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ABSTRACT: Since Lorenz’s 1963 study and 1972 presentation, the statement “weather is chaotic’’ has been well
accepted. Such a view turns our attention from regularity associated with Laplace’s view of determinism to irregularity
associated with chaos. In contrast to single type chaotic solutions, recent studies using a generalized Lorenz model (Shen,
2019a, b; Shen et al., 2019) have focused on the coexistence of chaotic and regular solutions that appear within the same
model, using the same modeling configurations but different initial conditions. The results suggest that the entirety of
weather possesses a dual nature of chaos and order with distinct predictability. Furthermore, Shen et al. (2021a, b)
illustrated the following two mechanisms that may enable or modulate attractor coexistence: (1) the aggregated negative
feedback of small-scale convective processes that enable the appearance of stable, steady-state solutions and their
coexistence with chaotic or nonlinear limit cycle solutions, referred to as the 1% and 2™ kinds of attractor coexistence;
and (2) the modulation of large-scale time varying forcing (heating) that can determine (or modulate) the alternative
appearance of two kinds of attractor coexistence.

Recently, the physical relevance of findings within Lorenz models for real world problems has been reiterated by
providing mathematical universality between the Lorenz simple weather and Pedlosky simple ocean models, as well as
amongst the non-dissipative Lorenz model, and the Duffing, the Nonlinear Schrodinger, and the Korteweg—de Vries
equations (Shen, 2020, 2021). We additionally compared the Lorenz 1963 and 1969 models. The former is a limited-
scale, nonlinear, chaotic model; while the latter is a closure-based, physically multiscale, mathematically linear model
with ill-conditioning. Based on the above findings and results obtained using real-world global models, we then discuss
new opportunities and challenges in predictability research, with the aim of improving predictions at extended-range time
scales as well as sub-seasonal to seasonal time scales.
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INTRODUCTION

Two studies of Prof. Lorenz (Lorenz, 1963, 1972) laid
the foundation of chaos theory that emphasize a Sensitive
Dependence of Solutions on Initial Conditions (SDIC).
While the concept of SDIC can be found in earlier studies
(e.g., Poincare, 1890), the rediscovery of SDIC in Lorenz
(1963) changed our view on the predictability of weather
and climate, yielding a paradigm shift from Laplace’s
view of determinism with unlimited predictability to
Lorenz’s view of deterministic chaos with finite
predictability. Based on an insightful analysis of the
Lorenz 1963 and 1969 (L63 and L69) models, as well as
the recent development of generalized Lorenz models
(GLM, Shen, 2014, 2019a, b; Shen et al., 2019), such a
conventional view is being revised to emphasize the dual
nature of chaos and order in recent studies (Shen et al.,
2021a, b). To support and illustrate the revised view, this
short report presents the following major features:
(1) Continuous vs. Sensitive Dependence on Initial
Conditions (CDIC vs. SDIC); (2) single-types of

attractors and monostability within the L63 model;
(3) coexisting attractors and multistability within the
GLM; (4) Skiing vs. Kayaking: an analogy for
monostability and multistability; and (5) a list of non-
chaotic weather systems.

ANALYSIS AND DISCUSSION
CDIC vs. SDIC

Figure 1 compares the time evolution of solutions
from control and parallel runs that apply the same L63
model and parameters. The only difference in the two runs
is that a tiny perturbation with € = 107° was added into
the initial condition of the parallel run. Both runs initially
produce very close results but very different results at a
later time. Initial comparable results indicate CDIC, an
important feature of dynamic systems. Despite initial tiny
differences, large differences in both runs, as indicated by
the red and blue curves, appear at a later time. Such
features are then referred to as SDIC, suggesting that a
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tiny change in an IC will eventually lead to a very
different time evolution for a solution.
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Fig. 1. An illustration of SDIC. Control and parallel runs
were performed using the same model and the same
model parameters. The only difference is the inclusion of
an initial tiny perturbation within the parallel run. Two
runs initially produced almost the same result for t € [0,
25], as shown with the red curve. This feature is called
CDIC. During longer time integrations, the appearance of
two curves (in red and blue) indicates significant
differences (i.e., the “rapid divergence”) of solutions for
the two runs. Such a feature is then called SDIC.

Single-type of attractors and monostability

Since Lorenz (1963), chaotic solutions have been a
focal point for several decades, yielding the statement of
“weather is chaotic”. In fact, depending on the relative
strength of heating, the L63 model also produces non-
chaotic solutions such as steady-state and limit cycle
solutions (e.g., Figure 1 of Shen et al., 2021b). Given a
model configuration, only one-type of solution appears,
referred to as monostability, as shown in Fig. 2 (left).
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Fig. 2. Monostability illustrated by the chaotic solution of
the L63 model (left), and multistability by coexisting
chaotic and steady-state solutions of the GLM (right).

Coexisting attractors and multistability

By comparison, as shown in Fig. 2 (right), one of the
major features within the GLM is so-called multistability
with coexisting attractors. Two kinds of attractor
coexistence include the 1% kind that contains coexisting
chaotic and steady-state solutions and the 2"¢ kind that
possesses coexisting, limit-cycle, and steady-state
solutions. As a result of the multistability, SDIC does not
always appear.
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Skiing vs. Kayaking: an analogy for monostability and
multistability

To illustrate SDIC, Lorenz (1993) applied the activity
of skiing (left in Fig. 3) and developed an idealized skiing
model for revealing the sensitive dependence of time-
varying paths on starting points (middle in Fig. 3). The
left panel for skiing may indicate monostability when
slopes are steep everywhere. By comparison, the right
panel for kayaking is used to illustrate multistability. In
the photo, both strong currents and a stagnant area
(outlined with a white box) can be identified, suggesting
both instability and local stability. As a result, when two
kayaks move along strong currents, their paths display
SDIC. On the other hand, when two kayaks move into the
stagnant area, they become trapped. The features of
kayaking reveal the nature of multistability.

multistability
SDIC or no SDIC

monostability

-

ASkiing Kéyaking

Fig. 3. Skiing as used to reveal SDIC and monostability
(left and middle, Lorenz, 1993), and kayaking as used to
multistability (right, Copyright: ©Carol-

stock.adobe.com).

indicate

Non-chaotic weather systems

Although chaotic solutions have received great
attention, non-chaotic solutions have also been applied for
understanding the dynamics of different weather systems,
including steady-state solutions for investigating
atmospheric blocking (e.g., Charney and DeVore, 1979;
Crommelin et al., 2004), limit cycles for studying Quasi-
Biennial Oscillations (e.g., Renaud et al., 2019) and
vortex shedding (Ramesh et al., 2015), and nonlinear
solitary-pattern solutions for understanding morning
glory (i.e., low-level roll clouds, Goler and Reeder, 2004).

CONCLUDING REMARKS

By deploying a generalized Lorenz model (GLM)
containing major features of attractor coexistence and
multistability, we discussed time varying multistability
that is enabled and/or modulated by (1) the aggregated
negative feedback of small-scale convective processes
and (2) large-scale time varying forcing (heating). Using
an insightful analysis of the L63 and L69 models, we
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presented two types of sensitivities. The SDIC of the L63
model was applied to define the butterfly effect. The 2nd
type of sensitivity with ill-conditioning was found in the
L69 model. As a result of multistability, SDIC does not
always appear within the GLM.

Based on the classification of intrinsic and practical
predictabilities that display a dependence on flow, and
imperfect numerical tools and observations, respectively,
we further showed that:

* The L63 nonlinear model is effective for
revealing the chaotic nature of weather,
suggesting finite intrinsic predictability.

* The GLM with multistability suggests both
limited and unlimited intrinsic predictability for
chaotic and non-chaotic solutions, respectively.

»  Using selected cases within a global model (e.g.,
Shen, 2019b), a practical predictability of 30 days
was previously documented.

The above results suggest a revised view on the dual
nature of chaos and order with distinct predictability in
weather and climate. The refined view on the dual nature
of weather is neither too optimistic nor pessimistic as
compared to the Laplacian view of deterministic
predictability that is unlimited and the Lorenz view of
deterministic chaos with finite predictability. The refined
view may unify our theoretical understanding of different
predictability and recent global model simulations that
display promising results at two to four week time scales.
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