

FOSTERING A COLLABORATIVE ATMOSPHERIC CHEMISTRY RESEARCH COMMUNITY IN THE LATIN AMERICA AND CARIBBEAN REGION

BY MARCOS ANDRADE-FLORES, NESTOR ROJAS, MEGAN L. MELAMED, OLGA L. MAYOL-BRACERO, MICHEL GRUTTER, LAURA DAWIDOWSKI, JUAN CARLOS ANTUÑA-MARRERO, CARLOS RUDAMAS, LAURA GALLARDO, RUBEN MAMANI-PACO, MARIA DE FATIMA ANDRADE, AND NICOLAS HUNEEUS

A more cohesive and sustained community of atmospheric scientists is needed in the Latin America–Caribbean region to address the pressing issues of air quality and climate change.

The Latin America–Caribbean (LAC) region is defined as the countries south of the Rio Grande along the U.S.–Mexico border and includes Mexico, Central America, the islands of the Caribbean, and South America. Oftentimes, the LAC region is referred to as a homogeneous entity because of a common history, culture, and socioeconomic issues. However, to understand atmospheric chemistry in the region and its impacts on human health, ecosystems, and climate, it is of the utmost importance to address the heterogeneity of the LAC region's physical and human geography (Fig. 1, left). For example, the climate of northern Mexico is hot and dry, while the climates of many Central America and Caribbean countries consist of a prolonged wet summer season that includes many tropical storms and hurricanes. Within South America the topography and climate vary greatly from the Andean regions to Amazonia and from Atlantic forests to Patagonia.

The LAC region is also unique in the fact that ~80% of the population lives in urban areas,

resulting in high-density hot spots of urbanization and vast rural, sparsely populated areas (Heilig 2012; United Nations 2012) (Fig. 1, right). As a result of the high percentage of people living in urban areas and the coinciding emissions resulting from rapid development, urban air pollution has become a ubiquitous problem throughout the LAC region. Socioeconomic gradients among countries and inequities within them act as amplifiers of environmental problems, leading to differentiated emission patterns, exposure to air pollution, and vulnerability to climate change in urban areas (Bell et al. 2011; Gallardo et al. 2012; Mena-Carrasco et al. 2012; Romero-Lankao et al. 2013). Despite continuous growth in the number of stations monitoring air pollutants throughout the region and the development of policies to meet air quality standards, urban areas continue to exceed the World Health Organization's (WHO) Air Quality Guidelines (WHO 2005; see Fig. 2). In addition, long-range transport of air pollutants can hinder local or national-level strategies to meet air quality

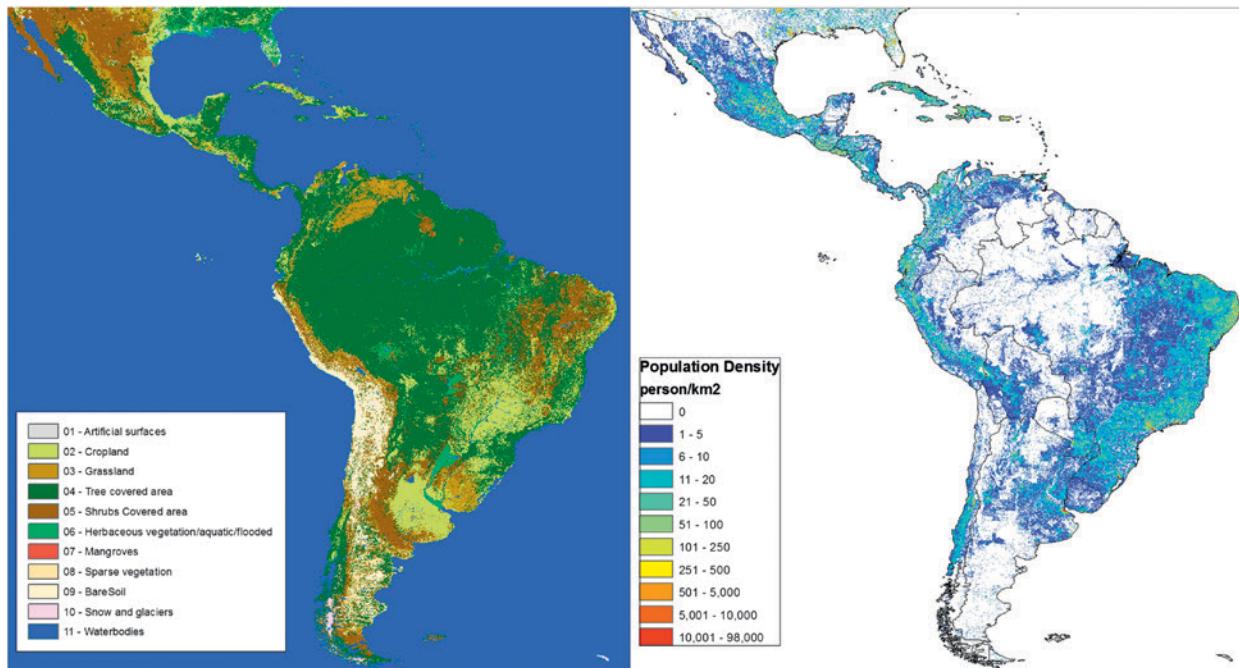


FIG. 1. (left) Land cover map and (right) population density of the LAC region.

standards in urban areas and can also decrease air quality in rural areas (CEC 1997; Galanter et al. 2000; Longo et al. 2009; NRC 2009; Zhu et al. 2012; Prospero et al. 2014).

Although atmospheric chemistry research has been conducted throughout the LAC region for decades, the amount and quality of the research vary greatly, as does the participation of local scientists. U.S. and European scientists often collaborate with local scientists where the research is being conducted, but very rarely is the invitation to work on such joint projects extended to other researchers in the LAC region. However, the uniqueness of the LAC region and the scientific questions that need to be addressed would greatly benefit from a cohesive community of scientists in the LAC region working together, and with international partners,

to address atmospheric composition, its temporal evolution, and its impacts on human health, climate, and ecosystems.

In response to this need, members of the international Commission on Atmospheric Chemistry and Global Pollution (iCACGP) and the International Global Atmospheric Chemistry (IGAC) Project from the LAC region came together in 2013 to form the iCACGP/IGAC Americas Working Groups (AWG). The AWG aims to build a strong cohesive community and foster the next generation of atmospheric scientists within the region with the goal of contributing to the development of a scientific community focused on building collective knowledge for the Americas. The AWG aims to achieve this goal by focusing on four areas:

AFFILIATIONS: ANDRADE-FLORES AND MAMANI-PACO—Laboratory for Atmospheric Physics, Institute for Physical Research, Universidad Mayor de San Andrés, La Paz, Bolivia; ROJAS—Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, Colombia; MELAMED—IGAC IPO, University of Colorado, CIRES, Boulder, Colorado; MAYOL-BRACERO—Department of Environmental Science, University of Puerto Rico, San Juan, Puerto Rico; GRUTTER—Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico; DAWIDOWSKI—Comisión Nacional de Energía Atómica, Buenos Aires, Argentina; ANTUÑA-MARRERO—Grupo de Óptica Atmosférica de Camagüey, Camagüey Meteorological Center, Camagüey, Cuba; RUDAMAS—School of Physics, Universidad de El Salvador, San Salvador, El Salvador; GALLARDO AND HUNEEUS—Departamento de

Geofísica de la Universidad de Chile and Center for Climate and Resilience Research (CR2), Santiago, Chile; ANDRADE—Department of Atmospheric Sciences, University of São Paulo, São Paulo, Brazil

CORRESPONDING AUTHOR: Marcos Andrade-Flores, Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, Campus Universitario, Calle 27, Cota-Cota, La Paz, Bolivia
E-mail: mandrade@fiumsa.edu.bo

The abstract for this article can be found in this issue, following the table of contents.

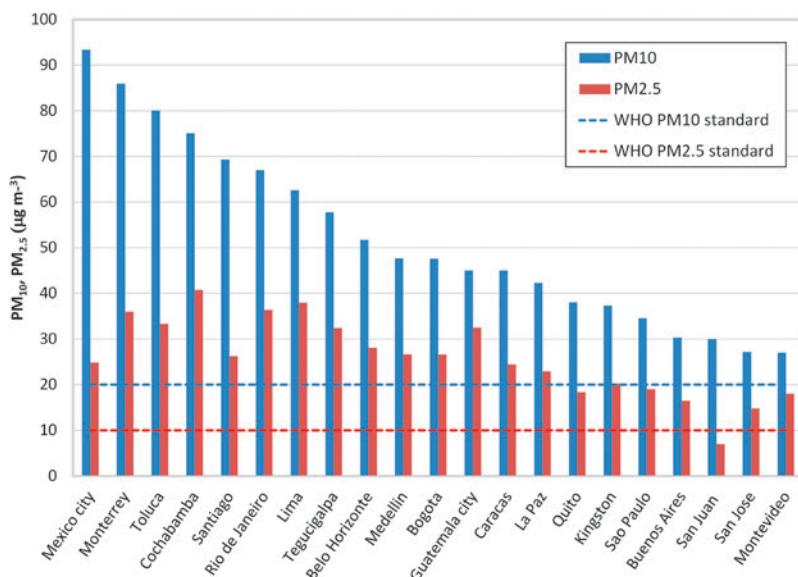
DOI:10.1175/BAMS-D-14-00267.1

In final form 28 January 2016

©2016 American Meteorological Society

- improving the collaboration and communication among scientists in the LAC region,
- connecting scientists within the LAC region to the international community,
- training and fostering the next generation of scientists in the LAC region, and
- enhancing the visibility and credibility of scientists in the LAC region.

Currently, the AWG consists of 12 members, including two cochairs, with the following composition: two scientists from Central America, two scientists from the Caribbean, three scientists from “Andean” countries (Bolivia, Ecuador, Venezuela, Peru, and Colombia), two scientists from “South American” countries (Argentina, Chile, Uruguay, and Paraguay), one scientist from Mexico, one scientist from Brazil, and one scientist from the United States or Canada. Each member serves a four-year term on the AWG and is to represent his/her country/subregion during their membership. The representation on the AWG was determined by the current scientific capacity of the different countries/subregions and is subject to change as scientific capacity grows in the LAC region.


The AWG has already been successful during its short two years of existence in achieving its goals by focusing on the four areas listed above. For example, in 2015 two short courses have been developed to train and foster the next generation of scientists. The first of these courses took place in La Paz, Bolivia, in July 2015 and was focused on aerosol measurements. The second course was focused on remote sensing techniques and took place in Mexico City, Mexico, in December 2015. These courses were organized by LAC region scientists, in collaboration with European and U.S. scientists as instructors. In an effort to connect LAC scientists to the international community and to enhance the visibility and credibility of scientists in the region, the AWG connected the Coalition for Clean Air and Climate (CCAC) with local scientists to have them lead and be contributing authors on a soon to be released assessment on short-lived climate pollutants (SLCPs) in the LAC region. Collaborations and communication between scientists in the LAC region have also been fostered by the AWG through

the development of the Global Emissions Initiative (GEIA) Americas Working Group; coordinated efforts to install a World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) station, along with remote sensing instruments at the Smithsonian Tropical Research Institute in Panama; and an effort to create an Aerosol Robotic Network (AeroNet) observation network in the LAC region as well as the Caribbean Aerosol Network.

The iCACGP/IGAC AWG will continue to build upon current efforts in the LAC region to address research questions on atmospheric chemistry that impact human health, ecosystems, and climate. Here, we discuss current examples of research in the LAC region and identify remaining main scientific questions to be addressed and the key steps forward to address these questions through a collaborative atmospheric chemistry research community.

EXAMPLES OF ATMOSPHERIC RESEARCH

IN LAC. Atmospheric chemistry research capabilities and achievements vary greatly among and even within LAC countries owing to the inherent characteristics of the research systems and the criticality of the issues related to atmospheric chemistry in every country. Urban air pollution in Mexico City, for instance, triggered the cultivation of scientists, research groups, institutes, and large projects that have increased the level of knowledge and helped decision-makers to address air pollution. In Brazil research policies have produced a robust scientific system that has increased

FIG. 2. The PM₁₀ and PM_{2.5} annual average levels in some LAC cities, based on official 2010–13 data, according to availability for each city (WHO 2014b).

scientific capacity in the region, allowing scientists to become leaders in developing new technologies and climate models on the regional level. We have selected a number of cases that can be considered as indicative examples of the type and level of atmospheric chemistry research that has been conducted in the region around two major issues, namely urban air quality and the long-range transport of air pollutants.

Urban air quality research. Air quality is a public health issue throughout the world with an estimated seven million premature deaths caused by indoor and outdoor air pollution in 2012 (Lim et al. 2012; WHO 2014b). The LAC region is not an exception and urban air pollution remains a significant public health issue. During the last few decades there has been a large increase in the number of vehicles in most urban and semiurban areas in the region (Romero-Lankao 2007; CEPAL 2010; Gallego et al. 2013) and countries are industrializing (West and Schandl 2013). This has resulted in poor air quality and many LAC governments view this as a major public health problem. Some air pollution events are enhanced as a result of particular geographic and atmospheric conditions. For example, in Santiago, Chile, the combination of thermal inversions and complex terrain results in acute air pollution episodes (Saide et al. 2011b). Complex topography, especially near the Andes, creates ideal conditions for having high levels of air pollution. As a result, even relatively small cities report poor air quality, especially during winter when wood burning is still used for heating (Toro et al. 2006; Diaz-Robles et al. 2008).

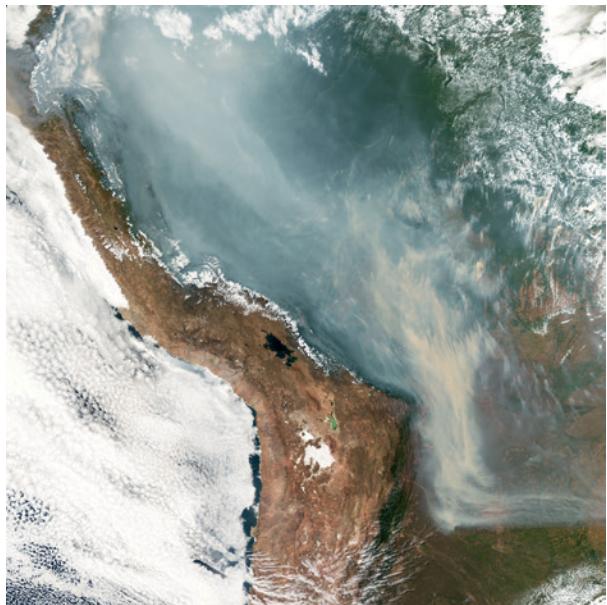
Monitoring networks have been established by and for local and national governments in many cities throughout the LAC region to monitor air quality and establish air pollution control strategies. Although these networks were not built for scientific research purposes, they have greatly contributed to a better understanding of the local and regional atmosphere. An example of local efforts addressing measurements of air quality can be found in Bogota, Colombia. Since 1997, 13 automatic air quality stations (12 stationary and 1 mobile) measure common air pollutants. Datasets are available to the public on the city's Secretary of the Environment website (<http://oab.ambientebogeta.gov.co/es/indicadores?id=1&v=1>) (Gaitán et al. 2007). Even though this monitoring network has suffered operational problems at times, something relatively common in LAC cities, this information has been very valuable for designing air pollution abatement measures, estimating health benefits from these measures, and prioritizing air quality

research needs (Ortiz and Rojas 2013). In general, the air pollution monitoring networks in the LAC region could benefit from common data quality assurance and control protocols. This is particularly important regarding speciation of hydrocarbons and the characterization of particulate matter (Vargas et al. 2012).

In other cases large field campaigns, such as the Mexico City Metropolitan Area (MCMA) field campaign in 2003 and the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign in 2006, have played an important role in understanding atmospheric chemistry in the region and creating scientific capacity in Mexico (Molina et al. 2010 and references therein). More recently, researchers from Buenos Aires, Argentina; São Paulo, Brazil; Santiago de Chile; Bogota; Medellin, Colombia; and Lima, Peru, developed the South American Emissions, Megacities and Climate (SAEMC) project, sponsored by the Inter-American Institute for Global Change Research (IAI). SAEMC improved emission inventories, developed chemical weather forecasting tools at the continental and city scales and optimized the design of monitoring networks (Martins et al. 2006; Martins and Andrade 2008; Saide et al. 2009; Alonso et al. 2010; D'Angiola et al. 2010; Longo et al. 2010; Freitas et al. 2011; Saide et al. 2011a,b; Gallardo et al. 2012; Longo et al. 2013; Osse et al. 2013).

Remote sensing techniques have been applied for atmospheric chemistry research in the LAC region in order to retrieve ground-level and vertical profiles of air pollutants and other relevant atmospheric gases. For instance, the temporal variability of NO₂ has been studied in Mexico, El Salvador, and Argentina by using differential optical absorption spectroscopy (DOAS; Alberti et al. 2012, p. 165; Raponi et al. 2012; Rivera et al. 2013). The DOAS technique has also been used to study industrial and volcanic emissions, for example, the Network for Observation of Volcanic and Atmospheric Change (NOVAC), a European Union funded project (Grutter et al. 2008; Rivera et al. 2009). In addition, greenhouse gases and other pollutants have been measured in the region using Fourier transform infrared spectroscopy (FTIR) methods (Bezanilla et al. 2014; Grutter et al. 2014). There are also significant lidar capabilities in the LAC region for the study of tropospheric aerosols, industrial pollution, and biomass burning (Antuña et al. 2012; Ristori et al. 2012; Lopes et al. 2014). Existing lidar teams in the LAC region are collaborating through the Latin American Lidar Network (www.lalinet.org), which is a contributing network to the WMO GAW Aerosols Lidar Network (GALION). There are also many sun photometers located in the LAC region that are used

to characterize aerosols, for example, to study the maritime mixed aerosols in Camagüey, Cuba, and the intraseasonal variability of smoke during a biomass burning season in South America (Estevan et al. 2011; Rosário et al. 2013).


In spite of expanding economies, research spending, and scientific output over the past two decades, research communities in general and atmospheric chemistry communities in particular are still small in most of the LAC countries (Van Noorden 2014). According to a systematic search using the Scopus database, Brazil, specifically the University of São Paulo, leads by far in research and scientific publications on atmospheric science subjects in the LAC region. Many studies are also related to the health effects of air pollution (Brito et al. 2013). Therefore, scientific capacity building remains a foremost requirement to addressing the issues associated with growing cities such as air quality and climate change. Material and human resources for atmospheric research in the LAC region, possibly with the exception of large cities/states in Brazil, are insufficient. This makes it difficult to conduct high-level research, contribute to international programs, and influence sustained impacts in local development. That is why air quality and climate researchers critically need regional collaborating networks and significant investments in capacity building at various levels. Within this framework, it is important to acknowledge the contribution of large international campaigns and projects like MCMA, MILAGRO, and SAEMC not only in increasing the scientific understanding of atmospheric processes in LAC cities but also in building scientific capacity within the region through training, participation, and coauthoring scientific publications with local and international scientists. Local research initiatives have produced a number of interesting results in relation to urban air quality and small groups have been increasing their capabilities both in infrastructure and scientific/technical expertise. As a result, they are addressing broader and deeper research questions emerging from the rapid changes in the region.

Long-range transport of pollutants. Urban and rural air quality in LAC countries is often impacted by the long-range transport of air pollutants that are produced within and outside the region and transported under the right meteorological conditions. Examples of long-range transport are dust from Africa, specifically the Sahara/Sahel region, and smoke produced by biomass burning from central Africa. Examples of regional transport are smoke from agricultural fires and anthropogenic pollutants

within the continent (i.e., smoke from the Amazon reaching the Andes).

Dust transported from North Africa across the Atlantic to the Caribbean basin and the central United States occurs mostly from June to August (Husar et al. 1997; Perry et al. 1997; Prospero 1999; Nowottnick et al. 2011; Prospero and Mayol-Bracero 2013). A southward displacement of the dust cloud in the winter months transports dust into South America, as seen in satellite products and characterized by measurements over the Amazon (Swap et al. 1992; Husar et al. 1997; Prospero 1999; Martin et al. 2010; Huneeus et al. 2011). The transport of African dust causes severe impacts on the air quality of receptor countries (e.g., reduction in visibility, poor air quality) (Prospero et al. 2008; Bozlaker et al. 2013; Prospero and Mayol-Bracero 2013; Prospero et al. 2014; Ortiz-Martínez et al. 2015). African dust has also been shown to have an impact on hurricanes, precipitation, clouds, climate, and ecosystem health (Swap et al. 1996; Dunion and Velden 2004; Koren et al. 2006; Bristow et al. 2010; Okin et al. 2004; Prospero and Mayol-Bracero 2013; Spiegel et al. 2014; Raga et al. 2016; Valle-Díaz et al. 2015). This happens mostly during the Northern Hemisphere winter-time when African dust reaches northeastern South America. This African dust has been shown to have a positive impact on the Amazon forest as a result of the input of nutrients (Artaxo et al. 1990; Swap et al. 1996; Husar et al. 2004; Koren et al. 2006; Ansmann et al. 2009; Ben-Ami et al. 2010; Bristow et al. 2010; Martin et al. 2010). Many important questions still remain regarding the importance of the long-range transport of dust and its impacts on the Earth's biogeochemistry cycle (Okin et al. 2004).

Biomass burning smoke within the Amazon basin occurs in the austral winter/spring primarily because of land clearing. Fires generated in Brazil, Bolivia, Paraguay, and Argentina emit smoke that is then transported locally and regionally (Fig. 3) (Freitas et al. 2005; Evangelista et al. 2007; Longo et al. 2009; Pereira et al. 2011). Amazonian biomass burning plumes have been observed in LAC countries such as Suriname and Venezuela (Andreae et al. 2001; Hamburger et al. 2013). In addition, smoke produced by biomass burning in the Bolivian lowlands and, possibly, Brazil, Argentina, and Paraguay, has been measured high in the central Andes, suggesting that the convective transport of biomass burning plumes is of importance to the region (Andrade et al. 2011; M. Andrade et al. 2016, in preparation). Heavy smoke from forest fires in the Amazon basin has been observed to shift precipitation formation in convective clouds to greater heights and thereby

FIG. 3. Smoke from the Amazon basin being transported to the Andes on 14 Sep 2004. [NASA image created by J. Allen, Earth Observatory, using data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) Rapid Response Team.]

impact the water cycle, the pollution burden of the atmosphere, and the dynamics of atmospheric circulation (Andreae et al. 2004). Studies performed by Lau et al. (2010) over the Himalayas suggest that black carbon (BC) from biomass burning in South America, transported to the Andean glaciers, cannot only decrease the albedo of ice/snow, but can warm the local atmosphere, further contributing to the melting of glaciers in the Andean region. This suggests that both the ice/snow albedo effect and the warming of the atmosphere resulting from BC likely have contributed to the rapid observed rate of glacial melting, which impacts freshwater security in the Andean region. As a result, an area of current research is the impact of biomass burning smoke from the Amazon basin on freshwater via changes in precipitation patterns and the enhanced melting of glaciers (Molina et al. 2015). It is important to note that besides biomass burning there are multiple sources of BC in the LAC region: diesel vehicles, industrial sources, residential burning of wood and waste for heating and cooking, and informal burning kilns for brick production, etc. Several studies have addressed the long- and short-range transport of urban and wood burning aerosol over the Andes (Longo et al. 2009; Pereira et al. 2011; Cereceda-Balic et al. 2012; Rosário et al. 2013; Mena-Carrasco et al. 2014; Schmitt et al. 2015).

MAIN SCIENTIFIC QUESTIONS AND KEY STEPS FORWARD.

The foci of scientific questions may differ significantly depending on the specific needs within the LAC region, but it is nevertheless possible to generalize some main questions that have, and can, be commonly addressed. First, it is important to examine the link between air pollution and climate in more depth, which is crucial for understanding the feedback mechanisms involving short- and long-lived species. For example, the forcing and impacts of short-lived climate pollutants (SLCPs) on air quality and climate, the changes in boundary layer processes including the heat island effect and stratification over complex terrain, and the effect of increasing temperatures on photochemistry are not well understood in the LAC region. The aforementioned links between air pollution and climate govern how air pollutant emissions result in ambient concentrations, which have direct impacts on human health and ecosystems. The development of local, national, and regional emission inventories is a critical scientific need in the LAC region in order to address air quality and climate considerations. Long-range transport is another main theme among the remaining scientific questions regarding the fate of African dust and biomass burning plumes and their impacts on cloud formation, urban air pollution, and freshwater security. In addition, the transport of particulate matter and gases from the near surface to the free troposphere over complex terrain is another area of scientific interest in the Andean region. The evolution of urban and industrial plumes, on the other hand, may affect atmospheric composition, cloud processes, and pristine environments (glaciers, biomes, protected areas, oceans, etc.). There is still more to learn about how the intercontinental transport of dust impacts the biogeochemical cycles of the oceans and in the ecosystems in the LAC region and how it impacts air quality, clouds, and storm formation. The extent of how natural (volcanic, biogenic, and oceanic) emissions contribute to the overall loading of aerosols and gases and how they are involved in various atmospheric processes is not fully understood. Finally, the impacts of future changes on the composition of the atmosphere associated with climate change and rapid land-use change in the LAC region have not been fully studied. Many of these issues are not exclusive to the LAC region but are global in nature and will require international collaboration to be fully understood.

To address the issues mentioned above, there is an urgent need to increase the number of qualified

scientists and specialized technicians in the LAC region. Some countries have shown significant advances in establishing research groups and high-level educational programs, but the growth in the number of experts has been slow and geographically uneven. Most LAC scientists are educated in developed countries but often cannot find adequate research positions in their home countries. There is a need to lure these scientists back to the region by developing an adequate infrastructure from the level of local institutions to national governments. Moreover, there is an appalling need to improve the observational, analytical, and modeling capacities, which in turn requires sustained, prioritized, and oriented funding. Convincing governmental agencies about the socioeconomic benefits of investing in research in environmental problems is a challenge to the community. Finally, since alliances with the United States and Europe have been favored over regional collaborations, even in cases when regional expertise is available, a key component to overcome is the current limitations to fostering stronger collaborations among LAC research groups.

The iCACGP/IGAC AWG is stepping forward to address these and other questions that may arise as the LAC region faces new and more complex environmental problems. Addressing these issues requires a strong cohesive community of atmospheric scientists within the region and the coordination of activities among the research community to foster collaborative projects by means of specialized courses, thematic workshops, and exchange programs. We therefore invite these scientists to join the iCACGP/IGAC AWG to help create a more collaborative atmospheric chemistry community in the LAC region (sign up for the iCACGP/IGAC AWG e-mail list at <http://eepurl.com/-dSCr>).

ACKNOWLEDGMENTS. The authors would like to acknowledge the International Global Atmospheric Chemistry (IGAC) Project and the international Commission on Atmospheric Chemistry and Global Pollution (iCACGP), as well as the members of their scientific steering committees, for recognizing the science that is conducted by researchers in the Latin America–Caribbean region and the need to develop an organized, cohesive community. Funding for the workshops that led to the development of this article and the formation of the IGAC/iCACGP Americas Working Group was provided by IGAC, European ACCENT-Plus Project, World Meteorological Organization (WMO), integrated Land Ecosystem Atmosphere Processes Study (iLEAPS), the Molina Center for Energy and the Environment (MCE2), and the Inter-American Institute for

Global Change Research (IAI). LG and NH acknowledge FONDAP15110009.

REFERENCES

Alberti, C. A., B. L. Mendoza, and C. Rudamas, 2012: Ground based MAX-DOAS observations of tropospheric trace gases in San Salvador, El Salvador. *62nd Annual Meeting of the Austrian Physical Society*, Graz, Austria, Austrian Physical Society, 188 pp. [Available online at www.oepg.at/uploads/2ae8da6631be0ac974d89fab36b6ff54.pdf.]

Alonso, M. F., K. M. Longo, S. R. Freitas, R. Mello da Fonseca, V. Marécal, M. Pirre, and L. Gallardo Klenner, 2010: An urban emissions inventory for South America and its application in numerical modeling of atmospheric chemical composition at local and regional scales. *Atmos. Environ.*, **44**, 5072–5083, doi:10.1016/j.atmosenv.2010.09.013.

Andrade, M., R. Mamani, F. Velarde, D. Biggeman, F. Zaratti, and R. Forno, 2011: Aerosol transport to the Andean region: A new GAW station. *Rev. Bol. Fís.*, **20**, 42–44.

Andreae, M. O., and Coauthors, 2001: Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region. *Geophys. Res. Lett.*, **28**, 951–954, doi:10.1029/2000GL012391.

—, D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. *Science*, **303**, 1337–1342, doi:10.1126/science.1092779.

Ansmann, A., H. Baars, M. Tesche, D. Muller, D. Althausen, R. Engelmann, T. Pauliquevis, and P. Artaxo, 2009: Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest. *Geophys. Res. Lett.*, **36**, L11802, doi:10.1029/2009GL037923.

Antuña, J. C., E. Landulfo, B. Clemesha, F. Zaratti, E. Quel, A. Bastidas, R. Estevan, and B. Barja, 2012: Lidar community in Latin America: A decade of challenges and successes. *26th Int. Laser Radar Conf.*, Porto Heli, Greece, International Coordination Group for Laser Atmospheric Studies, 323–326.

Artaxo, P., W. Maenhaut, H. Storms, and R. Van Grieken, 1990: Aerosol characteristics and sources for the Amazon Basin during the wet season. *J. Geophys. Res.*, **95**, 16971–162985, doi:10.1029/JD095iD10p16971.

Bell, M. L., L. A. Cifuentes, D. L. Davis, E. Cushing, A. G. Telles, and N. Gouveia, 2011: Environmental health indicators and a case study of air pollution in Latin American cities. *Environ. Res.*, **111**, 57–66, doi:10.1016/j.envres.2010.10.005.

Ben-Ami, Y., I. Koren, Y. Rudich, P. Artaxo, S. T. Martin, and M. O. Andreae, 2010: Transport of North African dust from the Bodélé depression to the Amazon Basin: A case study. *Atmos. Chem. Phys.*, **10**, 7533–7544, doi:10.5194/acp-10-7533-2010.

Bezanilla, A., A. Krueger, W. Stremme, and M. Grutter, 2014: Solar absorption infrared spectroscopic measurements over Mexico City: Methane enhancements. *Atmosfera*, **27**, 173–183, doi:10.1016/S0187-6236(14)71108-7.

Bozlaker, A., J. M. Prospero, M. P. Fraser, and S. Chellam, 2013: Quantifying the contribution of long-range Saharan dust transport on particulate matter concentrations in Houston, Texas, using detailed elemental analysis. *Environ. Sci. Technol.*, **47**, 10 179–10 187, doi:10.1021/es4015663.

Bristow, C. S., K. A. Hudson-Edwards, and A. Chappell, 2010: Fertilizing the Amazon and equatorial Atlantic with West African dust. *Geophys. Res. Lett.*, **37**, L14807, doi:10.1029/2010GL043486.

Brito, J., and Coauthors, 2013: Physical–chemical characterization of the particulate matter inside two road tunnels in the São Paulo metropolitan area. *Atmos. Chem. Phys.*, **13**, 12 199–12 213, doi:10.5194/acp-13-12199-2013.

CEC, 1997: Long-Range Transport of Ground-Level Ozone and Its Precursors. Commission for Environmental Cooperation Rep., 105 pp. [Available online at www3.cec.org/islandora/en/item/2185-long-range-transport-ground-level-ozone-and-its-precursors-en.pdf.]

CEPAL, 2010: Convergence and divergence of transport and mobility policies in Latin America: Lack of urban co-modality. *FAL Bulletin*, Issue 289, No. 9, 8 pp. [Available online at http://repositorio.cepal.org/bitstream/handle/11362/36371/FAL-289-WEB-ENG_en.pdf?sequence=1.]

Cereceda-Balic, F., and Coauthors, 2012: Impact of Santiago de Chile urban atmospheric pollution on anthropogenic trace elements enrichment in snow precipitation at Cerro Colorado, central Andes. *Atmos. Environ.*, **47**, 51–57, doi:10.1016/j.atmosenv.2011.11.045.

D'Angiola, A., L. E. Dawidowski, D. R. Gómez, and M. Osses, 2010: On-road traffic emissions in a megacity. *Atmos. Environ.*, **44**, 483–493, doi:10.1016/j.atmosenv.2009.11.004.

Díaz-Robles, L. A., J. C. Ortega, J. S. Fu, G. D. Reed, J. C. Chow, J. G. Watson, and J. A. Moncada-Herrera, 2008: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. *Atmos. Environ.*, **42**, 8331–8340, doi:10.1016/j.atmosenv.2008.07.020.

Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. *Bull. Amer. Meteor. Soc.*, **85**, 353–365, doi:10.1175/BAMS-85-3-353.

Estevan, R., and Coauthors, 2011: Preliminary results of aerosols measurements with sun photometer at Camagüey, Cuba. *Opt. Pura Apl.*, **44**, 99–106.

Evangelista, H., and Coauthors, 2007: Sources and transport of urban and biomass burning aerosol black carbon at the south-west Atlantic coast. *J. Atmos. Chem.*, **56**, 225–238, doi:10.1007/s10874-006-9052-8.

Freitas, S. R., and Coauthors, 2005: Monitoring the transport of biomass burning emissions in South America. *Environ. Fluid Mech.*, **5**, 135–167, doi:10.1007/s10652-005-0243-7.

—, and Coauthors, 2011: PREP-CHEM-SRC-1.0: A pre-processor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models. *Geosci. Model Dev.*, **4**, 419–433, doi:10.5194/gmd-4-419-2011.

Gaitán, M., J. Cancino, and E. Behrentz, 2007: Análisis del estado de la calidad del aire en Bogotá (Analysis of Bogota's air quality). *Rev. Ingeniería*, **26**, 81–92.

Galanter, M., H. Levy II, and G. R. Carmichael, 2000: Impacts of biomass burning on tropospheric CO, NO_x, and O₃. *J. Geophys. Res.*, **105**, 6633–6653, doi:10.1029/1999JD901113.

Gallardo, L., J. Escribano, L. Dawiowski, M. F. Andrade, and M. Osses, 2012: Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá, Buenos Aires, Santiago, and São Paulo. *Atmos. Environ.*, **47**, 12–19, doi:10.1016/j.atmosenv.2011.11.051.

Gallego, F., J. P. Montero, and C. Salas, 2013: The effect of transport policies on car use: Evidence from Latin American cities. *J. Public Econ.*, **107**, 47–62, doi:10.1016/j.jpubeco.2013.08.007.

Grutter, M., R. Basaldud, C. Rivera, R. Harig, W. Junkerman, E. Caetano, and H. Delgado-Granados, 2008: SO₂ emissions from Popocatépetl volcano: Emission rates and plume imaging using optical remote sensing techniques. *Atmos. Chem. Phys.*, **8**, 6655–6663, doi:10.5194/acp-8-6655-2008.

—, J. Arellano, A. Bezanilla, M. Friedrich, E. Plaza, C. Rivera, and W. Stremme, 2014: Characterization of air pollution in Mexico City by remote sensing. *Geophysical Research Abstracts*, Vol. 16, Abstract 15536. [Available online at <http://meetingorganizer.copernicus.org/EGU2014/EGU2014-15536.pdf>.]

Hamburger, T., and Coauthors, 2013: Long-term in situ observations of biomass burning aerosol at a high altitude station in Venezuela—Sources, impacts and interannual variability. *Atmos. Chem. Phys.*, **13**, 9837–9853, doi:10.5194/acp-13-9837-2013.

Heilig, G. K., 2012: *World Urbanization Prospects: The 2011 Revision*. United Nations Publ. ST/ESA/SER.A/317, 302 pp. [Available online at www.un.org/en/development/desa/population/publications/pdf/urbanization/WUP2011_Report.pdf.]

Huneeus, N., and Coauthors, 2011: Global dust model intercomparison in AeroCom phase I. *Atmos. Chem. Phys.*, **11**, 7781–7816, doi:10.5194/acp-11-7781-2011.

Husar, R. B., 2004: Intercontinental transport of dust: Historical and recent observational evidence. *Intercontinental Transport of Pollutants*, A. Stohl, Ed., Springer-Verlag, 277–294.

—, J. M. Prospero, and L. L. Stowe, 1997: Characterization of tropospheric aerosols over the oceans with NOAA Advanced Very High Resolution Radiometer optical thickness operational product. *J. Geophys. Res.*, **102**, 16 889–16 909, doi:10.1029/96JD04009.

Koren, I., Y. J. Kaufman, R. Washington, C. C. Todd, Y. Rudich, J. V. Martins, and D. Rosenfeld, 2006: The Bodélé depression: A single spot in the Sahara that provides most of the mineral dust to the Amazon forest. *Environ. Res. Lett.*, **1**, doi:10.1088/1748-9326/1/1/014005.

Lau, W. K. M., M. K. Kim, K. M. Kim, and W. S. Lee, 2010: Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. *Environ. Res. Lett.*, **5**, doi:10.1088/1748-9326/5/2/025204.

Lim, S. S., and Coauthors, 2012: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. *Lancet*, **380**, 2224–2260, doi:10.1016/S0140-6736(12)61766-8.

Longo, K. M., S. Freitas, M. Andreae, R. Yokelson, and P. Artaxo, 2009: Biomass burning in Amazonia: Emissions, long-range transport of smoke and its regional and remote impacts. *Amazonia and Global Change*, M. Keller et al., Eds., Amer. Geophys. Union, 207–232, doi:10.1029/2008GM000717.

—, S. R. Freitas, M. O. Andreae, A. Setzer, E. Prins, and P. Artaxo, 2010: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—Part 2: Model sensitivity to the biomass burning inventories. *Atmos. Chem. Phys.*, **10**, 5785–5795, doi:10.5194/acp-10-5785-2010.

—, and Coauthors, 2013: The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): A regional atmospheric model system for integrated air quality and weather forecasting and research. *Geosci. Model Dev.*, **6**, 1389–1405, doi:10.5194/gmd-6-1389-2013.

Lopes, F. J. S., G. A. Moreira, P. F. Rodrigues, J. L. Guerrero-Rascado, M. F. Andrade, and E. Landulfo, 2014: Lidar measurements of tropospheric aerosol and water vapor profiles during the winter season campaigns over the metropolitan area of São Paulo, Brazil. *Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing*, U. N. Singh and G. Pappalardo, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9246), doi:10.1117/12.2067374.

Martin, S. T., and Coauthors, 2010: Sources and properties of Amazonian aerosol particles. *Rev. Geophys.*, **48**, RG2002, doi:10.1029/2008RG000280.

Martins, L. D., and M. F. Andrade, 2008: Emission scenario assessment of gasohol reformulation proposals and ethanol use in the metropolitan area of São Paulo. *Open Atmos. Sci. J.*, **2**, 166–175, doi:10.2174/874282300802010166.

—, and Coauthors, 2006: Emission factors for gas-powered vehicles traveling through road tunnels in São Paulo City, Brazil. *Environ. Sci. Technol.*, **40**, 6722–6729, doi:10.1021/es052441u.

Mena-Carrasco, M., and Coauthors, 2012: Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile. *Sci. Total Environ.*, **429**, 257–265, doi:10.1016/j.scitotenv.2012.04.037.

—, P. Saide, R. Delgado, P. Hernandez, S. Spak, L. Molina, G. Carmichael, and X. Jiang, 2014: Regional climate feedbacks in central Chile and their effect on air quality episodes and meteorology. *Urban Climate*, **10**, 771–781, doi:10.1016/j.uclim.2014.06.006.

Molina, L. T., and Coauthors, 2010: An overview of the MILAGRO 2006 campaign: Mexico City emissions and their transport and transformation. *Atmos. Chem. Phys.*, **10**, 8697–8760, doi:10.5194/acp-10-8697-2010.

—, and Coauthors, 2015: Pollution and its impact on the South American cryosphere. *Earth's Future*, **3**, 345–369, doi:10.1002/2015EF000311.

Nowottnick, E., P. R. Colarco, A. M. Da Silva, D. L. Hlavka, and M. J. McGill, 2011: The fate of Saharan dust across the Atlantic and implications for a Central American dust barrier. *Atmos. Chem. Phys.*, **11**, 8415–8431, doi:10.5194/acp-11-8415-2011.

NRC, 2009: *Global Sources of Local Pollution: An Assessment of Long-Range Transport of Key Pollutants to and from the United States*. The National Academies Press, 248 pp.

Okin, G. S., N. Mahowald, O. A. Chadwick, and P. Artaxo, 2004: Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. *Global Biogeochem. Cycles*, **18**, GB2005, doi:10.1029/2003GB002145.

Ortiz, E. Y., and N. Y. Rojas, 2013: Estimación de los beneficios económicos en salud asociados a la

reducción de PM₁₀ en Bogotá (Estimating air quality change-associated health benefits by reducing PM₁₀ in Bogotá). *Rev. Salud Pública*, **15**, 90–102.

Ortiz-Martínez, M., R. I. Rodríguez-Cotto, M. A. Ortiz-Rivera, C. W. Pluguez-Turull, and B. D. Jiménez-Vélez, 2015: Linking endotoxins, African dust PM₁₀ and asthma in an urban and rural environment of Puerto Rico. *Mediators Inflammation*, **2015**, 784212, doi:10.1155/2015/784212.

Osses, A., L. Gallardo, and T. Faundez, 2013: Analysis and evolution of air quality monitoring networks using combined statistical information indexes. *Tellus*, **65B**, 19822, doi:10.3402/tellusb.v65i0.

Pereira, G., Y. E. Shimabukuro, E. C. Moraes, S. R. Freitas, F. S. Cardozo, and K. M. Longo, 2011: Monitoring the transport of biomass burning emission in South America. *Atmos. Pollut. Res.*, **2**, 247–254, doi:10.5094/APR.2011.031.

Perry, K. D., T. A. Cahill, R. A. Eldred, D. D. Dutcher, and T. E. Gill, 1997: Long-range transport of North African dust to the eastern United States. *J. Geophys. Res.*, **102**, 11 225–11 238, doi:10.1029/97JD00260.

Prospero, J. M., 1999: Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. *J. Geophys. Res.*, **104**, 15 917–15 928, doi:10.1029/1999JD900072.

—, and O. L. Mayol-Bracero, 2013: Understanding the transport and impact of African dust. *Bull. Amer. Meteor. Soc.*, **94**, 1329–1337, doi:10.1175/BAMS-D-12-00142.1.

—, E. Blades, R. Naidu, G. Mathison, H. Thani, and M. C. Lavoie, 2008: Relationship between African dust carried in the Atlantic trade winds and surges in pediatric asthma attendances in the Caribbean. *Int. J. Biometeor.*, **52**, 823, doi:10.1007/s00484-008-0176-1.

—, F. X. Collard, J. Molinié, and A. Jeannot, 2014: Characterizing the annual cycle of African dust transport to the Caribbean basin and South America and its impact on the environment and air quality. *Global Biogeochem. Cycles*, **28**, 757–773, doi:10.1002/2013GB004802.

Raga, G., D. Baumgardner, and O. L. Mayol-Bracero, 2016: Processing of aerosol particles by mountaintop clouds in Puerto Rico. *Aerosol Air Qual. Res.*, **16**, 674–688, doi:10.4209/aaqr.2015.05.0359.

Raponi, M., R. Jiménez, E. Wolfram, J. O. Tocho, and E. Quel, 2012: Measurements of NO₂ and O₃ vertical column densities over Río Gallegos, Santa Cruz province, Argentina, using a portable and automatic zenith-sky DOAS system. *Opt. Pura Apl.*, **45**, 397–403, doi:10.7149/OPA.45.4.397.

Ristori, P., L. Otero, E. Pawelko, J. Pallotta, and E. Quel, 2012: Biomass burning and volcanic ash characterization at Centro de Investigaciones en Láseres y Aplicaciones, Buenos Aires, Argentina. *Rev. Bol. Fís.*, **21**, 30–32.

Rivera, C., G. Sosa, H. Wöhrnschimmel, B. de Foy, M. Johansson, and B. Galle, 2009: Tula industrial complex (Mexico) emissions of SO₂ and NO₂ during the MCMA 2006 field campaign using a mobile mini-DOAS system. *Atmos. Chem. Phys.*, **9**, 6351–6361, doi:10.5194/acp-9-6351-2009.

—, W. Stremme, and M. Grutter, 2013: Nitrogen dioxide DOAS measurements from ground and space: Comparison of zenith scattered sunlight ground-based measurements and OMI data in central Mexico. *Atmosfera*, **26**, 401–414, doi:10.1016/S0187-6236(13)71085-3.

Romero-Lankao, P., 2007: Are we missing the point? Particularities of urbanization, sustainability and carbon emissions in Latin American cities. *Environ. Urban.*, **19**, 159–175, doi:10.1177/0956247807076915.

—, H. Qin, and M. Borbor-Cordova, 2013: Exploration of health risks related to air pollution and temperature in three Latin American cities. *Soc. Sci. Med.*, **83**, 110–118, doi:10.1016/j.socscimed.2013.01.009.

Rosário, N. E., K. M. Longo, S. R. Freitas, M. A. Yamasoe, and R. M. Fonseca, 2013: Modeling the South American regional smoke plume: Aerosol optical depth variability and surface shortwave flux perturbation. *Atmos. Chem. Phys.*, **13**, 2923–2938, doi:10.5194/acp-13-2923-2013.

Saide, P., A. Osses, L. Gallardo, and M. Osses, 2009: Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile's case. *Atmos. Chem. Phys. Discuss.*, **9**, 6325–6361, doi:10.5194/acpd-9-6325-2009.

—, M. Bocquet, A. Osses, and L. Gallardo, 2011a: Constraining surface emissions of air pollutants using inverse modelling: Method intercomparison and a new two-step two-scale regularization approach. *Tellus*, **63B**, 360–370, doi:10.1111/j.1600-0889.2011.00529.x.

—, G. R. Carmichael, S. N. Spak, L. Gallardo, A. E. Osses, M. A. Mena-Carrasco, and M. Pagowski, 2011b: Forecasting urban PM₁₀ and PM_{2.5} pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model. *Atmos. Environ.*, **45**, 2769–2780, doi:10.1016/j.atmosenv.2011.02.001.

Schmitt, C., J. All, J. Schwarz, W. Arnott, R. Cole, E. Lapham, and A. Celestian, 2015: Measurements of light absorbing particulates on the glaciers in the Cordillera Blanca, Peru. *Cryosphere*, **9**, 331–340, doi:10.5194/tc-9-331-2015.

Spiegel, J. K., N. Buchmann, O. L. Mayol-Bracero, L. A. Cuadra-Rodriguez, C. J. Valle Diaz, K. A. Prather, S. Mertes, and W. Eugster, 2014: Do cloud properties in a Puerto Rican tropical montane cloud forest depend on occurrence of long-range transported African dust? *Pure Appl. Geophys.*, **171**, 2443–2459, doi:10.1007/s00024-014-0830-y.

Swap, R., M. Garstang, S. Greco, R. Talbot, and P. Källberg, 1992: Saharan dust in the Amazon basin. *Tellus*, **44B**, 133–149, doi:10.1034/j.1600-0889.1992.t01-1-00005.x.

—, —, S. A. Macko, P. D. Tyson, W. Maenhaut, P. Artaxo, P. Kallberg, and R. Talbot, 1996: The long-range transport of southern African aerosols to the tropical South Atlantic. *J. Geophys. Res.*, **101**, 23 777–23 791, doi:10.1029/95JD01049.

Toro, M. V., L. V. Cremades, and J. Calbó, 2006: Relationship between VOC and NOX emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia). *Chemosphere*, **65**, 881–888, doi:10.1016/j.chemosphere.2006.03.013.

United Nations, 2012: *World Urbanization Prospects: The 2011 Revision*. Population Division, Department of Economic and Social Affairs, 302 pp. [Available online at www.un.org/en/development/desa/population/publications/pdf/urbanization/WUP2011_Report.pdf.]

Valle-Diaz, C., E. Torres-Delgado, S. M. Colón-Santos, T. Lee, J. L. Collett Jr., W. H. McDowell, and O. L. Mayol-Bracero, 2016: Impact of long-range transported African dust on cloud water chemistry at a tropical montane cloud forest in northeastern Puerto Rico. *Aerosol Air Qual. Res.*, **16**, 653–664, doi:10.4209/aaqr.2015.05.0320.

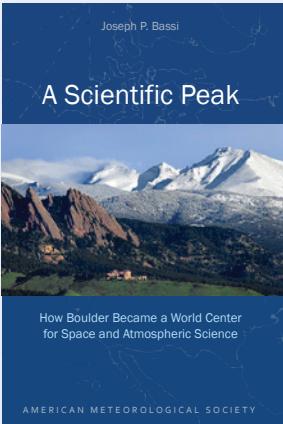
Van Noorden, R., 2014: The impact gap: South America by the numbers. *Nature*, **510**, 202–203, doi:10.1038/510202a.

Vargas, F. A., N. Y. Rojas, J. E. Pachón, and A. Russell, 2012: PM_{10} characterization and source apportionment at two residential areas in Bogotá. *Atmos. Pollut. Res.*, **3**, 72–80, doi:10.5094/APR.2012.006.

Vasconcellos, P., and Coauthors, 2011: Comparative study of the atmospheric chemical composition of three South American cities. *Atmos. Environ.*, **45**, 5770–5777, doi:10.1016/j.atmosenv.2011.07.018.

West, J., and H. Schandl, 2013: Material use and material efficiency in Latin America and the Caribbean. *Ecol. Econ.*, **94**, 19–27, doi:10.1016/j.ecolecon.2013.06.015.

WHO, 2005: Air quality guidelines global update, Report on a working group meeting, World Health Organization, 24 pp.


—, 2014a: Exposure city level 2014. Global Health Observatory Repository, World Health Organization, accessed 12 July 2015. [Available online at <http://apps.who.int/gho/data/view.main.AMBIENTCITY2014?lang=en>.]

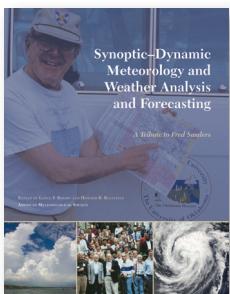
—, 2014b: 7 million premature deaths annually linked to air pollution. World Health Organization news release, 25 March 2014, accessed 12 July 2015. [Available online at www.who.int/mediacentre/news/releases/2014/air-pollution/en/.]

Zhu, T., M. L. Melamed, D. Parrish, M. Gauss, L. Gallardo, M. Lawrence, A. Konare, and C. Liousee, 2012: WMO/IGAC impacts of megacities on air pollution and climate. GAW Rep. 205, World Meteorological Organization, 299 pp. [Available online at www.igacproject.org/sites/all/themes/bluemasters/images/GAW%20Report%20205.pdf.]

SHIPPING + DISCOUNTS AT BOOKSTORE.AMETSOC.ORG

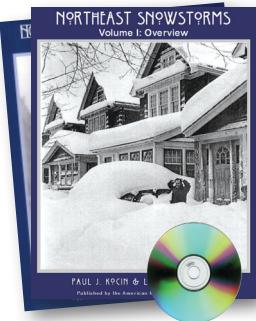
A Scientific Peak: How Boulder Became a World Center for Space and Atmospheric Science

JOSEPH P. BASSI

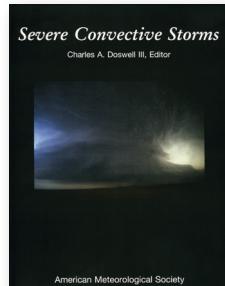

How did big science come to Boulder, Colorado? Joe Bassi introduces us to the characters, including Harvard sun-Earth researcher Walter Orr Roberts, and the unexpected brew of politics, passion, and sheer luck that during the Cold War era transformed this "Scientific Siberia" to home of NCAR and NOAA.

© 2015, PAPERBACK, 264 PAGES, ISBN: 978-1-935704-85-0

LIST PRICE: \$35.00 MEMBER PRICE: \$25.00


METEOROLOGICAL MONOGRAPH SERIES

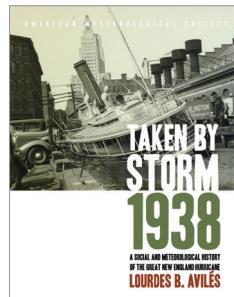
AMS Meteorological Monographs Vols. 1-55 (1947-2010) are available via Springer at springer.com/ams, with select volumes available in print via AMS at bookstore.ametsoc.org. Starting in 2016 with Vol. 56, new monographs will be open access, available via the AMS Journals Online site.


Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders

EDITED BY LANCE F.
BOSART AND
HOWARD B. BLUESTEIN

Northeast Snowstorms (Volume I: Overview, Volume II: The Cases)

PAUL J. KOCIN AND
LOUIS W. UCCELLINI

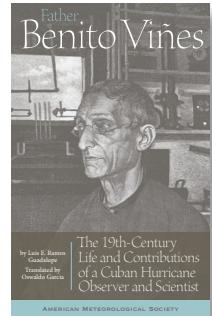

Severe Convective Storms

EDITED BY CHARLES
A. DOSWELL III

**Booksellers, groups,
or for examination copies:**
The University of Chicago Press:
1-800-621-2736 (US & Canada)
773-702-7000 (all others)
custserv@press.uchicago.edu

HISTORY

Taken by Storm, 1938:


A Social and
Meteorological
History of the Great
New England Hurricane
LOURDES B. AVILES

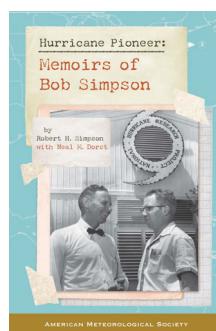
The science behind the 1938 Hurricane, which hit New England unannounced, is

presented here for the first time along with new data that sheds light on the motivations of the Weather Bureau forecasters. This compelling history successfully weaves science, historical accounts, and social analyses to create a comprehensive picture of the most powerful and devastating hurricane to hit New England to date.

© 2013, HARDCOVER, 288 PAGES, ISBN: 978-1-878220-37-0

LIST \$40 MEMBER \$30

Father Benito Viñes:


The 19th-Century Life
and Contributions of a
Cuban Hurricane Observer
and Scientist

LUIS E. RAMOS GUADALUPE
TRANSLATED BY OSWALDO GARCIA

Before Doppler radar and weather broadcasts, Spanish Jesuit Benito Viñes (1837-1893) spent decades observing the skies at Belén Observatory in colonial Cuba. Nicknamed "the Hurricane Priest," Viñes taught the public about the weather and developed the first network of weather observation stations in the Caribbean, groundwork for the hurricane warning systems we use today.

© 2014, PAPERBACK, 172 PAGES

ISBN: 978-1-935704-62-1 LIST \$20 MEMBER \$16

Hurricane Pioneer: Memoirs of Bob Simpson

ROBERT H. SIMPSON AND NEAL DORST

In 1951, Bob Simpson rode a plane into a hurricane—just one of the many pioneering exploits you'll find in these memoirs. Bob and his wife Joanne are meteorological icons: Bob was the first director of the National Hurricane Research Project and a director of the National Hurricane Center. He helped to create the Saffir-Simpson Hurricane Scale; the public knows well his Categories 1-5. Proceeds from this book help support the AMS's K. Vic Ooyama Scholarship Fund.

© 2015, PAPERBACK, 156 PAGES

ISBN: 978-1-935704-75-1 LIST \$25 MEMBER \$20

AMS Education offers a new format option to view the AMS undergraduate course ebooks.

The **WEBBOOK** IS HERE!

- ✓ Read with any web browser
- ✓ Accessible anywhere with internet access
- ✓ Accessible on public computers
- ✓ Ideal for labs with computers
- ✓ Contains dynamic web-based features
- ✓ Allows student highlighting and notetaking

ametsoc.org/webBooks