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ABSTRACT: Since Lorenz’s 1963 study and 1972 presentation, the statement “weather is chaotic’’ has been well 
accepted. Such a view turns our attention from regularity associated with Laplace’s view of determinism to irregularity 
associated with chaos. In contrast to single type chaotic solutions, recent studies using a generalized Lorenz model (Shen, 
2019a, b; Shen et al., 2019) have focused on the coexistence of chaotic and regular solutions that appear within the same 
model, using the same modeling configurations but different initial conditions. The results suggest that the entirety of 
weather possesses a dual nature of chaos and order with distinct predictability. Furthermore, Shen et al. (2021a, b) 
illustrated the following two mechanisms that may enable or modulate attractor coexistence: (1) the aggregated negative 
feedback of small-scale convective processes that enable the appearance of stable, steady-state solutions and their 
coexistence with chaotic or nonlinear limit cycle solutions, referred to as the 1st and 2nd kinds of attractor coexistence; 
and (2) the modulation of large-scale time varying forcing (heating) that can determine (or modulate) the alternative 
appearance of two kinds of attractor coexistence. 
 
Recently, the physical relevance of findings within Lorenz models for real world problems has been reiterated by 
providing mathematical universality between the Lorenz simple weather and Pedlosky simple ocean models, as well as 
amongst the non-dissipative Lorenz model, and the Duffing, the Nonlinear Schrodinger, and the Korteweg–de Vries 
equations (Shen, 2020, 2021). We additionally compared the Lorenz 1963 and 1969 models. The former is a limited-
scale, nonlinear, chaotic model; while the latter is a closure-based, physically multiscale, mathematically linear model 
with ill-conditioning. Based on the above findings and results obtained using real-world global models, we then discuss 
new opportunities and challenges in predictability research, with the aim of improving predictions at extended-range time 
scales as well as sub-seasonal to seasonal time scales. 
 
Keywords: attractor coexistence, chaos, generalized Lorenz model, Pedlosky model, predictability. 
 
INTRODUCTION 

Two studies of Prof. Lorenz (Lorenz, 1963, 1972) laid 
the foundation of chaos theory that emphasize a Sensitive 
Dependence of Solutions on Initial Conditions (SDIC). 
While the concept of SDIC can be found in earlier studies 
(e.g., Poincare, 1890), the rediscovery of SDIC in Lorenz 
(1963) changed our view on the predictability of weather 
and climate, yielding a paradigm shift from Laplace’s 
view of determinism with unlimited predictability to 
Lorenz’s view of deterministic chaos with finite 
predictability. Based on an insightful analysis of the 
Lorenz 1963 and 1969 (L63 and L69) models, as well as 
the recent development of generalized Lorenz models 
(GLM, Shen, 2014, 2019a, b; Shen et al., 2019), such a 
conventional view is being revised to emphasize the dual 
nature of chaos and order in recent studies (Shen et al., 
2021a, b). To support and illustrate the revised view, this 
short report presents the following major features:  
(1) Continuous vs. Sensitive Dependence on Initial 
Conditions (CDIC vs. SDIC); (2) single-types of 
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attractors and monostability within the L63 model;  
(3) coexisting attractors and multistability within the 
GLM; (4) Skiing vs. Kayaking: an analogy for 
monostability and multistability; and (5) a list of non-
chaotic weather systems. 
 
ANALYSIS AND DISCUSSION 
CDIC vs. SDIC 

Figure 1 compares the time evolution of solutions 
from control and parallel runs that apply the same L63 
model and parameters. The only difference in the two runs 
is that a tiny perturbation with 𝜖 = 10−10 was added into 
the initial condition of the parallel run. Both runs initially 
produce very close results but very different results at a 
later time. Initial comparable results indicate CDIC, an 
important feature of dynamic systems. Despite initial tiny 
differences, large differences in both runs, as indicated by 
the red and blue curves, appear at a later time. Such 
features are then referred to as SDIC, suggesting that a 
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tiny change in an IC will eventually lead to a very 
different time evolution for a solution. 

 
Fig. 1. An illustration of SDIC. Control and parallel runs 
were performed using the same model and the same 
model parameters. The only difference is the inclusion of 
an initial tiny perturbation within the parallel run. Two 
runs initially produced almost the same result for τ ∈ [0, 
25], as shown with the red curve. This feature is called 
CDIC. During longer time integrations, the appearance of 
two curves (in red and blue) indicates significant 
differences (i.e., the “rapid divergence”) of solutions for 
the two runs. Such a feature is then called SDIC. 
 

Single-type of attractors and monostability 
Since Lorenz (1963), chaotic solutions have been a 

focal point for several decades, yielding the statement of 
“weather is chaotic”. In fact, depending on the relative 
strength of heating, the L63 model also produces non-
chaotic solutions such as steady-state and limit cycle 
solutions (e.g., Figure 1 of Shen et al., 2021b). Given a 
model configuration, only one-type of solution appears, 
referred to as monostability, as shown in Fig. 2 (left). 

 
Fig. 2. Monostability illustrated by the chaotic solution of 
the L63 model (left), and multistability by coexisting 
chaotic and steady-state solutions of the GLM (right). 
 
Coexisting attractors and multistability 

By comparison, as shown in Fig. 2 (right), one of the 
major features within the GLM is so-called multistability 
with coexisting attractors. Two kinds of attractor 
coexistence include the 1st kind that contains coexisting 
chaotic and steady-state solutions and the 2nd kind that 
possesses coexisting, limit-cycle, and steady-state 
solutions. As a result of the multistability, SDIC does not 
always appear. 
 
 

Skiing vs. Kayaking: an analogy for monostability and 
multistability 

To illustrate SDIC, Lorenz (1993) applied the activity 
of skiing (left in Fig. 3) and developed an idealized skiing 
model for revealing the sensitive dependence of time-
varying paths on starting points (middle in Fig. 3). The 
left panel for skiing may indicate monostability when 
slopes are steep everywhere. By comparison, the right 
panel for kayaking is used to illustrate multistability. In 
the photo, both strong currents and a stagnant area 
(outlined with a white box) can be identified, suggesting 
both instability and local stability. As a result, when two 
kayaks move along strong currents, their paths display 
SDIC. On the other hand, when two kayaks move into the 
stagnant area, they become trapped. The features of 
kayaking reveal the nature of multistability. 

 
Fig. 3. Skiing as used to reveal SDIC and monostability 
(left and middle, Lorenz, 1993), and kayaking as used to 
indicate multistability (right, Copyright: ©Carol- 
stock.adobe.com). 
 

Non-chaotic weather systems 
Although chaotic solutions have received great 

attention, non-chaotic solutions have also been applied for 
understanding the dynamics of different weather systems, 
including steady-state solutions for investigating 
atmospheric blocking (e.g., Charney and DeVore, 1979; 
Crommelin et al., 2004), limit cycles for studying Quasi-
Biennial Oscillations (e.g., Renaud et al., 2019) and 
vortex shedding (Ramesh et al., 2015), and nonlinear 
solitary-pattern solutions for understanding morning 
glory (i.e., low-level roll clouds, Goler and Reeder, 2004). 
 
CONCLUDING REMARKS 

By deploying a generalized Lorenz model (GLM) 
containing major features of attractor coexistence and 
multistability, we discussed time varying multistability 
that is enabled and/or modulated by (1) the aggregated 
negative feedback of small-scale convective processes 
and (2) large-scale time varying forcing (heating). Using 
an insightful analysis of the L63 and L69 models, we 
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presented two types of sensitivities. The SDIC of the L63 
model was applied to define the butterfly effect. The 2nd 
type of sensitivity with ill-conditioning was found in the 
L69 model. As a result of multistability, SDIC does not 
always appear within the GLM. 

Based on the classification of intrinsic and practical 
predictabilities that display a dependence on flow, and 
imperfect numerical tools and observations, respectively, 
we further showed that: 

• The L63 nonlinear model is effective for 
revealing the chaotic nature of weather, 
suggesting finite intrinsic predictability. 

• The GLM with multistability suggests both 
limited and unlimited intrinsic predictability for 
chaotic and non-chaotic solutions, respectively. 

• Using selected cases within a global model (e.g., 
Shen, 2019b), a practical predictability of 30 days 
was previously documented. 

The above results suggest a revised view on the dual 
nature of chaos and order with distinct predictability in 
weather and climate. The refined view on the dual nature 
of weather is neither too optimistic nor pessimistic as 
compared to the Laplacian view of deterministic 
predictability that is unlimited and the Lorenz view of 
deterministic chaos with finite predictability. The refined 
view may unify our theoretical understanding of different 
predictability and recent global model simulations that 
display promising results at two to four week time scales. 
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