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A history of the meteorological satellite-based atmospheric sounder development and 

applications is presented and discussed.

SATELLITE-BASED 
ATMOSPHERIC INFRARED 

SOUNDER DEVELOPMENT AND 
APPLICATIONS

W. Paul Menzel, Timothy J. Schmit, Peng Zhang, and Jun Li

T	he accuracy of numerical weather prediction  
	(NWP) depends on observations from a variety  
	of sources, a high-performance computer system, 

and an advanced numerical model with data assimi-
lation technology. Since over 70% of Earth’s area is 
covered by water (oceans and inland waters) as well 
as mountains, deserts, and polar ice, it is impossible 
to realize traditional ground-based observations of 
the atmospheric state globally. Even for areas where 

traditional observations are relatively dense, it is hard 
to satisfy the spatial and temporal requirements of 
mesoscale weather forecasts. In addition, information 
on atmospheric composition such as atmospheric 
ozone, dust, methane, sulfur dioxide, and carbon 
monoxide are often not measured in ground-based 
observation systems. The concept of using satellite 
infrared (IR) radiation measurements to retrieve 
atmospheric temperature was first proposed by 
King (1956). Kaplan (1959) noted that the radiation 
from different spectral regions comes from different 
atmospheric layers, which can be used to retrieve 
the atmospheric temperature at different heights. 
Wark (1961) proposed a satellite vertical sounding 
program to measure atmospheric temperature pro-
files. As meteorological satellites evolved from the 
Television Infrared Observation Satellite-1 (TIROS-1) 
in 1960 to include atmospheric sounding capabili-
ties, advanced computers combined with better at-
mosphere radiative transfer theory opened the way 
to address important issues in weather forecasting 
and global climate change research. This included 
determining the initial conditions for NWP, the early 
warning and prediction of global weather processes 
and events, estimating the global radiation energy 
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budget, monitoring global ocean conditions and 
ocean–atmosphere interactions, observing land and 
biosphere seasonal trends, evaluating the changes in 
atmospheric trace gases, monitoring global climate 
change, and many more. This paper provides an 
overview and discusses the development of satellite 
vertical sounding capability, quantitative retrieval 
theory, and applications of meteorological satellite-
based sounder measurements, with a focus on infra-
red sounding.

DEVELOPMENT OF SATELLITE-BASED 
ATMOSPHERIC VERTICAL SOUNDING 
CAPABILITY. Three-dimensional atmospheric 
temperature and moisture soundings from satellites 
rely on careful selection of spectral channels with 
different absorption characteristics within an 
atmospheric molecular absorption band. Strong 
absorption channels detect radiation from high in the 
atmosphere, while weak absorption channels detect 
radiation from low in the atmosphere plus Earth’s 
surface. The carbon dioxide (CO2) IR absorption 
bands, with CO2 mixed almost uniformly in the 
air, can provide information on an atmospheric 
temperature profile for any given region of the 
globe; complementing this, the water vapor (H2O) 
IR absorption bands can provide information 
regarding the atmospheric moisture profile. The 
first atmospheric sounding instrument was launched 
nearly 10 years after the first imaging instrument. In 
the data-sparse Southern Hemisphere, positive NWP 
impact was almost immediate (Kelly et al. 1978), while 
in the Northern Hemisphere, it was not realized for 
nearly another 10 years (Eyre 1997). Improved global 
impact was achieved in the mid-1990s when radiances 
rather than retrieved temperature/humidity profiles 
were assimilated in the NWP models (Eyre et al. 1993; 
Andersson et al. 1994); however, the full potential of 
these sounding data are still to be achieved.

Nimbus-3, carrying two of the world’s first satellite 
sounders, was launched in April 1969 by the United 
States. One, the Infrared Interferometer Spectrom-
eter (IRIS), measured radiation from 5.0 to 25 µm in 
roughly 320 narrow spectral channels within a field 
of view (FOV) of roughly 95 km using a modified 
Michelson interferometer. IRIS provided information 
on the vertical structure of atmospheric temperature, 
water vapor, and ozone and the emissive properties 
of Earth’s surface and demonstrated that measure-
ment of Earth-emitted spectra of good quality (with 
precision within 1%) was possible (Hanel et al. 1970). 
The other, the Satellite Infrared Spectrophotometer 
(SIRS)-A, made complementary measurements in 

seven comparatively broad spectral channels in the 
carbon dioxide band (12–15 µm) and one spectral 
channel in the atmospheric window centered at 11.1 
µm. With limited spectral selection, SIRS-A sound-
ings offered coarse vertical resolution; furthermore, 
with a large instantaneous FOV of 250 km at nadir, 
approximately 90% of the measurements had in-
terference from clouds limiting the coverage from 
clear-sky soundings. Nevertheless, SIRS-A soundings 
improved the weather analysis–forecasting operations 
at that time (Smith et al. 1970). Between 1970 and 
1978, atmospheric temperature and moisture profile 
sounding instruments evolved in a series of f light 
experiments conducted on several Nimbus polar-
orbiting satellites.

Meanwhile, Professor Verner Suomi from the 
University of Wisconsin–Madison proposed the idea 
of atmospheric sounding from a geostationary Earth-
orbiting (GEO) satellite that was realized in 1980 on 
the U.S. Geostationary Operational Environmental 
Satellite-4 (GOES-4). The first Visible and Infrared 
Spin Scan Radiometer (VISSR) Atmospheric Sounder 
(VAS; Smith et al. 1981; Hayden 1988) accomplished 
high-temporal-frequency sounding of Earth’s atmo-
sphere from more than 30,000 km above the equator. 
VAS had 12 sounding channels from 4 to 15 µm in 
and in between the carbon dioxide and water vapor 
absorption bands with a spatial resolution of 7 or 
14 km at nadir; VAS also had one visible channel 
with 1-km horizontal resolution at nadir for cloud 
detection. With observations every hour (or better) 
over the same area, the GEO sounder has the potential 
for observing the short-term finescale characteristics 
of atmospheric temperature and moisture associated 
with convection. However, VAS had limited vertical 
resolution and limited spatial coverage as it needed 
multiple sampling to get a high signal-to-noise ratio 
(SNR); this restricted the potential for observations 
of sudden strong vertical changes in atmospheric 
temperature and moisture associated with convective 
storm environments.

In the late 1990s, direct assimilation of satellite 
sounder radiances (not the derived profiles) in 
global NWP models provided the impetus to 
achieve forecast improvement in the radiosonde-rich 
Northern Hemisphere, bringing positive impact in 
both hemispheres (the radiosonde-poor Southern 
Hemisphere had benefitted immediately from the 
satellite soundings; Kelly et al. 1978). Improving 
NWP accuracy by using satellite soundings became 
a focus for many operational (op) NWP centers 
around the world. Advances in atmospheric sounding 
technology enabled broader spatial coverage as 
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nadir-only observations gave way to cross-track 
scanning measurements of wide swaths and the 
gradual improvement in spectral resolution, spatial 
resolution, and radiometric accuracy (see Table 1; 
Hayden 1971; Gavaghan 1998; Conway 2008; Ohring 
1979; Smith et al. 1979; Menzel and Purdom 1994; 
Dong et al. 2009; Yang et al. 2012) from SIRS-A on 
Nimbus-3 in 1969. Filter radiometers that possessed 
relatively high spatial resolution and broadband 
spectral resolution were placed on meteorological 
satellites in polar orbit [such as the National Oceanic 
and Atmospheric Administration (NOAA) and 
FengYun-3 series] and GEO (such as the GOES 
series). Experimental trials were transformed into 
operational applications. The following paragraphs 
summarize the atmospheric sounding systems at 
three main development stages for the polar-orbiting 
operational meteorological satellites.

The first development stage (1972–78) featured 
the Vertical Temperature Profile Radiometer (VTPR) 
on the Improved TIROS Operational System (ITOS) 
satellite series, whose technical specifications were the 
same as SIRS-A. In the second stage (1978–98), the 
TIROS Operational Vertical Sounder (TOVS; Smith 
et al. 1979) on TIROS-N and NOAA-6 to NOAA-14 
made measurements in 27 spectral channels with 
cross-track scanning coverage accomplished by 
the High Resolution Infrared Radiation Sounder 
(HIRS)/2, the Microwave Sounding Unit (MSU), and 
the Stratospheric Sounding Unit (SSU). HIRS/2 had 
19 IR channels, covering the 15-µm carbon dioxide 
IR longwave (LW) absorption band, 4.3-µm carbon 
dioxide IR shortwave (SW) absorption band, and 
6.7-µm water vapor (WV) absorption band as well 
as the 0.47-µm visible band; its spectral resolution 
was 3–60 cm−1 and spatial resolution was 17 km 
at nadir. MSU had four spectral channels in the 
5-mm (60 GHz) oxygen absorption band with a 
spatial resolution of 103 km at nadir. SSU featured 
three spectral channels with a spatial resolution of 
147 km at nadir; it was used to derive atmospheric 
temperatures in the stratosphere. The performance 
of the TOVS sounding system improved significantly 
over that of the VTPR. The increase in water vapor, 
SW IR, and stratospheric sounding channels provided 
the information content for deriving atmospheric 
water vapor profiles and improving the accuracy 
of lower-troposphere and stratosphere temperature 
profiles. Microwave sounders capable of penetrating 
clouds improved the atmospheric temperature 
sounding performance in cloudy regions. The TOVS 
system, with high-quality radiance observations, 
represented the transformation from limited accuracy 

remote sensing to quantitative high-accuracy passive 
remote sensing of meteorological and hydrological 
parameters. Global multispectral infrared and 
microwave radiances, indicative of temperature and 
moisture profiles, have been available for operational 
weather forecasts ever since. The third stage (1998–
2012) was realized with the Advanced TOVS (ATOVS; 
Li et al. 2000; English et al. 2000) on the NOAA-15 to 
NOAA-19 series, which introduced three instruments 
measuring radiances in a total of 40 spectral channels. 
The Advanced Microwave Sounding Units (AMSUs) 
have AMSU-A and AMSU-B. AMSU-A has 15 
channels, 13 in the 60-GHz oxygen absorption band 
for atmospheric temperature vertical distribution 
sounding from Earth’s surface to 45 km (about 3-hPa 
atmospheric pressure layer) and 2 in the low-frequency 
channels (23.8 and 31.4 GHz) for atmospheric water 
phase determinations with a spatial resolution of 
50 km at nadir. AMSU-B with five channels has 
three in the 183-GHz water vapor strong absorption 
lines to obtain the layered atmospheric water vapor 
information and another two at 89 and 150 GHz for 
determination of Earth surface characteristics with 
a spatial resolution of 16 km at nadir. The HIRS/3 
and HIRS/4 are advanced versions of HIRS/2, which 
improved the sounding performance of five channels 
in the water vapor absorption and SW IR bands as 
well as increased the spatial resolution by a factor 
of 2. The defining characteristic of ATOVS was the 
significant improvement in microwave sounding, 
which improved the vertical resolution and retrieval 
accuracy for atmospheric temperature and moisture 
profiles. ATOVS provided global atmospheric 
soundings in all weather conditions (Li et al. 2000). 
Some of the ATOVS instruments are still in use.

A complementary emerging atmospheric sounding 
technology is found in radio occultation (RO). Signals 
transmitted by global positioning system (GPS) 
satellites and related constellations of navigation 
satellites are also proving to be powerful tools for 
advancing Earth system science. Each of these 
is part of the Global Navigation Satellite System 
(GNSS). The GNSS receiver records the amplitude 
and phase in terms of time, which are affected by 
the density of the air and the amount of moisture 
within it—more moisture or higher density lengthens 
the transmission time. Upper-tropospheric to 
lower-stratospheric temperature profiles and lower-
tropospheric humidity profiles can be precisely 
obtained.

Atmospheric sounding using the RO technique 
was proposed by Fishbach (1965), Lusignan et al. 
(1969), and Zeng (1974). The proposal to use GNSS 
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Table 1. Satellite-based low-spectral-resolution passive atmospheric sounding radiometers. DMSP = 
Defense Meteorological Satellite Program; ITPR = Infrared Temperature Profile Radiometer; NEMS = 
Nimbus-5 Satellite Microwave Spectrometer; SCAMS = Scanning Microwave Spectrometer; SSM/T = 
Special Sensor Microwave Temperature Profiler; SSMIS = Special Sensor Microwave Imager/Sounder; 
MWTS = Microwave Temperature Sounder; MWHS = Microwave Humidity Sounder.

Launch 
year Spacecraft

Name of 
sounding 

instrument
Type of sounding 

instrument

No. of 
spectral 
channels

Spectral range 
(spectral 

resolution)
FOV  

(at nadir)

Scanning 
domain 

(covering 
width)

1969 Nimbus-3
SIRS-A Grating spectrometer 8

11–15 µm  
(5 cm−1)

250 km
Nadir 

orientation

IRIS-A
Michelson 
interferometer

240
5–25 µm  
(5 cm−1)

170 km
Nadir 

orientation

1970 Nimbus-4
SIRS-B Grating spectrometer 14

11–35 µm  
(5 cm−1)

250 km ~1,000 km

IRIS-D
Michelson 
interferometer

393
6.2–25 µm  
(2.8 cm−1)

100 km
Nadir 

orientation

1972–79 ITOS-D series VTPR Filter wheel radiometer 8
12–19 µm  
(15 cm−1)

55 km 1,364 km

1972 Nimbus-5
ITPR

Multidetector 
telescope radiometer

7
3.8–20 µm  
(15 cm−1)

30 km 1,566 km

NEMS Dicke-type radiometer 5
0.5–1.35 cm  
(220 MHz)

200 km
Nadir 

orientation

1975 Nimbus-6
HIRS/1 Filter wheel radiometer 17

0.6–15 µm  
(15 cm−1)

30 km 2,240 km

SCAMS
Scanning Dicke-type 
radiometer

5
0.5–1.35 cm  
(220 MHz)

150 km 2,400 km

1978–98 TIROS-N series
HIRS/2 Filter wheel radiometer 20

0.6–15 µm  
(15 cm−1)

18 km 2,240 km

MSU
Scanning multireceiver 
radiometer

4
0.5–0.6 cm  
(200 MHz)

110 km 2,348 km

1980–94 GOES-4–GOES-7 VAS Filter wheel radiometer 13
0.6–15 µm  

(10–150 cm−1)
7–14 km Full disk

1979–
2017

DMSP F10–F15 SSM/T
Conical scanning 
radiometer

7 50 GHz 200 km 1,500 km

signals as a source for Earth measurements appeared 
in the late 1980s at the National Aeronautics and 
Space Administration (NASA) and elsewhere. The 
first practical application of this technique was in 
the GPS/Meteorology (GPS/Met) experiment (Anthes 
et al. 1997). Thereafter RO-based operations have 
been regularly carried out, with more planned for 
the near future.

The RO-based data are widely used in NWP, climate 
change studies, and space weather observations. 
Bending angle or refractivity profiles are being 
assimilated into NWP with positive impacts. The 
very limited bias associated with these data provides a 
strong baseline for operational NWP. As multidecadal 
datasets become established over time, RO will 
robustly observe long-term climate trends in the upper 
troposphere–lower stratosphere (UTLS).

DISADVANTAGES IN FIRST-GENERATION 
SATELLITE ATMOSPHERIC VERTICAL 
SOUNDING TECHNOLOGY. A major issue 
when considering both the TOVS and ATOVS sys-
tems concerns the very broad weighting functions 
associated with their spectral channel measurements, 
which influence the vertical resolution. The low ver-
tical resolution results from the broadband spectral 
resolution of HIRS and GOES sounder (Menzel and 
Purdom 1994; Menzel et al. 1998) at 10–40 cm−1 (or 
the corresponding spectral-resolving power λ/Δλ 
at about 100, λ representing the central wavelength 
for a certain channel and Δλ its spectral width). The 
spectral response width is 100 times larger than the 
individual atmospheric absorption lines, so the ob-
served broadband radiation is the average of many 
absorption lines with various strengths. Therefore, 
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Table 1. Continued.

Launch 
year Spacecraft

Name of 
sounding 

instrument
Type of sounding 

instrument

No. of 
spectral 
channels

Spectral range 
(spectral 

resolution)
FOV  

(at nadir)

Scanning 
domain 

(covering 
width)

1994–
present

GOES-8 Sounder Filter wheel radiometer 19
3–15 µm  

(13–80 cm−1)
8 km Full disk

1998–
2010

Modified GOES HIS
Optimum scanning 
interferometer

512 3.7–17 µm 10 km Programmable

2003–
present

DMSP F16–F19 SSMIS
Conical scanning 
radiometer

24 19.4–183 GHz
75, 37.5, 
and 12.5 

km
1,700 km

1998–
present

NOAA-15–
NOAA-19

HIRS/3
HIRS/4

Filter wheel radiometer 20
0.6–15 µm  
(3–50 cm−1)

17 km 
(HIRS/3); 

10 km 
(HIRS/4)

2,240 km

AMSU-A Dicke-type radiometer 15 23.8–57 GHz 50 km 2,343 km

AMSU-B Dicke-type radiometer 5 89–183 GHz 16 km 2,200 km

2006–
present

MetOp-A and 
MetOp-B

HIRS/4 Filter wheel radiometer 20
0.6–15 µm  
(3–50 cm−1)

10 km 2,240 km

AMSU-A Dicke-type radiometer 15 23.8–57 GHz 50 km 2,343 km

MHS Dicke-type radiometer 5 89–183 GHz 16 km 2,200 km

2008–14
FY-3A and 
FY-3B

IRAS Filter wheel radiometer 26
0.6–15 µm  
(3–50 cm−1)

17 km 2,250 km

MWTS
Scanning full power 
radiometer

4
50–57 GHz  

(180–400 MHz)
50 km 2,250 km

MWHS
Scanning full power 
radiometer

5
150–183 GHz  

(500–2,000 MHz)
15 km 2,700 km

2011–
present

Suomi NPP ATMS
Cross-track scanning 
radiometer

24 23.8–183 GHz
75, 32, and 

16 km
2,200 km

2013–
present

FY-3C

IRAS Filter wheel radiometer 26
0.6–15 µm  
(3–50 cm−1)

17 km 2,250 km

MWTS-II
Scanning full power 
radiometer

13
50–57 GHz  

(3–400 MHz)
15 km 2,250 km

MWHS-II
Scanning full power 
radiometer

15
89–183 GHz  

(20–2,000 MHz)
15 km 2,700 km

the satellite-observed broadband radiation comes 
from a relatively thick atmospheric layer and can 
only provide coarse information about the atmo-
spheric structure, limiting the ability to observe 
the atmosphere’s high-level (fine) vertical structure 
(Eyre 1989). A second issue arises as the broad CO2 
spectral bands often overlap with the absorption 
bands of other gases such as O3 and H2O, causing the 
weighting function to be affected by these other ab-
sorption gases. A third limitation is that the spectral 
response function of these broad bands is not accu-
rately known; it is derived by calculating the spectral 
transmittances and reflectances of the contributing 
instrument components rather than measuring it 
for the whole optical system in vacuum. Finally, a 

fourth problem is that clouds often interfere at these 
low spatial resolutions and introduce errors to the 
final retrieval results. These four issues are inherent 
to the TOVS, ATOVS, and GOES sounders. The IR 
spectral filter technology of these passive remote 
sensors constrains the number of sensor channels, 
their spatial resolution, and their sensitivity to objec-
tive information. Improvements have been sought 
through new IR remote sensing technology that can 
offer better IR spectral resolution; now the sensor 
can resolve individual spectral absorption lines so 
that the effects of O3, H2O, and other trace gases can 
be distinguished and narrower weighting functions 
can be achieved that improve the vertical resolution 
of the atmospheric sounding.
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Table 2. Spectral parameters of current and planned satellite-based hyperspectral IR sounders.

Satellite Sounder
Spectroscopic 

method
Spectral range 

cm−1 (μm)

Spectral 
resolution 

(cm−1)
Channel 

No.

Subpoint 
resolution 

(km)
Sensitivity 

(NE∆T)

Scan 
width 
(km)

ADEOS IMG Interferometer
715–3,030  
(3.3–15.0)

0.1 ~60,000   8 0.1 K   827

EOS Aqua AIRS Grating

LW 649–1,136 
(15.4–8.80)

0.55

    2,378 13
0.15–0.35 K 
(at 280 K)

1,650
MW 1,212–1,612 

(8.22–6.2)
1.2

SW 2,169–2,673 
(4.61–3.74)

2.0

MetOp IASI Interferometer

LW 640.2–1,210 
(15.5–8.26)

0.25     8,460 12
0.2–0.35 K 
(at 280 K)

2,052
MW 1,210–2,100 

(8.26–5.0)

SW 2,100–2,700 
(5.0–3.62)

Suomi 
NPP  
(and JPSS)

CrIS Interferometer

LW 650–1,095 
(15.38–9.13)

0.625

    1,385 14
0.1–0.5 K 
(at 250 K)

2,200
MW 1,210–1,750 

(8.26–5.71)
1.25

SW 2,155–2,550 
(4.64–3.92)

2.5

FY-3 HIRAS Interferometer

LW 667–1,136 
(15.00–8.80)

0.625

    1,343 16

0.15 K  
(at 250 K)

0.2 K  
(at 250 K)

0.3 K  
(at 250 K)

2,300
MW 1,210–1,750 

(8.26–5.71)
1.25

SW 2,155–2,550 
(4.64–3.92)

2.5

FY-4 GIIRS Interferometer

LW 700–1,130 
(14.28–8.85)

0.8 (trial)
0.625 (op)    912 (trial)

1,188 (op)
16 (trial)
  8 (op)

0.3 K Regional/
meso- and 
microscaleSW/MW 1,650–2,250 

(6.06–4.45)
1.6 (trial)

1.2 (op)
0.1 K

MTG IRS Interferometer

LW 700–1,210 
(14.28–8.26)

0.625     1,740   4
0.2 K  

(at 280 K)
Full disk

MW 1,600–2,175 
(6.25–4.60)

DEVELOPMENT OF SATELLITE-BASED 
H Y P E R S P E C T R A L  AT M O S P H E R I C 
SOUNDING TECHNOLOGY. High-spectral-
resolution or hyperspectral IR atmospheric soundings 
have been accomplished with interferometers and 
grating spectrometers. Table 1 shows that the United 
States began utilizing these two kinds of technologies 
to develop medium- and low-spectral-resolution 
instruments in the 1960s, with SIRS-A using a grating 
approach and IRIS-A using an interferometer, both 
on Nimbus-3. In the 1990s, several hyperspectral IR 
atmospheric sounding instruments were developed, 
including an airborne High-Resolution Interferometer 

Sounder (HIS; Smith et al. 1987), the polar-orbiting 
Interferometric Monitor for Greenhouse Gases (IMG; 
Shimoda and Ogawa 2000), and the grating-based 
Atmospheric Infrared Sounder (AIRS; Chahine 
et al. 2006) on the polar-orbiting Earth Observing 
System (EOS). Two geostationary high-resolution 
interferometer sounders, the GOES High-Resolution 
Interferometer Sounder (GHIS; Smith et al. 1990) 
and Geostationary Imaging Fourier Transform 
Spectrometer (GIFTS; Smith et al. 2006) were 
developed as well but never flown.

More recently, the Infrared Atmospheric Sounder 
Interferometer (IASI; Lerner et al. 2002; Karagulian 
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et al. 2010) has been flying on the European Me-
teorological Operational satellites (MetOp) series 
since 2006; the Cross-track Infrared Sounder (CrIS; 
Bloom 2001; Strow et al. 2013) was launched in 2011 
on Suomi National Polar-Orbiting Partnership (Suomi 
NPP), which is the precursor for the next generation 
of U.S. operational Joint Polar Satellite System (JPSS); 
and the Hyperspectral Infrared Atmospheric Sounder 
(HIRAS) of China is being developed for China’s next-
generation polar-orbiting satellite series [FengYun-3D 
(FY-3D) and the follow-on]. In addition, China is 
flying the Geostationary Interferometric Infrared 
Sounder (GIIRS) on their GEO satellite series (FY-4; 
Yang et al. 2017), and Europe is planning the Infrared 
Sounder (IRS) for Meteosat Third Generation (www 
.eumetsat.int/website/home/Satellites/FutureSatellites 
/MeteosatThirdGeneration/index.html). Table 2 pro-
vides more details. The GEO hyperspectral IR sounders 
from China and Europe will enable virtually continuous 
atmospheric soundings (Schmit et al. 2009), which will 
provide unprecedented observations for weather fore-
casting and nowcasting (Li et al. 2011, 2012).

MAIN CHARACTERISTICS OF SATELLITE-
BASED HYPERSPECTRAL IR ATMOSPHER-
IC SOUNDING SYSTEMS. When a sensor’s 
spectral-resolving power (R = λ/∆λ) is higher than 
1,000 and the observed radiation accuracy is better 

than 0.2 K [noise equivalent temperature difference 
(NE∆T)], it can provide almost monochromatic atmo-
spheric IR observations of Earth and detail the spec-
tral properties of CO2, H2O, and O3 as well as several 
trace gases. Spectroscopic evidence indicates that the 
three atoms of the CO2, H2O, and O3 molecules form 
a symmetrical array having three normal modes of 
vibration. The vibrational absorption within the IR is 
centered around 4.3 and 15.5 µm (2,310 and 660 cm−1) 
for CO2, 6.7 and 12.7 µm (1,540 and 790 cm−1) for 
H2O, and 9.7 µm (1,040 cm−1) for O3. More detailed 
features arise from the rotation of these molecules: for 
CO2, these lines are evenly spaced at 0.6 cm−1 around 
the 660 cm−1 vibrational line, while for H2O, the line 
structure exhibits no clear-cut regularity and is dis-
tributed throughout the IR spectrum. Figure 1 shows 
the characteristic absorption lines caused by vibration 
and rotation of the CO2 and H2O molecules.

Figure 2 shows the weighting functions of the 
Chinese HIRAS (expected to be on board FY-3D, 
FY-3E, and FY-3F) and the low-spectral-resolution 
Infrared Atmospheric Sounder (IRAS; on board 
FY-3A, FY-3B, and FY-3C). Compared with IRAS, 
HIRAS has more detection channels, narrower Δλs, 
and more weighting functions. Higher spectral reso-
lution and narrower weighting functions improve 
the sensitivity to a specific atmospheric vertical 
layer, which improves the sensor’s vertical sounding 

Fig. 1. Calculated IASI brightness temperatures in clear skies revealing the absorption lines of (top) the carbon 
dioxide band (from 680 to 770 cm−1) and (bottom) the water vapor band (from 1,300 to 1,500 cm−1) at high 
spectral resolution. U.S. Standard Atmosphere, 1976 with nadir view is assumed.
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capability. Simulations by Zhang et al. (2005) and 
Wang et al. (2007) show that fine spectral resolution, 
accurate radiation measurements, good knowledge 
of the spectral response function (SRF), accurate 
spectral calibration, and a clear atmospheric path 
to the target, as well as uniformity in land surface 
emissivity, all contribute to defining the vertical 
resolution as well as the final accuracy of the atmo-
spheric sounding.

After IRIS in 1969, the next high-spectral-reso-
lution IR atmospheric sounder was IMG launched 
on Advanced Earth Observing Satellite (ADEOS) in 
August 1996 by the National Space Development 
Agency of Japan (NASDA). IMG was a very high-
spectral-resolution (0.1 cm−1) spectrometer covering 
3.3–15 µm, which enabled detection and monitoring 
of the spatial and vertical distribution of greenhouse 
gases such as CO2, CH4, O3, and H2O. Unfortunately, 
ADEOS ceased operation in June 1997. There are 
currently four hyperspectral sounders in polar orbit. 
AIRS was launched on 4 May 2002 on board NASA 
EOS Aqua. AIRS has 2,378 channels in the IR range 
(3.7–15.4 µm; three absorption bands) with a spectral-
resolution power (λ/∆λ) larger than 1,200, absolute 
radiation accuracy better than 0.2 K, cross-track 
scanning width of 2,650 km, and spatial resolution 
of 13 km at nadir. AIRS is designed to be used for 
deriving atmospheric temperature, humidity profiles, 
and total ozone. Research has shown that under clear 
skies, the retrieval accuracy and vertical resolution 
of AIRS can be up to 1 K and 1 km for temperature 
and about 15% and 2 km for humidity, respectively 
(Tobin et al. 2006b), using the AIRS science team 
algorithm (Susskind et al. 2003). Under cloudy skies, 

AMSU-A and Humidity Sounder for Brazil (HSB), 
also on board EOS Aqua, were used together to im-
prove atmospheric sounding. Overall, the best profile 
retrieval results were achieved from a combination of 
the IR and microwave radiance data that provided the 
maximum available thermal information, regardless 
of cloud conditions.

The first European Organisation for the Exploi-
tation of Meteorological Satellites (EUMETSAT) 
polar-orbiting satellite, Meteorological Operational-A 
(MetOp-A), was launched on 19 October 2006 and 
carried the IASI based on Michelson interferometer 
and spectroscopic technology. The most significant 
characteristic of IASI is that it enables continuous 
observation of the atmosphere in the 3.62–15.5-µm 
spectral range. The spectral resolution of IASI is 0.25 
cm−1, and it has 8,640 channels with a spatial resolu-
tion of 12 km at nadir, cross-track scanning width 
of 2,052 km, and sample interval of 25 km. Another 
IASI followed on MetOp-B in 2011. To compare low-
spectral to hyperspectral observations, MetOp-A 
and MetOp-B also carry the ATOVS atmospheric 
sounding system [HIRS/4, AMSU, and Microwave 
Humidity Sounder (MHS)]. IASI’s continuous and 
hyperspectral observations can also be used to es-
timate other atmospheric constituents such as CO, 
N2O, CH4, and SO2.

On 28 October 2011, the U.S. NPP satellite, later 
renamed Suomi NPP in honor of the distinguished 
pioneer of meteorological satellites Professor Verner 
E. Suomi, carried CrIS into space. Suomi NPP 
(SNPP) is the precursor of the new-generation JPSS 
series. CrIS replaces NOAA’s legacy broadband IR 
sounder, the HIRS, which has been in operation 

Fig. 2. Weighting functions of Chinese (right) hyperspectral infrared interferometry instrument HIRAS (FY-3D, 
FY-3E, and FY-3F) and (left) the low-spectral-resolution infrared spectrometer IRAS (FY-3A, FY-3B, and FY-3C). 
The horizontal axis represents the value of the weighting function; the vertical axis represents atmospheric 
pressure in units of hPa.
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for nearly 40 years. CrIS 
is combined with the Ad-
vanced Technology Mi-
crowave Sounder (ATMS) 
for atmospheric sounding 
applications. CrIS has 1,305 
channels covering from 
3.92 to 15.38 µm with a na-
dir resolution of 14 km and 
cross-track scanning width 
of 2,200 km. The spectral 
resolution of CrIS is 0.625, 
1.25, and 2.5 cm−1, respec-
tively, in the longwave, 
midwave (MW), and short-
wave spectral bands, with 
option of providing ob-
servations with 0.625 cm−1 
in all the spectral regions. 
ATMS replaces AMSU-A 
plus AMSU-B, with an 
increase in channels to 
22 and swath width to 
2,600 km.

China is developing its own hyperspectral IR 
atmospheric sounders: namely, HIRAS, planned to 
be carried on their polar-orbiting FY-3D (and the 
follow-ons), and GIIRS, launched on the first of 
their next-generation geostationary meteorological 
satellite FengYun-4 (FY-4) series on 11 December 
2016. The spectral range and performance of HIRAS 
is similar to CrIS, but the nadir spatial resolution 
is slightly lower. The spectral range of GIIRS is 
4.4–14.2 µm, with slight differences between the 
experimental and operational satellites. The spectral 
resolutions for the experimental and operational 
satellites are 0.8 and 1.6 cm−1 for the longwave and 
0.625 and 1.2 cm−1 for the midwave with nadir spa-
tial resolutions of 16 and 8 km, respectively, both 
controllable for the sounding area. The IRS has 
been developed by Europe and is designed to f ly on 
board EUMETSAT’s next generation of three-axis 
stabilized GEO satellites, Meteosat Third Genera-
tion (MTG; Schmetz et al. 2012; Camps-Valls et al. 
2012); it will provide atmospheric temperature and 
humidity profiles for a specific area with high tem-
poral frequency and improved vertical resolution.

Figure 3 shows the spectral coverage of some recent 
and planned satellite hyperspectral sounders, and 
Table 2 shows their spectral properties. The solid line 
in Fig. 3 shows a typical brightness temperature spec-
trum from IASI, indicating the primary atmospheric 
absorption bands. Some of the prevalent uses of the 

spectral ranges within the hyperspectral IR sounders 
are listed in Table 3. A hyperspectral sounder makes 
thousands of spectral channel measurements, which 
enable derivation of atmospheric vertical tempera-
ture and humidity profiles with improved accuracy 
compared with lower-spectral-resolution IR sound-
ers. Studies have shown the positive influence of the 
sounder spectral resolution on the root-mean-square 
(rms) accuracy of the atmospheric profiles (with 
respect to radiosonde observations) when the other 
parameters of the sounder are unchanged [see Fig. 3 
in Smith et al. (2009)].

Fig. 3. Spectral coverage of several satellite-based hyperspectral IR sounders.

Table 3. The primary uses of the different spectral 
ranges offered by a hyperspectral IR sounder.

Spectral range Primary use

650–790 cm−1

Atmospheric temperature and 
cloudy-sky retrieval based on the 
sensitivity to cold objects and CTH

790–1,180 cm−1 Surface/cloud properties and 
ozone

1,210–1,650 cm−1 Atmospheric water vapor and 
temperature; N2O, CH4, and SO2

2,100–2,150 cm−1 Total column CO

2,150–2,250 cm−1 Atmospheric temperature and 
total column N2O

2,350–2,420 cm−1 Atmospheric temperature

2,420–2,700 cm−1 Surface/cloud properties
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RETRIEVAL OF ATMOSPHERIC VERTICAL 
PROFILES FROM SOUNDER RADIANCE 
MEASUREMENTS. As noted earlier, inference 
of atmospheric temperature and moisture profiles 
from satellite observations was first suggested in 
the 1950s. Now, after many years of theoretical 
research and operational practice, satellite sounding 
has evolved from statistical correlation approaches 
to quantitative physical and statistical retrieval of 
atmospheric profiles from radiances. Satellite IR 
remote sensing offers an indirect measurement of 
atmospheric temperature and moisture; radiances 
in different spectral channels or the path delays 
in a given FOV at a given time are the direct 
measurements made. A retrieval method is necessary 
to obtain the desired parameters such as the vertical 
distributions of atmosphere temperature and 
moisture; concentrations of absorbing gases like CO2, 
O3, and CH4; and surface (land and ocean) plus cloud 
characteristics of any region on Earth.

The theoretical aspects for IR passive remote sens-
ing of atmospheric and surface parameters include 
two parts. First, a model for radiative transfer through 
the atmosphere is needed to calculate the instrument’s 
radiation measurements as a function of its spectral 
characteristics and Earth’s atmospheric and surface 
state. This first part is called the forward model. Sec-
ond, an inverse solution must be performed to retrieve 
the atmospheric and surface states from the radiation 
measurements. The forward model is mathematically 
well posed—for a given atmospheric state, there is 
one forward solution. However, the inverse solution, 
resulting in the retrieval of atmospheric and surface 
parameters from multispectral measurements, is 
mathematically ill posed—for any set of measure-
ments, there are multiple solutions, and the optimal 
one must be selected.

In the forward model, or the radiative transfer 
equation, the upwelling radiance is dependent on 
the Planck function, the spectral transmittance, and 
the associated weighting function. The Planck func-
tion consists of temperature information, while the 
transmittance is associated with the absorption coef-
ficient and density profile of the relevant absorbing 
gases. Obviously, the observed radiance contains the 
temperature and gaseous profiles of the atmosphere; 
therefore, the information content of the observed 
radiance from satellites must be physically related 
to the temperature field and absorbing gaseous con-
centration.

The radiative transfer equation (RTE) of a given 
spectral channel is a Fredholm integral equation of 
the first kind; the retrieval of atmospheric profiles 

of temperature and moisture from a set of spectral 
channel measurements is unstable and nonunique. 
Since the 1970s, studies have been conducted on ob-
taining a stable solution. As noted by Rodgers (1976), 
the ill-posed inverse problem can be transformed 
into an estimation problem; by applying appropriate 
criteria to the inverse problem, the best solution can 
be obtained from all possible ones that are consistent 
with observations. Zeng’s idea (1974) was essentially 
the same, but he called such a solution the statistically 
optimal one. Stabilization usually comes from inclu-
sion of prior information (e.g., first-guess profiles). 
The atmospheric variation is retrieved for different 
vertical levels, for different vertical layers, or as a 
combination of continuous profiles—whichever rep-
resentation is chosen to achieve an optimal estimate.

There are many models for the calculation of 
atmospheric transmittance, such as the line-by-line 
radiative transfer model (LBLRTM; Shephard et al. 
2009). However, these accurate physical models are 
generally based on time-consuming line-by-line 
calculations and are not suitable for operational data 
processing. A rapid (or fast) calculation model for 
atmospheric transmission is necessary (McMillin 
and Fleming 1976). This approach is based on sta-
tistics: first calculating transmittances for a set of 
representative global atmospheric profiles via an ac-
curate physical model, then establishing a statistical 
relationship between the calculated transmittances 
and the atmospheric parameters (e.g., temperature 
and moisture profiles). A fast model has a larger error 
than an accurate model; reducing the error of the fast 
model is still a challenge for sounder data applica-
tions, especially in cloudy situations. Fast models 
have been developed for research and applications; 
examples include the Community Radiative Transfer 
Model (CRTM; Han et al. 2006) and the Radiative 
Transfer for the TOVS (RTTOV; Eyre 1991; Saunders 
et al. 1999, 2017).

As indicated by the correlation between the mea-
surements in many spectral channels, there are a 
limited number of independent pieces of information 
contained in a given set of channels. The 19 channels 
of the HIRS and the GOES Sounder contain only six 
independent pieces of information (Thepaut and 
Moll 1990; Schmit et al. 2009). An instrument with 
higher spectral resolution generally provides more 
independent pieces of information and channel selec-
tion out of the thousands available, which becomes 
important in order to reduce the computation load 
while maintaining the information content (Li and 
Huang 1994; Rodgers 2000, Rabier et al. 2002; Collard 
2007; Ventress and Dudhia 2014).
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Retrieval of atmospheric parameters from satel-
lite sounding data is generally done with a statistical 
and/or a physical approach. The statistical regres-
sion method is based on the correlation between 
measurements from the spectral channels and the 
atmospheric parameters. The physical characteristics 
of the weighting function are not considered. As a 
result, the retrievals are less sensitive to the radio-
metric calibration, and the accuracy depends on the 
temporal and spatial representation of the statistical 
samples. Statistical regression cannot describe impor-
tant nonlinearities between geophysical variables and 
radiances. However, it has advantages in efficiency 
and is usually applied in real-time or near-real-time 
processing. The physical–statistical retrieval method 
is based on solving the estimation problem; it involves 
radiative transfer calculations and inverse solutions 
and requires prior information of a statistical nature. 
Many methodologies have been proposed to solve 
this problem (Chahine 1970; Smith 1970; Zeng 1974; 
Rodgers 1976; Twomey et al. 1977; Smith et al. 1985; 
Fleming et al. 1986; Eyre 1989; McMillin 1991; Li et al. 
1994; Li and Huang 1999; Ma et al. 1999; Li et al. 2000; 
Li and Huang 2001). Among those methodologies, the 
variational method to solve the estimation problem 
lays a foundation for retrieving atmospheric param-
eters from IR hyperspectral and microwave sounder 
measurements. To derive atmospheric soundings 
from hyperspectral IR sounder measurements via 
satellite data processing packages [e.g., International 
Moderate Resolution Imaging Spectroradiometer 
(MODIS)/AIRS Processing Package and Community 
Satellite Processing Package] for real-time and near-
real-time applications, fast radiative transfer models 
mentioned above and efficient retrieval methodolo-
gies such as analytical Jacobian calculations (Zeng 
1974) are important.

The physical retrieval method has made sig-
nificant progress in clear and partly cloudy skies; 
however, in cloudy regions with measured radiances 
highly affected by absorption, scattering, and emis-
sion of clouds and aerosols, the estimation problem 
becomes more complicated. Exploring possible 
solutions that account for clouds and precipitation 
in the atmosphere remains a significant challenge 
(Li et al. 2016).

APPLICATIONS OF METEOROLOGI-
CAL SATELLITE-BASED ATMOSPHERIC 
SOUNDER DATA. Applications in numerical 
weather prediction. With low instrument noise, thou-
sands of channels, and hyperspectral resolution, 
instruments such as AIRS, IASI, and CrIS are able to 

provide global information with high vertical reso-
lution for NWP. The detail in the vertical profiles of 
the atmospheric state derived from hyperspectral IR 
sounders is unprecedented compared to that from 
the earlier sounders (Amato et al. 1997; Prunet et al. 
1998). According to reports from a number of global 
NWP centers, hyperspectral IR sounders have the 
largest positive impact from a single instrument on 
the assimilation and prediction results of the cur-
rent operational NWP systems. In combination with 
advanced microwave sounder data, AIRS and IASI 
data have been successfully assimilated at many op-
erational NWP centers, such as the European Centre 
for Medium-Range Weather Forecasts (ECMWF; 
McNally et al. 2006; Collard and McNally 2009; 
Cardinali 2009; McNally et al. 2014), the National 
Centers for Environmental Prediction (NCEP; Le 
Marshall et al. 2005, 2006a,b), Météo-France (Au-
ligné et al. 2003), the Met Office (UKMO; Cameron 
et al. 2005; Hilton et al. 2009; Joo et al. 2013), and the 
Japan Meteorological Agency (JMA; Okamoto et al. 
2008), with significant positive effects. Assimilation 
of CrIS data has become operational at some NWP 
centers (Collard et al. 2012). Meanwhile, more obser-
vations from hyperspectral instruments have been 
used in some regional forecast models with positive 
impact on precipitation forecasts; examples include 
convective-scale models with a horizontal resolution 
of 1.5–2.5 km (Guidard et al. 2011) and prediction 
models for hurricane tracking (Li and Liu 2009; Liu 
and Li 2010; Xu et al. 2013; Wang et al. 2015; Zheng 
et al. 2015). As the NWP model vertical resolution 
continues to improve, the information from hyper-
spectral instruments is expected to become even 
more significant.

Sounder data assimilation in NWP started with 
retrieval assimilation in the 1980s, and positive or 
moderate impact was found in most NWP centers 
(Menzel and Chedin 1990); impact was more sig-
nificant in the Southern Hemisphere than in the 
Northern Hemisphere, because of the scarcity of con-
ventional observations in the Southern Hemisphere. 
The confinement to cloud-free or cloud-corrected 
infrared measurements reduced coverage and im-
pact; complementary microwave measurements 
were used to extend coverage into nonprecipitating 
clouds. However, as NWP models advanced in the 
late 1980s, direct assimilation of radiances, from 
initial one-dimensional variational (1DVAR) to later 
three-dimensional variational (3DVAR) or four-di-
mensional variational (4DVAR), was adopted success-
fully by most NWP centers in the 1990s. Eyre (2008) 
provides a comprehensive overview on sounder data 
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assimilation, from retrieval to radiance assimilation, 
and theoretical aspects of radiance assimilation.

However, direct assimilation of radiances in NWP 
model leads to selection of a subset of the available 
hyperspectral data (usually hundreds of the thou-
sands of spectral measurements) in order to balance 
computer resources needed against forecast benefits 
achieved. As a consequence, some signal-to-noise 
improvement is lost, and information content remains 
incomplete. The impact from using limited channel 
numbers in NWP (using an operational analysis 
technique) has been quantitatively documented (see, 
e.g., Le Marshall et al. 2006a,b, 2008). Overcoming 
the downside of channel subselection remains a 
challenge; studies underway include reverting to 
assimilation of sounding retrievals from advanced 
IR sounders, which have much higher vertical reso-
lution than those from the low-spectral-resolution 
IR sounders, or using reconstructed radiances 
(computed from principal component scores). For 
example, in order to achieve consistency in vertical 
resolution between retrievals and model background, 
a method for correcting satellite profile retrievals 
for vertical-resolution-dependent biases has been 
formulated (Smith et al. 2015) for retrieval assimila-
tion. Migliorini (2012) also pointed out that there is 
equivalence between radiance and retrieval assimila-
tion under certain circumstances, and assimilation of 
transformed retrievals may be particularly advanta-
geous for instruments with a very high number of 
channels. In recent years, the impact of retrievals 
on weather forecasting techniques, especially the 
impact of assimilating hyperspectral retrievals on 
forecasting of typhoon/hurricane tracks, has been 
researched (Zavodsky et al. 2007; Reale et al. 2008; 
Zheng et al. 2015). Using more channels, especially 
from the water vapor–sensitive part of the spectrum, 
is also currently under study.

Accounting for the effects of clouds is another 
important aspect in hyperspectral IR sounder 
data assimilation; difficulties arise in generating 
observation operators that describe cloud radiation 
accurately in the radiative transfer models. Errors 
arising when clouds are mistaken for clear sky or from 
observation data without an accurate description 
impede improvement in the assimilation analysis and 
produce insignificant improvement or even failure in 
the forecast (Wang et al. 2014). In most of the current 
operational systems, the observation operators of the 
radiative transfer in the assimilation have difficulty 
in simulating cloud-affected radiation accurately. The 
cloud descriptions in weather prediction models are 
usually not complete enough to provide quantitative 

cloud water profile information; better identification, 
characterization, and utilization of cloud-affected 
radiances remain as major challenges for achieving 
practical quantitative applications.

Until recently, cloud-affected radiances were ex-
cluded, and only data from clear sky (clear FOVs and 
measurements from spectral channels not affected 
by clouds) were assimilated (Eresmaa 2014). This 
severely decreased the coverage and the informa-
tion assimilated; for example, clear-sky data from 
AIRS account for only 10% of the total data (Huang 
and Smith 2004). To increase the amount of data as-
similated, spectral channel measurements not seeing 
down to the clouds (McNally et al. 2006) or equiva-
lent clear-sky brightness temperatures inferred from 
cloudy measurements were assimilated (Susskind 
et al. 2003; Li et al. 2005a; Le Marshall et al. 2008). 
In the former, the spectral channel measurements 
not seeing clouds were used to adjust and constrain 
the three- or four-dimensional propagation of atmo-
spheric motions. In the latter, the cloud-cleared (or 
equivalent clear sky) IR sounder radiances for cloudy 
regions were estimated with additional information 
[either microwave sounders such as AMSU for AIRS/
IASI and ATMS for CrIS or imagers such as MODIS 
for AIRS, the Advanced Very High Resolution Radi-
ometer (AVHRR) for IASI, and the Visible Infrared 
Imaging Radiometer Suite (VIIRS) for CrIS]. Assimi-
lation of cloud-cleared radiances has been found to 
improve the accuracy of tropical storm-track forecasts 
(Wang et al. 2015).

All-sky IR radiance assimilation has been difficult 
because 1) both NWP and radiative transfer (RT) cal-
culations have larger uncertainties in cloudy regions, 
2) satellite observations and NWP may not agree on 
the presence of clouds (e.g., the satellite sees clouds, 
but NWP does not and vice versa), and 3) atmospheric 
parameters have a higher nonlinear dependence on 
IR radiances in cloudy situations (Li et al. 2016). 
Based on the simplified concept of a single-layer black 
cloud, Pavelin et al. (2008) have implemented direct 
cloudy radiance assimilation based on cloud-top 
pressure (CTP) and effective cloud amount (ECA), 
estimated in the preprocessing through 1DVAR (Eyre 
and Menzel 1989; Li et al. 2001, 2004), to constrain 
the assimilation of cloud-affected infrared sounder 
channels in 4DVAR. In a similar vein, McNally (2009) 
has introduced an operational analysis scheme using 
cloud-affected radiances to good effect by extending 
the 4DVAR analysis control to include parameters 
that describe the cloud conditions and simultane-
ously to estimate these parameters together with tem-
perature and humidity. Direct assimilation of all-sky 
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radiances is also being studied, with progress being 
realized for microwave humidity sounders (Baordo 
and Geer 2016; Guerbette et al. 2016). Lavanant et al. 
(2011) compared the results from different retrieval 
schemes for cloud parameters, finding consistency 
in those schemes. To better combine 1DVAR and 
4DVAR, and optimize the parameterization of the 
microphysical process in NWP models using IR 
sounder observations through assimilation, one pos-
sible research direction thus becomes introducing the 
cloud microphysical process to 1DVAR. Studies show 
that the spatial distribution of precipitation forecasts 
can be improved significantly because 1DVAR can 
constrain the cloud microphysical process when 
combining 1DVAR and 4DVAR. With positive results 
reported by ECMWF, the Met Office, and some me-
teorological research institutes in the United States, 
cloudy hyperspectral IR data assimilation is begin-
ning to show promise. A comprehensive analysis on 
cloudy data assimilation has been performed by Li 
et al. (2016).

Finally, it has been shown that the combined im-
pact of hyperspectral IR and cloud-penetrating mi-
crowave systems exceeds the sum of their individual 
impacts in NWP (Liu et al. 2016). The data from the 
two systems are being assimilated into NWP systems, 
and optimal weighting of their respective information 
content continues to be studied.

Applications in severe weather warning. Overall, the 
satellite sounding information is benefiting weather 
forecasts, including severe weather warnings. 
Measurements by advanced IR sounders within 
the IR window region isolate many relatively weak 
water vapor and carbon dioxide absorption lines. 
The measurements in these absorption lines can 
provide key information for monitoring the evolution 
of the lower-tropospheric thermodynamic state 
(Sieglaff et al. 2009). In addition, the vertical profile 
information derived from the hyperspectral IR 
sounders can provide more abundant information 
important for severe storm nowcasting and short-
term forecasting in the mesoscale environment; 
examples include the index related to stormburst, 
atmospheric stability, and the structure of the 
boundary layer (Li et al. 2011).

Sieglaff et al. (2009) proposed that the equivalent 
potential temperature differences between 800 and 
600 hPa are indicative of thunderstorm potential. Li 
et al. (2011) found that AIRS is capable of depicting 
an unstable region (adding horizontal detail) in clear 
skies hours in advance of convection. Similarly, the 
atmospheric stability index derived from AIRS data 

can also distinguish stable and unstable regions in 
the atmosphere, which is especially important for 
decreasing false alarms of severe convective storms. 
Furthermore, the track and intensity forecasts for 
typhoons/hurricanes can be improved when AIRS 
soundings at single field-of-view resolution are 
assimilated in a regional NWP (Li and Liu 2009; Liu 
and Li 2010; Wang et al. 2015).

The in-orbit suite of IASI, AIRS, and CrIS 
offers improved temporal and spatial coverage of 
hyperspectral IR remote sensing (Weisz et al. 2015). 
Combining these with other satellite data, ground 
station observations, and NWP analysis field data 
can improve the nowcasting of severe convective 
weather. Although the vertical resolution of current 
hyperspectral IR sounders has made a qualitative leap 
compared to previous sounders, the ability to capture 
convective potential is still limited by relatively low 
horizontal and temporal resolution. Hyperspectral 
IR remote sensing data with a higher temporal 
resolution, as from a geostationary satellite, will have 
significant advantages for making early warnings of 
severe weather events (Schmit et al. 2009; Li et al. 
2011; Yang et al. 2017).

Applications in climate analysis. Factors affecting 
climate change (e.g., greenhouse gases and aerosols) 
and feedback mechanisms of moisture and clouds 
are receiving increased scrutiny. Hyperspectral 
IR instruments, such as AIRS, IASI, and CrIS, are 
becoming important data sources in these studies.

Upper-tropospheric water vapor (UTWV), an 
important greenhouse gas in the atmosphere, is con-
tributing to global warming. However, its character-
ization in current reanalysis data and climate models 
is insufficient (Allan et al. 2003; Iacono et al. 2003; 
Solomon et al. 2010; MacKenzie et al. 2012). More 
recently, hyperspectral observation data from AIRS, 
IASI, and CrIS are being used for analyzing UTWV 
(Susskind et al. 2003; Liu et al. 2009; Divakarla et al. 
2014). UTWV products from hyperspectral sounders 
have also been applied to the study of seasonal vari-
ance in monsoon regions (Gettelman et al. 2004), 
model assessment (Takahashi et al. 2016), and water 
vapor feedback mechanisms.

Clouds have a significant role in the energy bal-
ance and the hydrological cycle in the Earth–atmo-
sphere system. However, there are large uncertainties 
in the cloud feedback mechanisms due to the various 
cloud types, complex structures, and nonisotropic ra-
diance distribution, as well as the variety of cloud de-
pictions in climate models (Sun et al. 2006; Williams 
and Webb 2009; Wu and Zhou 2011). Therefore, the 
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study of clouds remains an important component of 
climate change research, with satellite observations 
providing abundant cloud information. MODIS, 
GOES, and Multiangle Imaging SpectroRadiom-
eter (MISR) have been making short-wavelength 
IR measurements of clouds along with CloudSat 
and Cloud–Aerosol Lidar and Infrared Pathfinder 
Satellite Observations (CALIPSO) generating cloud 
profiles and cloud-phase information. The cloud-
top heights inferred from the HIRS longwave CO2 
absorption band data have been used to determine 
the global high cloud distributions (Menzel et al. 
2016). Furthermore, the hyperspectral IR sounder 
12–15-µm spectral region is particularly sensitive to 
cloud-top height (CTH) and effective cloud cover, 
and the 9-µm band contains information on cloud 
optical thickness and particle size (Li et al. 2004, 
2005b); these hyperspectral measurements have 
become the basis for joint retrievals of atmospheric 
and cloud parameters (Smith et al. 2012). Li et al. 
(2004, 2005b) used a 1DVAR approach with AIRS 
data to retrieve CTP, ECA, effective particle radius, 
and optical depth, with the latter two comparing 
favorably with the results from satellite- and ground-
based active remote sensing instruments (Wu et al. 
2005; Weisz et al. 2007). They also pointed out that 
AIRS cloud products have more abundant spectral 
features than MODIS cloud products, and the two 
can be complementary. Optimally the CTPs derived 
from advanced sounder data (e.g., from AIRS, IASI, 
and CrIS) are within 300-m precision, the cloud-top 
temperatures around 2 K, and the cloud coverages 
around 10% (August et al. 2012); but these numbers 
are cloud-state dependent (Eyre 1989). However, 
there are also some limitations; AIRS cloud micro-
physical parameters lack precision in thick clouds 
[cloud optical thickness (COT) > 10] and especially 
thin clouds (COT < 0.1) since IR observations have 
the largest sensitivity to the variations in clouds when 
the optical depth is between 0.4 and 4 (Huang et al. 
2004; Li et al. 2005b; Weisz et al. 2007).

Strong absorption lines for CO2 in the 4.3- and 
15.3-µm IR bands have been used to obtain upper-
atmospheric CO2 distributions over several decades. 
The CO2 content in the mid- and upper troposphere 
retrieved by combining AIRS with AMSU-A observa-
tions is consistent with aircraft and ground interfer-
ometer observations, for which the accuracy is around 
2–3 ppmv (Crevoisier et al. 2004; Chahine et al. 
2005; Strow and Hannon 2008). Based on a similar 
method, Crevoisier et al. (2009) calculated CO2 data 
for one year with IASI and AMSU-A observations 
with an accuracy of about 3 ppmv. All the retrieval 

products can be used to analyze the variance of CO2 
content, though these data records are not considered 
sufficiently long, as 20 years halves the 10-yr uncer-
tainty of the trend (Wielicki et al. 2013). The global 
mean variability of CO2 content is approximately 
2 ppmv yr−1 based on AIRS and IASI data (Strow and 
Hannon 2008; Crevoisier et al. 2009), and the total 
column quantity varies in concert with the baseline 
ground stations (Keeling et al. 1995).

Although AIRS, IASI, and CrIS are providing ob-
servations of high quality, the oldest of these, AIRS, 
has only operated for 15 years. Long-term climate 
trend analysis is premature. However, ultimately, 
more than 20 years of CrIS and IASI data will be 
available, with the anticipated continuous operation 
of MetOp and JPSS in the coming decades. Consider-
ing their long-term stability, the climate products of 
AIRS, IASI, and CrIS are expected to make significant 
contributions to global climate research.

Another important application relevant to climate 
studies involves the recalibration and validation of 
historical satellite data such as HIRS and AVHRR 
with data records of more than 40 years. With help of 
collocated hyperspectral IR sounder measurements, 
sensor-to-sensor differences in these long-term data 
records can be reduced. For example, HIRS measure-
ments, made from 17 satellites since 1975, have been 
recalibrated using IASI. Uncertainties in the calibra-
tion of broadband radiance measurements [often 
attributed to inadequate knowledge of the SRFs as 
demonstrated by Tobin et al. (2006a)] have produced 
satellite-to-satellite biases in the HIRS data record. 
These biases have been reduced using an approach 
that starts by determining a linear model for the 
radiance changes in a specific spectral band in given 
atmospheric conditions due to SRF modifications 
(Chen et al. 2013). The hyperspectral measurements 
from IASI on MetOp-A satellite are used to simulate 
global HIRS observations and to determine the pa-
rameters in the linear models. The linear models are 
then used to estimate sensor-to-sensor corrections 
from measurements at simultaneous nadir over-
passes (SNOs). In a related activity, hyperspectral IR 
sounder measurements have been and are being used 
to validate the broadband imager IR radiances on 
geostationary and polar-orbiting platforms through 
the Global Space-Based Inter-Calibration System 
(GSICS; http://gsics.wmo.int/), which is important for 
improving imager-based science products such as sea 
surface temperature (SST), land surface temperature 
(LST), and land surface emissivity (LSS), fire detec-
tion, etc., and their applications (Dash et al. 2010; Lu 
et al. 2016).
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FUTURE PROSPECT OF SATELLITE-
BASED ATMOSPHERIC SOUNDING. 
Satellite-based three-dimensional atmospheric tem-
perature and humidity profiles have been developing 
rapidly. The measurements have been widely applied 
in NWP, severe weather monitoring and warning, 
atmospheric environmental monitoring and forecast-
ing, and climate monitoring and prediction. In the 
future, hyperspectral IR combined with advanced 
microwave measurements will provide improved 
three-dimensional structure of the atmosphere con-
tinuously over the globe. The FY-4A hyperspectral 
atmospheric sounder is the first of several planned 
missions to monitor the vertical structure of the at-
mosphere hourly and to capture the atmospheric mo-
tions in both horizontal and vertical directions ahead 
of high-impact weather events. With the development 
of advanced detectors on board CubeSats, such as 
NASA’s Time-Resolved Observations of Precipitation 
structure and storm Intensity with a Constellation of 
Smallsats (TROPICS; http://tropics.ll.mit.edu) with 
a microwave sounder on board, it is foreseeable that 
CubeSats and similar technologies may also offer 
higher temporal resolution to global atmospheric 
sounding. There is the promise of further improve-
ment in sounder application and impact.
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