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ABSTRACT

The tree-ring-based North American Drought Atlas (NADA), Monsoon Asia Drought Atlas (MADA),

and Old World Drought Atlas (OWDA) collectively yield a near-hemispheric gridded reconstruction of

hydroclimate variability over the last millennium. To test the robustness of the large-scale representation of

hydroclimate variability across the drought atlases, the joint expression of seasonal climate variability and

teleconnections in the NADA, MADA, and OWDA are compared against two global, observation-based

PDSI products. Predominantly positive (negative) correlations are determined between seasonal pre-

cipitation (surface air temperature) and collocated tree-ring-based PDSI, with average Pearson’s correlation

coefficients increasing in magnitude from boreal winter to summer. For precipitation, these correlations tend

to be stronger in the boreal winter and summer when calculated for the observed PDSI record, while re-

maining similar for temperature. Notwithstanding these differences, the drought atlases robustly express

teleconnection patterns associated with El Niño–Southern Oscillation (ENSO), the North Atlantic Oscilla-

tion (NAO), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO). These

expressions exist in the drought atlas estimates of boreal summer PDSI despite the fact that these modes of

climate variability are dominant in boreal winter, with the exception of the AMO. ENSO and NAO tele-

connection patterns in the drought atlases are particularly consistent with their well-known dominant ex-

pressions in boreal winter and over theOWDAdomain, respectively. Collectively, the findings herein confirm

that the joint Northern Hemisphere drought atlases robustly reflect large-scale patterns of hydroclimate

variability on seasonal to multidecadal time scales over the twentieth century and are likely to provide

similarly robust estimates of hydroclimate variability prior to the existence of widespread instrumental data.

1. Introduction

Our ability to characterize hydroclimate variability

from observations is confined to about 50–150 years of

widespread instrumental records, limiting assessments

of decadal–centennial variability and extreme events

that are not sufficiently sampled over a single century.

The limitations of the instrumental record can be cir-

cumvented in part by analyzing proxy records that

provide estimates of past hydroclimate variability over a

range of time scales and resolutions (e.g., Jones et al.

2009; Masson-Delmotte et al. 2013). Tree-ring chronol-

ogies are an important proxy used in this context, as they

provide annually resolved, seasonal estimates of hydro-

climate conditions over the CommonEra (CE; e.g., Cook

et al. 2007, 2010b; Belmecheri et al. 2015; Routson et al.

2011; Woodhouse et al. 2010; Buckley et al. 2010).
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Tree-ring-based gridded drought atlases that target

the Palmer drought severity index (PDSI) are one im-

portant dendroclimatic product that has emerged over

the last decade, comprising a vital source of information

on CE hydroclimate (Cook et al. 2004, 2010a; E. Cook

et al. 2015; Palmer et al. 2015; Stahle et al. 2016). Orig-

inally published in 2004, the North American Drought

Atlas (NADA; Cook et al. 2004) is the most established

of these efforts, with updates to incorporate additional

tree-ring chronologies and increase resolution and spa-

tial extent over North America (Cook et al. 2008,

2010b). The extensive spatial and temporal scope of the

NADA allows for the study of North American hydro-

climate conditions and the associated dynamics of hy-

droclimate variability over time scales that previously

were not well sampled (e.g., Herweijer et al. 2007; Stahle

et al. 2007; Cook et al. 2014a,b; Coats et al. 2016). These

efforts have helped place modern drought conditions

and dynamics in a paleoclimatic context, thus pro-

viding a longer-term perspective for evaluating the

characteristics of modern drought and the roles that

both natural variability and anthropogenic forcing play

in contemporary hydroclimate and projected future

conditions (e.g., Griffin and Anchukaitis 2014, Williams

et al. 2015; Herweijer et al. 2007; Cook et al. 2014a;

B. Cook et al. 2015). Additionally, the NADA has

allowed for model–proxy comparisons over the last mil-

lennium (Smerdon et al. 2015, 2017; Coats et al. 2013b,

2015a,b,c; Stevenson et al. 2015, 2016)with implications for

the interpretation of risk assessments from twenty-first-

century model projections (Schmidt et al. 2014; Phipps

et al. 2013; Ault et al. 2014, 2016; B. Cook et al. 2015).

Similar gridded hydroclimate reconstructions over other

large areas of the Northern Hemisphere (NH) have been

developed since the NADA, including the Monsoon Asia

Drought Atlas (MADA; Cook et al. 2010a; Cook 2015)

and theOldWorldDroughtAtlas (OWDA;E. Cook et al.

2015). The MADA and OWDA have been used for

important studies over their individual domains (e.g.,

Anchukaitis et al. 2010; Hernandez et al. 2015; Ummenhofer

et al. 2013; Bell et al. 2011; Cook and Wolkovich 2016a;

Cook et al. 2016) and additionally offer the prospect of

using the NADA, OWDA, and MADA to collectively

characterizewidespread patterns of hydroclimate variability

over a broad expanse of continental areas in the NH (Coats

et al. 2016; Fang et al. 2014). Similarly, expansion of these

efforts into the Southern Hemisphere (Palmer et al. 2015)

will eventually provide the prospect of global analyses.

Given the inherent seasonal expressions of precipitation

and temperature teleconnections tied to large-scale dynamics

and the seasonal representation of dendroclimatic records,

this prospect necessitates a detailed evaluation of the sea-

sonal and spatial sampling of the collective drought atlases.

St. George et al. (2010) first evaluated the seasonal

influence of precipitation in the NADA and the associ-

ated seasonality and strength of El Niño–Southern Os-

cillation (ENSO) teleconnections during the interval

1900–78 CE (a period during which the NADA consists

only of tree-ring records because it has not been spliced

with any observation-based PDSI records). The authors

demonstrated that while the NADA largely captures the

precipitation influences and teleconnection patterns in

the observational data, it does contain some seasonal

biases; specifically, tree-ring-derived PDSI displays

stronger winter precipitation signals and ENSO tele-

connections over the U.S. Southwest and northern

Mexico than are demonstrated in the instrumental data

(St. George et al. 2010). These results have important

implications for hydroclimate studies that use the

NADA and indicate the need to conduct similar ana-

lyses of the MADA and OWDA. Furthermore, the

impacts of large-scale atmosphere–ocean modes other

than the ENSO such as the North Atlantic Oscillation

(NAO; Fowler and Kilsby 2002; Burt and Howden 2013;

Wedgbrow et al. 2002), Atlantic multidecadal oscillation

(AMO;Kushnir et al. 2010; Ting et al. 2011; Enfield et al.

2001; Nigam et al. 2011; McCabe et al. 2004, 2008),

and Pacific decadal oscillation (PDO; McCabe and

Dettinger 2002; McCabe et al. 2004) highlight the im-

portance of examining additional teleconnections asso-

ciated with these ocean–atmosphere modes within the

drought atlases.

With the above as motivation, we expand the analyses

of St. George et al. (2010) to a joint evaluation of the

NADA,MADA, andOWDA, each of which is based on

independent tree-ring and observation-based PDSI

data. We conduct analyses that are parallel to those of

St. George et al. (2010) for the full NH and extend the

evaluations in two important ways. First, in addition to

the higher resolution and greater spatial extent of the

joint drought atlases, we specifically evaluate the sea-

sonal influence of temperature [St. George et al. (2010)

only considered precipitation] in the tree-ring-based

reconstructions of June–August (JJA) PDSI relative to

PDSI based on observational estimates. Second, we

evaluate the teleconnection patterns expressed across

the three drought atlases for theNAO, PDO, andAMO,

in addition to those of ENSO, the last of which was the

only mode investigated by St. George et al. (2010).

While these four modes do not account for all of the

atmosphere–ocean modes that influence hydroclimate

over the NH landmasses, they are some of the primary

modes of influence and span a range of time scales from

interannual to multidecadal. Taken collectively, our

results are intended to guide future studies seeking to

use the hemispheric collection of drought atlases for
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large-scale studies of hydroclimate variability and

dynamics.

2. Data and methods

a. Observation and tree-ring-based PDSI data

PDSI is a normalized metric of soil moisture, with

positive and negatives values respectively reflecting

wetter and drier conditions for a given region relative

to a climatological baseline. PDSI is formulated on

monthly precipitation and temperature data, accounting

for both moisture supply and evapotranspiration, and

has a persistence of about 12–18 months (e.g., Palmer

1965; Guttman 1998; Cook et al. 2007). We employ two

observation-based PDSI datasets, one from van der

Schrier et al. (2013) and the other from Dai (2011). The

van der Schrier et al. (2013) PDSI (‘‘vdS PDSI’’) has 0.58
resolution from 1901 to 2012 and the Dai (2011) PDSI

(‘‘Dai PDSI’’) has 2.58 resolution from 1850 to 2014.

Both data products are monthly self-calibrating PDSI

(Wells et al. 2004) using the Penman–Monteith

(Penman 1948) formulation of potential evapotranspi-

ration, and both have global land coverage. Monthly

means of PDSI were used to derive JJA averages for the

observation-based hydroclimate estimates (all PDSI

values discussed in the remainder of this study are JJA

averages). St. George et al. (2010) used instrumental

PDSI developed from Cook et al. (2004), but we do not

employ that dataset herein because it is limited to North

America.

We use three gridded drought atlases that are further

summarized in Table 1: the Living Blended Drought

Atlas (LBDA) version of the NADA (Cook et al.

2010b), the MADA, version 2 (MADAv2; Cook et al.

2010a; Cook 2015), and the OWDA (E. Cook

et al. 2015). The current versions of the NADA,

MADA, and OWDA have latitude–longitude grid res-

olutions of 0.58, 1.08, and 0.58, respectively. All three

atlases are reconstructed using a point-by-point re-

gression method (PPR; Cook et al. 1996) and target JJA

PDSI for reconstruction—the NADA is calibrated on

PDSI (Heim et al. 2007) and the MADA and OWDA

are calibrated on vdS PDSI. The PPR method uses, for

each grid cell, tree-ring chronologies within a search

radius of 450 km for the NADA (Cook et al. 2004) and

1000km for the OWDA (E. Cook et al. 2015). Because

of the irregular distribution of available tree-ring chro-

nologies in the region called ‘‘monsoon Asia,’’ the

MADA used multiple search radii (Cook et al. 2010a).

The PPR method allows chronologies to be used in the

reconstruction of more than one grid cell and only im-

poses local smoothing over the range of the search ra-

dius used in the calibration process (e.g., Cook et al.

1996). The method does not impose any large-scale

pattern selections as a consequence of the underlying

calibration scheme, as is common in other joint space–

time reconstruction methods (e.g., Evans et al. 2002;

Smerdon et al. 2011; Mann et al. 2009); large-scale pat-

terns across each drought atlas are therefore emergent

characteristics of the underlying data. The locally con-

strained characteristics of the PPR method also make

each drought atlas entirely independent from the others,

notwithstanding spatial autocorrelation features that

arise due to covariance from the climate system. All

PDSI products were subtracted then divided by their

1931–90 means and standard deviations, respectively, to

recenter and normalize relative to a 1931–90 baseline.

We constrain our analyses to the overlapping and in-

dependent period from 1901–78 for the tree-ring and

observation-based PDSI datasets. While the 1901–78

period avoids splicing of tree-ring-derived and

observation-based data, it does span the interval over

TABLE 1. Descriptions of the three tree-ring datasets and key references.

Dataset Resolution Coverage

Total timespan

(period analyzed

in this study)

Calibration

datasets

No. of

chronologies

Primary

reference for

version used

in this study

Example

domain-specific

references

LBDA

NADA

0.58 North

America

0–2005 CE

(1901–78 CE)

PDSI 1845 Cook et al. (2010b) Coats et al. (2015a,b),

Cook et al. (2007,

2014a,b), Herweijer

et al. (2007), and

St. George et al. (2010)

MADAv2 1.08 Monsoon

Asia

1250–2005 CE

(1901–78 CE)

vdS PDSI 327 Cook et al. (2010a) Anchukaitis et al. (2010)

and Hernandez et al.

(2015)

OWDA 0.58 OWDA

region

0–2012 CE

(1901–78 CE)

vdS PDSI 106 E. Cook et al. (2015) Cook and Wolkovich

(2016) and Cook et al.

(2016)
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which the drought atlases have been calibrated on in-

strumental data (although this period also includes pe-

riods outside the calibration intervals).

b. Climate data and indices

The University of East Anglia Climatic Research

Unit’s (CRU) Time Series (TS), version 3.23, gridded

dataset provides monthly precipitation and 2-m surface

air temperature (SAT) data spanning 1901 to 2014 with

0.58 resolution (Harris et al. 2014). Following St. George

et al. (2010), the December–February (DJF), March–

May (MAM), and JJA periods are averaged over 1901–

78 (1902–78 for DJF) to provide boreal winter, spring,

and summer means, respectively. For precipitation, we

also average from December to August to reflect the

possibility of longer temporal integration of pre-

cipitation in the PDSI estimate of soil moisture.

The cold tongue index (CTI), defined as the average

sea surface temperature (SST) anomaly over 68N–68S,
1808–908Wminus the mean global SST, is available from

the University of Washington Joint Institute for the

Study of the Atmosphere and Ocean (JISAO; online at

http://research.jisao.washington.edu/data_sets/cti/). The

CTI was used by St. George et al. (2010) as the ENSO

index of choice and is employed herein for consistency.

Again following St. George et al. (2010), the October to

March months are taken from the CTI and averaged to

produce 1901–78 means, reflecting the dominant season

of ENSO impact.

Monthly NAO and PDO anomalies are available

from the JISAO and span the intervals 1860–2009 and

1900–2016, respectively (online at http://research.jisao.

washington.edu/data_sets/nao/ and http://research.jisao.

washington.edu/data_sets/pdo/). The monthly AMO

index is available from 1871 to the present from

the NOAA/Earth System Research Laboratory (online

at http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/

AMO/). The December–March (DJFM), November–

March, and JJA averages are used for the NAO, PDO,

and AMO, respectively. Each of these averaging in-

tervals represents the dominant season of impact of each

mode of variability over large regions of the investigated

domain, but we additionally consider other seasons in

subsequent analyses.

c. Statistical methods

Point-to-point Pearson’s correlation coefficients are

calculated between PDSI (observation and tree-ring-

based) and (i) precipitation and (ii) SAT over the

NADA, MADA, and OWDA domains. Because the

MADA has a coarser 1.08 resolution, precipitation and

SAT are degraded to 1.08 resolution over the MADA

domain using bilinear interpolation. The vdS PDSI has

been derived from the CRU TS precipitation and tem-

perature data products. Thus, the reported correlations

are representative of the PDSI transform of the data as

opposed to differences between the CRU TS data and

alternative PDSI input data. In contrast, the Dai PDSI

uses a different CRU temperature dataset from Jones

and Moberg (2003) and NCEP precipitation data (Dai

et al. 2004). To avoid confounding the impact of the

PDSI transform and different input datasets, we exclude

precipitation and SAT correlations with the Dai PDSI.

Partial coefficients of determination r2 are also cal-

culated between PDSI (both observation and tree-ring-

based) and (i) precipitation and (ii) SAT. The partial

coefficients of determination quantify the PDSI vari-

ance explained by precipitation and SAT, respectively,

while controlling for the covariance of the two variables

(e.g., Warner 2013). These partial correlations are used

to assess whether a specific variable dominates variance

in the PDSI field by subtracting the partial r2 values for

SAT from those of precipitation. Positive and negative

differences between the partial r2 values indicate

stronger influence of precipitation or SAT, respectively,

while values close to zero point to either their equal

contribution or collective absence of influence.

ENSO, NAO, PDO, and AMO teleconnection pat-

terns are characterized using Pearson’s correlation co-

efficients between each modal index and observation

(both vdS and Dai PDSI) or tree-ring-based PDSI at

each grid point. Following St. George et al. (2010), we

also composite the drought atlases over years in which

each respective modal index—CTI, NAO, AMO, and

PDO—is one standard deviation above or below the

1901–78 mean. For the CTI, for instance, this yields El

Niño and La Niña PDSI anomaly composites.

The similarity between spatial patterns in our analyses

is characterized using the centered pattern correlation

statistic (CPCS; Santer et al. 1995; Coats et al. 2013a)

over the common grid points of two given datasets. All

grid points are weighted by the square root of the cosine

of their respective latitudes to account for decreasing

surface area with increasing latitude prior to CPCS

calculation. We calculate CPCS using Pearson’s corre-

lation coefficients, but do not assign p value significance

because the spatial autocorrelation in the determined

patterns ambiguously reduces the spatial degrees of

freedom, and therefore the significance of the spatial

correlations. For precipitation and temperature corre-

lation plots, CPCS was calculated at 0.58 resolution. In
all other cases, CPCS was calculated at 2.58 resolution,
which was the lowest resolution of the data products

used herein (Dai PDSI).

All point-to-point correlations and CPCS values were

calculated using Pearson’s correlation coefficients to
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reflect linear, parametric statistics. A Spearman’s rank

correlation was also used to test if our findings are robust

when using a nonparametric test. The results using ei-

ther correlation statistic were very similar and therefore

are only shown for the Pearson’s correlation statistic. All

of the correlations in this study were also recalculated

using detrended data; the patterns and correlations do

not change in an appreciable manner after detrending.

3. Results

a. Seasonal influence of temperature and precipitation

Figure 1 shows maps and histograms of point-to-point

Pearson’s correlation coefficients calculated between

seasonal and 9-month integrated precipitation and

(i) vdS and (ii) tree-ring estimates of JJA PDSI. A

correlation of 0.19 represents the one-tailed Student’s

t test at a 95% significance level (p , 0.05) for all his-

tograms. The correlations of precipitation versus vdS

PDSI are higher than precipitation versus tree-ring es-

timates of PDSI in part because instrumental pre-

cipitation data are used in calculating vdS PDSI.

Correlation coefficients for the vdS PDSI become larger

as the precipitation season progresses from boreal win-

ter to summer (as can be seen in the histograms shifting

positive), with JJA precipitation tending to have the

greatest influence on JJA PDSI over all three do-

mains (NADA, MADA, and OWDA). The correlation

coefficients also increase from boreal winter to summer

over the majority of the NH landmass in the tree-ring-

based PDSI, but do so more modestly. The 9-month

integrated precipitation plots incorporate the precipi-

tation signals of the three seasonal plots—in general, the

9-month plot is additive of the strongest signal from each

of the three seasonal plots.

Figure 2 plots the maps and histograms of point-

to-point Pearson’s correlation coefficients calculated

between seasonal SAT and (i) vdS and (ii) tree-ring es-

timates of JJA PDSI. A correlation value of 0.22 (0.23)

represents the two-tailed Student’s t test at a 95% sig-

nificance level (p, 0.05) for spring and summer (winter)

histograms. SAT has a widespread negative correlation

with both PDSI estimates over most of the NH and the

correlation coefficients increase in magnitude as the

season progresses from boreal winter to summer across

all three of the domains. The seasonal changes in corre-

lation are evident in the histograms as well, which show

the mean of the correlation coefficients shifting negative

from boreal winter to summer.

The tree-ring-based PDSI correlation coefficient

maps for precipitation and SAT overall resemble those

for vdS PDSI. We quantify these similarities by calcu-

lating CPCS between the correlation maps estimated

between precipitation and SAT and each seasonal field

of tree-ring-based and vdS PDSI (i.e., between the left

and middle columns in Figs. 1 and 2). Each season

FIG. 1. (top)–(bottom) Pearson’s point-to-point correlation coefficients between boreal winter (DJF), spring (MAM), summer (JJA),

and 9-month (December–August) precipitation and (left) vdS and (center) tree-ring-based PDSI over the 1901/02–78 interval. Pearson’s

CPCS between the vdS and tree-ring-based PDSI correlation patterns are reported in the lower left of each tree-ring panel for the seasons

in the associated row. (right) Correlation coefficients from each of the correlation maps are shown as histograms; coefficients associated

with observed PDSI are binned at 1.08 resolution over the MADA domain in the histograms for consistency with the tree-ring product.

A correlation value of 0.19 represents the one-tailed Student’s t test at a 95% significance level (p, 0.05) for winter, spring, and summer.
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yields a CPCS between the observation and tree-ring-

based PDSI in the range of 0.45–0.65. CPCS is highest in

the boreal spring and winter for precipitation and SAT,

respectively. One important caveat regarding the com-

parison of the precipitation and temperature correla-

tions is that vdS PDSI is derived from CRU TS

precipitation and temperature data. This guarantees

strong correlations between the CRU TS forcing data

and the vdS PDSI, regardless of whether they are ac-

curate estimates of historical conditions. While differ-

ences between the precipitation correlation patterns

with tree-ring-based and vdS PDSI may reflect differ-

ences in the manner in which the tree rings integrate

precipitation relative to the observational estimate, such

differences may also reflect biases in the instrumental

data. For instance, data coverage over much of the

monsoon Asia domain, in particular the East Asian

monsoon regions, is poor prior to about 1950 (Cook

et al. 2010a). In contrast, the vdS PDSI is guaranteed to

correlate well with the CRU TS precipitation because it

is derived from it.

Figure 3 shows the difference between the partial r2

values calculated using precipitation and SAT and the

vdS and tree-ring-based PDSI. The precipitation co-

efficients are predominantly larger than the SAT co-

efficients in the vdS PDSI fields across all three seasons.

Correlation between precipitation and the tree-ring

PDSI field is weaker, particularly over the summer

NADA domain where temperature coefficients are

predominantly greater than the precipitation counter-

parts. Overall, precipitation dominates the PDSI field

to a greater extent in vdS PDSI than tree-ring-based

PDSI, but again the caveat regarding the use of CRUTS

precipitation and temperature in the vdS PDSI calcu-

lation is applicable.

b. ENSO teleconnections

The teleconnection patterns associated with ENSO,

as measured by the CTI during the preceding winter, for

the vdS, Dai, and tree-ring-based PDSI are shown in

Fig. 4. Both the strength and pattern of the ENSO

teleconnection with PDSI are broadly comparable be-

tween the observation and tree-ring-based estimates,

indicating that ENSO teleconnections are robustly

captured in the dendroclimatic data. In North America,

for instance, a strong El Niño dipole with a wet area over
the southwestern United States and northern Mexico

and a dry area over the northwestern United States

and western Canada is prominent across the vdS,

Dai, and tree-ring-based PDSI products. There is also

an ENSO dipole over monsoonAsia, with positive PDSI

over much of the northwest and southeast parts of the

domain associated with El Niño and La Niña events,

respectively.

The coherence in the strength and pattern of ENSO

teleconnections across the NH is reflected in the high

CPCS value of 0.70 (0.59) between the tree-ring-based

and vdS (Dai) PDSI patterns. Note, however, that while

the ENSO patterns are largely consistent across all three

PDSI products, the vdS PDSI teleconnection maps are

less spatially coherent than their Dai or tree-ring PDSI

counterparts in Fig. 4 or the ENSO results presented in

St. George et al. (2010). PDSI formulation is unlikely to

be the primary cause of the discrepancy, as both the vdS

FIG. 2. As in Fig. 1, but for surface air temperature. A correlation value of 0.22 (0.23) represents the two-tailed Student’s t test at a 95%

significance level (p , 0.05) for spring and summer (winter).
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PDSI and the Dai PDSI use the self-calibrating

Penman–Monteith method. Rather, the discrepancy

may be due to the fact that the vdS PDSI product con-

siders the spatially heterogeneous effects of snow cover

and vegetation (van der Schrier et al. 2013), which may

explain the greater spatial heterogeneity of the results

for the vdS PDSI across all of our analyses. Finally, the

tree-ring-based composites of El Niño and La Niña
events (N 5 14 and 10 yr, respectively) compare more

weakly with the observational data, likely due to the

FIG. 4. (top) Pearson’s correlation coefficients between the CTI (October–March) and (left) vdS, (center) Dai, and (right) tree-ring-

based PDSI. A correlation value of 0.22 represents the two-tailed Student’s t test at a 95% significance level (p , 0.05). Also shown are

PDSI anomaly composites for years in which the CTI was one standard deviation (middle) above (El Niño) and (bottom) below (La Niña)
the 1901–78 mean, with 14 and 10 events, respectively. Pearson’s CPCS is reported (right) for each associated row between (i) tree-ring-

based and vdS PDSI patterns (top number at bottom left of the panels) and (ii) tree-ring-based andDai PDSI patterns (bottom number at

the bottom left of the panels).

FIG. 3. Difference between the squared partial correlations between PDSI and (i) precipitation and

(ii) temperature (top)–(bottom) for boreal winter (DJF), spring (MAM), and summer (JJA) for (left) vdS and

(right) tree-ring-based PDSI over the 1901/02–78 interval. Positive and negative partial r2 values indicate that either

precipitation or SAT respectively dominate the explained variance in PDSI. Values close to zero point to either

their equal contribution or a collective absence of their influence.
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smaller sample sizes associated with the composites.

Nevertheless, the tree-ring-based composites are very

similar to the CTI correlation patterns across the two

observational PDSI products.

When broken down into seasons, the ENSO telecon-

nection patterns (Fig. 5) indicate that boreal winter is

the dominant season of hydroclimatic impact on JJA

PDSI, not only over North America but also over the

entire domain spanned by the three drought atlases. In

general, the teleconnection pattern diminishes from

boreal winter into spring and during the coincident

summer. This is consistent with the typical seasonal

evolution of ENSO anomalies that grow through the

boreal summer and fall, peak in the winter, and sub-

sequently diminish into the following spring and sum-

mer (Sarachik and Cane 2010). The southern and

eastern regions of the MADA domain are exceptions to

the weakening ENSO teleconnection signals from win-

ter to summer; dry conditions in summer are enhanced

relative to the spring and comparable to those over the

winter, which is consistent with the known impact of

ENSO on the South Asian peak monsoon season

through its modulation of the Walker circulation

(Sarachik and Cane 2010). However, an anomalous

western Pacific anticyclone in the decaying-year summer

has been shown to be associated with positive pre-

cipitation anomalies over some of the East Asian mon-

soon regions (Wu et al. 2009).

c. NAO teleconnections

Teleconnection patterns for the DJFM NAO show a

strong wet–dry dipole over northern and southern Eu-

rope across all three PDSI products (Fig. 6), demon-

strating that tree-ring-based PDSI robustly captures

NAO influences over the European domain. The NAO

teleconnection pattern is further expressed by drying

over India and East Asia, where the winter NAO may

have an inverse relationship with the Indian and East

Asian summer monsoon precipitation, respectively

(Dugam et al. 1997; Sung et al. 2006). There is also a

strong positive correlation between the NAO and ob-

served and tree-ring-based PDSI in the central and

eastern United States (Fye et al. 2006).

Similar to the results for ENSO, the tree-ring-based

drought atlases capture the patterns in the observational

PDSI products, as is reflected by the CPCS value be-

tween the NAO teleconnection maps for the tree-ring-

based PDSI and (i) vdS PDSI (CPCS5 0.60) and (ii)Dai

PDSI (CPCS 5 0.54). It should be noted that while

CPCS values in both the positive and negative com-

posites of NAO decrease relative to those in the

correlation-based teleconnection map, the pattern cor-

relation in the positive composite deteriorates sub-

stantially more (vdS PDSI CPCS 5 0.02 and Dai PDSI

CPCS 5 0.14). Some of this may be attributable to

the very wet conditions over central-western North

FIG. 5. Pearson’s correlation coefficients between the CTI (October–March) and (left) vdS, (center) Dai, and (right) tree-ring-based

(right) PDSI by season. A correlation value of 0.22 (0.23) represents the two-tailed Student’s t test at a 95% significance level (p, 0.05) in

boreal spring and summer (winter). (top) DJF, (middle) MAM, and (bottom) JJA represent winter, spring, and summer, respectively.

Pearson’s CPCS is reported (right) for each season between (i) tree-ring-based and vdS PDSI patterns (top number at bottom left of the

panels) and (ii) tree-ring-based and Dai PDSI patterns (bottom number at bottom left of the panels).
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America in the tree-ring-based PDSI, which are not

strongly featured in the vdS PDSI or Dai PDSI

counterparts.

Despite the relatively small correlations between JJA

PDSI and precipitation and temperature in the boreal

winter and spring (Figs. 1 and 2), the spatiotemporal

variability of JJA PDSI contains a clear DJFM NAO

signal over the European domain (Fig. 6). To further

demonstrate the NAO influence across Europe, we

decompose the OWDA into empirical orthogonal

functions (EOFs) over the 1901–78 period using an area-

weighted field. The first EOF is shown in Fig. 7, ac-

counting for 20% of the variability in the OWDA, and

reveals a spatial pattern that is very similar to the cor-

relation pattern between the DJFM NAO index and

OWDA PDSI (the two patterns have a CPCS value of

0.84). The NAO index and the first principal component

(PC) from the EOF decomposition of the OWDA field

also are significantly correlated (r 5 0.43, p , 0.01).

These results indicate that despite the variable seasonal

influences of temperature and precipitation on PDSI

over Europe, the dominant winter influence of the NAO

is robustly captured in the OWDA.

d. PDO teleconnections

PDO teleconnection patterns are consistent across all

three PDSI products, as represented in Fig. 8. These

patterns are similar to those expressed in the ENSO

teleconnection patterns (Fig. 4). For example, positive

correlations exist over Mexico and the U.S. Southwest

and over much of Europe, while a positive–negative

dipole is evident over northwestern and southeastern

Asia. For most regions in the three drought atlases, the

positive- and negative-phase composites are roughly

mirror images and consistent with the patterns implied

by the correlation-based teleconnection map. One

FIG. 6. (top) Pearson’s point-to-point correlation coefficients between the NAO index (DJFM) and (left) vdS, (center) Dai, and (right)

tree-ring-based PDSI. A correlation value of 0.22 represents the two-tailed Student’s t test at a 95% significance level (p , 0.05). Also

shown are PDSI anomaly composites for years in which the NAO was one standard deviation (middle) above and (bottom) below the

1901–78 mean, with 10 and 13 events, respectively. The CPCS for the teleconnection patterns is calculated with the same convention as

reported for Fig. 4 and shown in (right).

FIG. 7. A comparison of (top) the first EOF pattern in the

OWDA and (bottom) Pearson’s correlation coefficients between

the NAO index (DJFM) and tree-ring-based PDSI over the

OWDA domain. CPCS calculated between the represented pat-

terns are shown for Pearson’s coefficients.
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exception is over the northwest region of the MADA,

which shows drying for both the positive and negative

phase composites.

e. AMO teleconnections

The AMO teleconnection maps are plotted in Fig. 9.

These patterns and correlations are expected to be the

least robust of our analysis, given the multidecadal time

scale of the AMO and the comparatively short time

scale over which our evaluation is performed. CPCS

values between the tree-ring-based PDSI and (i) vdS

and (ii) Dai PDSI are 0.45 and 0.33, respectively. Al-

though the AMO teleconnection maps demonstrate

lower CPCS values than those of the other modal

FIG. 8. (top) Pearson’s point-to-point correlation coefficients between the PDO index (November–March) and (left) vdS, (center) Dai,

and (right) tree-ring-based PDSI. A correlation value of 0.22 represents the two-tailed Student’s t test at a 95% significance level (p ,
0.05). PDSI anomaly composites are shown for years in which the PDO was one standard deviation (middle) above and (bottom) below

the 1901–78mean, with 16 and 15 events, respectively. The CPCS for the teleconnection patterns is calculated with the same convention as

reported for Fig. 4 and shown in (right).

FIG. 9. (top) Pearson’s correlation coefficients between the AMO index (JJA) and (left) vdS, (center) Dai, and (right) tree-ring-based

PDSI. A correlation value of 0.22 represents the two-tailed Student’s t test at a 95% significance level (p, 0.05). PDSI anomaly composites

are for years in which the AMO was one standard deviation (middle) above and (bottom) below the 1901–78 mean, with 15 and 17 events,

respectively. The CPCS for the teleconnection patterns is calculated with the same convention as reported for Fig. 4 and shown in (right).
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indices, they are nonetheless broadly consistent across

all three PDSI products. Much like the CTI and PDO

figures, the pattern observed in the correlation-based

AMO teleconnection map for the tree-ring-based PDSI

is also largely reproduced in the positive phase com-

posites. An exception is that while the pattern in the

negative phase composite is inverted relative to the

positive phase composite for the tree-ring-based

PDSI, this is less true for the vdS and Dai PDSI com-

posites. This is particularly the case over the NADA

domain where the dry pattern seen in the positive

composites remains, although less severely, in the neg-

ative composites.

4. Discussion

The seasonal influences of precipitation and temper-

ature in the NH drought atlases are similar to the pat-

terns captured in the observation-based PDSI. The

increasingly positive (negative) correlation between

boreal (i) winter, (ii) spring, and (iii) summer pre-

cipitation (temperature) and observation-based JJA

PDSI is intuitive because, despite the persistence built

into the PDSI calculation, JJA PDSI is still most influ-

enced by JJA conditions. For temperature, the

strengthening of the negative correlation from boreal

winter through summer is further expected as higher

temperatures are associated with larger evaporative

demand (and generally coupled to reduced pre-

cipitation; e.g., Livneh and Hoerling 2016; Yin et al.

2014). Over North America, this is consistent with

Williams et al. (2013), who showed temperature to ac-

count formore variability in tree-ring records of theU.S.

Southwest than would be expected if the only effect of

warm temperature on trees was through a decrease in

soil moisture.

The contrast in how precipitation and temperature are

expressed in the observation and tree-ring-based PDSI

is attributable, at least in part, to the fact that tree-ring

growth reflects more than current growing-season soil

moisture (e.g., Anderegg et al. 2015). While the PDSI

formulation itself imposes a lag relationship with pre-

cipitation and temperature (Karl 1986; Mishra and

Singh 2010), interactions between tree physiology and

environment such as seasonal carbohydrate storage

(Barbaroux andBréda 2002)may impose an even longer

lag in growth responses. Nevertheless, the tree-ring

PDSI reconstruction method does incorporate autore-

gressive prewhitening to account for both physiological

and climatological persistence differences between in-

strumental PDSI and tree rings (Cook et al. 1999). In

winter-dominated precipitation regions, contrasts in

seasonality may also be attributed to the role of

snowmelt in delayed moisture delivery during the

spring, particularly in high-elevation regions where

snow accumulation can be significant (St. George et al.

2010). Such moisture delivery may contribute to the

enhanced winter precipitation signal in the U.S. South-

west in tree-ring-based PDSI. It may also be why cor-

relations between U.S. Southwest tree-ring-based PDSI

and ENSO tend to be stronger than the vdS or Dai PDSI

counterparts, as vdS PDSI only parameterizes snow

cover using a simple positive-degree-day model with

surface temperature and accumulated precipitation in-

puts (van der Schrier et al. 2013) and Dai PDSI does not

account for snow accumulation. These considerations

may help explain some of the differences in expressions

of seasonal precipitation and temperature between JJA

PDSI estimates from observations and dendroclimatic

records. As noted previously, it is also likely that our

comparison favors the relationships between pre-

cipitation and temperature in the vdS PDSI because the

CRU TS data were used to derive the PDSI estimates.

Inaccuracies in the instrumental data will diminish the

correlations between tree-ring PDSI and precipitation

and temperature, while the same correlations computed

for vdS PDSI will remain strong.

Despite the noted differences between the impacts of

precipitation and temperature on the observation and

tree-ring-based PDSI fields, it is remarkable that the

large-scale teleconnection patterns characterized by the

different PDSI products are broadly comparable. This is

first evident in the CTI teleconnection patterns that are

consistent with the findings of St. George et al. (2010)

over North America, while further reflecting the ca-

nonical understanding of ENSO impacts across the NH.

For example, dry and wet conditions over the respective

northwestern and southern U.S. regions are associated

with a positive ENSO phase (e.g., Piechota and Dracup

1996), and our results are also consistent with the well-

known connection between droughts over India and El

Niño events (e.g., Krishna Kumar et al. 2006). Further-

more, the seasonal patterns of ENSO in Fig. 5 display

ENSO correlations that are strongest during DJF not

only over North America but also over the whole of the

NH, consistent with the dominant expression of ENSO

during boreal winter. While the ENSO imprint di-

minishes over the NADA and OWDA domains from

boreal winter to spring and summer, the teleconnections

between PDSI and ENSO persist into the summer in the

southern and eastern domains of the MADA due to the

strong association between El Niño and a weak South

Asian summer monsoon (Varikoden et al. 2015). The

consequence is a drying over the region (Varikoden

et al. 2015) caused by the interaction of the South

Asian monsoon with summer ENSO and subsequent
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atmospheric circulation changes (Wu et al. 2012). The

fact that these seasonal dependencies are represented in

the drought atlases is an important demonstration that

tree-ring-based PDSI, despite its JJA representation, is

spatially sensitive to seasonal dynamics.

The NAO is the dominant mode of climate variability

over the North Atlantic region, with extensive climate

impacts on European storm trajectories, temperature,

and precipitation (Trigo et al. 2002; Mares et al. 2002),

and is therefore expected to have strong teleconnection

influences over the OWDA domain. This was demon-

strated in Fig. 6, where a dipole exists over the OWDA

region in the teleconnection patterns, and in the

domain-specific EOF analysis represented in Fig. 7. The

strong spatial coherence between the leading EOF and

winter NAO teleconnection pattern, as well as the pos-

itive and significant correlation between the winter

NAO index and the leading OWDA PC, demonstrates

that the boreal winter NAO remains strongly expressed

in the JJA PDSI EOF pattern. This suggests not only

that the tree-ring-based PDSI robustly captures the in-

fluences of the NAO, but also that the OWDA may be

suitable for reconstructing the NAO index prior to the

instrumental record.

The PDO is a consequence of ENSO, ocean memory,

and Kuroshio–Oyashio system changes (Newman et al.

2003, 2016). The PDO teleconnection map produces a

pattern very similar to that associated with the CTI,

confirming the strong link between the PDOandENSO.

For instance, the strong ENSO dipole over central and

northern Mexico (positive during El Niño) and north-

western United States and Canada (positive during La

Niña) is largely present in the PDO teleconnection

pattern (Fig. 8). The same is true for the dipole over the

northwest and southeast domains of monsoon Asia as-

sociated with El Niño and La Niña events, respectively.

We also note that significant negative correlations in

northern China are consistent with previous results

(Qian and Zhou 2014). While the PDO composites do

retain patterns similar to the ENSO teleconnection

pattern, they are weakened in many locations. This

weakening may be due in part to the lower frequencies

inherent in the PDO, and therefore may include less

extreme PDO events during the 1901–78 analysis

interval.

TheAMOexhibits the longest periods of variability of

the four modal indices analyzed (e.g., Ting et al. 2011).

Figure 9 shows that tree-ring-based PDSI still produces

AMO teleconnection patterns broadly consistent with

observation-based PDSI. Furthermore, the drying as-

sociated with a positive AMO is consistent with several

previous studies. Kushnir et al. (2010) showed that

warm tropical North Atlantic SSTs lead to decreased

precipitation over the United States and northern

Mexico; McCabe et al. (2004) associated positive phases

of the AMO with drying over the conterminous United

States. The drying in Mexico and the central plains of

the United States, as represented in Fig. 9, is consistent

with these reported AMO teleconnections. The spatial

correlations between the teleconnection patterns rep-

resented by the tree-ring and observation-based PDSI,

however, are diminished relative to the other higher-

frequency modes when measured by the CPCS values.

The composites also demonstrate lower pattern simi-

larities that are likely due to the fact that 1901–78 is too

short an interval to robustly capture the multidecadal

frequencies of the AMO. As a consequence, the results

of our AMO analysis are the most ambiguous, a result

that is consistent with pseudoproxy experiments and

attempts to reconstruct the AMO from the NH drought

atlases (Coats et al. 2016).

5. Conclusions

Our analyses of the hemispheric collection of drought

atlases parallel the efforts of St. George et al. (2010),

who focused on the NADA domain and its association

with the CTI, while extending our analysis to evaluate

temperature impacts and assess teleconnection patterns

associated with three additional modes: the NAO, PDO,

and AMO. Where our analyses overlap, our results

strongly corroborate those of St. George et al. (2010).

Our analysis of the full NH additionally demonstrates

that the three drought atlases are skillful at capturing the

large-scale signatures of the NAO, PDO, and AMO on

interannual, decadal, and multidecadal time scales.

These findings are important in the context of future

work seeking to use the collective NH drought atlases to

characterize aspects of past hemispheric or continental-

scale hydroclimate variability.

When complemented with additional atmospheric

and ocean surface data the now hemispheric collection

of drought atlases can provide powerful insights into the

causes and dynamics of rare, low-frequency and/or ex-

tremely widespread events. Examples of such events

include multidecadal (e.g., Coats et al. 2013b, 2015b,

2016; Stevenson et al. 2015; Seager et al. 2008) or pan-

continental (e.g., Cook et al. 2014b; Coats et al. 2015a)

droughts, both of which are poorly sampled in the in-

strumental record and require a broad spatial sampling

for investigation. This potential application is particu-

larly promising in light of expansion efforts of the

drought atlases into the Southern Hemisphere (Palmer

et al. 2015). A global collection of drought atlases will

ultimately provide a cohesive record of global hydro-

climate variability over the last thousand years or more,
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and therefore expand our understanding of how hy-

droclimate has varied broadly in space over decades and

centuries. The present study is therefore an important

first step toward understanding the joint spatiotemporal

signals in the growing collection of drought atlases and

how they can be used to investigate and reconstruct

hemispheric and global hydroclimate dynamics.
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