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ABSTRACT Due to the complex nature of microbiome data, the field of microbial 
ecology has many current and potential uses for machine learning (ML) modeling. With 
the increased use of predictive ML models across many disciplines, including microbial 
ecology, there is extensive published information on the specific ML algorithms available 
and how those algorithms have been applied. Thus, our goal is not to summarize the 
breadth of ML models available or compare their performances. Rather, our goal is to 
provide more concrete and actionable information to guide microbial ecologists in how 
to select, run, and interpret ML algorithms to predict the taxa or genes associated with 
particular sample categories or environmental gradients of interest. Such microbial data 
often have unique characteristics that require careful consideration of how to apply ML 
models and how to interpret the associated results. This review is intended for practicing 
microbial ecologists who may be unfamiliar with some of the intricacies of ML models. 
We provide examples and discuss common opportunities and pitfalls specific to applying 
ML models to the types of data sets most frequently collected by microbial ecologists.
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M icrobial ecologists are increasingly turning to machine learning (ML) models to 
better identify and predict meaningful biological patterns and relationships in 

molecular microbial community data (including data generated via marker gene or 
metagenomic sequencing). Whether one is studying the microbiomes associated with 
animal or plant hosts, or the microbiomes found in terrestrial, aquatic, or engineered 
systems, the microbial communities are typically complex with a broad diversity of taxa 
and genes represented in a given sample, a high degree of variability across samples, 
and complex associations among organisms within each sample. ML can help overcome 
some of these challenges by requiring few a priori assumptions about the system, being 
robust to non-normal data, and incorporating the complexity of biological communities. 
While ML models are typically associated with prediction at the expense of understand­
ing, they can also offer opportunities to extract interpretable information from unwieldly 
microbiome data. To cite a few (of many) recent examples of ML applications in 
microbiome studies, such models have been used to predict crop productivity using 
bulk soil metagenomic information (1), identify nuclear waste and oil spill contamination 
in wells and ocean water using microbial taxonomic information (2), determine the 
environmental optima for bacterial growth based on a subset of genes (3), and identify 
or predict human disease states from shifts in human host microbiome composition (4, 
5).

There are many resources available for biologists who want to use machine learning 
(6–9), but microbial ecology data have unique features that require specific considera­
tions. Here, we offer a step-by-step guide to using ML with the specific data types 
commonly generated by microbial ecologists and the questions they are often trying to 
answer with those data. We note that there are other resources for microbial ecologists 
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that comprehensively detail the many types of ML models or review examples of their 
applications (10–15). Our goal with this piece is to provide a more practical guide 
for developing ML models from input data to interpretation. We focus here on the 
applications of supervised ML models (when data are labeled, see Table 1) to analyze 
data on the taxonomic composition of microbiomes or their functional gene profiles 
obtained via high-throughput sequencing of microbial DNA. We recognize that these 
are not the only types of data collected by microbial ecologists, or the only model 
types available, but together they represent the most common scenarios in the field 
of microbial ecology. Use of unsupervised machine learning approaches, such as neural 
networks and “deep” learning, also has applications in microbial ecology but is beyond 
the scope of this work. We discuss challenges of implementing supervised ML models 
that are commonly encountered when applying these methods to microbial ecology 
questions. Specifically, we focus on when it may be useful to construct supervised ML 
models with microbiome data, how to do so, and how to interpret the model results 
effectively.

Step 1: Determine whether machine learning is necessary or even worth 
doing

Arguably, one of the most important questions to consider when determining whether 
to use ML algorithms is whether there is a hypothesized mechanism of interaction 
between the “input” data (microbial taxonomic or genetic information, also termed 
“predictors,” “features,” or “independent variables;” see Table 1) and the experimental 
question or response variable (also termed “output” or “dependent variable;” see Table 
1). Classic statistical models (such as linear regression) allow for casual mechanistic 
inference and hypothesis testing but require explicit assumptions regarding how the 
data is structured, and a priori hypotheses of testable relationships within the data 
(16). In most biology research questions, simpler models and ease of inferences can be 
preferable to more complex models (if performance is similar) due to the importance of 
interpretability and generalizability. If the standard statistical approaches widely used 
by microbial ecologists (17, 18) are sufficient, there is no need to use ML models. 
More generally, machine learning might not be the best choice in contexts where 
the strengths of statistical modeling are particularly important, such as when there is 
a need for uncertainty estimates, non-automated data analysis, incorporation of prior 
knowledge, hypothesis testing, or addressing specific problems without the necessity 
for scalability or generalization. Machine learning models are typically employed when 
the more “standard” statistical approaches are not sufficient due to the structure of the 
data or when mechanistic inference is less important. However, it is important to note 
that machine learning cannot save bad study design or data: ML is not appropriate in 
situations where statistical methods would also struggle due to underlying issues like 
poor data quality, non-representative samples, or inherent biases in the data.

Machine learning models can detect associations in complex, non-normal data sets 
and enable prediction at some expense of mechanistic inference. Machine learning 
models do not require explicit assumptions about the underlying structure of the data 
and can identify non-linear relationships in the complex data sets typical of microbiome 
studies that are challenging to detect with more standard statistical approaches (16, 
19). ML models especially excel when the goal is predicting an outcome, function, or 
phenotype from microbiome data. However, the results of ML models can be difficult to 
interpret in the context of biological understanding: you may be able to predict how big 
a plant will be based on the surrounding soil microbiome, but you may not necessarily 
be able to resolve how specific features of the microbiome independently contribute 
to observed differences in plant growth. That being said, there are some options for 
gaining biologically meaningful interpretations from ML output, as explained in later 
sections. In general, trying to predict a specific outcome in a complex system, such as 
diagnosing colorectal cancer with fecal microbiome data (20), is easier to address with 
ML approaches (21).
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TABLE 1 Glossary of terms

Accuracy The ratio of correctly categorized instances over the total number of instances; optimize for accuracy when the costs of both false positives 

and false negatives are symmetrical.

(AU)ROC curve A metric measuring a binary classifier’s ability to distinguish between positive and negative classes. More valuable as a metric when classes 

are balanced, and the cost of misclassification is consistent among classes. A value above 0.5 indicates that a model classifies more true 

positives and negatives than false positives and negatives.

(AU)PR/

precision-recall curve

A metric measuring the tradeoff between precision and recall for a binary classifier. Superior to (AU)ROC when classes are not balanced 

(unequal number of samples in each class).

Bias In machine learning, a model with high bias makes more simplifying assumptions about the data, potentially failing to take into account 

important information and underfitting. In other words, systematic error in the model results in inaccurate predictions.

Compositional data Data in which variable values are only understandable relative to other variables, or ratios of a total value. For example, in taxonomic 

analyses via marker gene sequencing, abundances of identified taxa are typically presented in relative (proportional) terms and not 

absolute terms, meaning an increase in the number of reads in a sample does not necessarily mean that more of that organism was 

present.

Confounding (variables) An extraneous variable that impacts both independent and dependent variables, potentially causing spurious associations within the data.

Cross-validation A resampling procedure used to estimate and improve model performance. The model is trained and tested on different subsets of the 

data.

F1 The harmonic mean of precision and recall for a binary classifier. Because the F1 score gives equal weights to precision and recall, optimize 

for F1 score when seeking a balance between them and the cost of misclassification is consistent between classes.

Feature selection Feature selection is the process of reducing the number of input variables in a data set by selecting only the most informative subset of 

variables.

Hinge-loss Measures the probability that predicted outcomes for a binary support vector machine (SVM) match the observed outcomes; penalizes 

wrong and low confidence predictions more than log-loss.

Kappa Takes into account the probability that correct classification can be achieved by random guessing, making it a more valuable metric than 

accuracy and F1 score for both unbalanced and multi-class data.

k-fold cross validation A variant of cross-fold validation. With k-fold cross validation, the data set is split into k groups and for each group, one of the k groups 

is used as a test set and the remaining groups are used as the training set iteratively until each of the groups has been used as the test 

set. An extreme example of this is leave one out cross validation (LOOCV) where a single sample is iteratively selected for validation, 

eventually using the entire data set for validation.

Log-loss/cross-entropy loss Measures the probability that predicted outcomes for a classification problem match observed outcomes.

MAE Mean absolute error. Metric measuring the magnitude of errors between observed and predicted values for a regression problem. Does not 

give weight to larger errors as with (root) mean square error (RMSE), meaning outliers are not heavily penalized. Lower values are better.

MAPE Mean absolute percentage error. Metric measuring the percentage difference between observed and predicted values for a regression 

problem, which can help with interpretability. However, MAPE values can be thrown off by sparse data and outliers, making it a poor 

choice for many applications in microbial ecology.

One-hot encoding The process of turning non-ordinal categorical data into binary variables corresponding to each category.

Overfitting When a model performs well on the training data set but poorly on the test data set.

Precision/positive predictive 

value The number of true positives over the total number of predicted positives; optimize for precision when the cost of a false positive is high.

Predictor variables Also known as “input data,” “features,” “explanatory variables,” “independent variables,” these are commonly microbial taxa or genes in 

microbial ecology data.

Response variables Also known as a “dependent variable” or “outcome.” The variable that depends on variation in predictor variables and is the phenotype or 

value trying to be predicted.

Recall/sensitivity The ratio of true positives over the total number of positive instances. Optimize for recall when the cost of a false negative is high. Also 

called the true positive rate (TPR).

(R)MSE (Root) mean square error. Metric measuring the Euclidean distance between observed and predicted values for a regression problem, larger 

errors are penalized more heavily than smaller ones. Lower values are better.

“Sparse” data Data where a large proportion of the values are zero. Most sequence-based data sets in microbial ecology are sparse.

Specificity The ratio of predicted instances to true negative instances. Also called the true negative rate (TNR).

Supervised learning A category of machine learning where input data are labeled, meaning there are both predictor values and response values associated with 

each sample.

Variance In machine learning, a model with high variance makes fewer simplifying assumptions about the data, potentially taking too much noise 

into consideration and can lead to overfitting.

“Wide” data Data where the total number of features is much larger than the total number of instances (e.g., more taxa or genes than samples).
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Step 2: Get to know your data

The other critical question to ask when determining whether to use ML is “what 
do the data look like?” Taxonomic data or functional gene data that are commonly 
generated in microbiome studies require special handling whether statistical or ML 
modeling approaches are used (21). It is critical to assess how the issues detailed in 
Table 2 (compositionality, wideness/sparseness, uneven sampling depth, collinearities, 
confounders, garbage in garbage out [GIGO]; see Tables 1 and 2), or related data 
processing to address those issues, may affect downstream ML modeling efforts. In 

TABLE 2 Considerations for molecular microbial ecology data (not necessarily unique to ML)

Sequence data are often compositional (see 
Table 1)

DNA sequencing read counts are not independent or reflective of true abundance and may yield 
false correlations. Various transformation techniques such as log-ratio transformations and differential 
proportionality analysis can be applied to address compositional data (22–24). However, it is important 
to note that nonlinear machine learning algorithms are generally more robust to compositionality than 
linear approaches (25).

Sequence data often have uneven sam­
pling depth (unequal read coverage) across 
samples

There is extensive discussion elsewhere on the options, pros, and cons of “normalizing” data to 
standardize read depths (26–28). Note that machine learning models can detect and propagate signals 
from sequencing depth if the input data are not normalized in some capacity. However, normalization 
procedures can also skew data in artificial ways (29). To mitigate this, performing model training on 
both transformed and untransformed data can identify major discrepancies due to data transforma­
tion.

Additionally, microbiomes are rarely surveyed to completion (i.e., not all genes or taxa in a given sample 
are surveyed), so rare features may appear to be missing from some samples but not others. It is hard to 
confirm true absence, and thus, rare features should be treated with caution (see “GIGO”).

Sequence data are often wide and sparse Sequence data are often wide—typically there are far more predictors (genes or taxa) than samples, 
and sparse—there are a lot of zero (null) values (e.g., the classic ecological principle of most species 
being rare [30]). This introduces specific types of error into ML models, most notably overfitting. 
Performing abundance/ubiquity-based filtering, grouping input variables into coarser groups (e.g., 
gene categories, functional taxonomic groups), and performing feature selection are all strategies to 
address the pitfalls of wide and sparse data.

Underlying relationships that introduce 
collinearities

Examples of collinearities include genes that correlate because they exist in the same taxon, or taxa that 
correlate because of geographic/physical proximity. Collinearity does not necessarily harm perform­
ance of ML models, but it can make ML models difficult to interpret as the underlying drivers can be 
obscured (31).

Confounders are signals that are not reflective 
of true biological variation related to the 
experimental question

“Batch effects,” such as reagents for DNA extractions, sequencing center, or day of data collection, 
can all introduce variation in microbial data that models could detect and propagate. While error 
introduced by lab protocols is hard to eliminate completely, it can be minimized and identified with 
proper procedures. Specifically, there are a number of pre-existing software packages focused on 
batch effects, including VOOM, SNM, ComBat-seq, and others (32–35). Relatedly, other confounding 
influences may not be known or measured but nevertheless create false associations or hide true 
associations between predictors and response variables. The most common examples of unknown 
confounders in microbiome studies are unmeasured environmental variables. The main issue with this 
specific type of confounder is that the model can detect and use these associations to form predictions 
without the user being aware, potentially causing the model to perform poorly when the confounder 
is different or absent. Exploratory data analysis (EDA) is a critical first step for identifying known or 
unknown confounders, as is employing robust external test data, and assessing model residuals (see 
below).

“Garbage in/garbage out (GIGO)” (data 
cleaning)

Samples and features with low read counts should be treated with caution. Additionally, low biomass 
samples have a high risk of contamination, and spurious taxa can, therefore, be identified by models as 
being “important” when they are not truly functional (or even present) in the experimental system. 
Typical “best practices” in data cleaning include performing abundance and prevalence filtering 
to remove rare or spurious taxa (36, 37). Additionally, adding “blank” samples at all steps of data 
generation and processing (sample collection, DNA extraction, PCR, sequencing) to identify and 
remove potential contaminants is important for all microbiome studies and especially for machine 
learning modeling where models can detect and amplify the importance of rare taxa (37)
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addition to considering the aforementioned issues, exploring the data visually via 
exploratory data analysis (EDA) is critical to do before attempting any ML modeling.

“Exploratory data analysis is an attitude, a flexibility, and a reliance on display, 
NOT a bundle of techniques.”

–John Tukey

EDA is a critical first step in any analysis to gain familiarity with the data set. At 
this stage of data analysis, one should visualize the distribution of a data set, take key 
statistical metrics to identify outliers, and look for potential confounders. Doing so can 
help inform how to process the data prior to modeling, identify which ML model is most 
appropriate, and determine whether ML is needed at all. For example, if a histogram 
of the distribution between observed classes (e.g., number of samples per category) 
shows the data set to be highly unbalanced, one may decide to resample the data, avoid 
evaluation metrics such as accuracy, select a model type that performs well on unbal­
anced data (e.g., XGBoost [38]), or build a model that penalizes incorrect classifications of 
rare classes. If a large number of outliers are observed, and those outliers are likely to be 
spurious, one can either eliminate outliers or change the model performance metric for 
optimization (see Step 7 below). If the data are sparse and the distribution of variables 
has a “long tailed” distribution (i.e., few taxa or genes are common and most are rare, 
a common feature of microbiome data), one can consider using a feature selection 
process (see Step 4 below). If a batch effect is observed (39), one may need to take batch 
information into account prior to building models, especially when splitting data into 
testing and training sets (explained below). There are many other ways to examine data 
visually and statistically that will give any model a solid foundation, including identifying 
confounding variables, re-expression of data through transformations to better visualize 
data, and more. EDA is not a list of techniques that must be done before model building, 
rather it is an interactive exercise between a researcher and their data to find relation­
ships and salient features. For more information on EDA, see references 26, 40–42.

Another pre-modeling step to consider with microbial ecology data is the level of 
taxonomic or genetic resolution to use as the input for the model. Amplicon sequence 
variants (ASVs) or operational taxonomic units (OTUs) are likely sparsely distributed 
across samples and, thus, could contribute noise but may be the resolution needed to 
identify associations to the response variable. For example, many plant pathogens are 
closely related to plant beneficial microorganisms (e.g., Pseudomonas species [43, 44]), 
so broad levels of taxonomic categorization may not be useful when trying to predict 
plant-microbe interaction outcomes. However, other patterns of interest could emerge 
at broader taxonomic classifications, and the appropriate level of resolution will depend 
on the questions being asked. Similarly, one can choose whether to train a model on 
individual genes or gene variants versus broader functional gene categories depending 
on the experimental question and the distribution of the data set at various levels of 
genetic resolution. Broader taxonomic categories (genus, class) or metabolic pathways 
may be appropriate predictors depending on the questions being asked and could result 
in less biased, more broadly applicable models (at the trade-off of reported internal 
performance) (29).

Finally, in addition to the data considerations listed in Table 2, the bioinformatic 
algorithms used to process raw sequence data can introduce errors and biases that, 
while unavoidable, are important to consider and communicate. For example, the choice 
of algorithms used to cluster 16S rRNA gene sequences based on the percentage of 
sequence similarity can result in very different input data tables. Similarly for metage­
nomic data, the binning methods or alignment algorithms employed can drastically 
change the genes and genomes identified and used in the models. These challenges 
and associated suggestions are covered elsewhere (45, 46) and apply regardless of 
the whether statistics or machine learning approaches are used. However, we empha­
size that it is critical to include all details of bioinformatic processing steps (including 

Minireview mBio

February 2024  Volume 15  Issue 2 10.1128/mbio.02050-23 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 2

6 
M

ar
ch

 2
02

5 
by

 1
37

.7
5.

80
.2

4.

https://doi.org/10.1128/mbio.02050-23


software version numbers and settings) when reporting results, so readers understand 
the context with which the machine learning models were developed.

Step 3: Split the data into a training and test set (with consideration of study 
biases)

Something that is critical to do when employing machine learning models that is not 
typically done in traditional statistical modeling is splitting up the data set into separate 
subsets: a “training” set, a “testing” set, and, in some cases, a “validation” set. The idea 
is to develop the model on a portion of the data (“training” and “validation”) and then 
evaluate the final model performance on the held-out portion of the data (“testing”). The 
validation set is typically used within the training period and serves as an internal test set 
for iteratively training and improving models, before the true test set is used to evaluate 
the final model, but not all studies have enough samples for this three-way split. Testing 
the final model at the end of the model development process enables the calculation of 
model performance on “novel” data the model has not encountered and is a good way 
to identify potential overfitting (see Table 1). Typically, a majority of the data is used in 
the training set (70:30, 80:20, 70:20:10), but splitting already small sample sizes common 
in microbiome studies (n = 10s-100s) can result in noisy models due to low volume of 
input data. One technique to overcome the shortfalls of the train-test split methodology 
is k-fold cross validation (see Table 1) (47). Although this technique can be useful when 
applied to small data sets, it comes at the cost of high variance (less likely to apply to 
external data sets; see Table 1) and is computationally expensive.

While it is common to simply randomly assign samples into training and test sets, 
doing so without considering specifics of the data set can lead to poor (or overestimated) 
model performance. Biases in microbiome studies are common and must be explicitly 
addressed in model construction and transparently communicated when reporting 
results. Whalen et al. offer a discussion of how biological data sets can break assumptions 
of machine learning models: namely, samples across training and test sets should be, 
but often are not, independent with identical distribution patterns (48). For example, 
unbalanced classes where there are very few samples in one category (e.g., samples 
collected from diseased hosts) can lead to inaccurate models. Some options to mitigate 
unbalanced classes are over-sampling the minority class or under-sampling the majority 
class (48). Another common risk in microbiome data sets is the potential for information 
to “leak” from the training data to the test data, resulting in inflated model performance 
estimates. Specifically, having biological or technical replicates, or samples from the 
same study or cohort, that span both training and testing sets can lead to artificially 
high model performance because the test data is not truly “unseen” by the model. 
“Block splitting” keeps such related samples together in a split, minimizing this sharing 
of information with the test set (9, 49). Finally, any transformation of data that uses 
information across samples (scaling, standardization, principal components analyses), or 
feature selection (see below), should be applied separately to training and test data sets 
after being split for similar reasons (Fig. 1) (48, 50).

Step 4: Perform feature selection

After determining that a machine learning approach is appropriate for the data and 
question, and after inspecting, cleaning, and splitting the data appropriately, a next step 
that is often helpful when working with microbiome data sets is to reduce the size 
of the input data (known as “feature selection”). Even after removing rare or spurious 
taxa or genes in the data cleaning step, including all remaining predictors in a typical 
microbiome data set can still result in overfitting, i.e., there is a higher chance that taxa or 
genes could be used in the model due to random chance (related to the “multiple testing 
problem” [51]). When a model has too many parameters, it can consider combinations 
of parameters that are so specific to the small set of samples that the result is more 
like a fingerprint than a heuristic—an example of extreme overfitting (52). For example, 
when trying to predict the environmental preferences of members of a specific taxon 
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(53), a complicated model might identify the exact environmental parameters for every 
single strain input as training data with very little generalizability to other members of 
the broader taxonomic group. On the other hand, a model with fewer input strains would 
likely perform more poorly on the training data but could be more generalizable to other 
members of the taxon.

To help mitigate these issues, it is possible to eliminate the “noisy” predictors that 
are not likely related to the response variable of interest. For example, there are often 
hundreds if not thousands of bacterial taxa in a single microbiome sample, and many of 
these taxa may either be rare (30), dormant (54), or not relevant for the process being 
modeled. There are many software packages that will automate the feature selection 
step (e.g., permutation analyses, Boruta, Wrapper, Relief [55–57]), and many follow similar 

FIG 1 A schematic diagram of the steps for developing and applying supervised machine learning 

models.
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methods of iteratively shuffling values in the data set to determine which features 
perform better than would be expected if the values were random. After automated 
feature selection, it is important to inspect the chosen features prior to modeling to 
make sure that they are (biologically) reasonable. A check of whether the taxa or genes 
identified could conceivably be relevant to the response value or experimental system is 
a common-sense step that is essential and should not be overlooked.

Another option is to perform a more manual feature selection, where features 
are selected based on biological knowledge or model performance observation. For 
example, when predicting postmortem intervals based on microbiome data from 
different sources, information on skin and soil microbial taxa were found to be best 
for prediction, so samples from other sites (e.g., abdominal samples) were eliminated 
from the final model (58). Note that it is important to perform feature selection after data 
are split into training and test sets as performing feature selection on the entire data 
set could introduce biases into the final model, making the model performance appear 
better than it is and the model less likely to be applicable to other external data sets or 
situations (50).

Step 5: Choose a model

Across the many different types of ML models available, how does one select the 
“best” model for a given situation? Note that ML models can be used for both 
classification and regression problems. Classification models predict discrete factors 
or categories in response variables, and regression models are used for predicting 
continuous response variables. For example, identifying taxa associated with diseased 
versus healthy individuals is a classification problem with categorical response data. In 
contrast, identifying genes predictive of bacterial pH preferences is a regression problem 
with continuous response data (3). The structure of the input data (as detailed in the 
above sections), the nature of the response data (e.g., categorical or continuous), and 
the goal of the modeling effort all help determine which model is likely to work best. 
Random forest (RF) (59) is one of the most commonly used modeling methods in 
microbial ecology. RFs are often leading performers in side-by-side model comparisons 
(13, 60, 61) and are known to be resilient to overfitting and less dependent on scaling or 
normalization procedures. While random forest models can be used in both classification 
and regression problems, they are more commonly used for classification because RF 
cannot predict values outside of training data in regression problems. Random forest 
models are an example of ensemble learning (many simple models combined together). 
Gradient boosting models (e.g., XGboost [38]; see Table 3) also fall into the category of 
ensemble learning. See Table 3 for brief descriptions of several other ML models often 
used for microbial ecology problems. For more details on these and other machine 
learning models, and for performance comparisons across multiple model types, see 
Hernández Medina et al., Naloufi et al., Song et al., and Zhou and Gallins (10, 13, 62, 
63). Finally, we note that there are numerous software options available for testing and 
selecting machine learning models, many of which are implemented in Python and R. 
These tools are constantly changing and updating, and we, thus, refrain from making 
specific software recommendations here. Of note, recently automated ML (AutoML) has 
become an attractive option to new users as these systems are designed to choose 
an appropriate algorithm for use. However, beginners using AutoML tools need to be 
cautious of using the tools without understanding the underpinnings and biases of the 
models generated.

Step 6: Choose tuning parameters (hyperparameter optimization)

After identifying the type of machine learning model to use, it is important to test and 
tweak the settings that determine how that model learns, called “hyperparameters,” to 
optimize model performance and limit overfitting. Hyperparameters are custom to the 
model type used and can include the number of decision trees in a random forest or 
the number of features (e.g., taxa or genes) used for making decisions at each node 
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in a decision tree. There are several methods one can employ to identify the optimal 
hyperparameters. Grid search examines every possible combination of hyperparameters, 
eventually presenting the combination that results in the best model performance. 
However, this exhaustive methodology makes it extremely computationally intensive. 
As a less intensive and time-consuming alternative, a set number of hyperparameter 
combinations can be selected randomly although this may not result in the theoretical 
best possible model. Finally, Bayesian optimization uses previous optimization results 
to select new hyperparameter combinations. Bayesian hyperparameter optimization 
typically results in the selection of high-quality hyperparameters in a relatively short 
amount of time and is increasingly becoming a method of choice (64). While many 
ML packages and programs have default settings that enable models to run without 
hyper-parameterization, skipping this step often results in models with lower perform­
ance (65).

Step 7: Evaluate model performance

Once a model has been constructed, performance of the model should be evaluated 
using both metrics reported by the model and testing on withheld and/or external 
test data. Which metrics are best for assessing model performance depends on the 
type of model, the type of response variable (categorical or regression), and also the 
specific use-case scenario. Table 4 has details to help determine the appropriate metrics. 
Briefly, “model-reported” metrics for classification models include accuracy, precision, 
recall/sensitivity F1, Kappa, and (AU)ROC/(AU)PR curves (see Tables 1 and 4). The most 
important consideration when choosing metrics for classification models is which type of 
misclassification has the highest cost, or which type of prediction is most important (see 
Table 4) (66). For regression models, R2, (R)MSE, MAE, and (S)MAPE are all model-reported 
or internally calculated metrics that can be used for evaluation (67). Note that RMSE, one 
of the more commonly reported metrics, is measured in the same units as the response 
variable, making it inherently easier to interpret and compare across models.

For regression models, assessing model residuals (the difference between predicted 
and true values) can reveal whether the model is missing important information (76). 
Residuals should be independent and normally distributed, indicating that any error in 
the model is random. If residuals are not normally distributed, checking whether they 
correlate with experimental variables like batch or geographic location can help identify 
whether confounders are affecting model performance.

It can be hard to determine whether a model is overfit (good performance on training 
data but poor prediction on test data) by evaluating the model-reported metrics alone 
because the models are built to optimize those metrics. Running the final model on a 

TABLE 3 Examples of machine learning models used in microbial ecology

Model name Purpose/description Use case/limitations

Support vector 
machines

Segregate the data into two groups on either side of a linear boundary, 
maximizing the distance between them. Despite the linear nature of 
SVMs, they can be used on data that is not linearly-separable

SVMs need to be scaled to prevent outliers from unduly 
impacting the distance metric and tend to perform poorly 
on noisy data and big data.

Naïve Bayes 
classifiers

Classifiers that use posterior probabilities based on Bayes theorem Fast even on high-dimensional data, and less sensitive to 
scaling. Assumes independence of features.

Linear/logistic 
regression

Supervised probabilistic model for binary classification Easy to interpret and simple to implement but often 
perform poorly with non-linear classification and 
non-normal data.

Random forest An ensemble method that relies on the majority consensus of 
resampled decision trees

Resilient to overfitting, less dependent on scaling or 
normalization procedures, cannot predict values outside 
of training data in regression problems

XGboost An ensemble of decision trees that are optimized for minimization of 
the loss function using gradient descent

More reliable than random forests for unbalanced classes 
and preferable to random forests when the aim is to 
decrease bias
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withheld portion of the data, or an entirely separate data set, will help identify potential 
overfitting and provide a better indication of true model performance. As an impressive 
example of model validation using multiple external test sets, Yuan et al. developed 
a model to predict soil disease status using bacterial and fungal soil information and 
tested the model on 19 external publicly available data sets as well as on 20 newly 
collected soil samples, demonstrating robust model performance across different data 
sources (61)

Since it is possible to have “lucky” (or “unlucky”) splits of the data into training 
and test sets, such that by chance the test data are more or less easily predicted, it 
is recommended to add confidence intervals to both model metrics and performance 
on test data. This is done by repeating the train-test split multiple times with different 
random seed values (a version of cross-fold validation) and combining performance 
and predictive metrics together for an average performance value with 95% confidence 
intervals (15).

TABLE 4 Model evaluation metrics

Model type Model metrics Use case/description Example

Classification
binary:
two categories
OR multi-class:
three+ categories

AUROC curve A metric measuring a classifier’s ability to distinguish between positive and 
negative classes. More valuable as a metric when classes are balanced and 
the cost of misclassification is consistent between classes.

Diagnostic prediction for diseases 
(e.g., identifying multiple diseases 
with fecal microbiome data [68]).

AUPR curve A metric measuring the tradeoff between precision and recall for a binary 
classifier. Superior to (AU)ROC when classes are not balanced. Optimizes 
for true positives.

Diagnostic prediction for rare diseases 
(e.g., predicting liver disease risk with 
gut microbiome data [69])

F1 The harmonic mean of precision and recall for a binary classifier. Optimize 
for F1 score when seeking a balance between precision and recall.

Diagnostic prediction for diseases 
(e.g., diagnosing IBS from gut 
microbiome data [70]).

log-loss Measures the probability that predicted outcomes for a classification 
problem match observed outcomes. Optimizes for minimizing false 
negatives.

Discriminating between multiple 
different diseases (71). Good for 
multi-class comparisons, sensitive to 
unbalanced classes (14).

Kappa Takes into account the probability that correct classification can be 
achieved by random guessing, making it a more valuable metric than 
accuracy and F1 score for both unbalanced and multiclass data.

Predicting categorical soil health 
metrics (72).

Accuracy The ratio of correctly categorized instances over the total number of 
instances; best used when classes are balanced and the costs of both 
false positives and false negatives are symmetrical.

Predicting the health status of sea 
sponges (73).

Regression R2 The coefficient of determination—how much of the variance in the 
response variable is explained by the predictive variable(s).

Predicting continuous variables such 
as dissolved organic carbon (60) and 
contamination metrics in rivers (74).

(R)MSE “(Root) mean square error.” Metric measuring the Euclidean distance 
between observed and predicted values for a regression problem, larger 
errors are penalized more heavily than smaller ones. Lower values are 
better. “R” is the square root of MSE and is reflective of the units of the 
response variable, making it a good metric for cross-model comparisons.

Comparing model effectiveness for 
predicting E. coli presence in manure 
(75).

MAE “Mean absolute error.” Metric measuring the magnitude of errors between 
observed and predicted values for a regression problem. Does not give 
weight to larger errors as with MSE, protecting outliers. Lower values are 
better.

Predicting post mortem interval (PMI) 
using soil and skin microbiomes (58).

MAPE “Mean absolute percentage error.” Metric measuring the percentage 
difference between observed and predicted values for a regression 
problem, which can help with interpretability. However, it can be 
negatively affected by sparse data and outliers making it a poor choice for 
many applications in microbial ecology.

SMAPE is the symmetric mean absolute percentage error and is bounded 
between 0% and 200%, lower being better.

Predicting water quality and 
contamination (62).
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Finally, another option for evaluating machine learning model performance is to 
compare model results to the same models with shuffled data (shuffling either feature 
data or response labels). For example, in an assessment of the predictive capacity 
of fungal and bacterial information for the classification of human tumors, extensive 
“control” models were developed with shuffled data to show that models with true input 
were detecting meaningful biological signals (77, 78).

Step 8: Interpret results of model: what does it mean?

Often the goal of applying ML models in microbial ecology is not just to produce a good 
model per se, but rather to infer some biologically meaningful information by identifying 
and learning about the specific features that go into that model. While machine learning 
models are generally more predictive at the cost of being less interpretable, several 
models and post-modeling analyses can provide additional information about how 
specific features impact model decisions. For example, random forest models provide 
feature importance rankings, which list how important each feature is in the model 
(as determined by loss of accuracy when a feature is removed). By using importance 
rankings from random forest models, Smith et al. (2) showed that the taxa most 
important for predicting environmental contamination were known to interact with 
the main contaminants (nitrate and uranium), further validating the model. Permuta­
tion analysis offers a method for generating feature importance rankings for nonlinear 
models if not already provided by the model (15, 79).

Shapley additive explanations (SHAP) analysis is another convenient tool for 
understanding and interpreting the outputs of ML models. SHAP analysis can be used 
to determine the weight and direction of each feature in the model output and can 
also help a researcher understand which factors contributed the most to any individual 
prediction (80). For example, SHAP was used to identify the relative importance and 
impact of specific genes for predicting the pH preferences of bacteria (3).

Those features (genes or taxa) identified as being important in the model can be 
the targets of additional post hoc analyses or further hypothesis testing. Perhaps most 
critically, it is important to carefully examine the taxa or genes identified by the model as 
being important to see whether they make sense. For example, a paper demonstrating 
the predictive capacity of tumor-associated microbiomes was called into question when 
an archaeal genus known only to occur in hydrothermal vents (Ignicoccus) was reported 
as important for predicting prostate cancer (29, 77). Additional analyses that investigate 
independent relationships between important predictive features and the response 
variable can yield more biological information than the model alone can offer, potentially 
identifying promising avenues for future research. As just one example, Wilhem et al. 
identified the bacterial taxa most important for predicting soil health metrics and found 
that ammonia oxidizing bacteria were often predictive of low-quality soils, perhaps due 
to consistent fertilizer use (72).

Step 9: Report detailed methods of model generation and interpretation

As with any experimental endeavor, it is important to report detailed information on how 
models are selected, generated, and evaluated. This includes communicating informa­
tion about how raw data were cleaned (including reporting information on “contami­
nants” [36]) and how data were normalized, transformed, or otherwise processed before 
being used as input into the models. Additionally, reporting exactly when and how 
test data were separated from training data, and any variation in cross-fold perform­
ance should be reported. A brief explanation of which metrics were chosen for model 
optimization and why also helps with downstream assessment and reproducibility (15). 
See Table 5 for a list of specific information that is helpful to report when describing ML 
modeling methods.

Finally, very rarely are samples collected for any study perfectly representative of the 
broader population (e.g., microbiome samples in a medical study conducted at a single 
hospital, or soils collected from historically managed experimental fields). While this is 
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often inescapable, transparently communicating what biases were considered during 
model development is crucial when reporting machine learning results. Biases of the 
overall sample collection and study design that are not addressed within the model 
should be clearly communicated with accompanying disclaimers for interpreting the 
results. For example, findings from a study on the gut microbiomes of predominantly 
young, white men will likely not extrapolate to a more diverse population. While these 
challenges are not unique to machine learning, given the application of prediction in ML, 
it is important for authors to emphasize the limitations of when the model predictions 
may fail (e.g., in an environment distinct from the study environment, or in human or 
animal populations that differ from study cohort).

Conclusions

By offering a consolidated framework for deciding when and how to employ ML models 
in microbial ecology, we hope to assist with application of this methodology in the 
field. Note that the authors of this paper do not claim expert domain knowledge in 
the mathematical underpinnings of machine learning models, as is the case for most 
microbial ecologists using ML methods. We also recognize that the tools and recommen­
dations for ML methods are changing rapidly, as is the scope and size of molecular 
microbiome data. The increasing size of microbiome data sets and increasing familiar­
ity with ML tools is resulting in creative and exciting applications, such as improving 
metagenomic and protein annotations (81), revealing complex inter-kingdom interac­
tions with multiple data types (82), or identifying required or ideal growth parameters for 
culturing (83). Machine learning is proving to be a useful and increasingly common 
method of analysis across biological disciplines and can be used effectively when 
done correctly and communicated clearly. However, like all statistical approaches, it is 
important to understand how and why to apply ML models and carefully consider their 
limitations when interpreting their output.
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