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ABSTRACT High molecular weight (HMW; >1 kDa) carbohydrates are a major com-
ponent of dissolved organic matter (DOM) released by benthic primary producers.
Despite shifts from coral to algae dominance on many reefs, little is known about the
effects of exuded carbohydrates on bacterioplankton communities in reef waters. We
compared the monosaccharide composition of HMW carbohydrates exuded by hard
corals and brown macroalgae and investigated the response of the bacterioplankton
community of an algae-dominated Caribbean reef to the respective HMW fractions.
HMW coral exudates were compositionally distinct from the ambient, algae-domina-
ted reef waters and similar to coral mucus (high in arabinose). They further selected
for opportunistic bacterioplankton taxa commonly associated with coral stress (i.e,
Rhodobacteraceae, Phycisphaeraceae, Vibrionaceae, and Flavobacteriales) and significantly
increased the predicted energy-, amino acid-, and carbohydrate-metabolism by 28%,
44%, and 111%, respectively. In contrast, HMW carbohydrates exuded by algae were
similar to those in algae tissue extracts and reef water (high in fucose) and did not
significantly alter the composition and predicted metabolism of the bacterioplankton
community. These results confirm earlier findings of coral exudates supporting efficient
trophic transfer, while algae exudates may have stimulated microbial respiration instead
of biomass production, thereby supporting the microbialization of reefs. In contrast to
previous studies, HMW coral and not algal exudates selected for opportunistic microbes,
suggesting that a shift in the prevalent DOM composition and not the exudate type (i.e.,
coral vs algae) per se, may induce the rise of opportunistic microbial taxa.

IMPORTANCE Dissolved organic matter (DOM) released by benthic primary producers

fuels coral reef food webs. Anthropogenic stressors cause shifts from coral to algae

dominance on many reefs, and resulting alterations in the DOM pool can promote
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carbohydrate composition of coral- and macroalgae-DOM and analyzed the response
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the proposed microbialization of reefs, coral-DOM was efficiently utilized, promoting
energy transfer to higher trophic levels, whereas macroalgae-DOM likely stimulated
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orals are the main ecosystem engineers of tropical coral reefs, as they provide

habitat and nutrients (1) to one of the most diverse and productive ecosystems
on the planet (2, 3). However, coral cover is declining on many reefs worldwide due
to global and local human stressors (4), often leading to overgrowth by fleshy algae
(5-8). Particularly in the Caribbean widespread shifts toward stages of fleshy macroal-
gae dominance have been reported (7, 9, 10). These shifts have been associated with
changes in coral reef community metabolism caused by benthic primary producer-spe-
cific differences in the exudation of dissolved organic matter (DOM) (11).

Algae usually exude more DOM than corals which increases the bacterioplankton
abundance in reef water (12, 13). In addition, algae DOM stimulates microbial respiration
(11) which can lead to deoxygenation of reefs (14-16). Concomitantly, less energy is
transformed into microbial biomass (i.e., a shift from biomass generation to respiration),
reducing the transfer of energy to higher trophic levels (17, 18). This shift in ecosys-
tem-wide energy allocation from heterotrophic macrobes (e.g., fish and invertebrates)
to foremost microbes was termed the microbialization of reefs and was proposed to
occur globally on degraded, algae-dominated reefs (17, 19). Algae DOM also appears to
select for putative opportunistic and pathogenic microbes (17, 20-22). Combined, these
indirect effects of algae DOM on the microbial community can lead to coral mortality
through hypoxia and disease (23-25). Coral mortality opens up space on the reef for
algae growth, thus resulting in the DDAM positive feedback loop (DOC, disease, algae,
and microorganisms) which is considered to facilitate reef degradation (26, 27).

These contrasting responses of microbial communities to coral- vs algae DOM
suggest underlying differences in DOM composition. Indeed, liquid chromatography-
tandem mass spectrometry has recently revealed a great compositional diversity in coral
and algae exudates (28, 29). However, this method is mostly limited to low molecular
weight (LMW) components (e.g., organic acids, lipids, and lipid-like molecules) which
efficiently elute from solid phase extraction columns (30, 31), thus not capturing most
carbohydrates. Carbohydrates are the most abundant biomolecules of high molecular
weight (HMW; i.e,, >1 nm or 1,000 Dalton) DOM in surface oceans (32, 33) and play
a major role in shaping bacterioplankton communities (34, 35). Only very few studies
have investigated the carbohydrate composition of the coral reef DOM so far. Nelson
et al. (22) found increased concentrations of fucose, galactose, and rhamnose in bulk
macroalgae-DOM (i.e., HMW + LMW), which exerted strong effects on the composition
of natural bacterioplankton communities (22). Particularly the growth of copiotrophs
and putative pathogens belonging to Gammaproteobacteria was stimulated. In contrast,
bulk DOM exuded by the coral Porites lobata mainly consisted of glucose, mannose, and
xylose and was similar in composition to the ambient reef water. This coral DOM selected
for oligotrophic microbes of the Alphaproteobacteria and exerted only a small effect on
the bacterioplankton community composition.

Most carbohydrates exuded by corals (36) and macroalgae (37-39) belong to the
HMW size fraction (i.e., glycoproteins and polysaccharides, respectively), which can
be extracted from seawater with ultrafiltration (UF ;~1 nm pore size) (40). The HMW
carbohydrates exuded by corals and macroalgae can thus be concentrated using UF
and subsequently added to ambient seawater with minimal dilution of the bacterio-
plankton community while, at the same time, keeping DOM concentrations within a
natural range. The majority of studies investigating the effects of primary producer
exudates on bacterioplankton apply dilution culture experiments (41), where prefiltered
exudate-enriched water is inoculated with unfiltered ambient reef water resulting in a
reduction of microbial cell abundance by at least 40% (11, 22, 28, 42). This approach
alleviates density-dependent effects and allows to determine exponential growth rates
as a measure of substrate quality. However, dilution also influences the community
composition of bacterioplankton (43, 44) and affects competitive outcomes (45, 46).
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Differences in the amount of exuded DOM between corals and macroalgae in previous
studies further resulted in higher starting concentrations for macroalgae compared to
coral DOM (22, 42), which makes it difficult to untangle the effects of DOM concentration
(i.e., quantity) and DOM composition (i.e., quality) on bacterioplankton communities.
Thus, the question remains whether coral and macroalgae exudates, added at similar
concentrations, also differentially influence an undiluted microbial community.

All in all, interactions of coral- and macroalgae-derived DOM with bacterioplankton
received much attention over the last decades (47) due to increasing macroalgae
dominance, especially in the Caribbean (10), and global evidence that algae DOM
supports reef microbialization (17). Nevertheless, it remains unclear how much of the
previously observed effects on bacterioplankton were due to differences in composition
vs concentration of coral- vs macroalgae-derived DOM (22). Finally, no study has yet
assessed how the most abundant part of exuded carbohydrates, the HMW fraction,
affects undiluted coral reef bacterioplankton communities.

To address these knowledge gaps, we investigated the exudation of HMW carbohy-
drates by corals and macroalgae, and how this particular DOM size fraction influences
bacterioplankton communities from a Caribbean reef. We hypothesized that (i) coral
and macroalgae HMW DOM differ in carbohydrate compositions and (ii) that these
exudates enrich different taxa of the bacterioplankton community relative to seawater
controls, with algae exudates exerting a stronger effect. We conducted a two-part
experiment where we first incubated four hard coral species, two brown macroalgae
genera, and seawater controls in aquaria to collect the exudates (see experimental
design in Fig. 1). Subsequently, we concentrated HMW exudates from the incubation
water and analyzed the monosaccharide composition of hydrolyzable carbohydrates.
Finally, we added the concentrated HMW DOM to ambient seawater in 4-day dark
incubations to elucidate effects on the growth and community composition of the
heterotrophic bacterioplankton community to coral and macroalgae HMW DOM. By
investigating bacterioplankton dynamics from a macroalgae-dominated reef in response
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FIG 1

Experimental design divided into (a) coral and macroalgae incubations for exudate collection and (b) bacterioplankton incubations for exudate

remineralization by microbes from ambient reef water. DOC = dissolved organic carbon; HWW DOM = high molecular weight (>1,000 Dalton) dissolved organic

matter. Concentrated HMW DOM (concentration factor of 100) enriched with exudates from coral and macroalgae incubations was diluted with ambient reef

water in dark incubations (dilution factor of 100).
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to primary producer-specific HMW DOM-carbohydrate compositions, our study may help
to understand the functioning of changing reef communities from a microbial ecology
perspective.

MATERIALS AND METHODS
Macroalgae and corals

The macroalgae Dictyota spp. and Lobophora spp. and three coral species (i.e., Diploria
labyrinthiformis, Meandrina meandrites, and Madracis auretenra) were collected from the
reef of Piscadera Bay, Curacao (12.121, -68.970), at 8-10 m depth. Additionally, fragments
of the coral Acropora cervicornis were provided by the coral restoration project Reef
Renewal Curacao and kept on a floating coral nursery (10 m depth) in front of the
CARMARBI research station until the experiment. All coral and algal species used here
are abundant on Curacaoan reefs and wide-spread through the Caribbean region (48-
51). Algae were placed into re-sealable plastic bags for transportation and carefully
rinsed with fresh seawater to remove sediment or particles before placing them into the
experimental tank. Coral colonies were carefully cleaned with toothbrushes to remove
encrusting sponges from the underside of colonies and kept in the floating nursery to
heal any small injuries for 1 week. After retrieving macroalgae and hard corals from the
reef/nursery, the organisms were kept submerged in a flow-through aquarium until the
start of the incubations on the same day. Following the completion of experiments in
the present study, coral colonies were placed back on the reef or used for restoration
activities (i.e., A. cervicornis). All collections and experimental work were carried out
under the research permit (#2012/48584) issued by the Curacaoan Ministry of Health,
Environment and Nature (GMN) to the CARMABI foundation. Research only included
animals of lower taxonomic ranks (i.e., Cnidaria) and macroalgae, which do not require
approval by an ethics committee according to German § 5 TierSchG (4 July 2013) and the
European Directive 2010/63/EU (22 September 2010).

Coral and macroalgae incubations for exudate collection

To collect coral and macroalgae exudates, as well as DOM from unamended seawa-
ter controls, 6-hour incubations were conducted in a glass tank (22 L, rinsed with
10% hydrochloric acid, HCl) with seawater, which was filtered to remove particles and
planktonic organisms (see details below and experimental design in Fig. 1a). Corals or
macroalgae were placed into the tank with sterile gloves (nitrile, powder free), cover-
ing about one-third (corals) or half (algae) of the aquarium bottom (see photographs
in Fig. S1), which approximates the relative benthic cover at, respectively, coral- or
algae-dominated reefs in the Caribbean (52). The same experimental setup was used for
all incubations (three of each treatment and four seawater controls), which were done
on different days between 8 and 23 November 2021. Seawater was constantly pumped
from the reef (5 m depth) at Piscadera Bay to the aquarium facilities. One day prior to the
experiment (i.e., control, algae, or coral incubations), seawater was directly collected from
the inlet pipe and run over filters with decreasing pore sizes to remove particles (50, 20,
5, and 0.5 um) and microbes (0.2 um, 12 cm diameter, polycarbonate, pre-flushed with
1 L seawater) for 4 hours. Filtered seawater was collected and stored in closed high-den-
sity polyethylene (HDPE) buckets (rinsed with 10% HCI, ultrapure water [UW], and filtered
seawater) in a dark, air-conditioned room (29°C) until the next day. The incubation tank
was placed in a flow-through water bath with fresh seawater to keep temperatures close
to in situ conditions (measured every 5 minutes with HOBO Pendant; Table 1). Salinity
remained stable throughout the incubations (Table 1). A recirculating pump (UW-rinsed)
was used to provide water movement in the incubation tank, and the top of the tank was
left open to allow gas exchange. Oxygen concentrations remained constant in controls
throughout the incubations but increased for both treatments during the incubations
to 195% air saturation (Table 1). These oxygen concentrations can be observed in coral
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TABLE 1 Environmental parameters of incubations with seawater controls, corals, and macroalgae.
Ambient values measured on the reef at 10 m depth (temperature, light) or at the start of the incubations
(salinity, oxygen: n = 10)*

Variable Ambient Control Coral Algae
Temperature (°C) 29.1+0.1 29.0+0.3 29.0+0.2 29.0 +0.1
Light (PAR, umol photons m™2s™) NA® 448+ 6 448+6 448+6
Salinity (%o) 36.6+0.2 36.7+0.3 36.7 0.1 36.9+0.1
Oxygen (umol L™' / % air saturation) 196+4/115+ 196 +£4/115+ 332+23/195 332+23/
2 3 +14 195+ 14
Replicates (n) 3/10 4 3 3

%alues are presented as means with SDs. Air saturation of 100% corresponds to 170 pmol O, L™ (or 6.8 mg L™).
Temperature was measured every 5 minutes throughout the incubations, and salinity and oxygen were measured
at the start (ambient) and end of the incubations. The light was measured once on 9 November 2021 for the
experimental setup which was constant during the whole experiment.

®NA, not available.

reefs in diffusive boundary layers, at the coral-algal interface, and on the reef scale
(53). Artificial light was provided throughout the incubations (CoralCare, Philips Lighting,
190-W-LED fixture). Light intensities for the experimental setup were measured on 9
November 2021 in photosynthetically active radiation (PAR; Table 1) and were within the
range of light intensities on the reef at 10 m depth in November (i.e. up to ~500 pmol
photons m™2s™" [13]).

Concentration of high molecular weight dissolved organic matter

Water samples (~20 L) from the 6-hour aquarium incubations (start and end) were
collected into HDPE buckets with a silicone tube (both 10% HCl and sample-rinsed).
Corals and algae were removed with sterile gloves (nitrile, powder free) before air
exposure could lead to a stress response which may affect the incubation water.
From the bucket, water was filtered with pre-flushed (200 mL) polyethersulfone filters
(0.2 um pore size, Millipore Sterivex) for 2 hours using a peristaltic pump (Masterflex
L/S) and sample-rinsed platinum-cured silicone tubes (Masterflex, 96410-15). Dissolved
nutrient samples (i.e, DOC, inorganic nutrients) were collected from the filtrate. All
remaining water was concentrated with tangential flow-filtration (TFF) by a factor of 100
and a molecular weight cutoff of 1,000 Daltons (UFP-1-C-5, Cytiva). The TFF cartridge
was cleaned according to the manufacturer manual, with 0.5 M NaOH and ultrapure
water. Trans-membrane pressure was set to 2-3 bar during sample concentrations.
From the concentrated water (i.e., 14 L concentrated to 140 mL), samples for dissolved
organic carbon (DOC) measurements were collected (i.e, HMW DOC). The remaining
HMW concentrate was stored at —20°C for the microbial degradation experiment and
carbohydrate analyses.

Bacterioplankton incubations for exudate remineralization

To test the effects of HMW exudates from macroalgae and corals on bacterioplankton
communities in reef water, we conducted 4-day dark incubations (see the experimental
design in Fig. 1b). Fresh seawater was collected from the reef of Piscadera Bay on 1
December 2021 between 9:30 and 10:45 am at a depth of 6.8 m, 0.5 m above the
benthos, with low current. Water was collected in four 20 L polyethylene terephthalate
bottles (10% HCl and seawater rinsed) while facing the opening of the bottles away from
the diver and toward the current. We decided to use unfiltered seawater (i.e., without
removing potential grazers) to include larger aggregates and/or colloidal material, which
are important hotspots of planktonic microbial diversity on coral reefs (54-56) to assess
the effects of HMW DOM on bacterioplankton communities under natural conditions.
Furthermore, prefiltration reduces grazing without concomitantly reducing viral lysis
which may influence the microbial community composition (57). Water bottles were
stored at 29°C in the dark for ~7 hours until the start of the experiment. Equal parts
of every bottle were used for the nine incubation containers (three per treatment or
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control, 5 L, polypropylene [PP]) to ensure equal water quality and microbial community
compositions. HMW concentrates from coral and macroalgae incubations and seawater
controls were thawed and pooled by treatment (i.e., concentrates from three replicate
exudation incubations per treatment were mixed). Subsequently, 50 mL of the respective
concentrate was added to 5 L of fresh seawater. All incubation containers were placed
in dark Styrofoam boxes where HOBO loggers recorded light intensities (always 0 Lux)
and temperatures (26.7°C £ 0.3°C SD). Samples for all parameters were collected at
five timepoints: shortly after the start of the incubations (ca. 30 minutes after exudate
addition, 1.3 L), after 6 and 12 hours (0.3 L each), and after 1 and 4 days (1.3 L each).
Samples for DOC and inorganic nutrients were filtered with a peristaltic pump at a flow
rate of 26 mL min~' (Masterflex L/S) through pre-flushed (200 mL) polyethersulfone filters
(0.2 um pore size, Millipore Sterivex) attached to sample-rinsed platinum-cured silicone
tubes (Masterflex L/S Precision Pump Tubing, Tygon). Samples were collected from the
bottom of each incubation container after gentle shaking.

Coral mucus and macroalgae tissue extraction

Data on coral mucus carbohydrate compositions of A. cervicornis, D. labyrinthiformis,
and M. meandrites were already reported in a previous study (58), where coral mucus
collection and analyses are described in detail. Briefly, on the day after the coral and
algae exudation experiment, coral colonies were exposed to air for 3 minutes. Dripping
mucus was collected into sterile vials for 2 minutes after disposing mucus for the first
minute, as done in previous studies (59) and stored at —20°C until analysis of carbohy-
drate compositions. Macroalgae from the experimental tanks were rinsed with UW and
then oven-dried (40°C, 48 hours) and stored in sterile PP tubes (Falcon, 50 mL, Thermo
Fisher Scientific) at room temperature in the dark. Dried algae tissue was pulverized with
a mortar and pestle, and alcohol insoluble residue (AIR) and subsequently the water-
soluble fraction were prepared as described by Vidal-Melgosa et al. (60). Dried powder
was suspended in pure ethanol (volume ratio 6:1 of solvent:pellet), vortexed, rotated for
10 minutes, and then centrifuged (21,100 x g for 15 minutes at 15°C). The pellet was then
washed in a 1:1 chloroform:methanol solution until the supernatant was clear, followed
by a wash with pure acetone, and air-drying at room temperature. Subsequently, 10 mg
of this AIR-washed powder was re-suspended in 300 pL of autoclaved UW, shaken for
2 hours at 15°C, centrifuged (6,000 x g for 15 minutes at 15°C), and the supernatant
collected. The supernatant containing the water-soluble fraction was stored at —20°C
until carbohydrate analysis.

Carbohydrate analysis

For carbohydrate analysis of HMW DOM, 200 pL of 2 M HCl were added to 200 pL of
samples and acid hydrolyzed at 100°C for 24 hours in pre-combusted (400°C, 4 hours)
glass ampules. After hydrolysis, samples were dried down with an acid-resistant vacuum
concentrator (Martin Christ Gefriertrocknungsanlagen GmbH, Germany) together with
calibration standards which were prepared in 1 M HCI. Standards and samples were then
resuspended in 200 uL UW and transferred to sterile high performance anion exchange
chromatography (HPAEC) vials for measurement. Coral mucus samples and algae tissue
extracts were hydrolyzed as described above and then diluted with UW by a factor of 100
(coral mucus) and 50 (algae tissue extracts), and centrifuged (21,100 x g for 15 minutes at
15°C), and 100 pL of the top layer was transferred to HPAEC vials for measurement with
calibration standards. Monosaccharide concentrations of hydrolyzed carbohydrates were
measured on a high-performance anion exchange chromatography (Dionex 1CS-5000*
system) with CarboPac PA10 guard column (2 x 50 mm) and analytical column (2
x 250 mm, Thermo Fisher Scientific), coupled with pulsed amperometric detection
(HPAEC-PAD), as previously described (60, 61). Separation of neutral and amino sugars
was achieved with an isocratic flow of 18 mM NaOH, followed by a separation of acidic
monosaccharides with a gradient reaching up to 200 mM NaCH3COO. Concentrations
were calculated from peak areas of six co-measured standard mixes with concentrations
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ranging from 10 to 1,000 ug L™' per monosaccharide using Chromeleon (Thermo Fisher
Scientific).

Dissolved organic carbon and inorganic nutrient analysis

DOC samples (20 mL) were collected in pre-combusted (4 hours at 450°C), sample-rinsed
glass vials closed with teflon-lined lids (10% HCl acid washed and sample-rinsed),
acidified with 5 drops of 12 M HCl to a pH <2, and stored at 4°C until measurement.
Concentrations of DOC were measured with high-temperature catalytic oxidation (TOC-L
CPN, Shimadzu), calibrated with a standard curve of potassium hydrogen phthalate (0;
25; 50; 100; 200; 400 pymol C L). Every sample was injected 5-7 times, resulting in an
analytical variation of 2.3%. Measurement accuracy was tested by including consensus
reference material (CRM; Batch 21, Lot: 04-21, DOC: 44.7 umol L' + 0.8 SD, D. A.
Hansell, University of Miami) into every measurement run, which was on average 8%
below the reported concentration. Two samples (i.e., algae 2 and coral 2) had to be
collected ~1.5 hours after the other samples due to logistical constraints, affecting DOC
concentrations which were thus excluded from analyses.

Dissolved inorganic nutrient samples (5 mL) were collected in sample-rinsed HDPE
vials (Midi-Vial, PerkinElmer; Waltham, MA, USA) and stored at —20°C until measurement
on a Gas Segmented Continuous Flow Analyzer (QuAAtro / TRAACS, SEAL Analytical).
Calibration standards were prepared in low-nutrient seawater with the same ionic
strength as analyzed samples (salinity ~35%o). For the analysis of nitrite (NO;) + nitrate
(NO3), NO3 was first reduced to NO, at pH 7.5 by a copperized cadmium column. The
resulting NO, was then turned into a pink complex through the addition of sulfanyla-
mide and naphthyl ethylene-diamine and measured at 550 nm (62). Phosphate (PO4) was
first turned into a yellow phosphate-molybdenum complex at pH 1.0 with potassium
antimonyl tartrate acting as a catalyst. The complex was then reduced into a blue
molybdophosphate-complex with ascorbic acid and measured at 889 nm (63). Two
samples from dark incubations had to be excluded (i.e., control 2, Start; coral 1, 1 day)
due to high salinity (an artifact from overflowing sample vials while freezing).

Microbial cell counts

Samples for microbial cell counts (1 mL) were taken with sterile pipette tips directly
from the incubation containers, immediately fixed with 20 pL glutaraldehyde (15 min at
4°C) and stored at —80°C until analysis with flow cytometry (FACSCalibur, BD Biosciences,
New Jersey, USA). Samples were 1:5 diluted with pre-filtered (0.2 pm) Tris-EDTA (TE)
buffer, stained with 2% SYBR Green, and stored in the dark for >15 minutes prior to
measurements. The output was analyzed with FCS Express 5 (DeNovo), and values from
blanks (TE only) were subtracted from the results.

DNA extraction

DNA of bacterioplankton communities was extracted from frozen (—20°C) polyethersul-
fone filters (0.2 um pore size, Millipore Sterivex) which were used for nutrient sample
collection (filtered volume: 0.2-1.2 L) as described in Haas et al. (64). All extractions were
done with sterile utensils in a UV cabinet (UVT-S-AR, BioSan). We used the Nucleao-
Spin Tissue (Macherey-Nalgel, 250 preps) DNA extraction kit following manufacturer
instructions with some adjustments. Filters were thawed at room temperature, air-dried
with a Luer lock syringe, and closed on one end. Subsequently, 410 pL of proteinase K
(50 pL) and buffer T1 (360 pL) solution was pipetted into the Luer lock opening of the
filter, which was then closed and rotated overnight (~18 hours) at 55°C in a hybridization
oven (Compact Line OV4, Biometra). On the next day, 400 pL of Buffer B3 was added
to the filters, and filters were rotated at 70°C for 15 min. Subsequently, the liquid (500-
750 pL) was removed from the filters with 3 mL Luer lock syringes and placed into a
microtube. Samples were diluted with pure ethanol in a volume ratio of 1:2 ethanol:sam-
ple and vortexed. The solution was then added to the column and centrifuged for 1 min
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at 11,000 x g. After washing the column with 500 pL of BW and 600 pL of B5 buffers, the
silica membrane containing the extracted DNA was dried for 2 min at 11,000 x g. Pure
DNA was then eluted into a microtube with 100 uL BE buffer which was incubated for
10 min at room temperature and spun down for 1 min at 11,000 x g. Extracted DNA was
stored at —20°C and then transported on dry ice to the University of Hawai‘i at Manoa for
amplification.

Amplicon library sequencing and bioinformatics

The V4 region of the small subunit (16S) rRNA gene was amplified from each genomic
DNA template using forward-indexed primers 515F-Parada: GTGYCAGCMGCCGCGGTAA
and 806R-Apprill: GGACTACNVGGGTWTCTAAT (65) following the protocols of the Earth
Microbiome Project (66), with the following minor changes: triplicate reactions were not
pooled, and 1 pL was used of genomic template. Amplicons were cleaned and normal-
ized to equimolar concentrations using the SequelPrep kit (Thermo Fisher Scientific) and
then pooled and sequenced on the lllumina MiSeq platform (600 cycle V3 chemistry).
Sequences were demultiplexed using a custom probabilistic script, and microbiome
profiling was implemented in the MetaFlow|mics pipeline (67) following the specific
settings presented by Jani et al. (68): sequences were assembled, denoised, and quality
trimmed using DADA2 (69), globally aligned with mothur (70) to the Silva (v132)
global SSU rRNA alignment database (71), bayesian consensus classified (70%) to the
Genus level (72), and clustered into 99% sequence identity operational taxonomic units
using vsearch (73) refined to reduce intragenomic taxonomic splitting errors using
LULU (74). Sequences that could not be classified at the Domain level or were classi-
fied as chloroplast or mitochondrial 16S were discarded, and sequencing depth was
subsequently standardized to 10,000 random reads per sample. All bioinformatics were
deployed on the C-MAIKI gateway (75) at the University of Hawai‘i at Manoa by the
Center for Microbial Oceanography: Research and Education.

We used MicFunPred (76) to predict metabolic pathway abundance from 16S rRNA
data. The tool normalized our operational taxonomic unit (OTU) abundance table to
library size, assigned taxonomy down to genus level, and then used the MetaCyc
database to predict core gene contents. The output is a product of normalized taxo-
nomic abundance and core gene content. We acknowledge the limitations of using
16S rRNA data to infer metabolic functions. First, the accuracy of predicting metabolic
functions based on 16S rRNA amplicon sequencing depends on the quality and size of
the reference database and may be limited for rare pathways and specific environments
(76, 77). Second, pathways specific to certain strains are not included because 16S rRNA
amplicons do not allow identification down to the microbial strain (77). MicFunPred
addresses the second limitation, as it predicts the functional potential based on a set
of core genes (i.e, genes present in =50% of genomes in the genus), which minimizes
the false-positive results and uses MinPath to estimate the minimal set of pathways for
pathway prediction (76).

Statistical analyses

All statistical analyses were conducted using R Studio (R version 4.3.0, R Studio version
2023.06.2). Before conducting parametric tests, we checked for outliers (rstatix package),
normal distribution (Shapiro-Wilk test), and homogeneity of variance (Levene test) across
and within groups. The effect of treatments on DOC and carbohydrate concentrations in
light incubations was tested with one-way analysis of variance (ANOVA) and Tukey'’s
honestly significant difference (HSD) test for post hoc analyses. Concentration data
of monosaccharides were log(x + 1) transformed, while mole % data were arcsine
transformed. We used false discovery rate (fdr) correction to control the family-wise error
rate across different monosaccharides. Hierarchical cluster analysis of HMW exudate-,
coral mucus-, and algae tissue composition was conducted using Euclidean distance and
the R package ComplexHeatmap (78). Simprof analysis (clustsig package) was used to
test for significant differences between clusters. Differences of microbial cell densities
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among timepoints (within-subjects factor) and treatments (between-subjects factor)
were analyzed using two-way mixed model ANOVA (rstatix package) and pairwise t-tests
with Bonferroni adjustment (i.e,, to test for the effect of timepoints). For mixed-model
ANOVA, we additionally tested for homogeneity of covariance (Box’s M-test). Some
outliers had to be excluded from DOC concentrations (i.e.,, n = 2 for algae and coral
treatments) and inorganic nutrient concentrations (i.e., n = 2 for controls at the start and
coral treatments after 1 day) and were thus analyzed with non-parametric tests (Kruskal-
Wallis and Friedmann), followed by pairwise Dunn’s tests with Bonferroni adjustment.

To compare microbial community composition and predicted metabolic pathway
abundances among treatments, we used two-way permutational multivariate ANOVA
(PERMANOVA) to test for the single and combined effects of time and treatment and
five one-way PERMANOVAs with fdr-correction to test for treatment effects at every time
point. For visualization of the microbial community composition, we used a non-met-
ric multidimensional scaling (NMDS) plot (vegan package) with Bray-Curtis dissimilar-
ity between square root transformed relative abundances of microbial genera. We
used hierarchical cluster analysis of the Euclidean distance (ComplexHeatmap package)
between Z-score scaled (across samples) relative abundances of microbial genera (>0.5%
relative abundance) and predicted metabolic pathway abundance. For the timepoint
with significant treatment effects on the microbial community composition (i.e., 4
days), permutational supervised classification random forest (RF) analysis was performed
(rfPermute package, 5,000 trees, and 100 permutations), as done previously to assess
differences in microbial community compositions between pre-defined groups (15,
79). Diagnostic plots confirmed that enough trees were grown. In addition, we used
differential expression analysis (DESeq2 package [80]) to contrast microbial commun-
ity composition and metabolic pathway abundance of both treatments with control
communities. A consensus approach of RF and DESeq2 analyses was used to identify
genera that were most important for characterizing treatments (81). Metabolic pathways
were annotated by pathway class (i.e., super pathway, MetaCyc database) and pathway
type (i.e., sub-groups of super pathways), and the abundance of each pathway class
throughout the experiment was analyzed with mixed model ANOVAs (fdr-corrected).
For metabolic classes with significant interaction terms, five one-way ANOVAs were
conducted (one at each timepoint, Bonferroni-adjusted) and fdr-corrected for multiple
testing across pathway classes.

RESULTS

Dissolved organic carbon and carbohydrate exudation by corals and
macroalgae

At the end of the coral and macroalgae incubations, DOC concentrations were enriched
by 13% and 11% compared to starting concentrations, respectively [ANOVA, F3 15) =
10.5, P < 0.001, n*G0.68, HSD test; Fig. 2al. HMW DOC contributed 3.2% + 0.7% (mean
+ SD) to total DOC and was not significantly affected by treatments (Fig. 2b). Combined
HMW carbohydrate concentrations were significantly enriched by 168% in macroalgae
incubations compared to seawater controls and starting concentrations [ANOVA, F(3 g) =
6.5, P < 0.05, n°6G0.68, HSD test; Fig. 2c], while coral incubations were not significantly
enriched (Fig. 2c). Percent carbohydrate content of HMW DOC in macroalgae and coral
incubations was significantly enriched compared to controls and starting concentrations
by 134% and 110%, respectively [ANOVA, F(3g) = 13.0, P < 0.01, n°G0.83, HSD test; Fig.
2d1.

Hydrolyzable monosaccharide composition of HMW coral and macroalgae
exudates

In exudation incubations with macroalgae, concentrations of fucose, galactose,
galacturonic acid, and rhamnose increased significantly by 388%, 252%, 128%, and
931%, respectively, compared to seawater controls and starting concentrations (P < 0.01,
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FIG 2 Change during 6 hours of exudation incubations with corals and macroalgae in (a) DOC concentrations, (b) HMW DOC concentrations, (c) HMW

carbohydrate concentrations (as carbon equivalents), and (d) percentage of HMW DOC as carbohydrates (CH). Values in panel c and d were calculated based

on carbon contents of neutral-, amino-, and acidic monosaccharides measured after acid hydrolysis of HWW DOM (see Fig. 3). Boxes represent median +95%

confidence intervals, and points represent replicates. Different letters indicate significant differences between treatments (HSD test; P < 0.05). Raw data to this

figure are available in Table S3.

HSD test, Fig. 3, all ANOVA results in Table 2). The mole percent contribution of fucose
to total carbohydrates increased significantly compared to seawater controls and starting
conditions, and mole percent contribution of rhamnose increased significantly compared
to starting conditions (P < 0.01, HSD test, Fig. S2). All other monosaccharides were not
significantly affected by macroalgae exudation.

In exudation incubations with corals, concentrations of arabinose, mannose, and
glucosamine increased significantly by 812%, 225%, and 360% compared to seawater
controls and starting concentrations (P < 0.05, HSD test; Fig. 3). The galactosamine
concentration increased significantly by 125% compared to starting concentrations (P <
0.05, HSD test; Fig. 3). The mole percent contribution to total carbohydrates increased
significantly compared to seawater controls and starting conditions for arabinose,
mannose, and glucosamine (P < 0.05, HSD test; Fig. S2). All other monosaccharides were
not significantly affected by coral exudation and none of the monosaccharides within
the HMW DOM pool changed in seawater control incubations compared to starting
concentrations (Fig. 3).

TABLE 2 ANOVA results for differences in concentrations (Fig. 3) and mole percent compositions (Fig. S2)
of HMW carbohydrates between treatments for all analyzed monosaccharides?

Concentration Mole %

Monosaccharide  F n? P P(fdr) F n? P P (fdr)
Fucose 153 084  <0.001 0.002 294 091 <0.001 <0.001
Galactose 170 085  <0.001 0.002 54 0.64  0.021 0.028
Galacturonic acid 236 0.89 <0.001 0.002 13 0.31 0.329 n.s.
Rhamnose 11.0 079  0.002 0.004 6.5 068  0.012 0.018
Arabinose 16.5 085  <0.001 0.002 480 094 <0.001 <0.001
Mannose 6.8 069  0.011 0.019 7.6 0.72  0.008 0.016
Glucosamine 136 082  0.001 0.002 232 0.89 <0.001 <0.001
Galactosamine 5.7 0.65 0.018 0.027 6.8 0.69 0.011 0.018
Xylose 24 0.44  0.136 n.s. 37 055  0.054 n.s.
Glucose 1.4 0.33 0.293 n.s. 85 0.74 0.005 0.012
Muramic acid 0.4 0.12 0.755 n.s. 11.0 0.79 0.002 0.006
Gluconic acid 0.6 0.18  0.594 n.s. 0.8 0.21 0.517 n.s.

“Concentration data were log (x + 1) transformed, while mole % data were arcsine transformed. DFn = 3, DFd = 9
for all tests. Bold values indicate significant (<0.05) fdr-corrected P values. n. s. = not significant.
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FIG 3 Carbohydrate concentrations during incubations with corals and macroalgae. Boxes display concentrations of monosaccharides after hydrolysis of
carbohydrates in the HMW fraction of DOM. Boxes represent median +95% confidence intervals, and points represent replicates. Different letters indicate
significant differences between treatments (HSD test; P < 0.05). Note differences in scale of the vertical axes. See ANOVA results in Table 2. Raw data to this figure
are available in Table S4.

Comparison of exudate compositions to coral mucus, macroalgae tissue, and
ambient reef water

Coral exudate compositions clustered with coral mucus compositions of A. cervicornis
(n = 3; SIMPROF, P < 0.0001; Fig. 4), which was characterized by high relative contents
of arabinose (49% + 4%; always stated as mean + SD), glucosamine (24% * 1%), and
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FIG 4 Monosaccharide compositions of hydrolyzed coral and macroalgae HMW exudates (mole % composition of control-
corrected fluxes) and ambient reef water HMW DOM in comparison to coral mucus and macroalgae tissue extracts. Coral
mucus was collected from A. cervicornis, D. labyrinthiformis, and M. meandrites, and macroalgae tissue was extracted from dried
Lobophora spp. and Dictyota spp. thalli. The dendrogram represents Euclidean distance between samples. Only neutral- and
amino-sugars were used for the comparative cluster analysis. White spaces in heatmap separate clusters of samples which
were significantly different in SIMPROF analysis (P < 0.0001). Raw data to this figure are available in Table S5.

mannose (17% + 4%). Mucus compositions of D. labyrinthiformis (n = 3) and M. mean-
drites (n = 2) were significantly different from coral exudates (SIMPROF, P < 0.0001), with
high relative contents of glucosamine (37% + 13% and 52% + 10%, respectively), fucose
(48% + 1% and 34% =+ 7%, respectively), and mannose (11% £ 11% and 11% + 3%,
respectively). No monosaccharides could be detected in the hydrolyzed mucus of M.
auretenra. Ambient reef water from the start of the exudation incubations (“Start, n =
3) and directly collected from the reef (“Reef,’ n = 1) clustered with algae tissue extracts
and algae exudates (SIMPROF, P < 0.0001; Fig. 4) and was characterized by high relative
contents of fucose (24% + 3%), xylose (17% * 5%), glucose (16% + 2%), and galactose
(15% + 4%). The tissue extracts of Dictyota spp. (n = 3) and Lobophora spp. (n = 3) were
not separated into individual clusters and were characterized by high relative contents of
fucose (34% + 4%), galactose (22% + 4%), glucose (17% + 6%), xylose (12% * 1%), and
mannose (9% + 3%).
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Microbial cell densities and dissolved nutrient concentrations in bacterio-
plankton incubations

Microbes in bacterioplankton incubations grew in all treatments within the first day, with
a mean growth rate of 401,837 + 105,708 cells mL™' day™' which did not differ between
treatments (ANOVA, P = 0.6). Microbial cell densities were similar between treatments
and controls throughout the experiment (Fig. S3a). Only time had a significant effect
on microbial cell densities [two-way mixed ANOVA: F(;9) = 24.2, P < 0.001, n*;G0.75].
Initial cell densities increased by 46%, 61%, and 22% after 12 hours, 1 day, and 4 days,
respectively (P < 0.05, pairwise t-tests, Bonferroni adjusted, Fig. S3a). The estimated
addition of HMW DOC for controls (i.e.,, the background material) was ~2.2 uM C,
while the added HMW DOC from coral- and macroalgae incubations was ~2.8 uM C
(i.e, mean HMW DOC concentrations shown in Fig. 2b diluted by a factor of 100, see
experimental design in Fig. 1). The difference in DOC concentration between treatments
and controls (~0.6 uM C) was thus likely insufficient to elicit a measurable differential
growth response. Dissolved nutrient concentrations (Fig. S3b through d) averaged 88
+ 2 uM DOC, 0.5 + 0.1 uM NO, + NO3, and 0.013 £ 0.002 uM POy at the start of the
incubations, were not affected by treatments at any time throughout the experiment
(P > 0.05, multiple Kruskal-Wallis tests), and declined over time [Friedmann tests; DOC:
X =159, P < 0.01; NO + NO3: X4y = 15.4, P < 0.01; POg4: X*(4) = 17.9, P < 0.01]. After 4
days of dark incubation, DOC, NO, + NO3, and PO4 concentrations were reduced by 10%,
68%, and 26% compared to starting concentrations, respectively.

Microbial community compositions in bacterioplankton incubations

The microbial community composition was significantly influenced by the interaction
of time and treatment [PERMANOVA, F(g) = 2.0, R* = 0.03, P < 0.05], with treatment
only revealing significant effects after 4 days, explaining 52% of variation (Table 3; Fig.
5a). Both single factors were significant, with time and treatment alone explaining 88%
and 2% of variation, respectively [PERMANOVA; Time: F(4) = 102.1, R*=0.88, P = 0.001;
Treatment: Fy) = 4.6, R =0.02, P < 0.01).

The initial microbial community was dominated by Oxyphotobacteria of the
Synechococcales order and Alphaproteobacteria of the SART1 order (Fig. S4). After 1
day, Oxyphotobacteria declined in relative abundance and were mainly replaced by
Gammaproteobacteria of the Alteromonadales order. The change from days 1 to 4 of the
experiment was mainly due to increased relative abundance of Alphaproteobacteria of
the SAR11 and Rhodobacterales orders (Fig. S4).

Hierarchical cluster analysis of the genus-level microbial community (genera with
a maximum in any one sample greater than 0.5% rel. abundance, Z-score) revealed a
separate cluster of coral samples from controls and algae exudate enriched samples after
4 days (Fig. 5b), albeit clustering was not significant (SIMPROF: P > 0.05). To identify the
most important genera for the classification of treatments, permutational RF classifi-
cation models were applied. In the coral exudate treatment, 16 genera contributed
significantly (PFpermute: P < 0.05) to the classification after 4 days (see green bars in Fig.
5¢; Fig. S5). In contrast, only one genus was driving the classification of algae exudate-
enriched communities. All coral exudate communities were successfully classified by the
RF model, while algae exudate samples could not be distinguished from controls (Table
S1). In coral exudate treatments, 17 genera were significantly different from controls
(DESeq2: P < 0.05, fdr-corrected, Fig. 5¢c), while algae exudate treatments did not reveal
any significant differences to controls. The consensus of both methods (RF and DESeq_2)
revealed eight genera (see black genus names in Fig. 5¢c) which characterized coral
exudate treatments after 4 days.

Microbial genera significantly enriched in coral exudate treatments compared to
controls (based on the consensus of RF and DESeq2) belonged to the Gammaproteo-
bacteria (Vibrionaceae and Thiotrichaceae), Bacteroidia (Flavobacteriales and Saprospira-
ceae), Alphaproteobacteria (Rhodobacteraceae), and Planctomycetes (Phycisphaeraceae,
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FIG 5 Microbial community composition in dark incubations of reef water with addition of HMW DOM of macroalgae
and coral exudates and seawater controls, (a) for all timepoints, and (b-d) after 4 days (final timepoint), when a significant
treatment effect was observed (P < 0.05, PERMANOVA; Table 3). (a) NMDS of square root transformed genus-level microbial
community compositions (Bray-Curtis dissimilarity matrix). (b) Row-scaled abundance (Z-score) of genera (>0.5% mean
relative abundance in any one sample) in hierarchical clustering heatmap (Euclidean distance). Bold lineage names indicate
an increase, and italicized names indicate a decrease with coral exudates compared to controls. (c) Log2 fold change of both
treatments vs controls. Error bars represent SE (IfcSE of DESeq2 output). Green bars indicate genera that were significant (P
< 0.05, importance score >5) in RF model for classifying algae or coral treatments. Black genera names indicate consensus of
RF and DESeq?2 analysis. (d) Relative abundance of four taxa which were significantly (P < 0.05) different in coral treatments
compared to controls and algae treatments after 4 days of incubation. Asterisks (in panels b and c) indicate significant coral
treatment effect vs controls (****P < 0.0001, *** P < 0.001, ** P < 0.01, and * P < 0.5, DESeq2, fdr-corrected). M.g. = marine
group; m.s.g. = marine sediment group. Raw data to this figure are available online (10.5281/zenodo.13365525), and DESeq2

results (c) are available in Table S7.

TABLE 3 PERMANOVA results of treatment effects on the microbial community composition (genus
level) and predicted metabolic functions at five times during bacterioplankton incubations, using 999
permutations?

Time Microbial community composition Predicted metabolic functions
(MicFunPred)
F R P P (fdr) F R P P (fdr)

Start 0.60 0.17 0.70 0.70 0.5 0.15 0.91 0.91
6 hours 0.91 0.23 0.47 0.59 2.1 0.41 0.14 0.18
12 hours 1.30 0.30 0.23 0.39 4.0 0.57 0.05 0.13
1 day 3.39 0.53 0.04 0.10 2.2 0.42 0.12 0.18
4 days 3.21 0.52 0.01 0.045 13.3 0.82 0.02 0.11

9Df = 2 for all tests, fdr = false discovery rate.
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OM190 class; see black genus names in Fig. 5¢). The most abundant member of the
coral-enriched microbial community was an unclassified genus of the Rhodobacteraceae
(coral = 9.0%, control = 4.2%, and algae = 4.7%; Fig. 5b), followed by Planktomycetes of
the uncultured class OM190 (coral = 1.7%, control = 0.5%, and algae = 0.6%), and the
genus CL500-3 of the Phycisphaeraceae (coral = 1.2%, control = 0.9%, and algae = 0.8%).
All other coral exudate-enriched genera were still rare (<1%).

Predicted metabolic functions

Predicted metabolic functions of the microbial communities (using MicFunPred) were
significantly affected by the interaction of time and treatment [PERMANOVA, F(g) = 3.5,
R*=0.02, P < 0.01] with the strongest treatment effect after 4 days, albeit not significant
after P value correction (Table 3). Metabolic class abundance was significantly affected
by the interaction of time and treatment for 8 out of 13 classes, and seven of these
increased significantly in coral treatments compared to controls and algae treatments
after 4 days (Table 4; Fig. 6a). Hierarchical cluster analysis of the Z-score adjusted pathway
type abundance revealed a separate cluster of coral samples from all other samples after
4 days (SIMPROF; P < 0.0001; Fig. 6b).

Predicted pathways associated with energy metabolism in HMW coral DOM
incubations increased by 28% (P < 0.001, pairwise t-tests, Bonferroni adjusted, Fig. 6a),
with significant increases in 6 out of 10 pathway types, including glycolysis, Entner
Duodoroff, and pentose phosphate pathways (P < 0.001, DESeq_2, fdr-corrected, Fig. 6b).
Predicted amino acid metabolism increased by 44% (P < 0.001), both in biosynthesis and
degradation pathways, though not significantly for a specific pathway type. Predicted
carbohydrate metabolism increased by 111% (P < 0.0001), with significant increases in
7 out of 12 pathway types, including both degradation and biosynthesis pathways (P
< 0.001). Predicted fatty acid and lipid metabolism increased by 24% (P < 0.05), with a
significant increase in fatty acid degradation (i.e., one out of nine pathway types, P <
0.001). Predicted pathways associated with secondary metabolites increased by 63% (P <
0.01), with significant increases in terpenoid and polyketide biosynthesis (i.e., two out of
six pathway types, P < 0.001). Other predicted degradation pathways increased by 22%
and other biosynthesis pathways by 9% (see Fig. S6 for more detail).

mSystems

TABLE 4 Statistical test results for treatment and time interaction effect (DFn = 8 and DFd = 24) of mixed model ANOVA, and treatment effect (DFn = 2 and DFd

= 6) after 4 days of bacterioplankton incubation for all metabolic classes with significant interaction effects®

Mixed ANOVA: treatment x time  ANOVA: treatment after 4 days

Metabolic class F n’ P P (fdr) F n’ P (BF) P (fdr) % of total pathways % coral effect size
Energy metabolism 73 0.68 0.007 0.015 59.8 0.95 0.001 0.001 14 28
Amino acids 76 0.70 0.000 0.000 83.2 0.97 0.000 0.001 12 44
Carbohydrates 6.2 065 0.016 0.026 640 0.99 0.000 0.000 6 11
Fatty acids and lipids 43 053 0.003 0.008 129 080 0.035 0.040 7 24
Secondary metabolites 8.7 0.73 0.000 0.000 26.8 0.90 0.005 0.007 4 63
Other degradation 11.8 0.78 0.000 0.000 27.2 0.90 0.005 0.007 9 22
Other biosynthesis 3.1 048 0.014 0.026 27.1 0.90 0.005 0.007 11 9
Inorganic nutrients 44 055 0.002 0.007 54 064 0.230 0.230 7 -
Detoxification 23 039 0.054 0.078 - - - - 4 -
Cofactors, carriers, and

vitamins 21 039 0.077 0.100 - - - - 12 -
Cell structure biosynthesis 20 035 0.186 0.213 - - - - 1 -
Nucleosides and nucleotides 2.0 038 0.197 0.213 - - - - 11 -
Pigments 0.6 0.14 0677 0.677 - - - - 1 -

9P (BF) = Bonferroni-adjusted P-values for multiple one-way ANOVAs (i.e., one at each timepoint, only the result for 4 days is reported). % of total pathways = percent
contribution of mean pathway abundance per class to the sum of all pathways after 4 days; % coral effect size = percent increase with coral exudates compared to controls
after 4 days. Bold values indicate significant (<0.05) fdr-corrected P values. A dash indicates when no further analysis was done.
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DISCUSSION

Our results (summarized in Fig. 7) revealed that brown macroalgae, as well as scleracti-
nian corals, exude significant amounts of HMW carbohydrates (Fig. 2d) which differ in
composition (Fig. 3). The compositional differences in exuded HMW DOM, added at
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low concentrations (<1% of ambient DOC), had no effect on the overall bacterioplank-
ton cell density or dissolved nutrient concentrations (Fig. S3). However, coral HMW
DOM significantly affected the bacterioplankton community composition (Fig. 5) and
increased the predicted potential for specific metabolic functions relative to controls (Fig.
6). In contrast, algae HMW DOM addition induced no significant differences compared to
seawater controls.

Coral exudates reflected HMW carbohydrate composition of coral mucus and
enriched opportunistic coral-associated microbes

The HMW carbohydrates released by corals were enriched in arabinose, glucosa-
mine, mannose, and galactosamine (Fig. 3) and mostly reflected the monosaccharide
composition of hydrolyzed mucus from A. cervicornis (Fig. 4). The main carbohydrate-
containing macromolecules in coral mucus are mucin glycoproteins (i.e.,, 0.5-50 mDa)
(82), and carbohydrate side chains of mucins isolated from Acropora formosa were rich
in arabinose, glucosamine, and mannose (83), supporting the presence of mucins in
HMW coral-DOM. Furthermore, although the prediction of metabolic functions from 16S
rRNA data is limited in accuracy (76, 77) (see Materials and Methods for details), the
increase in predicted carbohydrate, amino acid, and fatty acid and lipid metabolism in
bacterioplankton communities (Fig. 6) is consistent with degradation of coral mucus,
which mainly consists of carbohydrates, proteins, and lipids (84, 85).

The minor addition of HMW coral DOM (~0.6 uM C; <1% of DOC) to an ambi-
ent bacterioplankton community significantly increased the relative abundance of
several genera belonging to the Alphaproteobacteria (Rhodobacterales), Planctomycetes
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(Phycisphaerales, OM190 class), Gammaproteobacteria (Vibrionales and Thiotrichales),
and Bacteroidetes (Flavobacteriales and Saprospirales; Fig. 5). However, the increase in
microbial cell densities over time was similar to those observed in HMW macroalgae-
and seawater control DOM incubations (Fig. S3). Bacterioplankton growth kinetics in
dilution cultures usually include an exponential growth phase followed by a stationary
phase (41), where the stationary abundance at least partially depends on the amount of
substrate added (22, 86). As we only diluted the microbial community by ~1% and added
low and similar amounts of substrate for treatments (2.8 uM DOC) and controls (2.2 uM
DOC), we did not expect differences in final microbial cell abundances. Rhodobacterales,
Thiotrichales, Vibrionales, Flavobacteriales, and OM190 have been previously reported in
coral mucus (87-91) and/or increased in seawater when coral mucus (92-94) or coral
exudates (22, 28) were added (Table S2). Phycisphaeraceae were previously found in
Acropora hyacinthus (95), deep-sea corals (96), and in association with cultured Symbio-
diniaceae (97). Thus, HMW coral-DOM enriched bacterioplankton taxa are commonly
associated with corals.

Rhodobacterales, Vibrionales, and Flavobacteriales were previously found to increase
with macroalgae DOM addition and are considered to be opportunistic heterotrophic
bacteria adapted to fast growth on DOM (22). Furthermore, they can increase in coral
holobionts under stress (98, 99) and disease (100, 101) and were therefore suggested as
indicators for poor reef health (102). Additionally, Thiotrichaceae (103) and Phycisphaer-
aceae (95, 104) can be associated with coral disease, and OM190 increased in bacter-
ioplankton during a marine heatwave (105). Thus, HMW coral DOM mostly selected
for coral-associated microbes with the ability for opportunistic growth, which is also
supported by the increase in predicted carbohydrate-, amino acid-, and fatty acid
metabolism (Fig. 6) (106).

Algae exudates reflected algae tissue and ambient reef water HMW carbo-
hydrate composition and did not affect the bacterioplankton community
composition

HMW carbohydrates released by the two brown macroalgae Dictyota spp. and Lobophora
spp. were enriched in fucose, galactose, galacturonic acid, and rhamnose (Fig. 3) and
were similar in composition to tissue extracts from both species (Fig. 4). Furthermore, the
HMW carbohydrate composition of ambient reef water mostly reflected algae exudate
compositions (Fig. 4 and 7). In contrast, the previously reported carbohydrate composi-
tion of ambient reef water from Moorea in the central Pacific was most similar to that
of coral exudates (22). This suggests that the composition of HUW DOM in the reef
may depend on the community of benthic primary producers fueling and shaping the
local DOM pool (17, 107). Indeed, our study site is characterized by high algae (i.e., 17%
macroalgae and 13% turf algae) and low coral (i.e., 7%) cover (108), with Dictyota and
Lobophora being both highly abundant and releasing substantial amounts of DOM (12,
13, 109). On the other hand, the DOM pool of the rapidly flushed backreef of Moorea
appears to be at least partly fueled by dense coral communities on the outer reefs (22,
110,111).

Microbial communities growing on HMW macroalgae DOM did not reveal any
differences to seawater control incubations, thus not confirming the hypothesis that
algae HMW exudates exert stronger effects on bacterioplankton communities. However,
our addition of DOM was different from previous studies in several ways. We enriched
the microbial community exclusively with HMW DOM and thus removed any molecules
<1 kDa from the exuded fraction. Freshly produced exudates can contain LMW DOM
with high bioavailability like free monosaccharides and amino acids, which are taken
up rapidly by microbes (112) and could have contributed to the microbial response
in previous studies. Further studies using undiluted bacterioplankton communities in
combination with a natural ratio of HMW and LMW coral and macroalgal DOM are
required to fully unravel the control of DOM source (and thereby composition) on
bacterioplankton communities. Furthermore, the DOC addition in the present study
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(~2-3 uM DOC) is more than one order of magnitude lower compared to previous
studies (~40-100 uM DOC [22, 42]). These comparable high DOC additions allowed
for high DOC uptake rates to compensate for low bacterial growth efficiencies (i.e.,
increased respiration at the expense of biomass formation) of algal-DOM, resulting
in higher microbial growth rates on algal- vs coral-DOM (19, 22, 42). In the present
study, there were neither differences in initial DOC concentrations between coral and
macroalgae exudates (Fig. 2a and b) nor differences in microbial growth rates (Fig. S3a).
Our approach thereby allowed a decoupling of DOM concentration-dependent from
DOM composition-dependent effects, which suggest that the increased DOC concentra-
tion component at least partly (excluding potential effects from LMW DOM) explained
previously reported differences in bacterial growth rates between coral and algae DOM.

HMW macroalgae DOM could have also resisted microbial degradation throughout
the 4-day incubations. Brown macroalgae can exude large quantities of fucoidan (38),
a complex fucose-rich polysaccharide that forms an extracellular matrix and prevents
desiccation of algal thalli (113, 114). Fucose was the most abundant monosaccharide
in HMW DOM of the brown macroalgae in the present study, as well as for the brown
algae Turbinaria on reefs in French Polynesia (22). Using monoclonal antibodies (see
supplemental methods), we detected three epitopes present in sulfated fucan (BAM1,
BAM3, and BAM4) in macroalgae tissue (Fig. S7a), which is consistent with previous
findings of fucoidan in the tissue of both genera (113, 115). Additionally, relative
proportions of fucose, galactose, xylose, and mannose were similar in fucoidan extracted
from Dictyota spp. and Lobophora spp. compared to macroalgae exudates (Fig. S7b),
suggesting that fucoidan contributed to macroalgae HMW DOM. Microbial degradation
of brown algae fucoidans is energetically costly because it can require hundreds of
different enzymes to degrade its complex structure (116). This could also explain why
bacterioplankton growing on brown macroalgae exudates incorporate less carbon and
have higher respiratory costs compared to green algae exudates (22, 42), as green algae
do not contain fucoidan in their cell walls (117). Similarly, the high contribution of fucose,
galactose, xylose, and mannose in ambient reef water (combined making up 54% of
HMW carbohydrates, Fig. 4 and 7) suggests a considerable abundance of fucoidan in the
HMW fraction of reef water, which supports the high resistance of brown macroalgae
HMW DOM to microbial degradation.

Ecological implications

Previous studies were mainly conducted on coral-dominated reefs and found that
coral exudates support a diverse oligotrophic bacterioplankton community, while algae
exudates promote opportunistic microbial taxa (22) and less energy-efficient nutrient
cycling (17). A shift toward macroalgae dominance can thus reduce ecosystem produc-
tivity by enhancing microbial respiration (11, 118) and decrease the transfer of energy to
higher trophic levels (17, 18). The strong effects observed here from a small addition of
coral exudates on the bacterioplankton community composition support the energy-
efficient transformation of coral exudates into microbial biomass (11, 17). However, the
increase in mainly opportunistic microbial taxa with coral exudates seems to contradict
previous results. A change in carbon substrates can act as a disturbance on microbial
communities (119). Thus, the addition of coral exudates to a microbial community from
a reef with macroalgae DOM dominating the local DOM pool could be considered a
disturbance of the alternative stable state (i.e., the algae-dominance [120]). A common
ecosystem response to stress is a shift toward opportunists which are less specialized
but respond rapidly to perturbations by adapting to new environmental conditions (121,
122). We, therefore, propose that the increase of some opportunistic microbial taxa on
reefs may not be a direct response to the exudates of a specific primary producer but
rather to a disturbance in the form of a change in the availability of DOM producer-spe-
cific carbon substrates.

Brown macroalgae HMW DOM did not appear to support microbial growth, which
could be explained by increased respiration instead of biomass production (not
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measured here but shown previously [11, 17, 19]). An additional explanation could
be that resistant HMW molecules form brown macroalgae such as fucoidan defied
degradation during the 4 days of dark incubations. Previous studies revealed resistance
of brown algae exudates to microbial degradation for up to 5 months, which leads to
a net export of DOM from brown macroalgae beds (123-126). Water residence times
of fringing reefs can range from hours to days (127, 128). Thus, brown algae exudates
could be exported from coral reefs. Release of refractory DOM by brown macroalgae
which replace corals on many reefs could be an additional pathway by which the transfer
of energy to higher trophic levels declines on degraded reefs. This hypothesis could
be tested by measuring fucose concentrations at gradients away from algae-dominated
reefs, as fucose can function as a biomarker for brown algae origin (129).

Effects of changing DOM compositions beyond coral reefs

Our results indicate that opportunistic microbial taxa increase in bacterioplankton
communities of coral reefs following a change in the main DOM substrates (here induced
by addition of coral DOM to macroalgae DOM-dominated ambient reef water; Fig. 7). This
hypothesis is based on the r- and K-selection framework, where copiotrophic r-strategists
can grow faster on new carbon sources, thus outcompeting the oligotrophic K-strategists
(121). Changes in the main benthic DOM producer are not exclusive to coral reefs and
have been reported for coastal ecosystems worldwide, including macroalgae beds (130),
kelp forests (131), and seagrass meadows (132). These macrophytes release significant
amounts of their photosynthetically fixed carbon as DOM (38, 133, 134). Changes in
benthic composition and resulting alterations of the local DOM pool may disrupt the
stable microbial community states, inducing the rise of opportunistic heterotrophic
microbes until a new equilibrium has been reached following the perturbation.

Conclusion

Coral HMW DOM was compositionally distinct from ambient reef water and enriched
opportunistic microbial taxa commonly associated with coral stress, significantly
increasing the predicted metabolic potential for energy-, amino acid-, carbohydrate-,
fatty acid and lipid-, and secondary metabolism (Fig. 7). In contrast, brown macroal-
gae HMW DOM was similar to ambient reef water and did not induce any effects on
the bacterioplankton community composition. We propose two not mutually exclusive
explanations for these results.

A greater alteration in HMW DOM composition through coral compared to algal
exudates

Our results indicate that whether coral or macroalgae DOM exerts stronger effects on the
bacterioplankton community composition depends on local DOM and bacterioplankton
characteristics which are at least partly shaped by the local (benthic) DOM-producing
community. We hypothesize that a change in DOM away from the ambient composition
acts as a disturbance, thus resulting in the dominance of opportunistic microbes that are
able to adapt fast to environmental change.

A higher bacterial growth efficiency on coral compared to algal HMW exudates

The strong effects of a small addition of coral HMW DOM to the bacterioplank-
ton community suggest an efficient transformation of coral HMW DOM into micro-
bial biomass, an important characteristic of nutrient cycles in healthy coral reefs.
Brown macroalgae HMW exudate addition revealed no effects on the bacterioplank-
ton community, indicating a low bacterial growth efficiency on algae exudates (i.e.,
more respiration). Brown algae HMW exudates, especially complex fucose-containing
polysaccharides, could have additionally resisted microbial degradation (i.e., reduced
bioavailability).
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Overall, our results suggest that changes in HMW DOM composition support the rise
of opportunistic microbes in coral reefs. Inefficient and/or incomplete degradation of
HMW macroalgae exudates could ultimately lead to a reduced transfer of energy and
nutrients stored in algal DOM to higher trophic levels, thereby supporting the proposed
reef microbialization.
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