
sults and is due to late afternoon precipitation in the
northern part of the domain, which is overestimated
compared to observations and tends to cool down the
region overall (compensating for the warm biases in the
south). What follows in the SMAP direct insertion runs
is alinear decrease in temperature bias and a significant
cooling that takes place during the entire nighttime
period (unrelated to precipitation) particularly in the
western part of the domain. This is, in fact, due to the
direct insertion of much drier SMAP values on top of
NARR and NLDAS-2 profiles. As discussed earlier,
this approach is not recommended as it disrupts the soil
moisture and temperature equilibrium from the top
layer versus three deeper layers in the Noah LSM. This
direct insertion did not show negative impacts during
the daytime, and as mentioned it was often the root
zone soil moisture of NARR and NLDAS that domi-
nated the surface energy balance. At nighttime, how-
ever, the very low SMAP soil moisture and 5-cm upper
soil layer led to changes in the thermal properties of the
near-surface soil that promote rapid cooling at night.
The thermal impacts of the daytime were overcome by
the dominance of evaporation, but it is evident that a
more robust approach to merging SMAP with existing
soil profiles from other products should be performed if
using as ICs for NWP.

Figure 15 shows an example of how these 2-m sta-
tistics vary in space and time and in response to the
initial SM differences in GFS and NARR. These results
indicate that there is much more divergence across runs
regionally and at specific sites than is evident in the
lumped time series statistics, often ranging in magnitude
to near 6K and 6gkg ' in temperature and humidity,
respectively. The initial dry bias in GFS is evident across
much of the central and southern SGP (Fig. 15g), while
NARR shows a slight wet bias. Because NARR soil
moisture is drier than GFS (Fig. 15a) especially over the
central part of the domain, NARR ends up with a strong
dry humidity bias by the end of the day, whereas GFS
improves its initial dry atmospheric bias where the soil
tends to be wetter. The location of the warm bias and
shift from north to south over the course of the day
mentioned above is also apparent in Figs. 15b and 15d.
These plots show the components that must be simul-
taneously considered when interpreting NWP statistics
and assessing new parameterization or initialization
approaches, including the background atmospheric IC
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11 Jul 2015.
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biases, the change in land surface ICs, and the evolu-
tion of each as dictated by the LSM and PBL schemes
throughout the day.

Overall, this analysis demonstrates that the aggre-
gated statistics commonly employed by NWP centers
are often not systematic in space or time and can miss
the important nuances and drivers behind them thus
confounding the conclusions made. In essence, each
point in Fig. 15 has its own ‘“‘coupling story’’ that is
dependent on many factors, and thus a change to the
land IC (or LSM physics) is unlikely to produce uni-
form impacts or improvements. At the same time, any
perceived improvement could be compensating for
errors elsewhere in the system. Although it takes a bit
more work using integrated analyses to understand these
impacts, it becomes necessary for a true assessment of the
impact of soil moisture (or any other IC, physics package,
or parameter dataset) in coupled prediction.

6. Discussion and conclusions

This study provides a review of current soil moisture
initialization approaches used in NWP, and in particular
those employed by the regional weather and climate
(i.e., WREF) research and operational communities. Land
ICs are often overlooked by atmospheric scientists, and
as a result there have been a wide range of approaches
employed using vastly different datasets in terms of
quality and resolution. Soil moisture tends to get most
of the focus (versus soil temperature) due to its strong
control on surface energy balance and surface fluxes,
which are the only true LSM variables that the atmo-
spheric model is sensitive (and coupled) to. Here, we
isolate the impacts of these varied soil moisture ini-
tialization approaches on coupled forecasts using a very
pragmatic, yet integrative (in the land-atmosphere sense)
approach using NASA’s LIS, SMAP, and NU-WRF
assets.

Results and their implications for NWP modeling com-
munities are as follows:

1) Offline analysis of satellite, in situ, and LSM products
confirms that SMAP soil moisture performs quite
well in terms in spatial and temporal consistency (i.e.,
low noise), capturing heterogeneity, precipitation
and drydown events, and overall looks like a “real”
observable soil moisture field.

2) There remains an observability issue due to differing
LSM and observed (satellite and in situ) soil mois-
ture climatologies that are largely due to differences
between LSM physics and the actual soil hydraulic
properties and vegetation characteristics which af-
fect the satellite and in situ measurements.
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3) There is a wide variation in the spatial distribution of
soil moisture across commonly used NWP initializa-
tion approaches, including those from satellite-infused,
high-resolution LSM spinup, and off-the-shelf atmo-
spheric model-based products.

4) The sensitivity of coupled impacts is not limited to
the near-surface soil layer as the root zone may still
play a dominant role in governing surface fluxes and
land—-atmosphere coupling, thus limiting the poten-
tial impact of near-surface layer observations in
isolation.

5) Coupled impacts of land ICs are clearly visible down-
stream in the NWP forecasts (including surface fluxes,
PBL evolution and entrainment, and ambient weather)
and can be better understood and quantified using
integrated LoCo metrics.

6) By simultaneously assessing land versus atmospheric
ICs in a LoCo framework, the question of whether
improvements in traditional NWP statistics are achieved
for the right reasons can better be addressed, and in
turn shed light on the true potential impact of improved
soil moisture ICs.

It should be noted that additional case study simula-
tions were performed in June 2015, (Fig. 4a), and the
results were largely consistent with those from 11 July.
Specifically, a warm atmospheric IC bias dominated the
region, and as a result the wettest soil moisture ICs (once
again the coarse GFS and NLDAS-2 products) pro-
duced the best 2-m statistics. As for the July case, in
isolation this would suggest that the coarse soil moisture
products are better than the high-resolution or observed
products, when actually the coarse products are only
best for this particular modeling system and atmospheric
forcing where they are correcting inherent biases.
Studies that show uniform impacts (e.g., drying) after
satellite assimilation across a wide domain are likely to
see some improvements in subregions simply as a matter
of luck, correcting for inherent model biases (and vice
versa for degradation).

This underscores the importance of understanding
inherent coupled model behavior before introducing
new datasets or ICs, so that their impacts can be more
accurately assessed. As satellite data continues to im-
prove in quality and resolution, there can be greater
incorporation of more accurate observations into cou-
pled models. Understanding their impacts requires
quantification of process-chain impacts in order to avoid
compensating errors. It will be difficult for highly tuned
systems to incorporate new datasets and see direct im-
provements as a result, but the approaches here will help
aid in identifying what remaining model biases and
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deficiencies exist in order to further fully integrated
model development and improvement.

While the statistical significance of the limited number
of deterministic simulations performed here is clearly
lacking, the methodology remains valid as an approach
that can be adopted by operational and cycled modeling
centers. It is clear from this work that biases and fore-
cast errors can be best understood and improved via
integrated (LoCo-type) assessment of relative impacts
of land surface and atmospheric (specifically in PBL
vertical profiles) ICs that are used to drive the coupled
simulations. One example where this can be applied is in
the work of Fang et al. (2018), where novel approaches
to assimilating satellite-based land surface temperature
were performed, and the regional and temporal impacts
on 2-m statistics could be better understood with more
integrated process-level understanding. This approach
also reduces the potential for mischaracterizing forecast
impacts and improvements that may result from com-
pensating errors or misattribution.

In terms of the offline soil moisture analysis, it is clear
that the governing soil and vegetation physics and pa-
rameters in the Noah LSM do not allow for soil drying
behavior that is observed from satellite or in situ. While
likely due primarily to soil texture and rigid lookup ta-
bles of soil hydraulic properties (setting the maximum
and minimum range of soil moisture), there are also
potential impacts on soil moisture dynamics from im-
proper rooting depth specification, lack of leaf litter, and
inconsistencies in GVF in the LSM versus what is ob-
served. Incidentally, the wetter LIS runs (compared with
SMAP) were actually advantageous in the coupled runs
due to the warm, dry bias of NARR and GFS. Even
when modifying the upper 10cm of soil layering to
create a 2-, 3-, or 5-cm top layer, the soil drying dynamics
were only marginally impacted indicating there are
structural limitations in the LSM that prohibit it from
having the observability necessary for unbiased data
assimilation or direct comparison of soil moisture with
satellite or in situ observations. Clearly, the structural
deficiencies in the LSM and systematic errors need to be
addressed via calibration and parameter estimation ap-
proaches in order to better match the soil moisture dy-
namics with those observed. However, avoiding so-called
“effective” parameters that absorb additional unrelated
model errors and estimating physically meaningful soil
characteristics remains a challenge.

These results highlight the critical nature of soil type
information, parameter lookup tables, and the difficulty
in modeling soil moisture dynamics at the local scale
using only coarse soils information. It also highlights the
relative inflexibility of LSM parameters and soil physics,
whereby soil moisture results can only be improved to a
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limited degree when introducing improved, high-resolution
inputs such as atmospheric forcing and vegetation char-
acteristics. To address this, there are community efforts
underway in GEWEX focused on reexamination of
pedotransfer functions and soils in LSMs, and also to
improve the collaboration between the soils and LSM
communities themselves.

Another interesting result (not shown) is that the soil
moisture IC differences at 1200 UTC tend to diminish
over time throughout the domain (e.g., by 1900 UTC).
When examining time series at specific sites, it is ap-
parent that when comparing two simulations with dif-
ferent ICs, the wetter of the simulations tends to dry
down over time and at a more rapid rate than the drier
simulations. This can be traced once again to the Noah
LSM soil physics and hydraulic parameters that de-
termine the levels of atmosphere and soil limited evap-
oration. In the case of NLDAS-2 versus SMAP, for
example, SMAP is already very dry and soil-limited such
that it does not change much or dry out further while at
the same time the wetter NLDAS-2 is in a very active
evaporative stage and dries out rapidly, thus converging
toward the SMAP values. As a result, it is common for
IC differences to be dampened over time due to evap-
orative physics, as opposed to an initial perturbation
that is amplified. Exceptions to this occur when wetter
soil moisture promotes precipitation, and vice versa,
over a more extended period of time.

A related variant of soil moisture ICs can be gener-
ated by performing data assimilation during an offline
spinup (e.g., Santanello et al. 2016). Based on the largely
incremental soil moisture DA impacts in studies to date
combined with the results here in terms of the narrow
envelope of LIS simulations with different parameters
and forcing, it is likely that SMAP assimilation will not
lead to vastly different results or ICs. The CDF matching
approach to bias correction makes large impacts even
less likely, as discussed in Kumar et al. (2015). The
SMAP direct insertion approach taken here, while not
advisable (but still used/published in the community),
was chosen as a brute force approach to see what the
maximum impact of satellite soil moisture might be on
the IC, while acknowledging that any proper EnKF as-
similation is likely to impact the ICs to a much lesser
degree and be just another permutation of a LIS run.
Only via model calibration (discussed above, specifically
targeting hydraulic properties) that addresses system-
atic errors would we expect more distinct ICs and im-
pacts on the LSM climatology and drydown behavior.

Ongoing and future work on this topic includes per-
forming formal EnKF data assimilation with SMAP and
LIS, as well as LIS calibration using in situ networks in
an effort to improve LSM observability, and reduce the
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negative impacts of typical satellite bias correction ap-
proaches. In addition, the capabilities of SMAP to de-
tect agricultural and irrigation practices (largely missing
or mischaracterized in LSMs) are being evaluated in an
effort to improve model-data fusion efforts and aid in
offline and coupled model development. It is clear that
the community is now demonstrating that the land states
and strength of land-atmosphere coupling can play a
significant role in the accuracy of ambient weather
forecasts. Improving the initial conditions of soil mois-
ture, temperature, and vegetation using NASA satellite
observations and assimilation systems therefore be-
comes even more critical, and the combination of
NASA’s SMAP, LIS, and NU-WREF resources will con-
tinue to be used to develop and test these approaches and
coupled impacts. As a result, the continuity of missions
(beyond SMAP) to provide accurate, global data records
of near-surface soil moisture remains important to con-
sider going forward at NASA and other space agencies.
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