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ABSTRACT: Understanding convective aggregation is very important for understanding tropical climate and climate sen-
sitivity. However, we still lack a full understanding of how aggregation evolves in the real world or what phenomena and
scales are analogous to the self-aggregation observed in idealized models. In this study, we apply the moist static energy
(MSE) variance budget framework to ERA5 reanalysis data to study the evolution of large-scale aggregation over tropical
oceans at basinwide scales. Our novel phase space diagnostics focus on the variability of observed aggregation compared
to most previous self-aggregation studies, which focus more on the aggregated mean state. We visualize observed aggrega-
tion to evolve anomalously around a mean state in a cyclical fashion forming aggregation–disaggregation cycles. We find
horizontal advection of MSE to play the primary role in determining when the domain aggregates or disaggregates. In con-
trast, all advective, radiative, and surface flux feedbacks are found important for determining the magnitude of the aggrega-
tion anomalies. Surface fluxes and horizontal advection tend to dampen aggregation anomalies, while radiative fluxes and
vertical advection tend to amplify aggregation anomalies. Looking deeper into the advection terms, we find that changes in
vertical advection are dominated by enhanced low-level subsidence over the dry regions during the more aggregated states.
This creates an anomalous drying tendency over the dry regions, which maintains aggregation anomalies. In contrast, hori-
zontal advection changes are found to be dominated by increased moisture advection out of the moist columns with stron-
ger aggregation.

SIGNIFICANCE STATEMENT: The purpose of this study is to characterize and understand the evolution of large-
scale convective aggregation in the real world through reanalysis data. While most previous observational studies have
focused on the evolution of clouds and cloud populations with aggregation, we focus on the energetics and the impact
of aggregation on redistributing moisture throughout the domain. Our framework highlights that aggregation can be vi-
sualized as a continuously occurring cyclic feature at large scales in the tropics. Further, our work provides a deeper in-
sight into the changes in large-scale circulation that accompany aggregation and characterizes the similarities and
differences between the different regions in the tropics.

KEYWORDS: Advection; Cloud radiative effects; Energy budget/balance; Reanalysis data; Tropical variability

1. Introduction

Convective aggregation is generally used to refer to the clus-
tering of clouds (and hence convection) in a nonrandom manner
in a domain. It arises as a result of feedbacks between convec-
tion, circulation, moisture, and radiation under uniform or non-
uniform boundary conditions. Idealized numerical models have
been extensively used to study the characteristics of convective
aggregation under uniform boundary conditions, also referred to
as convective self-aggregation (Bretherton et al. 2005; Held et al.
1993) since external forcings are constant in space and time. In
contrast, convection in the real world does experience nonuni-
form boundary conditions which can vary in both space and
time. This impacts how convection aggregates in the real world
and is termed as convective aggregation to differentiate it from
self-aggregation. It is not completely clear what role or relevance
the mechanisms behind self-aggregation play when it comes to
aggregation in the real world [review by Holloway et al. (2017)].
However, there are some key characteristics that have been
identified in how both self-aggregation and aggregation can

impact the spatial domain. Studies have shown that the do-
main consistently becomes drier, outgoing longwave radia-
tion (OLR) increases, and spatial gradients of column water
vapor in the domain increase as it becomes more aggregated,
in both idealized models (Bretherton et al. 2005; Wing and
Emanuel 2014; Wing and Cronin 2016; Holloway and
Woolnough 2016, etc.) and observations (Tobin et al. 2012; Tsai
andMapes 2022; Stein et al. 2017; Bony et al. 2020, etc.). This ro-
bust impact of aggregation on the large-scale environment, com-
bined with the dependence of aggregation on sea surface
temperatures (SSTs) (Cronin and Wing 2017; Coppin and Bony
2015), makes understanding convective aggregation extremely
important to understanding climate sensitivity [review by Wing
(2019) and Becker andWing (2020)].

To understand links between aggregation and self-aggregation,
we first need to understand the nature of convective aggregation
in the real world and what aspects may connect to the model
world. Generally, convection in such idealized modeling studies
is in radiative–convective equilibrium (RCE) and starts off from
an equilibrium state with convection randomly distributed across
the domain. Then, with time, the domain slowly transitions to a
new equilibrium state, still in RCE but with clustered or aggre-
gated convection. On attaining self-aggregation, the model willCorresponding author: Vijit Maithel, vijit.maithel@noaa.gov
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typically maintain itself in that state. In contrast, in the real
world, convection is already in an aggregated state due to the
presence of external boundary conditions and feedbacks from
previous convective events. However, the extent of aggregation
can change with time. This will result in a mean aggregated state
of the domain and phases when the domain is aggregating or dis-
aggregating with respect to the mean state. In this regard, the
factors in the idealized simulations that maintain the aggregated
equilibrium state and the factors that control the variability of
aggregation in models around the mean state are most relevant
for the real world. Patrizio and Randall (2019) highlight a slow
oscillation observed in their model runs once the domain self-
aggregates. Similar oscillations can also be observed in some
other modeling studies (Silvers et al. 2016; Arnold and Randall
2015). However, previous studies have mainly focused on the
maintenance of the mean state, while the variability has not
been studied systematically. This study presents a framework
that characterizes the feedback processes associated with the
variability of aggregation. The results highlight the cyclic nature
of the variability which we term as aggregation–disaggregation
cycles. While this framework is applied to look at aggregation in
real-world conditions in this study, applications to idealized
modeling studies are left for future work.

To measure the extent of aggregation in observations, pre-
vious studies have used a variety of cloud-clustering-based
metrics. Each of these metrics, in some way or the other, com-
bines different cloud properties from satellite observations to
quantify cloud clusters so as to act as an aggregation metric.
Some prominent metrics in use are the simple convective ag-
gregation index (SCAI; Tobin et al. 2012), the organization
index Iorg (Tompkins and Semie 2017), the morphological in-
dex of convective aggregation (MICA; Kadoya and Masunaga
2018), etc. However, there can be some concerns about how
well these metrics correlate with larger-scale convective orga-
nization. For example, Sakaeda and Torri (2022) show that
self-aggregation-based cloud metrics do not necessarily corre-
late well with the Madden–Julian oscillation (MJO) phase index.
They show that many metrics are unable to show an increase in
aggregation during the active MJO phase, and some even show
that convection becomes less aggregated during the MJO active
phase. They highlight that these discrepancies primarily arise be-
cause of how these metrics can be biased toward particular cloud
properties by construction (like cloud clusters becoming larger
or clusters becoming fewer) and individually may not fully cap-
ture all characteristics of cloud evolution.

Such factors make it difficult to quantify aggregation in a way
that facilitates easier comparison between self-aggregation in ide-
alized models with aggregation in the real world. However, since
aggregation in both models and observations has shown consis-
tent and strong impacts on the large-scale environment (Wing
2019), there is potential to define aggregation based on the state
of the large-scale environment itself. A particularly strong, ro-
bust, and easy-to-track metric for doing so is the spatial variabil-
ity of column water vapor. Motivation for using this metric is
twofold. First, the column water vapor distribution has been
shown to vary with aggregation significantly in both observa-
tions (Lebsock et al. 2017; Tsai and Mapes 2022; Beucler et al.
2020) and models (Bretherton et al. 2005; Wing and Emanuel

2014; Beucler et al. 2020). Second, empirical evidence shows
a strong dependence of precipitation on a critical moisture
threshold (Bretherton et al. 2004) and the existence of sharp
water vapor margins for the intertropical convergence zones
(ITCZs) (Mapes et al. 2018; Beucler et al. 2020). This sug-
gests that convection, aggregation, and the distribution of
column moisture in the tropics are strongly interconnected
with each other. Aggregation can impact the distribution of
water vapor in the tropics and vice versa.

Previous studies have successfully used this to define new met-
rics for aggregation and use them to compare self-aggregation in
idealized models and aggregation in the real world. Lebsock
et al. (2017) verified that the spatial variance of column water
vapor can be used as a metric for aggregation using satellite
data. Beucler et al. (2020) define a metric for aggregation based
on the length of the margin surrounding the moist region.
Beucler et al. (2019, 2020) provide a process-level comparison
between aggregation in reanalysis data and idealized models.

This also provides strong support to the idea that self-
aggregation mechanisms can be relevant for understanding
convective variability that is driven by changes in moisture
in the real world (Adames Corraliza and Mayta 2024; Tsai
and Mapes 2022). Other recent studies have highlighted
such moisture-driven modes of convective variability being
observed ubiquitously throughout the tropics (Inoue and
Back 2017) and the mechanisms behind them to be inherent
to how convection interacts with the large-scale environment
(Inoue et al. 2021; Maithel and Back 2022).

Altogether, this suggests that studying the evolution of mois-
ture and its variance is a way of tracking aggregation. Owing to
the weak temperature gradient (WTG) approximation (Sobel
et al. 2001), the evolution of moisture can be studied using moist
static energy (MSE) budgets, and the variance of moisture can
be studied using the MSE variance budget. While the MSE bud-
get [Eq. (1)] has been extensively used to study moisture-driven
convective variability, the MSE variance budget [Eq. (2)]
(Wing and Emanuel 2014) has been extensively used to
study self-aggregation and for tropical cyclone diagnostics
(Wing and Emanuel 2014; Coppin and Bony 2015; Holloway
andWoolnough 2016; Wing et al. 2019; Dirkes et al. 2023, etc.):

­hhi
­t

5 VADV 1 HADV 1 hQRi 1 SF 1 Res, (1)

1
2
­hhi′2
­t

5 hhi′VADV′ 1 hhi′HADV′ 1 hhi′hQRi′

1 hhi′SF′ 1 hhi′Res′

VADV 52hv­h/­pi
HADV 52hv?=hi: (2)

In Eqs. (1) and (2), h… i represents the mass-weighted verti-
cal column integral from the surface to 100 hPa, ′ represents
the anomaly compared to the domain mean, h represents the
MSE, v represents the vertical velocity in pressure coordi-
nates, v is the horizontal wind vector, VADV and HADV
stand for the vertical advection and the horizontal advection,
respectively, hQRi is the column radiative flux, SF is the
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surface sensible and latent heat flux, and Res stands for the
residual term. Most idealized modeling studies, which have
used MSE variance budget to study aggregation, generally de-
fine the advection terms together as a single term calculated
as a budget residual (Wing and Emanuel 2014; Holloway and
Woolnough 2016; Pope et al. 2021, etc.), or they compute the
advection term explicitly but do not break it down between
vertical and horizontal advection components (Wing 2022).
However, this decomposition has been extensively used in the
literature to understand the evolution of MSE budgets (Back
and Bretherton 2006; Maloney 2009; Adames and Maloney
2021, etc.). Therefore, we choose to break down the advection
term into two components and keep a separate residual term
to close the budget.

The MSE variance budget framework (Wing and Emanuel
2014) makes use of the observation that self-aggregation re-
sults in the redistribution of moisture and MSE within the do-
main to resemble a bimodal distribution with anomalously
moist and dry columns instead of being more uniformly dis-
tributed (Bretherton et al. 2005). This implies an increase in
the value of the spatial variance of MSE with aggregation.
Furthermore, the MSE variance budget [Eq. (2)] can be used
to measure how different processes contribute to the increase
or decrease in MSE variance. It is derived by multiplying the
spatial anomalies of the terms in Eq. (1) with the spatially
anomalous column MSE at each time instant. A positive vari-
ance budget term represents that the anomalously moist col-
umns in the domain tend to further moisten as a result of that
process or anomalously dry columns will tend to further dry
up. This implies that the term tends to act as a positive feedback
on column MSE anomalies. Since amplifying or sustaining exist-
ing MSE anomalies helps aggregation, positive feedbacks on
MSE anomalies support aggregation. Consequently, a negative
variance budget term signifies that the term acts as a negative
feedback on column MSE anomalies and does not support
aggregation.

Using the MSE variance budget, idealized modeling studies
found the positive feedback of radiative fluxes on column
MSE anomalies to be the dominant mechanism responsible
for initiation as well as maintenance of the self-aggregated
mean state (Wing et al. 2017; Pope et al. 2021, 2023; Beucler
et al. 2019). This is supported by observations which showed
that at large scales, anomalous column radiative fluxes vary
linearly with anomalous column moisture with a positive re-
gression coefficient (Su and Neelin 2002; Inoue and Back
2017). This implies that positive moisture anomalies are linked
with anomalous moistening tendency or negative moisture
anomalies are linked with anomalous drying tendency, that is,
radiative fluxes act as a positive feedback on MSE anomalies.
Moreover, the positive coefficient also implies that the feedback
is expected to get stronger with larger anomalies. However, this
only shows that radiative anomalies strongly covary with MSE
or moisture anomalies. This does not tell us about the causality.
In other words, are changes in MSE anomalies or changes in ag-
gregation driven by changes in radiative feedbacks? Many re-
cent studies looking at the evolution of the aforementioned
moisture-driven convective variability modes in observations
have found the tendencies in column MSE to be driven

strongly by advection instead of radiation, with radiation be-
ing important for maintenance (Inoue et al. 2021; Maithel
and Back 2022; Mayta and Adames Corraliza 2024).

This is the main question investigated in this study. What
drives the variability of aggregation in the real world? Does
convection aggregate/disaggregate following the strengthen-
ing/weakening of the positive feedback from radiative fluxes?
Or do radiative feedbacks contribute to determining the ex-
tent of aggregation whereas advective processes determine
when it aggregates and disaggregates? We hypothesize that
advection of MSE plays a large role in driving aggregation–
disaggregation cycles in observations and our hypothesis is
supported by the analysis in this paper. We use the spatial var-
iance of MSE as our metric of aggregation.

The rest of this paper is structured as follows. Section 2 de-
scribes the dataset being used and how the variance budget cal-
culation is set up. It also introduces the novel variance phase
space that we will use as our diagnostic framework. Section 3
presents the main results from the study, while section 4 presents
the summary and discussion.

2. Data and methods

For this study, we use ERA5 data as our observationally
constrained view of the real world. Temperature, humidity,
winds, radiation, and sensible and latent heat surface fluxes
are used from ERA5 to compute the column-integrated MSE
and column-integrated MSE budget time series at each grid
point. Column-integrated quantities are computed by taking
the vertical integral across 27 vertical levels between 1000 and
100 hPa. Further, the MSE variance budget terms are com-
puted over four large domain boxes, each corresponding to
the four main tropical ocean basins: an Indian Ocean (IO)
box spanning between 108S–58N and 558–958E, a western Pa-
cific (WP) box spanning between 58S–108N and 1508E–1808,
an eastern Pacific (EP) box spanning between 08–158N and
1958–2658E, and an Atlantic Ocean (AO) box spanning be-
tween 08–158N and 3158–3408E. We use data at a horizontal
resolution of 0.58 3 0.58 and a time resolution of 6 h from
1980 to 2019 within each box. The MSE budget time series at
each grid point is further passed through a 24-h running mean
filter to remove diurnal variability from the data.

The domains we use are much larger than the 108 3 108 or
58 3 58 boxes used to evaluate the cloud-based aggregation
metrics in previous studies. In this study, we are focusing on
defining aggregation through its impact on the large-scale dis-
tribution of MSE, hence the need for a larger domain size to
sample both the moist and dry regions. Because of the larger
domain size, the domains can be expected to be closer to
radiative–convective equilibrium (RCE) more frequently
(Jakob et al. 2019). Larger domains also put more emphasis
on convective features and aggregation at larger spatiotempo-
ral scales (like the ITCZ) which evolve more slowly at subsea-
sonal time scales. It should be noted that the majority of the
existing literature on convective aggregation in observations is
instead focused more at cloud organization at mesoscales.

The MSE variance budget terms are calculated as follows
from the MSE budget. First, for each grid point, the spatial

MA I T H E L AND BACK 675315 DECEMBER 2024

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 06:09 PM UTC



anomaly of columnMSE and each of the budget terms is com-
puted by subtracting the respective domain mean at each time
step. Then, the MSE budget term anomaly is multiplied with
the column MSE anomaly at each grid point. Finally, a do-
main mean of the product of the anomalies is calculated. This
gives a one-dimensional time series to represent each term in
Eq. (1) in each of the four ocean boxes. In the rest of this pa-
per, it is implied that any reference to MSE variance or MSE
variance budget term means reference to the domain mean
quantity unless otherwise specified. Figure 1 shows a snapshot
of the spatial distribution of column MSE anomalies when the

MSE variance is minimum (top) and when the MSE variance
is maximum (bottom) for each of the four boxes. As expected,
high MSE variance snapshots look more aggregated. A strongly
aggregated domain in this framework looks like a strong latitudi-
nal ITCZ band with sharp margins and a larger MSE gradient.

We propose to use a novel MSE variance-based phase
space to visualize the variability and evolution of MSE vari-
ance. The phase space is formed by taking the MSE variance
on the x axis and the MSE variance tendency on the y axis.
While the x axis physically corresponds to the extent or de-
gree of aggregation in the domain, the y axis represents the
process: whether it is undergoing aggregation (increasing vari-
ance) or disaggregation (decreasing variance). A schematic
of an idealized aggregation–disaggregation cycle is shown in
Fig. 2a. The arrows depict the expected trajectory on the phase
space as MSE variance changes. When the domain aggregates,
MSE variance will increase related to positive variance tendency
(arrow going left to right), and when it disaggregates, MSE vari-
ance will decrease related to negative variance tendency (arrow
going right to left).

The main idea is that the phase space allows us to visualize
the different phases of this cycle and look at how the contri-
butions from the various terms in Eq. (2) change across the
different phases. More and less aggregated phases are the
right and left halves, respectively, and aggregating and disag-
gregating phases are the top and bottom halves, respectively.

FIG. 1. Snapshots showing the spatial structure of the column
MSE anomalies (J m22) in the four ocean basin domains being
studied when (a) each domain has minimum MSE variance and
(b) each domain has maximumMSE variance. Both (a) and (b) follow
the same color bar.

FIG. 2. (a) A simple schematic of the MSE variance phase space and the idealized aggregation–disaggregation cycle. The x axis is the
domain mean MSE variance, and the y axis is the tendency of domain mean MSE variance. Both the axes have been normalized and are
dimensionless. Red arrows represent what a typical aggregation–disaggregation cycle would look like. Vector plot showing the actual
evolution on the MSE variance phase plane in reanalysis data for the four ocean basins (b) IO, (c) WP, (d) EP, and (e) AO. For easier
visualization, the phase plane has been divided into 400 equally spaced bins (20 along each axis) and bin mean values have been plotted.
Only bins with more than 100 samples are shown. The red and blue markers denote the mean and mode of the distribution, respectively.
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This picture emphasizes the transient part of large-scale ag-
gregation in the observed world, which is continuously vary-
ing and evolving.

We also choose to normalize the MSE variance and MSE
variance budget terms so that the two-phase plane axes have
similar magnitudes for better visualization. We do so by divid-
ing the MSE variance time series for each domain by the max-
imum MSE variance observed in that domain and the MSE
variance tendency by the maximum absolute value of the
MSE variance tendency in the domain. As a result, the x axis
on the phase plane has a range between 0 and 1, and the y axis
has a range between 21 and 1. Other MSE variance budget
terms from Eq. (2) are normalized by the same maximum MSE
variance tendency value.

3. Results

We will start with looking at the representation of the
mean aggregated state and the variability in aggregation
about the mean state on the phase space. We characterize the
evolution of the variability in aggregation by plotting a phase
portrait. The phase portrait shows the vectors corresponding
to the expected direction of evolution on the phase plane
given the current state/location on the phase space. The vec-
tors are computed by first computing the time derivatives of
MSE variance and MSE variance tendency at each time step.
Then, the phase plane is divided into 400 small rectangular
bins (20 equally spaced bins along each axis). Then, we com-
pute the bin mean time derivative of the MSE variance (vec-
tor magnitude along the x axis) and the bin mean time
derivative of the MSE variance tendency (vector magnitude
along the y axis) for each bin. The resulting bin mean vectors
for each ocean basin are plotted in Figs. 2b–e. Only bins with
more than 100 samples are plotted. We observe that aggrega-
tion in ERA5 tends to evolve in a cyclic fashion as visualized
in the simple schematic in Fig. 2a for aggregation–disaggrega-
tion cycles. This is observed universally in the different ocean
basin boxes. Additionally, the red and blue markers correspond
to the mean and the mode of the binned two-dimensional distri-
bution. This signifies that the aggregation–disaggregation cycles
are a mode of variability about the mean state representing how
the system tends to evolve when it is perturbed from its mean
and/or most frequent state.

It should be noted that since we have not used any time fil-
tering apart from the 24-h running mean filter, the phase por-
traits in Fig. 2 are a mix of different time scales including the
seasonal cycle and interannual modes. Slow modes of variabil-
ity like the seasonal cycle, monsoons, and El Niño–Southern
Oscillation (ENSO) are associated with the slow-evolving
shorter vectors on the phase portrait, and the larger vectors
are associated with higher frequency variability at subseasonal
time scales. Based on a power spectrum analysis, we expect
the aggregation–disaggregation cycles to be associated with
10–60-day time scale (not shown). While a more careful and
comprehensive analysis of the variability at different time scales
is out of scope for this work, that is an important direction for fu-
ture work.

a. Contributions to the mean aggregated state

Before we delve deeper into looking at this cyclic behavior,
we characterize the mean state of aggregation in reanalysis by
plotting the mean value of the MSE variance budget terms over
the full time series. Figure 3 shows the mean MSE variance bud-
get terms for each ocean basin. Since the mean MSE variance
tendency is zero in this figure, these values can be compared
qualitatively with those during the equilibrium part of the ide-
alized model simulations when the domain has already
reached an aggregated equilibrium state.

From Fig. 3, we observe that the column radiative and sur-
face fluxes act as mean positive and negative feedbacks on col-
umn MSE anomalies, respectively, in all ocean basins. Hence,
mean radiative fluxes support aggregation and mean surface
fluxes resist aggregation. This is consistent with the results in
Beucler et al. (2019) for reanalysis and satellite data. This is also
broadly consistent with the results in Pope et al. (2023) who
thoroughly analyzed the diabatic flux feedbacks in the different
models run as part of the Radiative–Convective Equilibrium
Model Intercomparison Project (RCEMIP; Wing et al. 2018,
2020). Pope et al. (2023) found the trapping of outgoing long-
wave radiation by high clouds and absorption of shortwave
radiation by water vapor in the moist regions as the dominant
mechanisms that help explain the positive radiative feedback.
Regarding surface flux feedbacks, we observe that in ERA5
they tend to resist aggregation during all phases of the cycle
in all ocean basins. A possible hypothesis for this could be
that surface fluxes are dominated by negative feedback pro-
cesses which tend to moisten dry regions compared to posi-
tive feedback processes like the wind-driven surface heat
exchange (WISHE) feedback which will tend to moisten the

FIG. 3. Bar plot showing the mean MSE variance budget terms
from Eq. (2) over the full time series. A residual term is also com-
puted to accommodate the fact that the MSE budget is not exactly
closed in ERA5 data. Different colors correspond to different
ocean basins with IO in blue, WP in orange, EP in yellow, and AO
in purple. The MSE variance budget terms are unitless because of
normalization.

MA I T H E L AND BACK 675515 DECEMBER 2024

Brought to you by NOAA Library | Unauthenticated | Downloaded 04/01/25 06:09 PM UTC



moist regions. Such negative feedback processes in dry regions
could be related to increased air–sea enthalpy disequilibrium
(Wing and Emanuel 2014) and are consistent with Bretherton
and Khairoutdinov (2015) that found anomalous surface fluxes
dominated by increases in dry intrusions.

Vertical advection displays large qualitative differences be-
tween the different basins. While over the eastern Pacific and
Atlantic Ocean basins, vertical advection has a strong mean
positive feedback on MSE anomalies, over the Indian Ocean
and western Pacific basins, the mean feedback is closer to
zero and smaller than the residual. This is interesting because
this is the opposite of what would be expected from a tradi-
tional Hadley cell picture for the mean tropical circulation.
Based on the Hadley cell, one will expect net energy transport
from tropics toward subtropics. This can be associated with
energy export by the upper-level branch of the Hadley cell
through a negative vertical MSE advection over the ascending
columns. Since energy is expected to be transported from
moist to dry columns, this should lead to a negative vertical
advection feedback term here. Instead, Fig. 3 suggests that
the mean overturning circulation does not transfer MSE ef-
fectively from moist to dry regions at these scales and can
even transport MSE upgradient. Contribution from horizon-
tal advection of MSE is important for understanding the net
advection term. A possible explanation for the interbasin dif-
ferences in vertical advection feedback could be related to dif-
ferences in vertical motion profile shape. Back and Bretherton
(2006) and Back et al. (2017) showed that climatological vertical
motion profile shapes being more bottom heavy in the eastern
Pacific and Atlantic Ocean can lead to negative gross moist sta-
bility values in the region.

Further, we observe that horizontal advection acts as a
mean negative feedback on MSE anomalies in all ocean ba-
sins. This motivates thinking of horizontal advection as a mix-
ing term which physically tends to reduce MSE gradients in
the domain. It is interesting to note that total advection acts
as an overall negative feedback on MSE anomalies (with the
exception of the Atlantic basin) suggesting that horizontal
advection feedbacks dominate vertical advection feedbacks.
While most models do not compute the vertical and horizon-
tal advection variance terms explicitly to compare with rean-
alysis here, Pope et al. (2023) do find total advection to act as
a net negative feedback in RCEMIP model runs once the
models have reached an aggregated state. The net variance
from advection is also negative in the results presented in
Beucler et al. (2019) for ERA5 data.

b. Contributions to the variability about the
mean state–qualitative assessment

As shown in Fig. 2, a robust cyclic variability is observed
about the mean aggregated state. Physically, this implies that
day-to-day variability in aggregation exhibits deviations from
the mean state which evolve in a cyclic fashion around the
mean state. We are interested in understanding what drives
this cyclic behavior in aggregation. There can be two aspects
to this: first, what determines when the domain aggregates or

disaggregates, and second, what determines how much the do-
main aggregates or disaggregates.

One way to do so is to understand the contribution of each
of the MSE variance budget terms in Eq. (2) to the variability
in MSE variance and the variability in MSE variance ten-
dency. While MSE variance is a metric of how much the do-
main is aggregated, MSE variance tendency is an indicator of
when the domain aggregates or disaggregates. Figure 4 shows
the bin mean values of the MSE variance budget terms across
different phases on the phase space in the different ocean ba-
sins. The change in budget term values along the x and y direc-
tions on the phase space tells us about how the term covaries
with and contributes to variability in MSE variance and MSE
variance tendency, respectively.

Overall, we observe important patterns that are consistent
across the different ocean basins. These are discussed below.
There are also some differences between the different ocean
basins which will be discussed more in subsequent subsections.

Variance from horizontal advection is the only term which
varies in magnitude along the y direction (Figs. 4e–h). Horizontal
advection variance increases in magnitude as the MSE variance
tendency increases. The three remaining terms, variance from
vertical advection, radiative fluxes, and surface fluxes, vary
primarily along the x direction. This implies that only hori-
zontal advection variance positively covaries with MSE vari-
ance tendency; that is, only the value of horizontal advection
variance changes with changes in MSE variance tendency for
a given value of aggregation. Therefore, horizontal advection
variance is of first-order importance for determining changes
in MSE variance tendency and hence when the domain ag-
gregates or disaggregates. On the other hand, all four terms
show variability along the x direction. This indicates that all
four terms play a role in determining variability in MSE vari-
ance and therefore how much the domain aggregates.

This ties back in with our initial hypothesis that diabatic
terms may not necessarily be the driving force behind the ob-
served aggregation–disaggregation cycles. Horizontal advec-
tion seems to be the key factor for determining when things
will aggregate. This is significant because it implies that statis-
tically the diabatic terms do not play a major role in determin-
ing when the domain aggregates or disaggregates. We expect
that while the contribution from diabatic terms may be non-
zero for individual cycles, when averaging over multiple
cycles, they do not have a specific influence on how the existing
state of aggregation will change. This is potentially important for
understanding how the frequency of aggregation–disaggregation
cycles might change in the real world with climate change and
suggests that understanding the change in advective feedbacks
will be more important to understand this aspect of aggregation.

We can further observe that vertical advection (Figs. 4a–d)
and radiation flux variance terms (Figs. 4i–l) become more
positive when the domain is more aggregated. This implies
that when the domain is anomalously more aggregated, vari-
ance from radiative fluxes and vertical advection is anomalously
positive; that is, they act as anomalously positive feedbacks on
MSE anomalies. This will tend to sustain the existing anomalous
aggregation in the domain. On the other hand, surface fluxes
(Figs. 4m–p) and horizontal advection variance terms (Figs. 4e–h)
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become more negative as the domain becomes more aggregated.
Therefore, with anomalous aggregation, variance from surface
fluxes and horizontal advection is anomalously negative, and
they act as anomalously negative feedbacks on MSE anomalies
and will tend to dampen the existing anomalous aggregation in
the domain.

c. Contributions to the variability about the mean
state–quantitative assessment

These nuanced relationships between the variability in vari-
ance budget terms, MSE variance, and MSE variance tendency
can be quantified by computing covariance-based metrics
defined by the following equations:

Mx 5
{X}a 3 {hhi′2}a

{hhi′2}2a
, (3)

Ex 5
{X}a 3

­hhi′2
­t

{ }
a

­hhi′2
­t

{ }2
a

: (4)

In Eqs. (3) and (4), X represents a term from the MSE vari-
ance budget [Eq. (2)], {… } represents the domain mean,

subscript a represents the time anomaly, and X represents the
mean of the underlying term across the full time series. The
numerator is the covariance between the variance budget
term and MSE variance [Eq. (3)] and MSE variance tendency
[Eq. (4)]. The covariance is further normalized by the vari-
ance of MSE variance and variance of MSE variance ten-
dency. Therefore, the metrics Mx and Ex mathematically
represent what ratio of the variance in MSE variance and
MSE variance tendency, respectively, can be associated
with the particular budget term X. A schematic showing the
workflow for the calculation of Eqs. (3) and (4) is shown in
Fig. 5.

This method of computing the covariance is analogous to
the maintenance and propagation terms calculated in Andersen
and Kuang (2012) for the MSE budget. Equation (3) is analog
for the maintenance term, and Eq. (4) is analog for the propaga-
tion term. Andersen and Kuang (2012) used the word propaga-
tion since the changing value of MSE tendency could be
associated with the changing phase of the dynamical wave
feature as it propagates in space. In the case here, MSE vari-
ance tendency does not specifically relate to a spatially prop-
agating feature in the domain. Rather, it simply relates to the
evolution of overall aggregation in the domain. Therefore,
we will call Ex as the evolution term instead and continue
callingMx as the maintenance term.

FIG. 4. Bin mean contours of the different MSE variance budget terms from Eq. (2) showing how their value varies across the variance
phase space. Columns are the four ocean basins. Rows are the different MSE variance budget terms. (a)–(d) Variance from vertical advec-
tion, (e)–(h) variance from horizontal advection, (i)–(l) variance from radiative fluxes, and (m)–(p) variance from surface fluxes. The axes
and variance budget term contours are all unitless due to normalization.
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The maintenance term Mx and evolution term Ex can be in-
terpreted physically in multiple ways. Since they represent the
covariability of the budget term X with MSE variance and
MSE variance tendency, they represent the role of the term in
determining how much the domain aggregates and when the
domain aggregates, respectively. The term Mx can also be in-
terpreted in terms of whether the budget term helps maintain
the existing aggregation anomaly or not. A positive value im-
plies that the anomalies in X sustain the existing MSE vari-
ance anomaly because they have the same sign. A negative
value instead indicates that anomalies are of different signs
and the budget term has a dampening effect on the existing
state. Similarly, Ex can be interpreted as whether the budget
term anomalies help sustain or dampen the existing MSE vari-
ance tendency.

It should be noted that the notion of the maintenance term
here is different from when previous studies have used the
term maintenance. While maintenance in this study primarily
refers to the maintenance of aggregation anomalies during
the aggregation–disaggregation cycle, previous studies used
the term in regard to whether a process helps maintain a
mean aggregated state. In other words, maintenance in previ-
ous studies is related to the mean value of the MSE variance
budget term (Fig. 3). In the rest of this paper, by maintenance
of aggregation, we will refer to maintenance in the context of
aggregation–disaggregation cycles and whether a process is
maintaining an aggregation anomaly in the reanalysis. Since
this metric measures how the budget term is changing with ag-
gregation anomalies, it also represents how it feeds back onto
aggregation. However, to avoid any confusion about the con-
text in which the term feedback is being used, we will use the

term feedback only in the context of MSE anomalies. Feedback
on aggregation will be referred to as a positive or negative con-
tribution to the maintenance of aggregation anomalies.

Figure 6 shows the maintenance and evolution terms corre-
sponding to each variance budget term for each ocean basin.

FIG. 5. Schematic showing the data processing workflow for the different metrics and figures being shown in this study.

FIG. 6. Bar plot showing the covariance of each MSE variance
budget term from Eq. (2) (including residual) to (a) MSE variance–
maintenance term computed as per Eq. (3) and (b) MSE variance
tendency–evolution term computed as in Eq. (4). Different colors
correspond to different ocean basins with IO in blue, WP in orange,
EP in yellow, and AO in purple. Evolution term is unitless, and the
maintenance term has units of per second.
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Figure 6a shows that vertical advection and column radiation
fluxes have a positive contribution to maintenance, while hori-
zontal advection and surface fluxes have a negative contribution
to the maintenance of aggregation anomalies. This is consistent
with Fig. 4 which showed that variability in vertical advection
and radiative fluxes helps sustain the existing anomalous aggre-
gated state of the system, and variability in horizontal advection
and surface fluxes tends to dampen the existing aggregation
anomaly. Similarly, the evolution term in Fig. 6b shows that only
variability in horizontal advection covaries positively with MSE
variance tendency and is the major factor in understanding
when the domain aggregates. These results are fairly insensitive
to domain size as long as the domain is large enough and placed
appropriately so as to sample both the moist and dry regions.

While these characteristics are qualitatively similar across
the different basins, there are also some stark quantitative dif-
ferences. For example, vertical advection and column radia-
tion have the same sign of impact on maintenance in all ocean
basins}a positive contribution}but these terms show larger
basin-to-basin variations in magnitude. Contribution from
horizontal advection changes even more extremely, showing a
flip in sign for the Atlantic basin compared to other domains.
These differences can be associated with changes in the con-
tour shapes between the different ocean basins observed in
Fig. 4. For example, horizontal advection variance contours in
the eastern Pacific and Atlantic Ocean boxes (Figs. 4g,h) are
more horizontal as compared to the Indian Ocean or western
Pacific boxes (Figs. 4e,f) making their contribution to the
maintenance term smaller in magnitude comparatively. This
suggests that changes in the magnitude of the contribution to
maintenance by the horizontal advection variance term are
related to subtle differences in the phase relationship between
horizontal advection variance and domain MSE variance rather
than an outright difference like a change in sign of the feedback.
Similarly, differences in contribution to maintenance from verti-
cal advection variance and radiative flux variance can also be as-
sociated with such subtle phase relationships. This implies that,
while the maintenance and evolution metrics do a good job of
quantifying the nuanced relationships between the variability in
variance budget terms and variability in MSE variance/MSE var-
iance tendency, these metrics should be interpreted carefully.

d. Changes in circulation between the most and least
aggregated states

A more detailed mechanistic understanding of the pro-
cesses associated with the variability in aggregation can be de-
veloped by connecting changes in variance budget terms with
changes in the underlying MSE budget term [Eq. (1)]. For ex-
ample, consider a positive maintenance term which implies
that the variance budget term varies such that it supports an
existing aggregation anomaly. Physically, this can happen
through multiple pathways depending on whether the particu-
lar variance budget term itself is positive or negative, that is,
whether it acts as a positive or negative feedback on MSE anom-
alies in the domain. If it is a positive feedback, then the positive
feedback must get stronger with more aggregation to have a posi-
tive maintenance term; that is, the process either tends to moisten

the moist columns more strongly or dry the dry columns more
strongly as the domain becomes more aggregated. In the oppo-
site manner, for a negative variance budget term with a positive
contribution to maintenance, the process will either tend to dry
the moist columns less strongly or moisten the dry columns less
strongly as the domain gets more aggregated.

In this study, we will look at changes in horizontal and vertical
advection in greater detail to understand where the observed pat-
tern in the variance term is coming from. We particularly high-
light characteristics that can explain the change in variance
budget terms and are similar across different regions in the
tropics since those must correspond to the more dominant
mechanisms. To do so, we look at two things. First, we exam-
ine how does column-integrated MSE advection in the moist
and dry columns change as the overall domain becomes less
or more aggregated. This tells us about the maintenance of
aggregation anomalies. Second, we examine how the three-
dimensional circulation in the domain boxes changes when
the basins are most aggregated compared to when the basins
are least aggregated. In Figs. 7–10, column-integrated MSE
advection terms and the three-dimensional circulation pro-
files are plotted as a function of binned column MSE. For
each time step, we arrange all grid points in the domain in
increasing order of column MSE and then bin them into
10 equal percentile bins to rank high MSE (which we will refer
to as moist) and low MSE (dry) columns. The MSE deciles are
further composited over 10% of the times when the domain is
most and least aggregated to show the differences as the overall
domain becomes more or less aggregated. The data processing
workflow is summarized in Fig. 5.

1) HORIZONTAL ADVECTION AND HORIZONTAL

CIRCULATION CHANGES

Figure 7 shows the bin mean horizontal advection of MSE
[Eq. (1)] for the column MSE percentile bins in all four do-
mains, composited for when the domain is most aggregated
and when it is least aggregated. We observe that horizontal
advection is mostly negative (i.e., it has a tendency to reduce
MSE in the column) across all the columns in the different re-
gions. However, how the values change with aggregation can
differ in different columns and different basins. The moist col-
umns in all four regions show a tendency for horizontal advec-
tion to become more negative; i.e., the anomalously moist
columns tend to lose more MSE due to horizontal MSE ad-
vection with stronger aggregation. In terms of the variance
budget, this would imply that changes over the moist columns
tend to make the horizontal advection variance term more
negative as the domain aggregates. This is a negative contri-
bution to the maintenance of aggregation since it contributes
to decreasing the variance more strongly when more aggre-
gated (making a negative feedback more negative). In con-
trast, horizontal MSE advection tends to export less MSE out
of the dry columns in the Indian Ocean and western Pacific
basins, while the dry columns show a tendency for stronger
MSE advection out of the column in the eastern Pacific and
Atlantic Ocean basins as the domains aggregate. Reduced
tendency to make the dry columns drier with aggregation is
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also a negative maintenance contribution since it implies in-
creased anomalous moistening of the dry columns (making
the negative feedback more negative). However, the tendency
to make the dry columns drier with aggregation is a positive
maintenance contribution. Therefore, we will expect the main-
tenance term for horizontal advection to be more negative for
the Indian Ocean and western Pacific boxes. This is consistent
with the observed differences in the magnitude of the mainte-
nance term for horizontal advection in Fig. 6a. It should also be
noted that horizontal advection over moist columns changes
uniformly with aggregation throughout the different basins,
while the dry regions behave differently over different ocean
basins.

Next, we will look at the changes in the horizontal circula-
tion during the most and least aggregated states as a function
of the binned column MSE bins (Fig. 8). Binning by column
MSE distorts the geography of the domain. Therefore, hori-
zontal circulation has to be visualized as flow between dry and
moist columns. This is calculated by computing the projection
(dot product) of the horizontal wind vector at each grid point
along the direction of the MSE gradient. Plotting the bin
mean of the projected winds then represents the horizontal
winds in the direction of the more moist columns for each bin.

To highlight the changes in the horizontal circulation with chang-
ing magnitude of aggregation in time, we further compute the
time anomaly of the bin mean projected winds before plotting
their composites over the most and least aggregated states.

Looking at Figs. 8a and 8b, we observe that when the do-
main is least aggregated [panel (b)], the anomalous horizontal
flow is negative near the surface, meaning that anomalous
flow is from moist to dry columns. Conversely, when the do-
main is more aggregated, the anomalous horizontal flow is
from the dry to moist columns near the surface. This indicates
that the extent of aggregation in the domain is linked to a re-
versal in the direction of anomalous horizontal winds. Similar
wind change patterns are observed over the other boxes as
well (not shown). A recent study by Adames Corraliza and
Mayta (2024) has hypothesized that such a change in wind
direction could be related to interactions between moisture
gradient-driven large-scale organized convection and circu-
lation in the tropics, and this is discussed more in section 4.

2) VERTICAL ADVECTION AND VERTICAL VELOCITY

PROFILE CHANGES

Variance due to the vertical advection was found to contribute
positively to the maintenance of aggregation anomalies in Fig. 6.

FIG. 7. Bin mean column-integrated horizontal MSE advection for deciles of column MSE in all four ocean boxes
when the domain is most aggregated (blue) and when it is least aggregated (red). The x axis represents the deciles of
column MSE arranged to go from dry to moist columns as you go left to right.
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Figures 4a–d show that this happens because as the domain be-
comes more aggregated, variance tendencies from vertical advec-
tion become more positive. In theory, this could be attributed to
an increased anomalous moistening tendency of the moist col-
umns or an increased anomalous drying tendency of the dry col-
umns due to vertical advection. Further, these changes can be
due to a combination of 1) changes in the amount of vertical
motion and/or 2) changes in the top heaviness of the vertical
motion profile and/or 3) changes in thermodynamic profiles af-
fecting vertical advection without changes in the vertical mo-
tion. We wish to diagnose which of these changes is occurring.

Previous idealized modeling studies have highlighted the im-
portant role of increased low-level subsidence in dry regions be-
ing an important positive feedback for MSE anomalies (Muller
and Held 2012). In contrast, Tsai and Mapes (2022) show that
ascending vertical motion profiles in the moist columns tend
to be more bottom heavy for more aggregated cases over the
Indian Ocean in MERRA-2 data. However, other previous
studies also discuss how geographic variability in vertical mo-
tion profile shape implies geographical differences in how con-
vection amplifies during such cyclical modes (Inoue et al. 2021).

This then raises the question: Are there specific patterns in the
vertical motion profile shape changes which can be observed
consistently across the different ocean basins that can explain
the positive contribution of vertical advection variance to main-
tenance of aggregation in this framework? Are these changes in
variance driven by vertical motion profile changes in the dry re-
gions or the moist regions?

Column-integrated vertical MSE advection as a function
of binned column MSE and composited over 10% of the most
and least aggregated cases for all four domains is shown in
Figs. 9a(1)–d(1). Starting off with the Indian Ocean box
[Fig. 9a(1)], we observe that the moist columns tend to lose
MSE and the dry columns tend to gain MSE due to vertical
advection when the domain is less aggregated (orange line).
This is representative of vertical advection acting as negative
feedback on MSE anomalies when the domain is less aggre-
gated, consistent with Fig. 4a. Further, we observe that the
moist columns tend to be dried more by vertical advection as
the domain becomes more aggregated (blue line). This is a
negative contribution to maintenance as this tends to make a
negative variance budget term more negative with anomalous

FIG. 8. Contours showing time anomalies of the horizontal winds projected on MSE gradient for IO box
composited over (a) 10% of the times when the domain is most aggregated and (b) 10% of the times when the do-
main is least aggregated. The y axis is height in pressure units, and the x axis is the deciles of column MSE. Anomalies
are computed with respect to a time mean climatological state for each grid point. The contours have units of meters
per second. Solid contours mean positive values, and dashed contours mean negative values. For a given column, posi-
tive contour values denote that flow is toward moister columns (to the right) and vice versa. Shading represents the
vertical MSE profile for the column bins.
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aggregation. However, dry columns tend to be moistened less
by vertical advection at the same time, which is a positive con-
tribution to the maintenance term. Since the total maintenance
term for vertical advection variance is positive in the Indian
Ocean box as per Fig. 6a, vertical advection changes in the dry
columns must dominate over the changes in moist columns.

This change in vertical advection as the domain becomes
more aggregated can also be visualized by plotting the differ-
ence between the two lines in Fig. 9a(1). This difference is plot-
ted in Fig. 9a(2) in black, which shows the least aggregated case
subtracted from the most aggregated case. Negative values de-
note anomalous drying tendency of the column as domain ag-
gregates, and positive values denote anomalous moistening
tendency. Comparing figures for the Indian Ocean box with
the other domains (Figs. 9b–d), we observe that while the
shape of the vertical advection curve itself can be different
between the different domains, all domains show an anoma-
lous drying or a weakened moistening tendency over the dry
columns with aggregation due to changes in vertical advec-
tion. We also observe that moist columns in the Indian Ocean
and eastern Pacific boxes show a stronger anomalous drying ten-
dency as vertical advection changes with aggregation. However,
for the western Pacific and Atlantic Ocean boxes, the moist col-
umns show an increased anomalous moistening tendency in the
moist columns with aggregation due to vertical advection. This
discrepancy suggests that vertical advection changes in the dry or
subsiding columns are more uniform across the different regions.
Moreover, since vertical advection overall contributes positively
to the maintenance of aggregation in all ocean basins (Fig. 6a),
these changes over dry columns can be very important to under-
standing the physical response.

To better understand whether these changes in vertical ad-
vection come from changes in the vertical motion profile or
from changes in the MSE profile, we decompose vertical ad-
vection within each bin as follows:

hv­h­pi5hv­h­pi1hv­h­pai1hva

­h
­pi1hva

­h
­pa
i: (5)

In this equation, the overbar denotes a time average across
the most and least aggregated times and the subscript “a” rep-
resents an anomaly from the time mean. The difference between
the most and least aggregated states for the decomposed terms is
plotted as colored thin lines in Figs. 9a(2)–d(2). Since the mean
profiles are constant between the most and least aggregated
states, the line corresponding to hv(­h/­p)i will be zero (not
shown).We observe that change in total vertical advection is very
closely followed by change in hva(­h/­p)i, which corresponds to
anomalous changes in vertical motion profiles acting on a time
mean MSE gradient profile (green). This suggests that variability
in vertical advection is mainly explained by the changes in vertical
motion profiles between most and least aggregated states. This is
observed robustly over all four ocean domains.

Figure 10a shows the vertical profiles of mean vertical velocity
(contour) and mean MSE (shading) in the leftmost panel and
the time anomalous vertical velocity (contour) and time anoma-
lous MSE (shading) during the most and least aggregated cases
in the other two panels for the Indian Ocean domain. As ex-
pected, we observe that the mean vertical velocity is ascending
over the moist columns and descending over the dry columns.
We further observe that the negative MSE anomalies over the
drier columns dominate the MSE profile changes as shown by

FIG. 9. Bin mean column-integrated vertical advection for deciles of column MSE when the domain is most aggregated (blue) and when
it is least aggregated (red) for [a(1)] IO, [b(1)] WP, [c(1)] EP, and [d(1)] AO domains. [a(2)],[b(2)],[c(2)],[d(2)] Black curve represents the
differences in total column vertical advection for a given column MSE bin between the most and least aggregated cases for each basin.
Other colors represent the differences for various terms in vertical advection decomposition as per Eq. (5).
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the range of color shading when the domain is most aggregated.
The MSE increase in the moist columns is comparatively closer
to zero. In terms of vertical velocity changes, we observe a
strong increase in upward vertical velocity over the moist col-
umns with stronger aggregation in the domain. We also observe
a stronger low-level subsidence over the dry regions consistent
with previous idealized modeling studies. This increase in

subsidence combined with the positive vertical MSE gradient at
low levels contributes to anomalous negative advection or
anomalous drying of the dry columns. This anomalous drying
causes the weakening in the moistening tendency over the dry
columns discussed above. In contrast, it is not easy to make out
if the enhancement of upward vertical velocity over the moistest
columns is bottom or top heavy.

FIG. 10. (a) Mean and anomalous vertical velocity in pascals per second (contours) and MSE in
joules per kilogram (shading) for the different column MSE deciles in the IO domain. Mean and
anomalies are consistent with definitions for Eq. (5). Panels showing composite over the most and
least aggregated cases show anomalies with respect to the mean profiles. Vertical velocity is in pres-
sure coordinates so positive values mean descent and negative values mean ascent. Thick black con-
tour corresponds to the zero contour in all panels. Solid contours represent positive values. Dashed
contours represent negative values. Contour levels are spaced every 0.01 Pa s21 for the mean profile
and every 0.005 Pa s21 for the anomalous profiles. (b) Anomalous vertical velocity profiles in all
four ocean basins over the (left) two driest deciles and (right) two moistest deciles. The anomaly is
calculated as the difference between the most and least aggregated composites here.
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Vertical velocity profile changes are better visualized in
Fig. 10b which shows the anomalous vertical motion profile
for the two driest and two moistest bins from panel (a). The
anomalous vertical velocity plotted here is the difference be-
tween the most and least aggregated composites. Profiles
from all four ocean basins are plotted for easy comparison.
Figure 10b clearly shows a ubiquitous increase in low-level
subsidence in the dry columns in all ocean basins with aggre-
gation. In contrast, changes over the moistest columns are not
uniform. We observe that enhancement of upward motion
has a relatively more bottom-heavy profile in the western
Pacific and Atlantic Ocean as compared to the Indian Ocean
and eastern Pacific. Bottom-heavy ascent can be associated
with decreased drying tendency due to vertical advection in
the moist columns in the western Pacific and Atlantic Ocean,
whereas the relatively more top-heavy ascent strengthens the
vertical advective drying tendency of the moist columns in the
Indian Ocean and eastern Pacific basins. These differences in
the moist regions are consistent with changes observed in Fig. 9.

Idealized modeling studies can disagree on what causes the
increase in low-level subsidence in dry regions. Muller and
Held (2012) found this to be driven by enhanced low-level
radiative cooling in dry regions, whereas Holloway and
Woolnough (2016) found the low-level circulation to not be
driven by radiative changes in their simulation. Understand-
ing the exact relationship between vertical radiative cooling
profiles and their impact on circulation and organization of
convection is an open area of current research. Our results sup-
port that such feedbacks are important for understanding the
maintenance of large-scale aggregation anomalies.

4. Summary and discussion

This study aims to establish a process-oriented framework
to visualize and understand the aggregation of convection in
the real world through the lens of reanalysis data. To do so,
we utilized the spatial variance of MSE over ocean-wide large
domains as our metric of aggregation. Defining aggregation
based on the spatial variance of MSE allows us to focus on ag-
gregation in terms of its impact on the large-scale environ-
ment, providing a different perspective to the one obtained
from studying aggregation through the characterization of
cloud organization at smaller scales. Also, the domain sizes in
this study are much bigger than the 108 3 108 boxes used in
previous work (Tobin et al. 2012; Tompkins and Semie 2017;
Masunaga et al. 2021, etc.). This shifts the focus from aggrega-
tion at mesoscales to aggregation at larger scales in this study.
The results presented in this study are fairly insensitive to mi-
nor changes (,58) in domain size and placement. For larger
variations in domain size, the overall results are found to be
qualitatively similar as long as the domain is large enough to
sample both the moist and dry regions associated with large-
scale aggregation adequately (not shown).

We develop a new phase space to visualize the evolution of
aggregation in the form of the MSE variance phase space.
This framework puts domain MSE variance on the x axis (ex-
tent of aggregation) and the tendency of MSE variance on the
y axis (changes in aggregation). We highlight the distinction

between the mean aggregated state and the variability about
the mean state. A composite vector plot showing the evolution
of aggregation on the phase space highlights the cyclical mode
of variability in aggregation about the mean state. We call these
the aggregation–disaggregation cycles (Fig. 2). While previous
studies have mostly focused on characteristics of the mean ag-
gregated state, this study focuses on characterizing the variability
about the mean state which may be observed in some models
but has not been explored systematically. This visualization, by
construction, puts the emphasis on this mode of variability as a
key feature of aggregation in the real world. This is complemen-
tary to the major theme of most self-aggregation studies, which
tend to highlight the characteristics of the quasi-equilibrium
mean state as the key feature of aggregation.

Different terms of the MSE variance budget [Eq. (2)] rep-
resent the different processes that can contribute to aggrega-
tion or disaggregation, impacting both the mean state and the
observed variability. The different terms include variance
from vertical advection, horizontal advection, radiative fluxes,
and surface fluxes. To characterize the evolution of variability
in aggregation, we focus on two aspects: first, how much the
domain aggregates, and second, when the domain aggregates.
This is evaluated with the help of the maintenance [Eq. (3)]
and evolution [Eq. (4)] metrics defined in this study. The
maintenance term is related to how much the domain aggre-
gates, and the evolution term is related to when the domain
aggregates. This is different from previous notions of mainte-
nance of aggregation which focus more on the maintenance of
the mean aggregated state, while here we focus on the mainte-
nance of aggregation anomalies about the mean state. This is
also summarized with the help of a schematic in Fig. 11.

Key features observed throughout different regions in the
tropics are listed below:

• For the mean state (Fig. 3), we find surface fluxes and hori-
zontal advection tend to resist aggregation, while radiative
fluxes tend to support aggregation throughout the tropics.
Further, vertical advection does not tend to resist aggrega-
tion. It either tends to support aggregation or has close to
zero impact on the mean aggregated state in the different
basins. Contributions to the mean state are broadly consis-
tent with previous idealized modeling studies.

• Our results highlight that only the variance from horizontal
advection plays a role in determining when the domain ag-
gregates and disaggregates (Fig. 6b). Hence, horizontal ad-
vection acts as a driver for aggregation–disaggregation
cycles. All four budget terms have a significant role in con-
tributing to the strength of aggregation anomalies or how
much the domain aggregates.

Contribution to the strength of aggregation anomalies is re-
lated to how the budget term feeds back onto aggregation.
We find that surface fluxes and horizontal advection tend to
dampen aggregation anomalies more strongly when the do-
main is more aggregated, while radiative fluxes and vertical
advection tend to amplify aggregation anomalies more
strongly (Fig. 6a). We explore the advective feedbacks in
greater detail in this study. However, based on previous
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studies, we expect increased air–sea enthalpy disequilib-
rium over the dry regions during a more aggregated state
to drive stronger moistening tendencies by surface fluxes
which will tend to dampen the aggregation anomaly (Wing
and Emanuel 2014; Pope et al. 2023). For radiative fluxes,
we expect increased high clouds and water vapor in the
moist regions to drive increased moistening which will tend
to amplify the aggregation anomaly (Pope et al. 2021, 2023).

We show that vertical advection broadly tends to moisten
the dry columns in the domain. However, as the domain be-
comes more aggregated, we observe that vertical advection
tends to moisten the dry columns less as compared to the least
aggregated states (Fig. 9). This tends to support the existing
aggregation anomalies in the domain. While the change in
vertical advection over the dry columns is qualitatively consis-
tent over all ocean basins, changes over the moist columns
can differ between the different regions. Looking at the verti-
cal velocity profiles reveals that the low-level subsidence over
the drier columns is enhanced across all ocean basins when
the domain is more aggregated which supports the weaken-
ing tendency to moisten the drier columns (Fig. 10). Moist
columns instead show differences in top heaviness of the en-
hanced ascending profiles in different basins which can ex-
plain why changes in vertical advection are not consistent
for the moist columns over different basins in Fig. 9. Since
the changes in vertical advection over the dry columns are
consistent across the domains, and their effect on support-
ing existing aggregation anomalies in the domain is qualita-
tively consistent with the effect of the overall vertical advection

variance term, we expect the response in dry columns to be the
more dominant mechanism.

Similarly, we observe that horizontal advection tends to dry
the moist columns more strongly as the domain becomes more
aggregated in all ocean basins (Fig. 7). In contrast, changes in hor-
izontal advection over the dry columns are not consistent across
the ocean basins. However, the increased drying tendencies
over the moist columns in more aggregated states are larger in
magnitude and explain the increased tendency to damp the
aggregation anomalies by horizontal advection. The three-
dimensional structure of the horizontal circulation shows that
anomalous horizontal circulation changes in direction with aggre-
gation. The anomalous horizontal flow is from the dry to moist
columns in lower levels when the domain is more aggregated and
is frommoist to dry columns when the domain is less aggregated.

Observation about the change in horizontal wind direction
in this study is also consistent with recent studies presenting
observational and theoretical evidence for horizontal mois-
ture gradient-driven moisture modes (Mayta and Adames
Corraliza 2024; Adames Corraliza and Mayta 2024). Similar
to aggregation–disaggregation cycles, these moisture modes
were also found to be driven by horizontal advection. As per
this theory, the presence of strong moisture gradients in the
domain spins up moisture mode eddies which act to even out
the moisture mode gradient (Adames Corraliza and Mayta
2024). Therefore, the existence of strong eddy flow from moist
to dry columns should lead to small moisture gradients and a
less aggregated domain, while the absence of eddy flow
should lead to the buildup of strong moisture gradients and a

FIG. 11. Schematic summarizing the mean aggregated state versus the variability about the mean state behavior of aggregation in the
observed world being discussed in this study.
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more aggregated state. This could be a possible hypothesis for
how horizontal advection can drive the propagation of the ag-
gregation–disaggregation cycles and explain the structure of
horizontal circulation we observe in our results. If true, this
suggests that the large-scale aggregation being observed here
can be thought of in terms of a strong ITCZ or Hadley cell
circulation. The moisture modes, which manifest at smaller
scales, then act as a disaggregation process. This could be a
significant change in how we think about aggregation mani-
festing in the real world. Moisture modes, which traditionally
were thought to be an example of aggregation at synoptic
scales, could also be contributing to disaggregation at larger
planetary scales. This also highlights the multiscale nature of
aggregation and the importance of understanding the cross-
scale interactions if we wish to understand the full picture of
how aggregation evolves in the real world.

Another interesting aspect of these results is the similarities
and differences with the expectations based on idealized model
studies. Our results show that while radiative fluxes are impor-
tant for the maintenance of aggregation–disaggregation cycles,
that does not mean that they control when the domain will ag-
gregate or disaggregate. Rather, that is governed by horizontal
advection. Therefore, understanding horizontal advection and
how that may change with climate change will be an important
factor in understanding aggregation under a changing climate,
particularly the frequency of aggregation. Wing (2019) discusses
how the frequency of aggregation is important for its impact on
climate and extreme precipitation events in the real world. The
aggregation–disaggregation cycles we study in this work are ex-
pected to be relevant for understanding the aggregation that is
associated with precipitation extremes. Hence, these aggrega-
tion–disaggregation cycles are worthy of further study.
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