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Abstract: Defining fishing grounds based on data from vessel monitoring systems (VMS) has been a widely researched topic in
recent years. Much of the research has focused on filtering algorithms for identifying fishing locations from VMS point data,
most often supplemented with either imputed or reported vessel speed information. This study compared the precision of
categorizing fishing locations from VMS data either by the most wide-spread “speed rule” approach or by a probability model.
Using data from Northeast U.S. Fisheries for fishing years 2010-2014, we showed that the traditional representation of fishing
activities as derived by speed rules leads to a severe misrepresentation of fishing grounds for gears other than bottom otter trawl.
Predictions based on probability models outperformed gear-specific speed rules in classifying VMS polls for sink gillnet and
scallop dredge trips, without adding substantial computational effort. The probability models thus provide the largest improve-
ments in gears with complicated fishing patterns, while controlling for issues such as fleet dynamics that historically have not
been dealt with in the static speed rules but which can have significant impacts on the quality of predictions.

Résumé : La délimitation des régions de péche a la lumiere de données de systémes de surveillance des navires (SSN) est un sujet
qui a fait I’'objet de nombreux travaux de recherche ces dernieres années. Une bonne partie de ces travaux s’intéressait aux
algorithmes de filtrage permettant de cerner les lieux de péche a partir de données de SSN ponctuelles, le plus souvent
complétées par de I'information sur la vitesse imputée au navire ou rapportée pour celui-ci. L’étude compare la précision de la
catégorisation des lieux de péche a partir de données de SSN par ’approche la plus répandue des « régles de vitesse » et avec un
modele de probabilité. En utilisant des données sur les péches dans le nord-est des Etats-Unis pour les années de péche de 2010
a 2014, nous démontrons que la représentation traditionnelle des activités de péche établie a partir de régles de vitesse produit
une caractérisation trés imparfaite des zones de péche pour les engins autres que les chaluts a panneaux de fond. Les prédictions
basées sur les modeles de probabilité donnent de meilleurs résultats que les régles de vitesse pour des engins précis pour la
classification des données de SSN pour les sorties de péche au filet maillant de fond et au pétoncle a la drague, sans nécessiter
d’importants efforts computationnels supplémentaires. Les modéles de probabilité produisent donc les plus grandes améliora-
tions pour les engins associés a des motifs de péche compliqués, tout en tenant compte de questions, comme la dynamique des
flottes, qui, par le passé, n’étaient pas intégrées dans les regles de vitesse statiques, mais qui peuvent avoir une importante
incidence sur la qualité des prédictions. [Traduit par la Rédaction]

The most common method to classify VMS polls as fishing, as
the data itself do not directly indicate this, is the speed rule. This
method classifies VMS as fishing if the vessel speed falls within a
specific range. VMS-based speed rules have been used to evaluate
the seabed impact of demersal fishing (Diesing et al. 2013;
Gerritsen et al. 2013), assess the impact of closures on cod in
Scotland (Needle and Catarino 2011), calculate stock allocations in
the Northeastern U.S. fisheries (Palmer and Wigley 2009), and
identify spawning areas of blue ling in the UK (Large et al. 2010).
Depending on the fishery and the specific thresholds employed,
speed rules have demonstrated that high rates of true positives
are often connected to high rates of false positives. So, for exam-
ple, Skaar et al. (2011) obtained for their small sample of demersal
stern trawlers in the Barents Sea a true positive rate of 75%-80%

Introduction

Vessel monitoring systems (VMS) are satellite-based surveil-
lance systems that send vessel identification and location (the
VMS poll) information at pre-specified time intervals, often for
fishery enforcement. In the Northeastern U.S., VMS is used in part
because the use of human observers is cost prohibitive and they
are impractical to deploy on every trip. Globally, there is a desire
to use VMS data for fine-scale fishing location information. Like-
wise, in the Northeastern U.S., fine-scale fishing location data
from VMS units may augment self-reported fishing location data,
where fishermen are only required to report one fishing latitude-
longitude per logbook entry. For example, a bottom trawler in our
data reported a single latitude-longitude for a 13 day trip of length

of roughly 1 300 km, including 50 hauls. The spatial coarseness of
the logbook data creates substantial imprecision in determining
relevant spatial metrics (e.g., biomass removals, habitat impacts,
etc.), and this underlies the need for VMS-based analysis.

and a false positive rate of only 10%-15%. In contrast, Gerritsen and
Lordan (2011) correctly predicted 88% of fishing polls for the Irish
otter trawl fleet, while at the same time, a false positive rate of 68%
was generated. More strikingly, O’Farrell et al. (2017) attained a
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true positive rate of only 49% but a false positive rate of 95% when
employing speed rules in the Gulf of Mexico bandit-reel fishery.

The appropriate speed rule depends on the characteristics of
the fleet of interest, including size and horsepower of the vessels,
gear employed, species targeted, depth of fishing, current strength,
and wave size. These characteristics obviously vary greatly across
management regions. Furthermore, the elapsed time between
polls may range from at least once an hour in the Northeastern
U.S. to 2 h in much of Europe (EC 2009; Murray et al. 2011) and to
every 6 h in certain Taiwanese fleets (Chang and Yuan 2014). These
differences lead to data variation that hinders the simple transfer
of speed rules across fleets or regions.

This study developed a probability model for VMS polls appli-
cable across gear groups and robust to variable polling frequen-
cies. Although not the first statistical approach employed (e.g.,
Vermard et al. 2010; Walker and Bez 2010; de Souza et al. 2016), the
generalized linear model (GLM) framework presented here is ame-
nable to large datasets and varying polling frequencies that can
prove problematic to Bayesian techniques (Peel and Good 2011;
Banerjee and Fuentes 2012), with only a small increase in imple-
mentation complexity over speed rules. We assess probability
models for three fishing gear types with a focus on their ability to
correctly predict both fishing and nonfishing activity and find
that these models provide substantial performance gains relative
to speed rules for two of three gears.

Materials and methods

Data

This study used data from the Northeast U.S. Fisheries for the
fishing years 2010-2014. The analysis was restricted to the three
main gear groups employed in the region: (i) scallop dredges,
(i) sink gillnet, and (iii) bottom otter trawl. VMS data were merged
with logbook data (vessel trip reports, VIR) to assign the fishing
gear employed to each VMS poll in the dataset. The data was also
linked to the Northeast Fisheries Observer Program (NEFOP) and
the At-Sea-Monitoring Program (ASM) datasets, which were com-
piled by on-board human monitors that identify the start and end
times of the fishing hauls.

Vessels were required to have a VMS on board if their commer-
cial fishing activity was subject to a Fishery Management Plan
with a VMS requirement. Relevant for federal management and
for this study was only the fishing activity within the exclusive
economic zone (EEZ) and conducted after the vessel crossed the
VMS demarcation line (approximately three nautical miles from
shore). Although there were some exceptions (e.g., scallop rota-
tional area trips and groundfish trips exploiting the shared
U.S.-Canada resource), most vessels were obliged to send their
positions once an hour and at increased intervals when the
vessel approached fishing closures.

This research focused on VMS signals that could be temporally
linked to an active commercial fishing trip according to the VIR
(Bastardie et al. 2010). Due to the time gap between VMS signals,
the VTR-observer data were merged with the VMS data by date
and time, with a deviation of 1 h to capture VMS signals shortly
before and after the self-declared start and end of the trip, as
defined in the vessel’s VTR. According to the VIR records, in total,
more than 108 000 bottom otter trawl, ca. 73 000 sink gillnet, and
44 000 scallop dredge trips occurred in the period under consid-
eration. However, not all of these trips were required to have a
VMS transponder on board. Furthermore, only a fraction of the
trips was required to take a human observer on board (ca. 15%, but
varies widely between fisheries). Our final dataset, the combined
logbook, VMS, and observer data, represents ca. 8% of all commer-
cial bottom otter trawl trips, 10% of all commercial sink gillnet
trips, and 5% of all commercial scallop dredge trips for the given
period — coverage that was driven primarily by observer coverage
requirements and, importantly, not by failure to match trips
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across data sets. Although this coverage of commercial fishing
trips may seem low, the bottom otter trawl dataset consisted of
about 930 000 VMS polls, the sink gillnet dataset consisted of
about 147 000 VMS polls and the scallop dredge dataset consisted
of about 550 000 VMS polls, presenting an abundance of data.
Furthermore, the probability model was based predominantly on
the physical characteristics of fishing activities that are mechanis-
tic in nature and unlikely to be affected by fisherman’s strategic
behavior when observed. All VMS polls of trips with data incon-
sistencies (e.g., new trip starts before last trip ends, or VMS signals
generating imputed speeds above 40 km/h) or of trips that did not
have enough data for reliable estimation (e.g., only one VMS poll
per trip, trip duration is less than 1 h, or no observed fishing
activity was captured by any of the VMS polls within the trip) were
excluded. VMS polls were also removed from the dataset if there
was less than 1 m movement between two consecutive polls be-
longing to the same trip or if all polls belonging to one trip were
only located between shore and VMS demarcation line, to focus
on federal fishing activities. Cleaned VMS data included dupli-
cates in coordinates (i.e., ca. 7% of the bottom otter trawl VMS
polls, 4% of the scallop dredge VMS polls, and 3.5% of the sink
gillnet VMS polls) that were sent with different timestamps but
likely overlap due to imprecision in the transmitted location.
These duplicated coordinates were excluded from the analysis.

VMS polls were identified as observed fishing polls if their time-
stamp fell within the time range of an observed fishing haul ac-
cording to the onboard observer. The observed VMS fishing polls
were the baseline for the comparison between the speed rule and
probability models conducted in this study. It should be noted
that the ratio of fishing polls to nonfishing polls in the observed
VMS data differed substantially between gear groups. For bottom
otter trawlers, the ratio of fishing to nonfishing VMS polls aver-
aged 1.3 across the study period, whereas the same ratio was about
0.9 for scallop dredges and 0.5 for sink gillnetters. These differ-
ences were driven by differences in fishing practices, particularly
with regards to the duration of fishing hauls and length of trips
(predominantly 1 day trips for sink gillnetters vs. multi-day trips
for bottom otter trawlers or scallop dredges). Moreover, bottom
otter trawlers tended to fish over long periods of time (averaging
3.3 h) following relatively linear depth contour lines (Thomas-Smyth
et al. 2015). In contrast, scallop dredges often followed a zig-zag
course with shorter tow durations (averaging 1 h), before circling
back to their starting point. After the haul, scallop fishermen
would sometimes stop the vessel to shuck (i.e., process) scallops
and clear the deck (Hart and Rago 2006; Palmer and Wigley 2009).
This created very different speed patterns of fishing in the data
between the two gears. In comparison, sink gillnetters are consid-
ered a fixed gear, which means the vessels stop to haul anchored
nets on board, empty the catch, and reset the nets. This fishing
activity averaged less than 1 h, meaning that VMS polls fall within
observed fishing activities less frequently than the other gears
studied, an issue previously raised by O’Farrell et al. (2017).

Unlike other systems, VMS in the Northeastern U.S. did not
transmit the instantaneous speed or the bearing angle of the ves-
sel, necessitating the calculation of imputed speeds and angles.
Speed at the VMS poll was calculated as the mean vessel speed
(distance/time) from the lagged VMS poll assuming the vessel trav-
eled in a straight line between consecutive polls. The difference in
speed between the imputed speed of the current and lagged VMS
polls was also derived for the analysis. The bearing angle of the
current VMS poll heading towards the next VMS poll was esti-
mated assuming a straight line between polls. The bearing angle
was included in the analysis following the argument of Mills et al.
(2007) that vessel bearing angle may help to characterize the ac-
tivity of the vessel at a point in time and has been used in numer-
ous studies (Vermard et al. 2010; Bez et al. 2011; O’Farrell et al.
2017).
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To more precisely differentiate between fishing, anchoring, and
steaming activities, an indicator variable called speed range was
computed, which took on a value of 1if the imputed speed of the
current VMS poll deviated less than 1 km/h from the mean speed
of the lag, current, and lead VMS polls (O’Farrell et al. 2017). Given
that speed was an imputed average at a point in time, the “speed
range” indicator sought to capture the probability that a shift in
activity occurred shortly before or after the current poll, while the
continuous variable of “difference in speed” captured the proba-
bility that the shift in activity occurred shortly after the proceed-
ing poll.

Fishing is more likely to be observed in the middle of the fishing
trip, as both the beginning and end of a trip tends to represent
travel to and from port. To capture this nonlinearity, a position
weight and the squared accumulated distance of the trip were
included. The position weight (p;) was an inverse U-shaped func-
tion based on the position of the VMS poll within the trip, with a
maximum of 1 and taking the following form:

1

v

if (n; — (N/2 + 1)) # 0, otherwise p;, = 1

where n; is an integer indicating the position of the VMS poll
within a sub-trip and N denotes the total number of VMS polls
belonging to the sub-trip. A trip was broken up into sub-trips if
consecutive VMS polls had a deviation of less than 1 m. As an
example, if a sub-trip included 40 VMS polls, the first and last VMS
poll received a position weight close to 0 whereas VMS poll 21
received a position weight of 1. Sub-trips were defined following
similar logic to that employed when developing the indicators for
abrupt speed changes. This weight only accounted for the VMS
poll’s relative position within the trip but did not account for the
distance or the time lag between VMS polls. Scheduled VMS polls
were sometimes missing due to issues such as poor weather con-
ditions. Additionally, VMS systems were used for ship to ship
communications, and a VMS poll was sent each time the vessel
used the VMS system as a communication tool. This generated
polls at higher frequency than would otherwise be expected. To
account for the nonstandard time frequency between the VMS
polls, the accumulated distance between the VMS polls based on
the geodetic distance was included (similar to O’Farrell et al.
(2017)). Assuming, as above, that the earlier and latter parts of the
trips were steaming rather than fishing activities and noting that
substantial travel was necessary to reach certain fishing locations,
any nonlinearity of the likelihood of the fishing activity with
respect to distance traveled was captured by including the
squared accumulated distance in addition to the position weight,
without accounting for sub-trips.

To capture the depth of the seabed at the vessel’s location, the
VMS poll was linked to its closest coastal bathymetric contour line,
measured in metres and based on data originating from the U.S.
Coastal Relief Model made available by the NOAA National Geophys-
ical Data Center. The depth of the seabed was included to capture
target species ranges (NEFMC 2016). For example, scallop dredges
primarily target Atlantic sea scallops (Placopecten magellanicus
(Gmelin, 1791)), which are commercially harvested predominantly at
depths between 35 and 100 m. Similar general rules regarding the
depth of species target by sink gillnets and bottom otter trawls
apply. For example, black sea bass (Centropristis striata (Linnaeus,
1758)) is most often found at less than 36 m, monkfish (Lophius
americanus Valenciennes in Cuvier and Valenciennes, 1837) occurs
primarily between 25 and 200 m, and summer flounder (Paralichthys
dentatus (Linnaeus, 1766)) range in depths up to 152 m during the
spring but, in fall, tend to occur at depths less than 61 m. Hence,
the depth variable helped to distinguish between areas in which
fishing was likely due to target species abundance (in a similar
manner to O’Farrell et al. (2017)). A variable for the difference in
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depth (depth - depth, ;) captured the fact that mobile fishing
gears tend to follow depth contours while actively fishing
(Thomas-Smyth et al. 2015). Hence, large differences in seabed
depth were more likely to be associated with steaming instead of
fishing.

Time-specific characteristics were captured by indicator vari-
ables denoting fishing year, month, and day of the week and
whether the VMS poll occurred during the day or night. Moon
phases were also included, as they can correlate to activity levels
and other fish behavior (Henderson and Fabrizio 2011), which in
turn could change optimal targeting and fishing behavior or the
tide might influence fishing location (e.g., Damalas et al. 2007).
Because of this, the moon phases of the night before and the night
of the VMS poll were controlled for through another set of indi-
cator variables. Although moon phase dummies looked to capture
cyclical changes in target species behavior that might in turn have
affected fishing behavior, day of the week dummies identified
cyclical market dynamics that might explain the probability of
steaming versus fishing activity. For example, Lee (2014) indicates
that demand for groundfish in New England is lower on Fridays,
as processors tend to close over the weekend. This would suggest
that groundfish fishermen were less likely to be steaming to shore
on Fridays, when compared with other days of the week, changing
the overall probability of a poll being associated with fishing ac-
tivity.

Fishing speed is determined not only by the vessel gear and its
size, but also by the vessel’s power. We controlled for this by
incorporating the ratio of the vessel’s horse power to its length
(VHP/length). An interaction term between the vessel characteris-
tic and imputed speed captured the interdependence between
these characteristics for fishing activities.

To avoid scaling issues, continuous variables were z standard-
ized (subtracting the mean and dividing by the standard deviation
of the respective variable) before entering the regression models.
The descriptive statistics of the data in raw format can be found in
Appendix Tables A1l and A2. The geographic distribution of the
data by gear group is shown in Figs. 1-3.

Fishing activity prediction based on VMS data

Speed rule method

To separate VMS polls into fishing and nonfishing activities,
Palmer and Wigley (2009) developed a gear-specific speed rule for
the same fleet as the present study using a different period (i.e.,
calendar year 2005). We used their study as a point of departure
for our analysis. Palmer and Wigley (2009) argue that VMS polls
with an imputed speed in the range of 3.7-7.4 km/h for otter
trawls, 4.6-11.1 km/h for scallop dredges, and 0.2-2.4 km/h for sink
gillnet generally represent fishing activity. Lee et al. (2010) claim
that a speed range of 1-8 knots (i.e., 1.852-14.816 km/h), irrespec-
tive of the gear employed, reliably identifies fishing polls and
corresponding fishing locations. We compared the two speed
rules to assess the predictive quality of these simple rules (i.e.,
true positive and false positive rates) compared with actual ob-
served fishing locations (i.e., VMS polls related to fishing activities
according to the human observer on board of the vessel).

Probability model

Instead of using speed rules, D. Records and C. Demarest (2013,
unpublished manuscript) proposed the use of a GLM, specifically a
logistic regression model, to estimate the probability a VMS poll
corresponds to fishing activity based on observer data. The logistic
regression estimates the log odds of the probability of “fishing”,
which depends on a set of p explanatory variables X = (X;, X,, ...,
X,)- The dependent variable y; equals 1 if the VMS poll occurs
during a known fishing period and equals 0 otherwise. More for-
mally, this relationship is modeled as follows, based on Greene
(2008):
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Fig. 1. Spatial distribution of VMS polls that belong to a fishing haul according to observer data (left) and according to GLM prediction using
the Youden’s J statistic as threshold (right) for scallop dredge trips (fishing years 2010-2014).
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Fig. 2. Spatial distribution of VMS polls that belong to a fishing haul according to observer data (left) and according to GLM prediction using
the Youden’s J statistic as threshold (right) for sink gillnet trips (fishing years 2010-2014).

-76° -75° -74° -73° -12° -711° -70° -69° -68° -67° -76° -75° -74° -73° -12° -71° -70° -69° -68° -67¢
1 1 1 1 1 L 1 1 1 1 1 1 1 1 1 1 1 1
45° 8 N [45°
Maine By g8 A
bs \-: )
44° & é A -44°
.

- New York New Hampshire: 3’ s 43¢
-42°
41°
-40°
-39°
-38°
-37°
-36°

Fishing activity based on observer data & Fishing activity based on GLM prediction of the
VMS polls for sink gillnet (FY 2010-14) VMS polls & Youden's Index for sink gillnet (FY 2010-14)
-35°
oX'B bility of a VMS poll being a fishing poll based on the following

(2)  Pr(Y =1X =x) = Fx,p) = explanatory variables (X): speed, its square (speed?), difference in
speed (speed - speed,_,), deviation in speed (speed range), ocean

depth (depth), difference in ocean depth (depth -- depth,_,), turn-

1+ eXIB

In this formulation, Y = (y;, ¥,, ..., ¥,), which took the value of 1
if poll i € (1, ..., n) occurred during a known fishing event and
equaled 0 otherwise, x; were observed characteristics of poll i, and
B were the parameters to be estimated. We estimated the proba-

ing angle (angle), position weight, the accumulated distance (dis-
tance), its square (distance?), the vessel characteristic (VHP/
length), an interaction term between vessel power characteristic
and speed (VHP/length x speed), and temporal dummies (for ex-
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Fig. 3. Spatial distribution of VMS polls that belong to a fishing haul according to observer data (left) and according to GLM prediction using
the Youden’s J statistic as threshold (right) for bottom otter trawl trips (fishing years 2010-2014).
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ample, fishing year, month, day of the week, time of the day, and
moon phase). The model stability, quality, and convergence char-
acteristics were assessed by calculating the variance inflation fac-
tor for the matrix of independent variables, as well as the
gradients and the condition number of the estimation models,
following McCullough and Vinod (2003) and Greene (2008). The
estimation results were thus investigated for potential biases
and convergence issues due to multicollinearity and over-
specification. We tested the residuals of the estimation for spatial
and serial correlation. Spatial correlation in the residuals were
assessed by calculating Moran’s I (assessing global spatial correla-
tion) and Geary’s C (assessing local spatial correlation) for the
15 nearest neighbors. Results were robust to changes in the number
of neighbors used. We tested for serial autocorrelation by calcu-
lating and assessing Durbin-Watson statistics, following Baltagi
(2011) who notes that serial correlation does not bias the coeffi-
cient estimation but inflates the standard error in a similar man-
ner to multicollinearity. To guard generally against biased
standard errors, we calculated the standard error based on a het-
eroscedasticity and autocorrelation consistent covariance matrix
(i.e., sandwich method as described in Greene (2008)). The models
were further estimated separately for each gear group to allow for
difference in the coefficients of the explanatory variables between
gears.

We randomly drew 50% of trips for each fishing year and re-
served their corresponding VMS data to fit the GLM. The remain-
ing data was used to generate out-of-sample predictions to
validate our estimates. To avoid potential sampling bias, we re-
peated the random draw of trips 20 times. According to Greene
(2008), the difference in the predicted probability should be small
if the variation in the sample data are low. Hence, if sampling bias
or outliers (i.e., high leverage) were an issue, both the coefficient
and the predicted values should deviate significantly. This process
(including the number of repeats) was similar to the iterative
bootstrap approach used by O’Farrell et al. (2017) to assess the
prediction quality of their training data approach. We chose
20 draws, a number sufficient to detect sampling bias if it existed.

Comparing speed rule approach with probability model
prediction quality

The predictions of the deterministic speed rule approaches
were compared with the predictions of the probability models
using receiver operating characteristics (ROC) graphs and the area
under its curve (AUC) following Fawcett (2006). The ROC is a two-
dimensional graph, which plots the sensitivity (true positive rate)
and specificity (1- false positive rate) of different prediction meth-
ods against each other while continuously increasing the cutoff
threshold. This method allows a direct comparison of the predic-
tive quality of differing methods. However, the speed rule meth-
ods provided only one true positive and false positive rate for each
approach. To compare the speed rule approaches with the proba-
bility model, this one point was connected by a direct line with
the (0, 100) and (100, 0) point of the graph to create comparable
ROC curves, as well as to calculate the AUCs. The approach with
the best predictive quality is the one with the most upper-left
extent in the ROC graph. However, as curves may overlap and the
direction “top left” is a rather flexible definition, the AUC pro-
vided a more precise measure of the prediction quality. The
method that generates the largest AUC delivers the highest pre-
dictive quality.

As each observation was predicted anywhere from 1 to 20 times,
we randomly drew a single predicted value for each observation.
These randomly selected observation predictions formed the ba-
sis for constructing the ROC curve to which each corresponding
speed rule’s curve was compared. The 95% confidence intervals for
the GLM predictions were used as lower and upper bounds of the
ROC curve (GLM-ROC). The cutoff threshold was determined by
the Youden’s ] statistic (Youden 1950) based on the predicted GLM-
ROC. The threshold was fixed for the ROC created by the speed
rule approaches to assess the true positive and false positive rates
at this cutoff point for these approaches (Table 4). Maps were
drawn using the Youden’s ] statistic as the cutoff point, based on
the GLM predictions (Figs. 1-3). We did not include similar maps
for speed rule determined fishing locations, as on this scale, the
differences between maps were not observable.
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Table 1. Results of the general and parsimonious GLM estimations for the scallop dredge VMS polls based on 50% of the trips resampled (with

replacement) randomly 20 times.

Full model Parsimonious model
Variable Coefficient Robust standard error Coefficient Robust standard error
Speed -0.719** [-0.763; —0.688]  0.009 [0.008; 0.009] -0.724** [-0.775; —0.693]  0.008 [0.008; 0.009]
VHP/length 0.051" [0.022; 0.084] 0.005 [0.005; 0.006] 0.055"* [0.033; 0.090] 0.005 [0.005; 0.006]
VHP/length x speed 0.104** [0.087; 0.123] 0.007 [0.006; 0.007] 0.102*** [0.067; 0.139] 0.007 [0.006; 0.007]
Speed? -1.092** [-1.120; -1.059]  0.011 [0.010; 0.012] -1.089"* [-1.118; -1.062]  0.010 [0.009; 0.011]
Speed - speed, ; 0.006 [-0.007; 0.025] 0.006 [0.006; 0.006] — —
Angle 0.016* [0.004; 0.027] 0.005 [0.005; 0.005] 0.014** [0.004; 0.029] 0.005 [0.005; 0.005]
Position weight 0.008 [-0.018; 0.039] 0.013 [0.012; 0.013] — —
Depth -0.003 [-0.079; 0.041] 0.006 [0.004; 0.010] — —
Depth - depth, , -0.024* [-0.034; —0.011]  0.006 [0.006; 0.007] -0.022" [-0.036; =0.009]  0.007 [0.005; 0.009]
Speed range -0.613"* [-0.632; —0.579]  0.010 [0.009; 0.010] -0.606"* [-0.649; —0.560]  0.010 [0.009; 0.010]
Distance 0.020* [-0.013; 0.044] 0.006 [0.006; 0.006] — —
Distance? ~0.006 [-0.030; 0.022] 0.004 [0.004; 0.005] — —
4-7 o’clock 0.085** [0.055; 0.135] 0.019 [0.018; 0.019] — —
7-10 o’clock 0.332**[0.270; 0.370] 0.019 [0.018; 0.019] — —

10-13 o’clock
13-16 o’clock
16-19 o’clock
19-22 o’clock

0.468"* [0.392; 0.527]
0.529** [0.481; 0.582]
0.439"* [0.387; 0.493]
0.289"** [0.240; 0.322]

0.019 [0.019; 0.020]
0.019 [0.019; 0.020]
0.019 [0.019; 0.019]
0.019 [0.019; 0.019]

22-1 o’clock 0.093*** [0.043; 0.140] 0.019 [0.018; 0.019] — —

New moon 0.050 [-0.090; 0.142] 0.037 [0.035; 0.040] 0.061[-0.024; 0.161] 0.037 [0.035; 0.039]
First quarter -0.120* [-0.223; —0.041] 0.036 [0.034; 0.038] -0.131* [-0.240; -0.021] 0.037 [0.034; 0.039]
Full moon 0.071 [-0.056; —0.194] 0.037 [0.035; 0.039] 0.095 [-0.046; 0.234] 0.037 [0.035; 0.039]
Last quarter 0.010 [-0.109; 0.122] 0.039 [0.036; 0.042] —0.013 [-0.134; 0.087] 0.038 [0.036; 0.040]
Monday -0.039 [-0.065; —0.002] 0.018 [0.018; 0.018] — —

Tuesday 0.001 [-0.031; —0.048] 0.018 [0.018; 0.018] — —

Wednesday -0.034 [-0.082; 0.021] 0.018 [0.018; 0.018] — —

Thursday —0.045 [-0.089; —0.002]  0.018 [0.017; 0.018] — —

Friday -0.029 [-0.065; 0.011] 0.018 [0.017; 0.018] — —

Saturday —0.020 [-0.059; 0.017] 0.018 [0.017; 0.018] — —

Monthly dummies Yes Yes

Yearly dummies Yes Yes

Constant 0.973** [0.772; 1.203] 0.035 [0.032; 0.037] 1.220** [0.862; 1.562] 0.030 [0.027; 0.034]
No. of observations 549 674 549 674

AIC
Condition no.

VIF [minimum; maximum]|
Gradient [minimum; maximum]|

DW test
Moran’s I
Geary’s C
LogLik

LR test x? (degrees of freedom) [LogLik]

253 534 [246 951; 266 960]

1085.64 [878.46; 1266.84]
[1.004; 3.980]
[-8.64x10-19; 1.63x10~9]
1.031"** [1.002; 1.064]
0.000 [0.000; 0.000]
1.043 [0.900; 1.233]

-143 442

84 107" (44) [-185 495]

255194 [247 183; 262 152]
361.17 [283.89; 453.91]
[1.000; 3.732]
[-6.46x10-11; 7.37x10-1]
1.028** [1.003; 1.051]
0.000 [0.000; 0.000]

1.036 [0.867; 1.196]

1879.4 (18) [-144 381]

Note: Reported are the mean [minimum; maximum)] coefficients, robust standard errors, and indicators for the regression estimation. Significance: ***, 0.001;

*,0.05; % 0.1.

Apart from calculating a threshold on the fitted value with the
help of the Youden ] statistic, another way of using the derived
fitted values from the probability model was to use a trip-specific
threshold (e.g., trip-specific mean of predicted values). Generating
a trip-specific threshold provided control for trip-level unob-
served characteristics that, due to the sheer number of trips, can-
not directly be controlled for in the GLM estimation. For example,
weather and other environmental effects may lead to variation in
haul characteristics, even if hauls were conducted by the same
crew, gear, and vessel and targeting the same species. A trip-
specific threshold was a theoretically simple way to capture
trip-individual effects, which should improve prediction quality
noting that similar approaches were not possible using the speed
rule approach. In the following, we implemented a trip-specific
threshold defined as the trip mean probability value for bottom
otter trawl and scallop dredges and the 45™ percentile for sink
gillnet trips. This difference in threshold was designed to create
true positive rates above 80% without raising the false positive

rate above 50%, an implicit goal of the co-authors. Although the
trip mean met this goal for scallop dredge and bottom otter trawl
trips, the sink gillnet trip threshold needed to be adapted slightly
to increase predictive performance, highlighting the complexity
in creating a single approach that performs well across different
fisheries.

Robustness check: daytime and parsimonious models

Beyond investigating potential sampling bias through resam-
pling, the stability of the probability model was further assessed
by excluding insignificant variables if they were not part of an
interaction term (Brambor et al. 2006). The parsimonious scallop
dredge model was assessed through iterative bootstrapping in the
same manner as the full model, excluding the difference in speed,
depth, position weight, distance, and weekday variables. The par-
simonious model for sink gillnet trips excluded the explanatory
variables weekday, difference in depth, position weight, and the
interaction term of VHP/length x speed, whereas the estimation

< Published by NRC Research Press



Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by NOAA CENTRAL on 03/26/25
For personal use only.

1042

Table 2. Results of the general and parsimonious GLM estimations for the sink gillnet VMS polls based on 50% of the trips resampled randomly
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Parsimonious model

Robust standard error

Coefficient

Robust standard error

20 times.

Full model
Variable Coefficient
Speed —0.744** [-0.788; —0.690]
VHP/length 0.072*[0.008; 0.167]
VHP/length x speed —0.008 [-0.056; 0.028]
Speed? —0.284** [-0.381; —0.204]
Speed - speed, ; —0.277** [-0.297; -0.255]
Angle 0.024* [0.008; 0.044]
Position weight 0.021 [-0.008; 0.040]
Depth —0.230"** [-0.278; —0.133]
Depth - depth,; 0.008 [-0.013; 0.028]
Speed range 0.196™* [0.112; 0.250]
Distance —0.071 [-0.252; 0.124]
Distance? 0.066 [0.007; 0.139]
4-7 o’clock 0.550"* [0.466; 0.678]
7-10 o’clock 1.410"* [1.265; 1.567]

10-13 o’clock
13-16 o’clock
16-19 o’clock
19-22 o’clock

1.078"* [0.932; 1.213]

0.917"** [0.793; 1.029]
0.907"* [0.741; 1.006]
0.459"** [0.364; 0.525]

0.014 [0.013;0.016]

0.012 [0.009; 0.019]
0.011 [0.008; 0.015]

0.022 [0.021; 0.025]
0.012 [0.012; 0.012]

0.009 [0.009; 0.010]
0.010 [0.010; 0.011]

0.016 [0.012; 0.024]
0.012 [0.011; 0.013]

0.020 [0.020; 0.021]
0.046 [0.017; 0.088]
0.023 [0.005; 0.044]
0.046 [0.045; 0.050]
0.045 [0.043; 0.051]
0.043 [0.042; 0.047]
0.044 [0.043; 0.047]
0.049 [0.047; 0.052]
0.051 [0.049; 0.054]

-0.800** [-0.851; —0.749]

0.072** [0.033; 0.122]

-0.371"* [-0.445; —0.312]
-0.264" [-0.281; —0.249]

0.032** [0.006; 0.059]

-0.125"* [-0.217; —0.074]

0.052* [0.003; 0.101]

0.013 [0.012; 0.013]
0.010 [0.009; 0.014]
0.023 [0.021; 0.024]
0.011 [0.011; 0.012]
0.009 [0.009; 0.009]

0.010 [0.009; 0.010]

0.019 [0.019; 0.020]

22-1 o’clock 0.164*** [0.100; 0.230] 0.051 [0.049; 0.054] — —

New moon 0.066 [-0.075; 0.242] 0.070 [0.065; 0.075] 0.127 [-0.060; 0.350] 0.067 [0.061; 0.075]
First quarter -0.413** [-0.692; -0.107]  0.078 [0.072; 0.088] -0.406"* [-0.689; —0.172]  0.078 [0.070; 0.087]
Full moon —0.179* [-0.374; 0.057] 0.065 [0.060; 0.070] -0.132 [-0.331; 0.067] 0.063 [0.058; 0.071]
Last quarter 0.122 [-0.052; 0.374] 0.072 [0.068; 0.079] 0.115 [-0.090; 0.357] 0.070 [0.066; 0.075]
Monday —0.039 [-0.102; 0.039] 0.036 [0.035; 0.037] — —

Tuesday -0.020 [-0.119; 0.145] 0.035 [0.035; 0.037 — —

Wednesday -0.044 [-0.189; 0.071] 0.036 [0.035; 0.037] — —

Thursday -0.017 [-0.155; 0.098] 0.035 [0.034; 0.037] — —

Friday 0.028 [-0.079; 0.133] 0.035 [0.034; 0.036] — —

Saturday 0.016 [-0.060; 0.109] 0.035 [0.035; 0.037] — —

Monthly dummies Yes Yes

Yearly dummies Yes Yes

Constant —1.967*** [-2.536; ~1.594]  0.070 [0.065; 0.078] -0.861*** [-1.186; =0.553]  0.047 [0.044; 0.052]
No. of observations 147 042 147 042

AIC 72121 [67 500; 74 594 73 871 [70 988; 77 920]

Condition no. 1375.81 [837.19; 1735.88] 521.27 [371.44; 663.12]

VIF [minimum; maximum]| [1.005; 4.700] [1.004; 3.887]

Gradient [minimum; maximum]| [-8.35x10~?; 1.34x10-1°]
DW test 1.222™* [1.187; 1.283]

Moran’s I 0.008 [0.000; 0.028]
Geary’s C 1.007 [0.867; 1.216]
LogLik -36 393

LR test x? (degrees of freedom) [LogLik] 15 986*** (44) [-44 386]

[-9.75x1012; 8.92x10-12|
1.199"* [1.152; 1.250]
0.001 [0.000; 0.003]
1.016 [0.744; 1.263]

2419.8"* (12) [-37 603]

Note: Reported are the mean [minimum; maximum)] coefficients, robust standard errors, and indicators for the regression estimation. Significance: ***, 0.001;

*,0.05; % 0.1.

for the parsimonious model for bottom otter trawl data did not
include the variables weekday and bearing angle.

Although the explanatory variable daytime was significant in
all three probability models, as a further robustness check, it was
removed from the regression because human observers may ob-
serve less hauls at nighttime, a time they normally sleep. Using
time of day as an explanatory variable might bias the results.

Results

Probability models

For bottom otter trawl and scallop dredges, the speed variable
and its nonlinear formation (speed?) dominated the probability
prediction of the estimation models (Tables 1 and 3). However, for
sink gillnet trips, the daytime variable was the major driver in the
estimation model (Table 2). Nevertheless, the parsimonious sink
gillnet estimation model, which excluded the daytime variable,
provided similar estimation results. In general, the coefficients
and the predictive performance deviated only slightly between

the full and parsimonious estimation models. Although the week-
day variable for “Thursday” was still significant for bottom otter
trawl in the full model, it was insignificant in the parsimonious
model; hence, all weekdays variables were taken out of the parsi-
monious model regression. However, a likelihood ratio test com-
paring the parsimonious against the full model indicated that the
individually insignificant variables excluded in the parsimonious
model significantly improved the explanatory power of the full
model. We used the predicted probability of the full models in the
following comparisons and noted that we found no indication of
heteroscedasticity in the results (see diagnostics in Tables 1-3).

Comparison of probability models and deterministic speed
rules

The ROC curves (Figs. 4 and 5) indicated that the GLMs for the
scallop dredge and sink gillnets outperformed the speed rules by
up to 30% considering the difference in AUC values (Table 4).
Specifically for sink gillnets, the speed rule of Lee et al. (2010)
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Parsimonious model

Robust standard error

Coefficient

Robust standard error

Full model
Variable Coefficient
Speed -1.215"* [-1.258; -1.160]
VHP/length -0.032™ [-0.052; —0.005]
VHP/length x speed 0.177** [0.156; 0.204]
Speed? —1.760** [-1.811; -1.717]
Speed - speed, ; —0.033** [-0.042; -0.024]
Angle —0.001 [-0.010; 0.007]
Position weight 0.027** [0.007; 0.040]
Depth —0.248"** [-0.304; —0.196]
Depth - depth,_, 0.035** [0.027; 0.048]
Speed range 0.164** [0.144; 0.186]
Distance —0.005 [-0.029; 0.024]
Distance? —-0.052 *** [-0.076; —0.017]
4-7 o’clock 0.291 *** [0.264; 0.308]
7-10 o’clock 0.789 **[0.757; 0.829]

10-13 o’clock
13-16 o’clock
16-19 o’clock
19-22 o’clock

0.716 ** [0.660; 0.764]

0.622 *** [0.570; 0.678]
0.589 *** [0.563; 0.620]

0.249 *** [0.215; 0.287]

0.013 [0.012; 0.013]
0.005 [0.005; 0.006]
0.008 [0.007; 0.009]
0.018 [0.017; 0.019)
0.006 [0.006; 0.006]
0.004 [0.004; 0.004]
0.010 [0.009; 0.010]
0.007 [0.006; 0.008]
0.007 [0.006; 0.008]
0.009 [0.009; 0.010]
0.006 [0.005; 0.007]
0.004 [0.003; 0.006]
0.016 [0.016; 0.016]
0.016 [0.016; 0.017]
0.016 [0.016; 0.017]
0.016 [0.016; 0.017]
0.017 [0.016; 0.017]
0.016 [0.016; 0.016]

-1.223"* [-1.255; -1.198]
-0.031** [-0.059; -0.005]

0.181"* [0.149; 0.208]

-1.812** [-1.853; -1.769)
-0.039"* [-0.047; —0.030]

0.061** [0.049; 0.086]

-0.237"** [-0.275; —0.208]

0.036"** [0.028; 0.046]
0.116* [0.095; 0.141]

-0.037"** [-0.061; —0.009]
~0.041 ** [-0.061; -0.015]

0.013 [0.012; 0.013]

0.005 [0.005; 0.006]
0.008 [0.007; 0.009]
0.018 [0.017; 0.020]

0.006 [0.006; 0.006]
0.010 [0.010; 0.010]

0.007 [0.006; 0.008]
0.007 [0.007; 0.008]
0.009 [0.009; 0.010]
0.006 [0.005; 0.006]
0.004 [0.003; 0.005]

22-1 0’clock 0.103 ™* [0.081; 0.131] 0.016 [0.015; 0.016] — —
New moon -0.010 [-0.089; 0.078] 0.032 [0.030; 0.033] — —
First quarter 0.050 [-0.056; 0.128] 0.032 [0.030; 0.034] — —
Full moon -0.020 [-0.116; 0.072] 0.031[0.029; 0.032] — —
Last quarter 0.031 [-0.041; 0.109] 0.033 [0.031; 0.036] — —
Monday -0.007 [-0.061; 0.024] 0.015 [0.015; 0.016] — —
Tuesday 0.002 [-0.040; 0.067] 0.015 [0.015; 0.016] — —
Wednesday -0.017 [-0.050; 0.019] 0.015 [0.015; 0.016] — —
Thursday -0.043* [-0.090; 0.012] 0.016 [0.015; 0.016] — —
Friday 0.021 [-0.030; 0.059] 0.016 [0.015; 0.016] — —
Saturday 0.020 [-0.008; 0.052] 0.015 [0.015; 0.015] — —
Monthly dummies Yes Yes

Yearly dummies Yes Yes

Constant 0.558*** [0.452; 0.628] 0.024 [0.024; 0.025] 1.027*** [0.909; 1.103] 0.019 [0.018; 0.020]
No. of observations 933 896 933 896

AIC 343 446 [335 533; 353 580] 346 314 [337 680; 358 646)
Condition no. 600.01 [514.90; 711.68] 398.24 [171.45; 484.74

VIF [minimum; maximum]| [1.002; 2.216] [1.026; 2.135]

Gradient [minimum; maximum]| [-2.00x10-°; 2.02x10~°]

DW test 0.951"* [0.934; 0.963]
Moran’s I 0.001 [0.000; 0.004]
Geary’s C 1.023 [0.995; 1.062]
LogLik —-187 608

LR test x? (degrees of freedom) [LogLik] 240 584*** (44) [-307 901]

[-1.78x101°; 1.84x1019]
0.934"** [0.911; 0.945]
0.000 [0.000; 0.004|
1.028 [0.995; 1.069]

4553.9"* (18) [-189 885]

Note: Reported are the mean [minimum; maximum)] coefficients, robust standard errors, and indicators for the regression estimation. Significance: ***, 0.001;

*,0.05; % 0.1.

performed worse than a random equal probability classification
of polls, with a ROC curve below the 45° line (Fig. 5). Conversely,
for bottom otter trawl, a comparison of ROC curves created by the
speed rule of Palmer and Wigley (2009) and GLM indicated that
there were a small number of cutoff thresholds in which the two
approaches had a similar predictive performance (Fig. 6). How-
ever, the AUC of the GLM-ROC was about 6% higher than the one
of the ROC based on the speed rule of Palmer and Wigley (2009). In
general, the GLM generated the maximum AUC for all three gear
groups (Table 4), meaning it is the most accurate prediction
method. Although the Palmer and Wigley (2009) gear-specific
speed rule for bottom otter trawl performed well, the probability
model resulted in more stable results overall.

Visual comparison of the maps of observed fishing locations
with the GLM predicted fishing locations (Figs. 1-3) indicated that
the GLM overpredicted fishing activities in closed areas (in partic-
ular for the otter bottom trawl) or closer to the shore (in particular
for the scallop dredges).

A comparison of predictions using ROC curves at the optimal
cutoff point identified by the Youden’s J statistic, we found for
scallop dredges that the GLM generated a 15.8% higher true posi-
tive rate than the speed rule of Palmer and Wigley (2009) and only
increased the false positive rate by 2.25% (Table 4). The GLM ap-
proach generated the highest accuracy for the sink gillnetters and
resulted in a 39% higher true positive rate and 7.8% lower false
positive rate compared with the rates determined by the speed
rule from Lee et al. (2010). For bottom otter trawl, however, both
the true positive rate and false positive rate were increased by a
comparable magnitude using the GLM approach instead of the
speed rule approach of Palmer and Wigley (2009).

Employing trip-specific thresholds led to similar results to
those obtained using Youden’s J statistic as the cutoff (Table 4).
Although for the scallop dredge and sink gillnet estimations, the
false positive rate increased slightly, the trip-specific threshold
raised the true positive rate for bottom otter trawlers. The speed
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Fig. 4. ROC graph for scallop dredge prediction vs. speed rules.

The ROC based on a random sample of one prediction for each
observation are plotted next to the ROC curves based on the
classification of the speed rule by Palmer and Wigley (2009) and
Lee et al. (2010). The 95% confidence interval of the GLM prediction is
plotted as the grey dashed line; however, due to the low variation, the
curve of the prediction overlays the curves on the upper and
lower boundaries of the predictions. The solid, grey line is the 45°
line.
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Fig. 5. ROC graph for sink gillnet prediction vs. speed rules. The ROC
based on a random sample of one prediction for each observation are
plotted next to the ROC curves based on the classification of the speed
rule by Palmer and Wigley (2009) and Lee et al. (2010). The 95%
confidence interval of the GLM prediction is plotted as the grey dashed
line grey; however, due to the low variation, the curve of the prediction
overlays the curves of the upper and lower boundaries of the
predictions. The solid, grey line is the 45° line.
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rule of Lee et al. (2010) remained to perform worst of all ap-
proaches, in particular with regards to sink gillnetters.
Discussion

This paper investigated the ability of a GLM to accurately pre-
dict observed fishing activity, while guarding against misclassifi-
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Table 4. Indicators on the classification quality following the speed
rule approaches of Palmer and Wigley (2009) and Lee et al. (2010)
compared with the GLM predictions.

Palmer and Lee et al.
Wigley (2009)  (2010) GLM

Scallop dredge
Youden’s J statistic: 0.623

True positive (%) 64.55 88.07 80.34

False positive (%) 35.86 65.80 38.11

AUC (%) 64.34 61.13 77.90 [77.89; 77.90]
Trip-specific threshold

True positive (%)  63.02 86.61 81.07

False positive (%) 36.08 64.87 45.84
Sink gillnet
Youden’s J statistic: 0.590

True positive (%) 54.96 41.23 80.26

False positive (%) 22.86 47.34 39.55

AUC (%) 66.05 46.94 76.23 [76.22; 76.24]
Trip-specific threshold

True positive (%) 52.34 39.63 78.22

False positive (%) 21.90 45.90 45.26
Bottom otter trawl
Youden’s J statistic: 0.659

True positive (%)  82.98 95.74 88.93

False positive (%) 19.06 7171 25.18

AUC (%) 81.96 62.02 88.14 [88.11; 88.16]
Trip-specific threshold

True positive (%)  82.77 86.61 92.33

False positive (%) 18.41 64.87 3114

Note: Comparison is conducted by either using the gear group specific calcu-
lated Youden’s ] statistic or by trip-specific thresholds to classify the fitted val-
ues. For the GLM AUC values, [minimum; maximum]| values are also given.

Fig. 6. ROC graph for bottom otter trawl prediction vs. speed rule. The
ROC based on a random sample of one prediction for each observation
are plotted next to the ROC curves based on the classification of the
speed rule by Palmer and Wigley (2009) and Lee et al. (2010). The 95%
confidence interval of the GLM prediction is plotted as the grey dashed
line grey; however, due to the low variation, the curve of the prediction
overlays the curves of the upper and lower boundaries of the
predictions. The solid, grey line is the 45° line.
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cation of nonfishing as fishing, for VMS data. The GLM prediction
results were compared with the most widely used alternative ap-
proach, the VMS speed rule, for the same datasets and gear
groups. For all three gears studied, the GLM outperformed a ge-
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neric speed rule when predicting fishing activity of individual
VMS polls. For bottom otter trawlers, the gear-specific speed rule
can outperform the GLM in some instances. However, the GLM
substantially outperformed the gear-specific speed rules for gears
fishing in more complex patterns or for shorter durations such as
the zig-zag course of the scallop dredge vessels and the more station-
ary practices employed when fishing with fixed gear (e.g., sink gill-
net).

The GLM described in this research performed well in predict-
ing fishing locations both in and out of sample for the analyzed
gear groups, without the computational burden of the Markovian
process models based on Bayesian inferences. An increase in the
VMS frequency is likely to facilitate improved VMS analysis gen-
erally, as previously argued by e.g., Deng et al. (2005) or O’Farrell
et al. (2017). It is unclear whether there is political will to imple-
ment such a management measure in the Northeastern U.S. due
to the increased costs associated with additional polling. The
GLM, nevertheless, has been shown to effectively estimate and
predict fishing activity for extremely large datasets, a challenge
that may prove problematic for alternative techniques including
engineering training and Bayesian approaches like Markovian
process models. Moreover, the GLM is not dependent on a con-
stant VMS poll transmission frequency, in contrast to the Mark-
ovian process models. The simple speed rule tends to heavily
misclassify activities for gear groups employing complex fishing
patterns. Given the tractability and the relative ease of implemen-
tation of the GLM, there is no strong reason to choose the speed
rule. A major caveat is that the GLM, like all statistical approaches,
depends on observer data for the region and fishery under re-
search to derive the estimation parameters, which could limit its
global application.

Furthermore, as evidenced by our comparison of the Palmer
and Wigley (2009) analysis, which was based on calendar year
2005 data, and the same rule applied to data for fishing year
2010-2014, static speed rules are likely to need temporal updating
to reflect changes in fleet dynamics, reporting requirements, and
management measures and other causes likely to induce shifts in
fishing behavior. In their study, Palmer and Wigley (2009) found
that their speed rule classified 99.2% of the fishing VMS polls
correctly and reported a false positive rate of 31.8% for bottom
otter trawl trips. However, for the fishing years 2010-2014, the
true positive rates decreased to 82.8% and the false positive rate
decreased to 19.0%. Similar changes in prediction quality over
time can be noted for scallop dredge vessels. Palmer and Wigley
(2009) reported a true positive rate of 98.3% and false positive rate
of 69.3; we noted that using the same speed range with our more
recent dataset reduced the true positive rate to 63.0% and false
positive rate to 36.1%. Hence, the speed rule seems to have lost
validity over time. Changes in the composition of the fisheries and
vessels monitored by VMS can induce shifts in the distribution of
speeds surrounding fishing activity, which may not be adequately
captured by a static speed rule.

In future research, this analysis should be extended to other
gears, as it would lend additional insight into the general practi-
cability of the approach for gear types with lower VMS coverage or
for fisheries with fishing behavior that often falls in-between VMS
polls (e.g., Gulf of Mexico bandit-reel fishery). Moreover, exploring
the heterogeneity of fishing activity within gear groups seems a
necessary further step to fully understand fishing activity and
location choices. As we demonstrated, the GLM mildly outper-
formed the gear-specific speed rule for bottom otter trawls and
substantially outperformed the speed rule for sink gillnet and
scallop dredge gears. For other fisheries using gears such as the
purse seiner, hidden Markov models may better classify activities,
given the movement patterns of the vessel while actively fishing
(Vermard et al. 2010; Bez et al. 2011; de Souza et al. 2016). Never-
theless, for the gears studied in this paper, the GLM provided a
better understanding of fishing activities and improved the pre-
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diction of fishing locations for purposes such as impact assess-
ments.

Although not explicitly used in this paper, the probability
model provides additional information — specifically, the esti-
mated probability values themselves — that is not available from
the simpler speed rules traditionally applied to VMS. These prob-
ability values can be used to spatially attribute fishing effort,
catch, and revenue metrics in a manner that explicitly considers
the uncertainty inherent in the data. Future research should more
fully consider this added information.
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Appendix A
Table Al. General structure of the data.
Fishing year 2010 2011 2012 2013 2014 All
Scallop dredge
No. of trips 306 375 411 456 445 1.993
No. of VMS polls 100 014 119 042 154 320 116 853 109 826 600 055
Ratio of observed fishing to nonfishing VMS polls 1163 1.096 1.347 0.647 0.628 0.953
Mean time between polls (h) 0.478 0.477 0.472 0.483 0.477 0.477
Sink gillnet
No. of trips 1886 2029 1335 896 1165 7311
No. of VMS polls 37779 45 633 29 974 25548 32 329 171263
Ratio of observed fishing to nonfishing VMS polls 0.442 0.611 0.453 0.628 0.597 0.542
Mean time between polls (h) 0.707 0.658 0.673 0.661 0.666 0.673
Bottom otter trawl
No. of trips 1888 2230 1702 1465 1449 8734
No. of VMS polls 220 595 284 773 171262 173 948 172 233 1022 811
Ratio of observed fishing to nonfishing VMS polls 1197 1411 1.426 1.317 1171 1.306
Mean time between polls (h) 0.560 0.530 0.538 0.540 0.532 0.540

Table A2. Descriptive statistics.

Standard

Variable N Mean deviation Minimum Maximum

Scallop dredge

Speed (km/h) 549 674 7.167 4.678 0 39.723

Speed - speed, , 549 674 0.015 3.514 -32.970 37.335

Angle (rad) 549 674 2.877 1.893 0 6.283

Position weight 549 674 0.054 0.37 0 4

Depth (m) 549 674 -57.706 74.821 -3163 -1

Depth - depth, 549 674 0.006 9.904 -1022 875

Speed range 549 674 0.480 0.5 0 1

Distance (km) 549 674 733.37 481.22 0.027 3721.37

Month (date landed) 549 674 6.343 2.752 1 12

Daytime (3 h interval) 549 674 4.527 2.282 1 8

Weekday 549 674 3.023 1.994 0 6

Moon phase 549 674 0.167 0.684 0 4

VHP/length 549 674 9.492 2.949 4.280 29172

Trip duration (h) 549 674 217.521 81.383 5 406.667

Time between VMS polls (h) 549 674 0.469 0.146 0.0003 3

Observed VMS fishing polls 549 674 0.491 0.500 0 1

Sink gillnet

Speed (kmj/h) 147 042 6.853 6.552 0 37.363

Speed - speed, ; 147 042 0.206 5.414 -34.861 35.471

Angle (rad) 147 042 3.110 1.840 0 6.283

Position weight 147 042 0.355 0.907 0 4

Depth (m) 147 042 -93.381 60.234 -306 -1
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Standard
Variable N Mean deviation Minimum Maximum
Depth — depth, 147 042 -0.074 21.836 -173 171
Speed range 147 042 0.469 0.499 0 1
Distance (km) 147 042 135.40 136.31 0.008 2519.87
Month (date landed) 147 042 7.077 3.027 1 12
Daytime (3 h interval) 147 042 4.012 1.898 1 8
Weekday 147 042 3.057 1.946 0 6
Moon phase 147 042 0.175 0.708 0 4
VHP/length 147 042 7.556 3.137 0.028 62.5
Trip duration (h) 147 042 55.870 60.966 1 306.5
Time between VMS polls (h) 147 042 0.678 0.333 0.001 3
Observed VMS fishing polls 147 042 0.375 0.484 0 1
Bottom otter trawl
Speed (km/h) 933 896 7.093 4.462 0 39.681
Speed - speed, , 933 896 0.016 2.835 -35.487 36.759
Angle (rad) 933 896 2.944 1.884 0 6.283
Position weight 933 896 0.073 0.427 0 4
Depth (m) 933 896 -122.251 96.458 -2658 -1
Depth - depth, 933 896 -0.001 28.972 —1158 1076
Speed range 933 896 0.679 0.467 0 1
Distance (km) 933 896 501.500 384.440 0.006 4874.64
Month (date landed) 933 896 6.556 3.557 1 12
Daytime (3 h interval) 933 896 4.446 2.234 1 8
Weekday 933 896 2.990 2.004 0 6
Moon phase 933 896 0.170 0.693 0 4
VHP/length 933 896 8.702 3.111 0 29.172
Trip duration (h) 933 896 145.970 75.803 2 606.667
Time between VMS polls (h) 933 896 0.540 0.247 0.001 3
Observed VMS fishing polls 933 896 0.575 0.494 0 1
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