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ABSTRACT

The role of soil moisture in NWP has gained more attention in recent years, as studies have demonstrated

impacts of land surface states on ambient weather from diurnal to seasonal scales. However, soil moisture

initialization approaches in coupled models remain quite diverse in terms of their complexity and observa-

tional roots, while assessment using bulk forecast statistics can be simplistic and misleading. In this study, a

suite of soil moisture initialization approaches is used to generate short-term coupled forecasts over the U.S.

Southern Great Plains using NASA’s Land Information System (LIS) and NASAUnified WRF (NU-WRF)

modeling systems. This includes a wide range of currently used initialization approaches, including soil

moisture derived from ‘‘off the shelf’’ products such as atmospheric models and land data assimilation sys-

tems, high-resolution land surface model spinups, and satellite-based soil moisture products from SMAP.

Results indicate that the spread across initialization approaches can be quite large in terms of soil moisture

conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and temporal

dynamics when compared against high-resolution land surface model and in situ soil moisture estimates. Case

studies are analyzed using the local land–atmosphere coupling (LoCo) framework that relies on integrated

assessment of soil moisture, surface flux, boundary layer, and ambient weather, with results highlighting the

critical role of inherent model background biases. In addition, simultaneous assessment of land versus at-

mospheric initial conditions in an integrated, process-level fashion can help address the question of whether

improvements in traditional NWP verification statistics are achieved for the right reasons.

1. Introduction

The role of the land surface in numerical weather pre-

diction (NWP) has been traditionally overlooked by the

atmospheric modeling community (Santanello et al.

2018), who often employ primitive initialization ap-

proaches for soil moisture and temperature based on

coarse atmospheric model products. These surface con-

ditions have been treated simply as lower boundary condi-

tions,with earlyLSMdevelopment drivenby the atmospheric

communities and little emphasis on the accuracy and ob-

servability of land surface states and processes (Dirmeyer

and Halder 2016). However, recent studies have demon-

strated the critical role of the land surface, and in partic-

ular soil moisture, in terms of impacts on precipitation

(Welty and Zeng 2018; Ford et al. 2015; Taylor et al.

2012; Koster et al. 2004; Findell and Eltahir 2003),
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temperature and humidity (Kala et al. 2015; Seneviratne

et al. 2013; Mueller and Seneviratne 2012), and land–

atmosphere coupling as a whole including the planetary

boundary layer (PBL) (Johnson and Hitchens 2018;

Dirmeyer and Halder 2016; Santanello et al. 2007, 2005).

In particular, the initial condition (IC) of soil moisture

has been shown to influence predictability on near-term

(Dirmeyer and Halder 2016; Santanello et al. 2016, 2013a)

and seasonal (Rajesh et al. 2017; Xiang et al. 2018; Hirsch

et al. 2014; Koster et al. 2010) scales. Thus, quantification

of the sensitivity of coupled models to the soil mois-

ture initialization approach is an often overlooked,

but potentially high-impact, exercise that should be

performed by model evaluation and development

communities.

From a process-level perspective, the connection of soil

moisture to ambient weather and precipitation can be

considered using the GEWEX local land–atmosphere

coupling (LoCo; Santanello et al. 2018) paradigm and

‘‘process chain,’’ as follows:

DSM/DEF/DPBL/DEnt/DT
2m
, Q

2m
0DP, cloud,

(i) (ii) (iii) (iv)
(1)

where the links i–iv represent the sensitivities of (i) evap-

orative fraction (EF; i.e., surface fluxes) to soil moisture

(SM), (ii) PBL evolution to surface fluxes, (iii) entrain-

ment (Ent) fluxes to PBL evolution, (iv) the collective

feedback of the free atmosphere on ambientweather, and

the cumulative support of these links on cloud and

precipitation formation. By parsing out the stepwise

impact of soil moisture on surface fluxes and, likewise,

the vertical coupling impacts of surface fluxes on PBL

development and entrainment feedbacks, an understand-

ing of the interaction of the coupled model sensitivities

to soil moisture can be ascertained.

To this end, the LoCo community has been developing

metrics to quantify the links in the chain of Eq. (1) that

can also be used to better understand traditional ‘‘bulk’’

statistics of ambient weather [e.g., 2-m temperature (T2m)

and humidity (Q2m), RMSE, and bias] commonly used by

operational centers as benchmarks, in the context of the

influence of soil moisture on model accuracy and devel-

opment. Such approaches have been previously employed

to assess the coupling behavior in modern global climate

reanalysis products (Santanello et al. 2015), to quantify the

impact of LSM calibration and assimilation on short-term

coupled forecasts (Santanello et al. 2013a, 2015), and to

intercompare the coupled behavior of different parame-

terization combinations in regional NWP (Santanello

et al. 2013b).

These studies assumed that the land surface IC was

based on an offline, high-resolution, high-quality, long-

term spinup of soil states from a land data assimilation

system (LDAS) such as NASA’s Land Information

System (LIS; Kumar et al. 2008). However, despite

their advantages, such spinup approaches are still not

the norm outside of the land modeling community. In

addition, with recent advances in satellite-based soil

moisture retrievals such as those from SMOS and SMAP,

and long-term in situ networks such as those comprising

the International Soil Moisture Network (Dorigo et al.

2011), there are now additional observationally driven

initialization approaches that need to be considered

(Dirmeyer et al. 2018, 2016). Overall, there is a wide

array of soil moisture IC approaches that are being used

across the NWP and climate modeling communities

(both research and operational), ranging in complexity,

resolution, quality, and observability.

In this paper, we assess the impacts of soil moisture

IC approaches in an NWP context using the NASA Uni-

fied WRF model (NU-WRF; Peters-Lidard et al. 2015),

focused on an integrative, process-level assessment of

land–atmosphere coupling and ambient weather im-

plications. Specifically, we intercompare a suite of ini-

tializations of high-resolution (1km) short-term weather

forecasts using ‘‘off the shelf’’ soil moisture products

from large-scale atmospheric and land surface reanalysis

products, high-resolution LIS spinups, and SMAP satel-

lite retrievals, which range in horizontal resolution

from 1 to 33 km. Section 2 reviews the current suite of

soil moisture IC approaches being used by the com-

munity. Section 3 describes the model and observation

products used for initialization, and the LIS andNU-WRF

modeling systems, along with case study and site de-

scriptions for the coupled experiments. Section 4 presents

an offline intercomparison of SMAP soil moisture with

that of in situ networks and LIS-based simulations over

the domain of interest. Section 5 then presents the full

suite of coupled NU-WRF experiments with varying ICs,

and corresponding LoCo analysis and ambient weather

evaluations. Discussion and conclusions then follow in

section 6.

2. Review of soil moisture initialization approaches

Figure 1 shows the suite of soil moisture initialization

approaches for NWP and regional modeling commonly
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used by the operational and research communities.

Despite their wide range in complexity, studies using

each of these approaches have been published recently,

and the typical usage by the community tends to favor

the lower complexity approaches.

Going from least to most complex (in Fig. 1), while a

uniform (homogeneous) soil moisture ICmay have been

commonly employed decades ago during the early years

of atmospheric and land–atmosphere coupled model

development, this approach lacks an accurate repre-

sentation of surface heterogeneity and likely leads to

poor NWP results in terms of surface flux partitioning

and impact on PBL and atmospheric processes. There

remain a few regional modeling applications (including

operational) that employ homogeneous soil moisture

ICs, such as those using RAMS (Gomez et al. 2016,

2015), where only recently has the sensitivity to varying

ICs been evaluated in a systematicmanner (Gomez et al.

2018). These studies affirm that there are significant

impacts of soil moisture IC values on NWP, and point to

the potential for satellite data to inform on improved,

heterogeneous IC approaches. It should also be noted

that homogeneous and idealized surface conditions are

still the norm for the LES and cloud resolving model

communities (focused on ;100-m scales).

Next, from an observational perspective, in situ soil

moisture measurements are direct measurements at

fixed depths while satellite measurements are indirect

and only sensitive to a thin layer near the surface typi-

cally less than a few centimeters. The in situ measure-

ments are typically considered truth in the development

and parameterization of the soil models themselves.

Therefore, soil moisture ICs based on a dense in situ

network that covers themodel domainwould be an ideal

approach. Such networks are rarely dense enough to

meet NWP application requirements. One example is

the DOE’s ARM Southern Great Plains (ARM-SGP)

observatory coveringOklahoma (OK) andKansas (KS),

where ;20 sites measuring soil moisture are available.

Even in this dense network, 20 observations across a

domain with 250000 grid cells is hardly representative of

land surface and soil type heterogeneity, and interpolation

procedures and assumptions do not readily apply to obtain

distributed estimates. Recent examples of utilizing a

dense in situ network in the context of NWP ICs do exist

(e.g., Massey et al. 2016), but remain limited due to the

heterogeneous nature of soil properties.

The next grouping of ICs in terms of complexity is

what are deemed off-the-shelf products, where soil mois-

ture is extracted from existing LDAS or atmospheric

modeling systems. Atmospheric-based products are sim-

ply the soil moisture fields derived from the land surface

component of the commonly used initial/boundary con-

dition datasets for NWP. These atmospheric models in-

clude GFS, ECWMF, NARR, NAM, and others, and the

advantage of using these land ICs is that they are in-

herently consistent (spatially and temporally, as well as

climatologically) with the atmospheric ICs. The dis-

advantage is that these atmospheric models are quite

coarse spatially (;25–40 km) relative to the grid size of

the NWP or WRF application (e.g., 1–3 km in this

case). Thus, initializing a domain with 1-km horizontal

grid spacing with data that has 30-km resolution will

miss some crucial heterogeneity and likely does not

FIG. 1. Suite of soil moisture and temperature initialization approaches used by the weather and climate com-

munities, including example applications and models, and representative resolutions for regional models.
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capture the true nature of the local land–atmosphere

coupling. Another caveat to this approach is when the

LSM used in the NWP application differs from that in

the atmospheric product, as soil moisture climatologies

differ across LSMs and thus are not easily transferable.

In addition, any inherent biases (e.g., precipitation) in

the atmospheric model will be reflected in the land

states (e.g., soil moisture) as well.

From an LDAS perspective, the GLDAS (Rodell et al.

2004) and the NLDAS version 2 (NLDAS-2; Xia et al.

2012) are examples of uncoupled environments, run

routinely at 25km and 12.5km, respectively. Both are

offline LSMs driven by high-quality, ground-observation-

based atmospheric forcing and parameters, though there

is still a significant gap in resolution compared with the

targetmodel (1kmversus 12.5–25km). The land ICs from

LDAS systems are likely to be more accurate and het-

erogeneous versus atmospheric model-based ICs de-

scribed above, however there may be inconsistency

issues with the LSM used in the LDAS and that used in

theNWPapplication (e.g., soil or vegetation parameters).

These ‘‘canned’’ spinups have been largely underutilized

by the NWP community and represent a spinup shortcut

that does not require a multiyear spinup or access to

forcing data. A recent study from Dillon et al. (2016)

compared the impacts of usingGLDAS versusGFS soil

moisture ICs on short-termWRF forecasts, and neither

approach consistently outperformed the other over

South America. Gomez et al. (2018) updated RAMS

with spatially distributed soil ICs from GLDAS, and

found significant improvement in ambient weather

forecasts. Jacobs et al. (2017) used an Australian LDAS

[Australian Water Availability Project (AWAP); http://

www.csiro.au/awap/] to generate a 5-km gridded soil

moisture IC product for WRF heatwave simulations,

and found that forecasts improved significantly over

those using ERA-I–based soil moisture ICs, as AWAP

corrected for the cool, wet bias inherent in ERA-I. Lin

andCheng (2016) also compared the impacts ofGLDAS

versus GFS-based ICs on WRF forecasts over Taiwan,

and showed improvements over certain regions where

GFS was biased and where soil exerts more control over

surface fluxes. Overall, these studies demonstrate gen-

eral improvement from LDAS-based ICs over those of

coarser atmospheric-based products.

In terms of model–observation fusion, LSM spinup

approaches, as described earlier, can generate high-

resolution, accurate ICs at the resolution of the target

model using observed forcing and parameter data.

LSM spinups are necessary to generate soil moisture and

temperature profiles that have equilibrated over time,

and thus are often on the order of a few years to de-

cades in length leading up to the time of coupled model

initialization (Rodell et al. 2005). Spinups are facilitated

by systems such as LIS and the High-Resolution LDAS

(HRLDAS; Chen et al. 2007) and require multiyear off-

line simulations driven by high-quality forcing data. As a

result, the advantages are in resolution, representative-

ness, and quality (including consistency of LSM states

with observed meteorology), but can be limited by the

availability of accurate forcing data and computational

demand. As compared to LDAS systems, LSM spinups

can further resolve spatial heterogeneity down to 1km

or less, and in coupled systems such as LIS/NU-WRF,

will ensure identical LSM settings in both the offline

spinup and coupled simulations. To date, LSM spinups

have been employed in numerous regional (WRF)

modeling studies, but are typically only employed by

those in the land (LIS and HRLDAS) communities

(Santanello et al. 2013a,b; Case et al. 2011, 2008; Kumar

et al. 2008; Rajesh et al. 2017; Hirsch et al. 2014), while

atmospheric modelers have been much less inclined to

invest in this approach.

Recent advances in satellite retrieval of land surface

states now allow for soil moisture ICs to be fully or partly

derived from satellite data. Satellites such as SMAP can

provide gridded products comparable in spatial resolu-

tion to that of the off-the-shelf products described above

(e.g., SMAP 9- and 36-km products). However, using

satellite products directly as ICs is not currently advis-

able, due to differing climatologies and biases inherent in

satellite versus LSM-based soil moisture. As satellite soil

moisture becomes more accurate (as is the case with

SMAP), and LSM soil moisture becomes more ‘‘ob-

servable,’’ opportunities to directly employ satellite

products as ICs will become apparent. The traditional

method to incorporate satellite-based soil moisture

into ICs has been through data assimilation after utilizing

bias correction techniques such as CDF matching to ac-

count for the satellite versus LSM biases (Reichle and

Koster 2004). Assimilation incorporates some of the sat-

ellite signal that the LSM may miss, but impacts are typi-

cally muted due to the low random error present in

satellite and LSM products, and high accuracy of at-

mospheric (i.e., precipitation) forcing of the LSM.

Recent efforts at NCEP and Environment Canada have

employed SMAP data assimilation during LSM spinup to

improve soil moisture ICs for NWP, with results showing

inconsistent improvements across large continental do-

mains. These approaches and results will be discussed in

more detail in sections 5 and 6 in the context of the

results presented in this study.

An additional IC approach that does not fall neatly

into the categories in Fig. 1 is that of ‘‘self-spinup,’’ as

described by Angevine et al. (2014) and performed by Dy

and Fung (2016). In self-spinup, the NWP or regional
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model of interest can be initialized with coarse atmospheric-

based soil moisture ICs, then cycled over months or

years at a time (resources permitting), which improves

the spatial resolution as it responds to precipitation and

other forcing at the finer target model resolution. A dis-

advantage is that the accuracy of resulting soil moisture is

entirely dependent on the free running model perfor-

mance and precipitation accuracy, which likely is less

than that of the observationally constrained atmospheric

models. As with other IC approaches, there are tradeoffs,

and in this case that is gaining spatial heterogeneity but

perhaps losing the spatial accuracy of soil moisture

anomalies.

Also not considered in the suite of ICs inFig. 1 are basic

sensitivity studies that vary the soil moisture IC, often

uniformly, in ‘‘brute force’’ fashion in order to assess

impacts on NWP (e.g., Kalverla et al. 2016; Ament and

Simmer 2006; Daniels et al. 2015; Collow et al. 2014).

There have been a host of studies in this regard, each

emphasizing a different aspect of coupled impacts, typi-

cally focusing on singular impacts on temperature or

precipitation. Overall, these sensitivity studies highlight

the importance of soil moisture ICs, and underscore the

need for high-quality and high-resolution ICs (preferably

from satellite or LSM spinup).

3. Experimental design

The suite of soil moisture IC approaches in Fig. 1 will

be intercompared in this study using SMAP for satellite

observations, LIS for LSM spinup, and NU-WRF as the

coupled forecast model, along with the standard off-the-

shelf products from NARR, GFS, and NLDAS-2 and

in situ evaluation data from the ARM-SGP network.

a. SMAP soil moisture

NASA’s SMAPmission was launched in January 2015

and has been providing passive microwave retrievals of

soil moisture from April 2015 to present. SMAP soil

moisture has performed well to date, reaching the mis-

sion target of 60.04m3m23 accuracy over most regions

(Chan et al. 2018), and with higher temporal consistency

(i.e., less noise) and overall information content than

other passive microwave-based soil moisture products

from missions such as SMOS, AMSR-E, and ASCAT

(Kumar et al. 2018). SMAP soil moisture also exhibits

wetting and drydown responses that are consistent with

those modeled by LSMs (Shellito et al. 2018) and has

been useful in detecting the timing and spatial extent of

irrigation (Lawston et al. 2017). In addition, SMAP has

been used successfully in data assimilation studies by

operational and research centers (e.g., Fang et al. 2018;

Carrera et al. 2019). In this study, we use the SMAP L3

enhanced soil moisture retrieval, based on the 33-km

retrieval algorithm but posted at 9-km spatial resolution

after utilizing the oversampling of the SMAP footprint.

Section 4 presents a comparison of SMAP products

against in situ and modeled soil moisture in order to

assess any relative biases or observability issues among

these products before they are infused into offline or

coupled modeling applications.

b. LIS and NU-WRF modeling systems

As mentioned in section 1, we now have the ability to

generate high-resolution, high-quality, long-term in-

tegrations in offline land data assimilation systems such

as LIS, which incorporate high-resolution, observed

forcing and satellite parameter and state datasets. LIS,

with its choice of LSMs, parameter and forcing data, and

assimilation and calibration modules, can be run in off-

line (uncoupled) mode for multiyear spinups that can

then be used to initialize coupled models such as

NU-WRF.

NU-WRF is NASAGSFC’s version of the community

WRF-ARW model and is essentially a superset of the

ARW model that includes unique NASA assets and

physics capabilities including radiation, microphysics,

chemistry, and land surface (via LIS). In addition to

providing the soil ICs via LSM spinup, LIS is also cou-

pled to NU-WRF and can be used as the LSM during

fully coupled simulations. This is advantageous in terms

of utilizing the identical model, grid, and configuration

in the offline spinup as during the coupled experiment.

The LIS/NU-WRF coupling (Kumar et al. 2008) has

been used extensively in research focused on quantifying

forecast impacts of different land cover (Case et al. 2011,

2008), irrigation (Lawston et al. 2015), soil condition

(Zaitchik et al. 2013), atmospheric forcing (Santanello

et al. 2016), LSM calibration (Santanello et al. 2013a),

and land data assimilation formulation (Santanello

et al. 2016; Huang et al. 2018; Carrera et al. 2019), and

serves as an ideal test bed to examine the sensitivity to soil

moisture initialization approaches. For this study, LIS

version 7 (LISv7.0; https://lis.gsfc.nasa.gov/) is employed

with the Noah LSM, version 3.3 LSM (Ek et al. 2003)

and coupled to NU-WRF, version 8 patch 4 (https://

nuwrf.gsfc.nasa.gov/).

c. Off-the-shelf products

The Global Forecast System (GFS; Environmental

Modeling Center 2003) is an operational, global spectral

model driven by the Global Data Assimilation System

(GDAS), which incorporates satellite, surface, aircraft,

and other observations from across the globe into a grid-

ded model space. The land component of GFS was up-

graded to the Noah LSM version 2.7.1 in the mid-2000s,
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reducing prominent biases in snowpack, evaporation,

and precipitation. The GFS analyses are generated at

6-hourly intervals and gridded at 0.258 spatial resolu-
tion (available via rda.ucar.edu/datasets/ds084.1). The

NorthAmerican Regional Reanalysis (NARR;Mesinger

et al. 2006) uses the Eta model, the Noah LSM, and ad-

vances in data assimilation to create long-term, consistent

weather data at 32-km spatial resolution and 3-hourly

intervals (available via rda.ucar.edu/datasets/ds608.0).

NARR was the first reanalysis to include precipitation

assimilation and shows considerable improvement over

the previous NCEP reanalysis system (Kennedy et al.

2011). Finally, NLDAS-2 provides near-real-time, 1/88
(;12-km) resolution, quality-controlled datasets of at-

mospheric forcing needed to run LSMs, as well as LSM

output from four different models driven by these data.

We use both the NLDAS-2 meteorological forcing (to

drive LIS offline simulations) and the NLDAS-2 model

output from the Noah LSM (version 2.8) for land initial

conditions, discussed further in the experimental design.

d. Experimental design

An extensive survey of potential coupled case study

dates was performed over a regional modeling domain

over the U.S. SGP region (Nebraska, Kansas, Oklahoma,

and Texas). The initial time of the case studies was limited

to those that had full coverage from SMAP at 0600 local

time (LT), and due to the geographical location and

SMAP orbital pattern, this occurred every ;6 days. A

relatively clear-sky morning, with weak synoptic flow

and potential locally induced convection in the after-

noon was desirable. This would allow local land effects

due to surface and soil moisture heterogeneity to be

maximized. In addition, contrasts in soil moisture

across the domain were deemed as advantageous to the

goals of this study in terms of highlighting differences

in ICs captured by approaches in Fig. 1. Last, the

Enhanced Soundings for Local Coupling Studies (ESLCS;

Ferguson et al. 2016) campaign took place in summer

2015, which was composed of 12 IOP days with hourly

radiosondes launches during the daytime that were

deemed useful for model validation. Taking all of these

factors into account, 11 July 2015 was chosen as the pri-

mary coupled case study for this study, with 10 June 2015

as a secondary case to support any conclusionsmade from

the July case.

Thus, LIS and NU-WRF are run on a single 750km3
1100km domain over the SGP at 1-km spatial resolution

(Fig. 2) using a 3-s time step, GSFC microphysics, GSFC

long- and shortwave radiation,Mellor–Yamada–Nakanishi–

Niino (MYNN) PBL scheme, and Monin–Obukhov

surface layer scheme. NARR and GFS data were used

for atmospheric initialization for different simulations

that will be discussed below, with 3-hourly lateral bound-

ary condition nudging, and 61 vertical levels. Simulations

were initialized at 1200 UTC on the morning of 11 July

and run for 24h.

Each of the soil moisture IC approaches was implemented

as in Table 1 for a total of eight coupled simulations. The

FIG. 2. (a) MODIS-based land cover and (b) STATSGO-based

soil type datasets used in the 1-km LIS and NU-WRF simulations,

along with the ARM-SGP ECOR flux (3), STAMP soil moisture

(o), and Ellis, KS, and Lamont, OK, (star) profiling sites across the

Great Plains domain.
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off-the-shelf ICs from NLDAS-2, NARR, and GFS

were performed by using the soil moisture (and tem-

perature) profile ICs from those atmospheric model

products. Three LIS spinups were performed beginning

from 1 January 2010 through 31 December 2016, the

domain of which along with input land cover and soil

type data as well as ARM-SGP site locations are shown

in Fig. 2. The LIS-Control run used NLDAS-2 atmo-

spheric forcing along with default climatological green-

ness vegetation fraction (GVF) data from NCEP. Two

permutations of LIS spinup were also performed, one

using GDAS atmospheric forcing data (LIS-GDAS) in-

stead of NLDAS-2, and the other with real-time GVF

data from the VIIRS satellite (LIS-VIIRS) instead of

climatological GVF. The goal of the LIS suite of runs was

to create a mini-ensemble of the range of IC spread

that would be generated from different LSM spinup

approaches and forcing/parameter data quality. At-

mospheric forcing was varied to provide spread based

on uncertainty in precipitation forcing, while GVF

was varied to account for uncertainty in soil moisture

due to vegetation amount and evaporation. For the

three spinup runs, NU-WRF was then run coupled to

LIS throughout the 24-h simulation, thus ensuring con-

sistency from spinup through coupled forecast in terms of

the LSM configuration. The off-the-shelf ICs were taken

as described above from theNLDAS-2, GFS, andNARR

products which provided the four layers of soil moisture

and temperature data to the Noah LSM in NU-WRF.

Each of these runs employed climatological GVF during

the coupled NU-WRF.

The model–data fusion approaches to ICs were per-

formed using SMAP data and direct insertion. The SMAP

overpass provided nearly complete spatial coverage of the

domain, butwhere necessary, a nearest-neighbor approach

was used to interpolate for missing values. For these runs,

SMAP was used as the top 5-cm soil moisture data on top

of existing NARR and NLDAS-2 soil moisture profiles

(identical to those taken off-the-shelf above), which were

used for the remaining three soil layers (see Table 1 for

layer specifications). While direct insertion is certainly not

an advisable practice for operational purposes due to the

relative biases of SMAP and LSM soil moisture climatol-

ogies, it serves a distinct purpose here to provide an upper

bounds on what could be expected from data assimila-

tion (where increments would ultimately be much smaller

than what is seen here), as well as to see if the biases and

noise of SMAP are indeed small enough to begin to

consider such approaches as direct insertion. It is possible

that introduction of SMAP on top of modeled profiles

will result in a shock to the system and cause issues with

equilibrium of the soil profile and associated fluxes and

states, which also can be examined here. It should be

noted that assimilation of SMAP intoLIS spinups is an area

of active research, and one that deserves independent

treatment in future studies. Nonetheless, based on prior soil

moisture assimilation experiments we would expect that

such a spinup would fall somewhere near or within the

spread of the three existing LIS spinups produced here.

e. In situ/evaluation data

For the offline evaluation of the LoCo metric applica-

tion over the SGP domain, data are acquired from the

ARM-SGP network of sites and instruments at the Cen-

tral Facility (CF) in Lamont, OK, the Plains Elevated

Convection at Night (PECAN; Geerts et al. 2017) site

at Ellis, KS, and 16 ARM Extended Facilities (EFs)

across OK and KS (see Figs. 2a,b) These include high-

quality, nearly continuous meteorological, surface flux,

and atmospheric profile measurements going back to the

TABLE 1. Suite of offline LIS simulations with input datasets, along with suite of coupled NU-WRF simulations with atmospheric forcing

and soil layering configurations.

Offline simulations Coupled simulations

Experiment type

and name

Atmospheric

forcing GVF Land conditions

Atmospheric

initial/boundary conditions

Soil layer

thickness (cm)

Off-the-shelf

NARR — — NARR NARR 10, 30, 60, 100

GFS — — GFS GFS 10, 30, 60, 100

NLDAS-2 — — NLDAS-2 NARR 10, 30, 60, 100

LIS

LIS-Control NLDAS-2 Climatology LIS-Control NARR 10, 30, 60, 100

LIS-GDAS GDAS Climatology LIS-GDAS NARR 10, 30, 60, 100

LIS-VIIRS NLDAS-2 VIIRS LIS-VIIRS NARR 10, 30, 60, 100

SMAP-infused

SMAP1NARR — — SMAP (top) and NARR NARR 5, 35, 60, 100

SMAP1NLDAS — — SMAP (top) and NLDAS-2 NARR 5, 35, 60, 100
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mid-1990s. Specifically, soil moisture from the recently

installed Soil Temperature andMoisture Profile (STAMP)

in situ probes at the CF and 16 EFs are used and

represent a major improvement in ARM-SGP mea-

surements of soil moisture quality and ancillary data

(Cook 2018). Surface sensible and latent heat flux

data from the Eddy Correlation Flux Measurement Sys-

tem (ECOR) towers at the CF and 7 EFs are also used.

Temperature and humidity data at 2m is taken from

the meteorological sites at CF and EFs. Vertical profiles

of temperature and humidity are acquired at the CF

and Ellis, KS, sites. CF typically provides 4 times daily

(2 daytime) launches, but as a result of the ESLCS cam-

paign, 11 July produced hourly profiles from radiosonde

that could be utilized in the LoCo analysis. Likewise, the

Ellis, KS, site was a supersite of the PECAN field cam-

paign in summer 2015, which took additional measure-

ments from ground-based lidar (Weckwerth et al. 2016)

to produce temperature and moisture profiles almost

continuously during the daytime of 11 July. The radio-

sondes at CF and differential absorption lidar (DIAL) at

Ellis were then used to characterize the diurnal structure

and evolution of the PBL, derive PBL height estimates,

and compare with NU-WRF simulations using LoCo

metrics.

f. LoCo metrics

The integrative nature and application of LoCo met-

rics to NWP andNU-WRF studies has been described in

detail in Santanello et al. (2009, 2011, 2013a,b, 2015).

This includes the mixing diagram approach and evapo-

rative fraction versus PBL height metrics that are em-

ployed in this study to better understand the impacts of

soil moisture ICs on the coupled system, including the

PBL response and the relative influence of atmospheric

ICs as well. The reader is referred to Santanello et al.

(2018) for an overview of LoCo metrics, and resources

for the community.

4. Offline soil moisture intercomparison

We first assess the behavior of near-surface soil mois-

ture derived from SMAP, LIS, and in situ measurements

during the offline spinup period, followed by an in-

tercomparison of the suite of soil moisture ICs and the

coupled case study impacts.

Time series of near-surface soil moisture from the

SMAP retrieval, LIS simulations, and in situ STAMP

probes are shown in Fig. 3 for three ARM-SGP ex-

tended facilities during summer 2016. Overall, SMAP

shows a comparable dynamic range to in situ measure-

ments, responding to precipitation events and drydown

periods with little evidence of noise or spurious (outlier)

values. To this end, the temporal consistency and ab-

solute value of SMAP soil moisture appear realistic,

and comparable to the STAMP measurements. Note

that none of these sites were used as part of SMAP

calibration/validation activities, and this is a true in-

dependent test of SMAP performance across sites with

varying vegetation and soil characteristics.

The LIS simulations, on the other hand, have a dis-

tinct time series at E33 (Newkirk, OK) and E38 (Omega,

OK) that shows a much narrower dynamic range and

values on the wetter end of the soil moisture spectrum

(relative to SMAP and STAMP). The spread across the

three LIS simulations is rather small overall, but there are

brief periods where the quality of atmospheric forcing

(GDAS versus Control; particularly in July and August)

and, to a lesser extent, vegetation greenness (VIIRS

versus Control) do impact the soil moisture values.

Regardless, the envelope of soil moisture across these

simulations is one that is narrow, and it is bounded by a

maximum (during precipitation spikes), and a mini-

mum (during dry periods). The time scale of the drying

events is controlled by the Noah LSM soil type and

hydraulic parameters as specified by the lookup table at

each site. At E33 and E38 [and the remaining 17 sites

(not shown)], it is apparent that these parameters do

not permit the model to dry down at a steep enough

rate to reach the drier soil moisture levels observed by

SMAP and STAMP.

Site E31 (Anthony, KS; Fig. 3c) is shown as an outlier,

where LIS soil moisture tracks very close to that ob-

served in terms of absolute range and drydown behavior.

Interestingly, this is a site where the prescribed soil type

in LIS is sand, but the observed type is silt loam. The

hydraulic parameters corresponding to sand are the

most extreme in terms of allowing for rapid drying and

overall drier wilting point and minimum soil moisture

values. So in a sense, at E31 the model obtains a better

result for the wrong reasons by designating the site as sand

in order for it to exhibit behavior like that of silt loam.

Figure 4 presents scatterplots of the time series data in

Fig. 3, and compares the in situ STAMP data directly

with that of LIS and SMAP. The higher range of soil

moisture values in LIS is apparent at E33 and E38, as are

the comparable SMAP and STAMP values. The higher

peaks during precipitation events in SMAP are also

evident, and not unexpected as L-band sensing depths are

much shallower during wet conditions (Liu et al. 2012;

Escorihuela et al. 2010) and retrievals characterize a

wetter and more dynamic quantity of soil moisture im-

mediately after rainfall than at other times (Schneeberger

et al. 2004; Rondinelli et al. 2015).

The linear slopes that can be seen in the data (e.g.,

Fig. 4a) actually reflect the inherent drying rates in each
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FIG. 3. Time series of near-surface (0–5 cm) soil moisture during JJA 2016 from the suite of

LIS simulations, in situ STAMP data, and SMAP 9-km enhanced retrievals at the ARM-SGP

(a) E33, (b) E38, and (c) E31 sites.
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FIG. 4. Scatterplots of (left) LIS vs STAMP and (right) SMAP vs STAMP near-surface (0–5 cm) soil moisture

from Fig. 3 during JJA 2016 at the ARM-SGP (a),(b) E33; (c),(d) E38; and (e),(f) E31 sites.
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product. For example, at E33 LIS has a much lower

drying rate (as seen in Figs. 3a,b) compared with

STAMP, which is reflected in the lesser slope of Fig. 4a

(less than 1:1) as compared to that seen in Fig. 4b (nearly

1:1). The greater scatter seen at E38 in Fig. 4c is the

result of mismatches in the number of modeled pre-

cipitation events versus those observed locally at this

site (as in Fig. 3b). At E31 (Fig. 4e), the tighter re-

lationship and slope approaching 1:1 is the result of the

unrealistic sandy soil parameters, as discussed above.

A summary of the performance of LIS and SMAP

versus that of STAMP at all 17 ARM-SGP sites is pre-

sented in Table 2 in terms of bias, unbiased RMSE, and

RMSE statistics over the JJA 2016 period. At 13 of the

sites, SMAP bias is within 60.04m3m23 and unbiased

RMSE is within 0.06m3m23, not far from the mission

target of 60.04m3m23 at the SMAP calibration/

validation sites, which is impressive given these sites are

independent (uncalibrated) and varied in terms of soil

type and land cover characteristics. The performance of

LIS is largely inconsistent, with quite large bias and

RMSE values (.0.10m3m23) at a number of sites pos-

sibly due tomismatches in soil type versus those observed

and the rigid parameter values that determine the overall

soil moisture climatology in the Noah LSM. Other po-

tential influences are the rooting depth, litter, andGVF in

the LSMnotmatchingwhat is observed at these sites. The

unbiased RMSE statistics for LIS are much better, fur-

ther indicating the importance of reducing the systematic

error in the LIS results and the potential benefit of LSM

calibration and parameter estimation approaches.

As discussed in section 1, the ultimate impact of soil

moisture on coupled NWP is felt through the surface flux

connections of latent and sensible heat. Thus, it is not only

important to intercompare the different soil moisture

products as above, but also to assesswhat the implications

of those soil moisture characteristics (and climatologies)

are in terms of the surface energy balance and transfer of

heat and moisture to the atmosphere. In Fig. 5, fluxes

from the LIS simulations (averaged across the Control,

GDAS, and VIIRS runs) at the three sites in Figs. 3 and 4

are shown versus those observed by the ARM ECOR

stations. Averaged daytime diurnal cycles (hourly data)

are calculated for the JJA 2016 period, and they show that

at E33 and E38 there is a distinct overestimation of la-

tent heat flux by LIS-Noah. Sensible heat fluxes are

generally comparable between themodel and flux towers.

When looking at all six ECOR sites (Fig. 5d), the

overestimation of latent heat flux is more apparent,

with differences approaching 200Wm22. However,

there is not the typical Bowen ratio compensation of

lower sensible heat flux, which indicates (and is confirmed

in Fig. 5e) that there is a significant overestimation of

available energy in LIS at these sites. The tendency for

LIS to have ample soil moisture then leads to the parti-

tioning of excess available energy into latent, rather than

sensible, heat flux. A detailed radiation analysis at these

sites indicates that the extra available energy in LIS is a

result of slight phase differences in downward shortwave

radiation from LIS (NLDAS-2 forcing) versus observed,

in combination with a lower albedo in LIS versus ob-

served over this region. Overall, these higher evaporation

rates into the atmosphere should have coupled land–

atmosphere implications, whichmay lead to reduced PBL

growth, more humidity, and lower temperatures near the

surface and in the PBL, and could impact moist processes

and feedbacks that support clouds and precipitation.

5. Coupled case study results

a. Intercomparison of soil moisture ICs

Near-surface soil moisture from the suite of IC ap-

proaches discussed in section 2 are shown in Fig. 6,

valid at 1200 UTC 9 June, 11 July, and 28 August 2015.

Although the coupled case study focuses on 11 July, the

June and August dates are shown to compare soil

TABLE 2. Bias, unbiased-RMSE, and RMSE statistics for the

average soil moisture of the three LIS simulations and the 9-km

enhanced SMAP-based soil moisture vs those observed at the

ARM-SGP STAMP sites during JJA 2016 as grouped by soil type

as reported at the STAMP sites and taken from in situ soil samples.

Bias ub-RMSE RMSE

SMAP LIS SMAP LIS SMAP LIS

Sandy loam

E12 20.04 20.03 0.05 0.04 0.07 0.05

E15 0.08 0.14 0.04 0.03 0.09 0.15

E36 0.01 0.04 0.04 0.04 0.04 0.05

Silt loam

E13 20.02 0.01 0.04 0.05 0.05 0.05

E31 20.02 20.05 0.05 0.03 0.06 0.06

E33 0.02 0.06 0.07 0.04 0.07 0.07

E37 20.04 0.01 0.05 0.05 0.07 0.06

E38 20.00 0.06 0.05 0.04 0.05 0.07

E39 20.04 0.02 0.05 0.05 0.06 0.05

E40 20.09 20.02 0.06 0.04 0.11 0.05

E41 20.10 20.08 0.08 0.06 0.13 0.10

Loam

E9 0.02 0.04 0.07 0.05 0.07 0.06

E11 20.04 20.11 0.06 0.05 0.08 0.12

Silty clay loam

E21 0.03 0.09 0.07 0.07 0.08 0.11

E32 20.02 0.01 0.07 0.07 0.08 0.07

E34 20.00 0.03 0.06 0.04 0.06 0.05

Clay loam

E35 20.09 20.03 0.06 0.05 0.10 0.06
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FIG. 5. Scatterplots of hourly mean diurnal cycle sensible and latent heat fluxes over JJA 2016 from the LIS

(averaged across all three LIS simulations) vs ECOR measurements at the ARM-SGP (a) E33, (b) E38,

(c) E31 sites, (d) all six sites, and (e) the available energy (sensible 1 latent heat flux) at all six sites.
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moisture conditions earlier and later in the summer

season, both before and after the typical seasonal

drydown in the SGP region. The spatial heterogene-

ity of SMAP across the domain is comparable to that

of the other products in terms of overall variability

and range of soil moisture (from dry to wet). The LIS

simulations have the highest spatial resolution (1 km)

and therefore depict more local-scale features, many

of which reflect the soil type dataset. The off-the-shelf

products show only coarser features, limited by the model

resolution in each (ranging from12.5 to 33km). SMAPalso

shows regions of higher soil moisture (compared to other

products) just after precipitation events (e.g., 11 July in

eastern Kansas), which is consistent with the behavior seen

in Fig. 3 regarding the precipitation peaks in SMAP being

larger than observed or modeled using thicker soil layers.

Generally, over dry regions SMAP tends to be drier

than the other products, while GFS and NARR tend to

be wetter. SMAP is known to dry down faster than the

Noah LSM (Shellito et al. 2016), and likely has a true

retrieval depth that is shallower than the published

‘‘5 cm,’’ as near-surface soil layers (top 2–3 cm) dry down

much faster than the 5–10-cm layer. The true SMAP re-

trieval depth is further complicated by vegetation effects

and the soil moisture itself, and likely varies both in time

and space as a result. The coarse model products (using

Noah LSM and the 0–10-cm layer) are wetter. This is

likely due to a combination of a deeper top soil layer

(0–10-cm depth), inaccuracy of the soil hydraulic pa-

rameters, and the coarse horizontal model resolution,

which all contribute to restricting the model’s response

to higher-resolution land surface data. LIS, on the other

hand, shows regions of very dry soil (consistent with the

SMAP patterns) as a result of retaining the 1-km soils

information as well as local vegetation and precipitation

patterns that allow for more extensive dry downs (par-

ticularly in late August).

It should be noted that it is not possible to objectively

evaluate which is the most accurate soil moisture IC.

Each IC approach provides a representation of soil

moisture that is reliant on (physical or retrieval) model

assumptions, and in situ data is too sparse to convinc-

ingly validate each across a large 1-km-resolution do-

main. However, understanding the differences and what

causes them (resolution, SMAP retrieval, layer depth,

input parameters, etc.) is key to understanding the po-

tential coupled impacts of each IC. To better parse out

these differences, Fig. 7 presents PDFs of the soil

FIG. 6. Near-surface soil moisture from SMAP, the three LIS permutations, and off-the-shelf products from NLDAS-2, GFS, and NARR

valid at 1200 UTC (a) 9 Jun, (b) 11 Jul, and (c) 28 Aug 2015. Stars indicate the locations of the ARM CF (Lamont, OK) and Ellis, KS sites.
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moisture ICs in Fig. 6 on each of the three dates. SMAP is

skewed toward drier values, as discussed above, and the

coarser products are much wetter (GFS, NLDAS) with

the LIS runs in between. On 11 July, there is a bimodal

distribution in SMAP and the LIS runs, as a result of each

capturing the spatial heterogeneity generated by recent

localized precipitation over part of the domain creating

distinct wet and dry regimes. Notably, the coarser prod-

ucts (GFS) do not capture this bimodal distribution

nearly as well. Another striking difference can be seen on

28August, whereGFS ismuch wetter andmore narrowly

distributed as compared to LIS, SMAP, and NLDAS-2.

Overall, there are three important takeaways from

Figs. 6 and 7, in that 1) the climatologies of soil moisture

differ significantly based on the source of the IC (i.e.,

SMAP, high-resolution LSM spinup, or off-the-shelf

products), 2) ICs based solely on SMAP tend to be

drier overall, but capture the spatial variability of the

region, and 3) stark differences in spatial distributions

suggest that the choice of IC is likely to have significant

downstream coupled impacts across the domain.

b. Coupled case study: 11 July 2015

1) LOCO ANALYSIS

Coupled NU-WRF simulations, initialized by the

suite of soil moisture conditions in Fig. 6b, were per-

formed for 24-h beginning at 1200 UTC 11 July 2015. As

FIG. 7. Spatial PDFs of near-surface soil moisture at 1200 UTC (a) 9 Jun, (b) 11 Jul, and (c) 28 Aug 2015 from the

suite of products and across the full domains shown in Fig. 6.
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described in section 3, SMAP soil moisture values were

directly inserted as the top layer soil moisture in the

NLDAS-2 and NARR profiles and are referred to as

SMAP1NARR and SMAP1NLDAS. The impact of

each IC is reflected in the process chain [Eq. (1)] vari-

ables that connect soil moisture to evaporation (sensible

and latent heat flux), PBL evolution (mixed-layer tem-

perature, humidity), PBL height, ambient weather (2-m

temperature and humidity), and clouds and precipitation.

Seven hours into the simulation (1900 UTC), there are

large differences across the runs in each of these vari-

ables, reflecting the relative impact of wetter soil mois-

ture conditions on increased evaporation, decreased PBL

growth, lower temperature, higher humidity, and modi-

fication of precipitation intensity and location. An ex-

ample is shown in Fig. 8 in terms of soil moisture IC

differences between NARR and LIS-GDAS at 1200 UTC

and the downstream impacts on latent and sensible heat

flux (;200–300Wm22), PBL height (;800–1000m), and

2-m temperature and humidity (;2–3K; ;3–4gkg21,

respectively) inmidafternoon (1900UTC). The impact of

the soilmoisture IC differences and drier (wetter) regions

can clearly be seen carried through toward higher (lower)

sensible (latent) heat fluxes, larger (reduced) PBL growth,

warmer (cooler) temperatures, and lower (higher) hu-

midity at 2m. The relatively drier LIS-GDAS conditions

overall support higher sensible heat flux, PBL heights, and

temperatures later in the day throughout much of the do-

main, illustrating the coupled impacts of soil moisture ICs.

While Fig. 8 presents a standard single variable as-

sessment, the integrated metrics of LoCo can be used

for a more qualitative and comprehensive assessment of

the fully coupled impacts of soil moisture ICs. Figure 9

presents the mixing diagram analyses at the ARM CF

and Ellis, KS, sites for each simulation, along with the

derived Bowen and entrainment ratios (as in Santanello

et al. 2009). As shown in Fig. 6b and based on SMAP, the

CF site is located in a wet region having just received

precipitation and Ellis is in the western much drier part

of the domain, so there is a natural contrast in conditions

at these two sites. At the CF site, the mixing diagram

signatures are vertically oriented with little change in

humidity throughout the day, as a result of only mod-

erate PBL growth and entrainment and little spread

across simulations (Figs. 10a, 11a), as might be expected

for a wet site. There is only small divergence in the co-

evolution of 2-m temperature and humidity across the

runs, with the exception of the GFS simulation, which

employs GFS atmospheric IC/BCs, whereas the re-

mainder of the simulations use NARR. Thus, soil

moisture does not seem to impact the results nearly as

much as the choice of GFS or NARR atmospheric data

at this location.

At the Ellis site, there is much larger diurnal vari-

ability in temperature and humidity, and larger en-

trainment fluxes of dry and warm air into the PBL, as

would be expected at a dry site. Bowen ratios also vary

from 0.73 to 2.55 depending on the choice of soil

moisture IC. Once again, GFS is the outlier and evolves

differently over time. Overall, the soil moisture ICs are

directly reflected in the surface Bowen ratio and EFs

(Fig. 9b) with the SMAP-based runs (driest soil mois-

ture) having the lowest EF (high sensible heat flux) and

the wetter off-the-shelf products (GFS, NLDAS-2)

producing the highest values (high latent heat flux).

These differences in surface energy balance are am-

plified at Ellis (versus that seen at CF) by the much

larger PBL growth and spread across simulations

(Figs. 10b, 11b). At this site, the wetter ICs of GFS and

NLDAS tend to limit PBL growth while the SMAP and

LIS-GDAS runs easily reach over 3km. It should also be

noted that all runs tend to overestimate PBLheight at both

sites throughout the daytime period, so those with wetter

ICs overall that limit PBL growth are closer to observed.

Overall, these two contrasting sites demonstrate that

soil moisture ICs can impact PBL and land–atmosphere

coupling, but the magnitude depends on the relative

range and spread of soil moisture (and atmosphere versus

soil limited regime) across the ICs, and whether the PBL

is sensitive to the surface flux partitioning. A look at the

four Noah LSM soil layers for each of the simulations

provides further insight as to the potential role of soil

moisture ICs. At the CF site (Fig. 12a), the second

layer of soil moisture is generally similar across all IC

products and greater than 0.25m3m23. This second

layer (10–40 cm) represents more of the root zone,

and thus controls the majority of evapotranspiration.

These soil moisture values are all in the atmosphere-

limited regime, and there is little difference across simu-

lationswith each producing high evaporative fraction that

limits PBL growth.

On the other hand, at the Ellis site (Fig. 12b) con-

ditions are much drier, particularly in the root zone, for

the LIS and NARR ICs, but wetter in the second layer

in NLDAS and GFS. This creates a disparity in EF

(Fig. 10b) across ICs. Furthermore, the SMAP direct

insertion into NLDAS-2 versus NARR produces dif-

ferent surface flux and resultant PBL growth as a result

of the wet (NLDAS-2) versus dry (NARR) root zone of

each. At this site, it is not the dry SMAP near-surface

soil moisture that controls the surface energy balance,

rather the deeper soil layers, which in this case are de-

rived from NLDAS-2 and NARR. This is an important

result in that it highlights the potential limited role of

SMAP on land–atmosphere coupling if combined with

other products that are not consistent (and why a direct
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insertion approach is not recommended), even when

SMAP is much drier than the layers below.

2) LAND VS ATMOSPHERIC IC IMPACTS

Having parsed out the soil moisture IC impacts, it is

worthwhile isolating and examining the impact of the

atmospheric ICs as well, given the outlier behavior of

theGFS simulation seen in Fig. 9. Figure 13 showsmixing

diagrams and evaporative fraction versus PBL height

analyses, for only the GFS and NARR simulations, at

the CF and Ellis sites in addition to two other sites

(36.08N, 100.08W; 39.08N, 97.08W) across the domain

FIG. 8. Difference in (a) soil moisture ICs (LIS-GDAS2NARR) at 1200 UTC, and corresponding differences at 1900 UTC in NU-WRF

simulated (b) sensible heat flux, (c) latent heat flux, (d) PBL height, (e) 2-m temperature, and (f) 2-m humidity.
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that represent different surface and atmospheric con-

ditions. Mixing diagrams can be used to show the di-

urnal behavior of humidity (x axis) and temperature

(y axis) simultaneously with the surface latent and

sensible heat flux vectors and atmospheric response

(PBL entrainment and advection) vectors. In Fig. 13,

the mixing diagram plots show an initial dry bias in

GFS 2-m humidity at 1200 UTC (0700 LT) relative to

that of NARR and that observed at CF and Ellis. The

ensuing daytime evolution of temperature and hu-

midity then differs considerably across the sites. At the

CF site, GFS and NARR remain parallel to each other,

with the initial dry GFS bias persisting throughout the

day (with comparable temperature evolution in each).

Figure 13b shows that the EF (i.e., land ICs) and PBL

height (i.e., initial atmospheric profiles) are similar in

GFS and NARR, and hence there was no coupled

mechanism to impact the GFS humidity bias during

the day. In addition, low-level winds were weak and

variable, thus limiting any potential impact of hori-

zontal advection.

In contrast, at Ellis the initial dry bias in GFS is over-

come by NARR by the end of the day, with NARR

29

FIG. 9. Mixing diagrams and associated Bowen and entrainment

ratios (as in Santanello et al. 2009) at the (a) ARM-SGP CF and

(b) Ellis, KS, sites derived from each of the NU-WRF simulations

valid from 1200 UTC 11 Jul to 0000 UTC 12 Jul 2015.

FIG. 10. Mean daytime evaporative fraction vs PBL height de-

rived from the simulations in Fig. 9 at the (a) ARM-SGP CF and

(b) Ellis, KS, sites.
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drying out significantly. This can be explained by the

drier soil moisture IC at this site in NARR, which pro-

motes lower EF, combined with significant PBL growth

and dry air entrainment, and generates a PBLwith lower

humidity. NARR humidity ends up further from the

observations at this site, likely due to a dry IC of soil

moisture. As NARR atmospheric IC/BCs were used to

drive all the soil moisture IC permutations except for

GFS, this is an important result particularly as the LIS

and SMAP ICs tend to be even drier than the default

NARR ICs (and thus even further from observed 2-m

humidity).

At the third site (Figs. 13e,f), the GFS initial dry bias is

apparent, but then erodes over time with GFS approaching

similar humidity values of NARR (which does not dry

out during the day). Each has similar soil moisture ICs

at this site, so the land influence is eliminated. However, a

closer look at the vertical profiles of temperature and

humidity (not shown) indicate that in GFS the PBL

grows more slowly and into a more humid layer than

NARR, which tends to increase and cap the overall hu-

midity in the PBL including at 2m. At the final site

(Figs. 13g,h), the GFS dry bias is also reduced over

time as a combination of afternoon moistening in GFS

and drying inNARR, despite having similar soil moisture

ICs and evaporative fraction. This can be attributed to a

combination of deeper PBL growth and dry air entrain-

ment in NARR, along with GFS eventually reaching a

phase of PBL growth into a more humid layer in the af-

ternoon (not shown).

Overall, these results demonstrate that land, atmo-

spheric and PBL ICs and processes can have varying

relative impacts on land–atmosphere coupling and

ambient weather prediction. They also suggest that it

FIG. 11. Diurnal cycle of PBLheight at for each of the simulations in Fig. 9 and observed at the

(a) ARM-SGP CF and (b) Ellis, KS, sites.
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is unlikely that changes in a single component of ini-

tialization (e.g., soil moisture) will have uniform or

spatially/temporally consistent impacts on NWP across

the domain of interest, and will still be modulated by

the land or atmospheric conditions (and inherent

biases) being introduced elsewhere in the coupled

system.

3) AMBIENT WEATHER STATISTICS

Following this approach, typical NWP benchmark-

ing statistics can now be examined under the context of

LoCo and land versus atmospheric ICs. The LoCo anal-

ysis in Figs. 9–12 focused on two well-instrumented sites

with contrasting soil moisture conditions. However, as

shown in Fig. 8, there are widespread and larger im-

pacts seen across the full domain particularly with

respect to 2-m temperature (;2–6K) and humidity

(;2–6 g kg21). It is these ambient weather impacts

that are particularly important to NWP operational

centers in terms of forecast performance and improve-

ment, as well as public perception.

Figure 14 shows the 2-mRMSE and bias statistics time

series for temperature and humidity from each of the

coupled NU-WRF simulations, for the 24-h period be-

ginning at 1200 UTC 1 July 2015. These statistics were

calculated hourly based on the NCEPAutomated Data

Processing (ADP) Global Upper Air Surface Weather

Observations (https://rda.ucar.edu/datasets/ds337.0/) data-

set that includes 153 sites sampled across the SGP do-

main. This is a typical NWP center approach, focused

on sensible weather impacts that are readily observ-

able, when assessing the impacts of new datasets, pa-

rameters, physics, ICs, and data assimilation. A bird’s

eye assessment of Fig. 14 in this context may be that soil

moisture ICs do not have large or systematic impacts

on temperature and humidity forecasts, and in effect it

would be difficult to conclude which is the ‘‘best’’ IC.

For the daytime period (0700–1900 LT), it could be

argued that NLDAS-2 and GFS have the lowest RMSE

values and biases, and that SMAP and the LIS runs

have the largest. This would be counterintuitive to the

idea that NLDAS-2 and GFS are coarse, default, and

off-the-shelf products whereas LIS and SMAP are

higher resolution and observationally driven. This may

lead to conclusions that improved land ICs do not

improve NWP.

However, based on the knowledge gleaned in the prior

sections using integrated LoCo metrics, we can better

understand these results in the context of the role of

land versus atmospheric ICs, in particular that of soil

moisture and SMAP. The lowest daytime temperature

errors (Figs. 14a,b) are seen in GFS and NLDAS-2, and

the highest are in the SMAP1NARR simulation. As

GFS and NLDAS are the wettest ICs in terms of soil

moisture, these act to reduce the overall warm bias

across the domain, while the SMAP and NARR runs

are the driest, which tends to amplify the warm bias

over the domain. In terms of temperature bias overall,

there is a slight warm bias at initialization that is then

amplified throughout the day, which is likely a result

of a net radiation (driven by downward shortwave and

underestimation of localized cloud cover) overestimation

at the surface driven by the NU-WRF (GSFC) radiation

and microphysics schemes in combination with lower

than observed surface albedo in LIS (as in the offline

case). However, while the temperature biases (Fig. 14b)

appear to remain relatively constant over the daytime in

each of the runs, the actual locations of these biases shift

significantly over time from the northern to southern part

of the domain (Figs. 15b–e).

The humidity statistics (Fig. 14d) also indicate that

NLDAS-2 tends to have the lowest bias and that all the

NARR-driven runs tend to dry out rapidly during the

daytime despite higher quality atmospheric ICs, with

FIG. 12. Initial near-surface soil moisture values at each of the

four Noah LSM soil layers for each of the simulations in Fig. 9 at

the (a) ARM-SGP CF and (b) Ellis, KS, sites.
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FIG. 13. (left) Mixing diagrams and (right) evaporative fraction (unitless) vs PBL

height (m) analyses for the NU-WRF simulations withGFS andNARR initialization

on 11 Jul 2015 at the (a),(b) ARM-SGP CF; (c),(d) Ellis, KS; (e),(f) 36.08N, 1008W;

and (g),(h) 39.08N, 97.08W sites.
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the driest (SMAP1NARR) runs performing worst.

The GFS run and the IC dry bias can be clearly seen

here, even across all 153 sites in this analysis, and

overall remains constant during the daytime. Once

again, the wetter soil moisture ICs tend to perform

best, as they are countering an inherent warm, dry bias

in the coupled system. The envelope of RMSE and

biases in these plots is generally narrow, but these are

averages across many points and a large domain.

The inflection point seen in the temperature bias at

0700–2100 LT is a notable feature as well in these re-

sults and is due to late afternoon precipitation in the

northern part of the domain, which is overestimated

compared to observations and tends to cool down the

region overall (compensating for the warm biases in the

south). What follows in the SMAP direct insertion runs

is a linear decrease in temperature bias and a significant

cooling that takes place during the entire nighttime

period (unrelated to precipitation) particularly in the

western part of the domain. This is, in fact, due to the

direct insertion of much drier SMAP values on top of

NARR and NLDAS-2 profiles. As discussed earlier,

this approach is not recommended as it disrupts the soil

moisture and temperature equilibrium from the top

layer versus three deeper layers in the Noah LSM. This

direct insertion did not show negative impacts during

the daytime, and as mentioned it was often the root

zone soil moisture of NARR and NLDAS that domi-

nated the surface energy balance. At nighttime, how-

ever, the very low SMAP soil moisture and 5-cm upper

soil layer led to changes in the thermal properties of the

near-surface soil that promote rapid cooling at night.

The thermal impacts of the daytime were overcome by

the dominance of evaporation, but it is evident that a

more robust approach to merging SMAP with existing

soil profiles from other products should be performed if

using as ICs for NWP.

Figure 15 shows an example of how these 2-m sta-

tistics vary in space and time and in response to the

initial SM differences inGFS andNARR. These results

indicate that there is muchmore divergence across runs

regionally and at specific sites than is evident in the

lumped time series statistics, often ranging in magnitude

to near 6K and 6 gkg21 in temperature and humidity,

respectively. The initial dry bias in GFS is evident across

much of the central and southern SGP (Fig. 15g), while

NARR shows a slight wet bias. Because NARR soil

moisture is drier than GFS (Fig. 15a) especially over the

central part of the domain, NARR ends up with a strong

dry humidity bias by the end of the day, whereas GFS

improves its initial dry atmospheric bias where the soil

tends to be wetter. The location of the warm bias and

shift from north to south over the course of the day

mentioned above is also apparent in Figs. 15b and 15d.

These plots show the components that must be simul-

taneously considered when interpreting NWP statistics

and assessing new parameterization or initialization

approaches, including the background atmospheric IC

FIG. 14. Time series of 2-m temperature (T2) and specific hu-

midity (Q2) RMSE and bias statistics from the suite of NU-WRF

simulations vs observations at the 153 pairs of sites across the

SGP domain.
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FIG. 15. (a) Difference in GFS 2 NARR soil moisture ICs, along with bias statistics for (b)–(e) temperature and

(f)–(i) humidity for the NARR and GFS simulations valid at the initial (1200 UTC) and evening (0000 UTC) times on

11 Jul 2015.
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biases, the change in land surface ICs, and the evolu-

tion of each as dictated by the LSM and PBL schemes

throughout the day.

Overall, this analysis demonstrates that the aggre-

gated statistics commonly employed by NWP centers

are often not systematic in space or time and can miss

the important nuances and drivers behind them thus

confounding the conclusions made. In essence, each

point in Fig. 15 has its own ‘‘coupling story’’ that is

dependent on many factors, and thus a change to the

land IC (or LSM physics) is unlikely to produce uni-

form impacts or improvements. At the same time, any

perceived improvement could be compensating for

errors elsewhere in the system. Although it takes a bit

more work using integrated analyses to understand these

impacts, it becomes necessary for a true assessment of the

impact of soil moisture (or any other IC, physics package,

or parameter dataset) in coupled prediction.

6. Discussion and conclusions

This study provides a review of current soil moisture

initialization approaches used in NWP, and in particular

those employed by the regional weather and climate

(i.e., WRF) research and operational communities. Land

ICs are often overlooked by atmospheric scientists, and

as a result there have been a wide range of approaches

employed using vastly different datasets in terms of

quality and resolution. Soil moisture tends to get most

of the focus (versus soil temperature) due to its strong

control on surface energy balance and surface fluxes,

which are the only true LSM variables that the atmo-

spheric model is sensitive (and coupled) to. Here, we

isolate the impacts of these varied soil moisture ini-

tialization approaches on coupled forecasts using a very

pragmatic, yet integrative (in the land–atmosphere sense)

approach using NASA’s LIS, SMAP, and NU-WRF

assets.

Results and their implications for NWP modeling com-

munities are as follows:

1) Offline analysis of satellite, in situ, and LSMproducts

confirms that SMAP soil moisture performs quite

well in terms in spatial and temporal consistency (i.e.,

low noise), capturing heterogeneity, precipitation

and drydown events, and overall looks like a ‘‘real’’

observable soil moisture field.

2) There remains an observability issue due to differing

LSM and observed (satellite and in situ) soil mois-

ture climatologies that are largely due to differences

between LSM physics and the actual soil hydraulic

properties and vegetation characteristics which af-

fect the satellite and in situ measurements.

3) There is a wide variation in the spatial distribution of

soil moisture across commonly used NWP initializa-

tion approaches, including those from satellite-infused,

high-resolution LSM spinup, and off-the-shelf atmo-

spheric model-based products.

4) The sensitivity of coupled impacts is not limited to

the near-surface soil layer as the root zone may still

play a dominant role in governing surface fluxes and

land–atmosphere coupling, thus limiting the poten-

tial impact of near-surface layer observations in

isolation.

5) Coupled impacts of land ICs are clearly visible down-

stream in the NWP forecasts (including surface fluxes,

PBL evolution and entrainment, and ambient weather)

and can be better understood and quantified using

integrated LoCo metrics.

6) By simultaneously assessing land versus atmospheric

ICs in a LoCo framework, the question of whether

improvements in traditional NWP statistics are achieved

for the right reasons can better be addressed, and in

turn shed light on the true potential impact of improved

soil moisture ICs.

It should be noted that additional case study simula-

tions were performed in June 2015, (Fig. 4a), and the

results were largely consistent with those from 11 July.

Specifically, a warm atmospheric IC bias dominated the

region, and as a result the wettest soil moisture ICs (once

again the coarse GFS and NLDAS-2 products) pro-

duced the best 2-m statistics. As for the July case, in

isolation this would suggest that the coarse soil moisture

products are better than the high-resolution or observed

products, when actually the coarse products are only

best for this particularmodeling system and atmospheric

forcing where they are correcting inherent biases.

Studies that show uniform impacts (e.g., drying) after

satellite assimilation across a wide domain are likely to

see some improvements in subregions simply as a matter

of luck, correcting for inherent model biases (and vice

versa for degradation).

This underscores the importance of understanding

inherent coupled model behavior before introducing

new datasets or ICs, so that their impacts can be more

accurately assessed. As satellite data continues to im-

prove in quality and resolution, there can be greater

incorporation of more accurate observations into cou-

pled models. Understanding their impacts requires

quantification of process-chain impacts in order to avoid

compensating errors. It will be difficult for highly tuned

systems to incorporate new datasets and see direct im-

provements as a result, but the approaches here will help

aid in identifying what remaining model biases and
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deficiencies exist in order to further fully integrated

model development and improvement.

While the statistical significance of the limited number

of deterministic simulations performed here is clearly

lacking, the methodology remains valid as an approach

that can be adopted by operational and cycled modeling

centers. It is clear from this work that biases and fore-

cast errors can be best understood and improved via

integrated (LoCo-type) assessment of relative impacts

of land surface and atmospheric (specifically in PBL

vertical profiles) ICs that are used to drive the coupled

simulations. One example where this can be applied is in

the work of Fang et al. (2018), where novel approaches

to assimilating satellite-based land surface temperature

were performed, and the regional and temporal impacts

on 2-m statistics could be better understood with more

integrated process-level understanding. This approach

also reduces the potential for mischaracterizing forecast

impacts and improvements that may result from com-

pensating errors or misattribution.

In terms of the offline soil moisture analysis, it is clear

that the governing soil and vegetation physics and pa-

rameters in the Noah LSM do not allow for soil drying

behavior that is observed from satellite or in situ. While

likely due primarily to soil texture and rigid lookup ta-

bles of soil hydraulic properties (setting the maximum

and minimum range of soil moisture), there are also

potential impacts on soil moisture dynamics from im-

proper rooting depth specification, lack of leaf litter, and

inconsistencies in GVF in the LSM versus what is ob-

served. Incidentally, the wetter LIS runs (comparedwith

SMAP) were actually advantageous in the coupled runs

due to the warm, dry bias of NARR and GFS. Even

when modifying the upper 10 cm of soil layering to

create a 2-, 3-, or 5-cm top layer, the soil drying dynamics

were only marginally impacted indicating there are

structural limitations in the LSM that prohibit it from

having the observability necessary for unbiased data

assimilation or direct comparison of soil moisture with

satellite or in situ observations. Clearly, the structural

deficiencies in the LSM and systematic errors need to be

addressed via calibration and parameter estimation ap-

proaches in order to better match the soil moisture dy-

namics with those observed. However, avoiding so-called

‘‘effective’’ parameters that absorb additional unrelated

model errors and estimating physically meaningful soil

characteristics remains a challenge.

These results highlight the critical nature of soil type

information, parameter lookup tables, and the difficulty

in modeling soil moisture dynamics at the local scale

using only coarse soils information. It also highlights the

relative inflexibility of LSM parameters and soil physics,

whereby soil moisture results can only be improved to a

limited degree when introducing improved, high-resolution

inputs such as atmospheric forcing and vegetation char-

acteristics. To address this, there are community efforts

underway in GEWEX focused on reexamination of

pedotransfer functions and soils in LSMs, and also to

improve the collaboration between the soils and LSM

communities themselves.

Another interesting result (not shown) is that the soil

moisture IC differences at 1200 UTC tend to diminish

over time throughout the domain (e.g., by 1900 UTC).

When examining time series at specific sites, it is ap-

parent that when comparing two simulations with dif-

ferent ICs, the wetter of the simulations tends to dry

down over time and at a more rapid rate than the drier

simulations. This can be traced once again to the Noah

LSM soil physics and hydraulic parameters that de-

termine the levels of atmosphere and soil limited evap-

oration. In the case of NLDAS-2 versus SMAP, for

example, SMAP is already very dry and soil-limited such

that it does not change much or dry out further while at

the same time the wetter NLDAS-2 is in a very active

evaporative stage and dries out rapidly, thus converging

toward the SMAP values. As a result, it is common for

IC differences to be dampened over time due to evap-

orative physics, as opposed to an initial perturbation

that is amplified. Exceptions to this occur when wetter

soil moisture promotes precipitation, and vice versa,

over a more extended period of time.

A related variant of soil moisture ICs can be gener-

ated by performing data assimilation during an offline

spinup (e.g., Santanello et al. 2016). Based on the largely

incremental soil moisture DA impacts in studies to date

combined with the results here in terms of the narrow

envelope of LIS simulations with different parameters

and forcing, it is likely that SMAP assimilation will not

lead to vastly different results or ICs. TheCDFmatching

approach to bias correction makes large impacts even

less likely, as discussed in Kumar et al. (2015). The

SMAP direct insertion approach taken here, while not

advisable (but still used/published in the community),

was chosen as a brute force approach to see what the

maximum impact of satellite soil moisture might be on

the IC, while acknowledging that any proper EnKF as-

similation is likely to impact the ICs to a much lesser

degree and be just another permutation of a LIS run.

Only via model calibration (discussed above, specifically

targeting hydraulic properties) that addresses system-

atic errors would we expect more distinct ICs and im-

pacts on the LSM climatology and drydown behavior.

Ongoing and future work on this topic includes per-

forming formal EnKF data assimilation with SMAP and

LIS, as well as LIS calibration using in situ networks in

an effort to improve LSM observability, and reduce the
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negative impacts of typical satellite bias correction ap-

proaches. In addition, the capabilities of SMAP to de-

tect agricultural and irrigation practices (largely missing

or mischaracterized in LSMs) are being evaluated in an

effort to improve model–data fusion efforts and aid in

offline and coupled model development. It is clear that

the community is now demonstrating that the land states

and strength of land–atmosphere coupling can play a

significant role in the accuracy of ambient weather

forecasts. Improving the initial conditions of soil mois-

ture, temperature, and vegetation using NASA satellite

observations and assimilation systems therefore be-

comes even more critical, and the combination of

NASA’s SMAP, LIS, and NU-WRF resources will con-

tinue to be used to develop and test these approaches and

coupled impacts. As a result, the continuity of missions

(beyond SMAP) to provide accurate, global data records

of near-surface soil moisture remains important to con-

sider going forward at NASA and other space agencies.
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