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CLIMATOLOGY

Tracking and classifying Amazon fire events in

near real time

Niels Andela'?*, Douglas C. Morton?, Wilfrid Schroeder®, Yang Chen®,

Paulo M. Brando®®7, James T. Randerson’

Exceptional fire activity in 2019 sparked concern about Amazon forest conservation. However, the inability to
rapidly separate satellite fire detections by fire type hampered fire suppression and assessment of ecosystem and
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air quality impacts. Here, we describe the development of a near-real-time approach for tracking contributions
from deforestation, forest, agricultural, and savanna fires to burned area and emissions and apply the approach
to the 2019 fire season in South America. Across the southern Amazon, 19,700 deforestation fire events accounted for
39% of all satellite active fire detections and the majority of fire carbon emissions (63%; 69 Tg C). Multiday fires
accounted for 81% of burned area and 92% of carbon emissions from the Amazon, with many forest fires burning
uncontrolled for weeks. Most fire detections from deforestation fires were correctly identified within 2 days (67%),
highlighting the potential to improve situational awareness and management outcomes during fire emergencies.

INTRODUCTION

The Amazon is the largest tropical forest on Earth and critical for
climate regulation (I), carbon sequestration (2), and biodiversity
conservation (3). Over the past six decades, demand for agricultural
products has spurred fire-driven deforestation to convert Amazon
forest into extensive pastures and croplands (4-6). Nevertheless,
satellite monitoring capabilities (7), governance (8), and industry
actions to exclude deforestation from commodity supply chains (9)
resulted in a strong and sustained decline in deforestation rates and
associated fire activity in the Brazilian Amazon (6), the most active
Amazon deforestation frontier (10). The recent reversal in these de-
forestation trends, followed by an uptick in regional fire activity in
2019 (11), therefore ignited a global discussion about what type of
fires were burning.

Fires in the Amazon basin, nearly all of which are started by
humans, can be classified into four broad categories on the basis of
land cover and land management (Fig. 1). First, deforestation fires
include initial burning following forest clearing and subsequent fires
to burn piled woody debris, stumps, and roots. These fires are
undertaken to prepare land for use as pasture or cropland (12). On
the basis of higher fuel loads, repeated burning, and long-term con-
version to nonforest land uses, deforestation fires have a large impact
on net carbon emissions from Amazon forests (13). Second, forest
fires occur when deforestation or agricultural fires intentionally or
accidentally escape into the understory of neighboring forests. This
class of fire is particularly damaging; fire-induced tree mortality often
exceeds 50% of aboveground biomass (14), as Amazon forest trees
have thin bark and other traits that make them susceptible to even
low-intensity forest fires (15, 16). Forest fires are therefore a leading
cause of regional forest degradation (17, 18), especially during drought
years (19). Third, fires are a common tool for agricultural management,
including land clearing in rotational slash-and-burn cropland systems,
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preparation for planting, and pasture maintenance (12), resulting in
an abundance of small or short-duration fires across the region that
do not spread over multiple days (20). Fourth, the Amazon biome
also encompasses savanna and grassland ecosystems, where fire plays
a key role in regulating ecosystem function and the evolution of dif-
ferent plant and animal species (21). Large grassland fires may also
occur in pasture lands where intentional or accidental ignitions burn
for many days across ranches and farms along the agricultural frontier.
The contributions from these four fire types to regional fire activity
remain poorly understood (11), partly because of the scale mis-
match between the fragmentation of human-dominated landscapes
and the coarse resolution of satellite fire detections (22, 23), and the
challenges associated with detecting understory forest fires (24).
Separating these fire types is critical for constraining fire carbon
emissions (13), quantifying fire effects on forested ecosystems (14, 15),
and targeting suppression efforts to mitigate threats to forest con-
servation and regional air quality from fire.

Here, we fill this critical data gap (11) on the relative contribution
from different fire types to total Amazon fire activity using a new
approach to track and classify individual fires in near real time. As a
demonstration, we apply the approach to the 2019 fire season in the
southern Amazon, a year that sparked controversy because long-
distance transport of smoke from biomass burning in the Amazon
and surrounding biomes degraded air quality in remote cities,
including Sao Paulo. Our approach clusters satellite fire detections
into individual fires using the Global Fire Atlas (25) methodology
(fig. S1), based on the finer 375-m spatial resolution and better sen-
sitivity of the Visible Infrared Imaging Radiometer Suite (VIIRS)
instruments (26) onboard the Suomi-NPP and NOAA-20 satellites.
Starting in April 2019, the two VIIRS instruments provide daily,
near-nadir observations needed to detect both high- and low-intensity
fires (Fig. 1). Our method combines multiday metrics of fire behavior
and land cover information with an expert-guided classification ap-
proach to classify individual fire events by fire type (figs. S2 to S5).
We compare fire events derived from VIIRS detections to indepen-
dent maps of deforestation (6), fire event data from the Monitoring
of the Andean Amazon Project (MAAP) (27), and pre- and postfire
Sentinel-2 imagery for a stratified random subset of fire events to
evaluate the accuracy of the classification both in near real time and
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Fig. 1. The four dominant fire types in the Amazon region have distinct patterns of fire behavior. (A) Deforestation fire, (B) understory forest fire, (C) small clearing
and agricultural management fires, and (D) savanna fire spreading into gallery forests with higher fractional tree cover (70). VIIRS active fire detections were clustered and
classified by fire type using metrics of fire behavior and land cover information (25). Active fires (circles) are colored by day of year. Black lines indicate the fire perimeters
from clustering VIIRS active fire detections into individual events, purple lines show the extent of satellite burned-area data (29), and orange crosses mark the estimated

ignition locations. Each 0.05° grid box is approximately 5.5 km by 5.5 km.

at the end of the year (figs. S6 to S10 and table S2). To estimate carbon
emissions associated with each fire event (figs. S11 to S15), we rely
on the Moderate Resolution Imaging Spectroradiometer (MODIS)
Collection 6 burned-area data to scale burned-area estimates (28),
field observations to constrain fuel consumption (29), and emissions
factors compiled in the Global Fire Emissions Database (GFED4s)
(13). Our results indicate that deforestation fires were the dominant
Amazon fire type from April to December 2019 in terms of total
VIIRS fire detections and estimated carbon emissions. Time series
of fire activity by fire type underscore the potential to use fire type
information to mitigate ecosystem and economic impacts in future
fire emergencies.

RESULTS

The VIIRS sensors detected nearly 1.4 million active fire pixels within
the Amazon biome during the Southern Hemisphere fire season
in 2019 (Table 1). A total of 19,700 deforestation fires accounted for

Andela et al., Sci. Adv. 8, eabd2713 (2022) 29 July 2022

39% of VIIRS fire detections, as each deforestation event triggered
an average of 28 fire detections. Approximately 3000 understory
forest fires were responsible for an additional 12% of fire detections.
Small clearing or agricultural fires were the most numerous (113,000)
but accounted for only 17% of all fire detections, while savanna fires
accounted for the remaining 32%.

Clustering VIIRS detections into individual deforestation, forest,
and small fire events provided valuable context beyond simply track-
ing fire detections. Each fire event includes an estimated ignition
location, start date, fire duration, and carbon emissions. Fire perimeters
for deforestation and forest fires also provide an approximate esti-
mate of the area burned (Fig. 1, A and B), and the preliminary esti-
mate of the fire-affected area from the clustered fire detections can
be calibrated to quantify fire emissions for each event. We scaled
burned area from savanna and deforestation fires to match 500-m
burned area from MODIS (27) (see Materials and Methods) and used
a single scaling factor (0.1) to estimate the burned area from isolated
clearing and agricultural fires that are typically much smaller than
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Table 1. Active fire detections, fire size, and carbon emissions by fire type for the southern Amazon and countries in the Southern Hemisphere study
region during the 2019 fire season. We classified fires with >50% tree cover as deforestation, forest, or small clearing and agricultural (“small”) fires, while fires
in more open cover types (<50% tree cover) were classified as savanna and grassland fires (fig. S3). Mean event size, total burned area, and fire carbon emissions
for deforestation, small, and savanna fire types are based on scaled estimates of fire size (see Materials and Methods). Large, fast-moving savanna fires may be
fragmented by the clustering algorithm (Fig. 1D), leading to an overestimate in the number of fire events and a corresponding underestimate of mean fire size,

despite robust estimates of total burned area and fire emissions.
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1909.51

<50% tree cover 12.22

the 375-m resolution of the VIIRS imagery (Fig. 1D and Table 1)
(26). Because of challenges related to mapping burned area under
dense canopy with algorithms designed to detect the spectral signa-
ture of char or ash (figs. S1 and S12), we used the unadjusted fire
perimeters derived from active fire clusters in this study to estimate
area burned from forest fires. Forest fires were the largest fire type,
with a mean size of 5.0 km? that was about eight times the size of the
average deforestation fire event (0.6 km?). Numerous small clearing
and agricultural fires accounted for only 8% of total burned area in
the Amazon biome, while savanna and grassland fires accounted for
nearly 55% of total burned area. This information on individual fire
type and attributes provides important context on the spatiotemporal
evolution of Amazon fire activity and fire carbon emissions.

Our analysis also revealed complex regional fire patterns that
contributed to air quality impacts from fire emissions across a larger
domain in South America between the equator and 25°S (Fig. 2).
Deforestation fires were the dominant fire type across the arc of
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deforestation in Brazil and hot spots of agricultural expansion in the
Brazilian Cerrado, along with some forested regions of Peru, Bolivia,
and Paraguay. Even outside of the Amazon biome, fires in areas with
>50% tree cover can be classified as deforestation fires on the basis
of the pattern of repeated, high-intensity burning (figs. S3 and S4).
Forest fires were the dominant fire type in Bolivia, where an estimated
1480 understory fires burned 32,000 km* of Amazon and Chiquitania
forest during the 2019 dry season. Forest fires also accounted for an
important fraction of all fire detections in Brazilian states with dense
Cerrado vegetation or drier Amazon forests. Small clearing and
agricultural fires were the dominant fire type across regions with
infrequent burning, including wetter Amazon forests in Peru and
along the main stem of the Amazon River in Brazil. Last, about one-
half of all active fire detections across the larger South American
study region were classified as savanna and grassland fires (Fig. 2).
Separation of fire carbon emissions by fire type provides insight
into the contributions from 2019 fires in the Amazon region to the
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Fig. 2. Separation of deforestation and forest fires from other fire types iden-
tifies regions with long-term carbon losses from fire. (A) Dominant fire type and
(B) estimated carbon emissions during April to December 2019 at 0.1° resolution.
In (A), grid cells with fewer than 50 fire detections are shown in lighter shades of
the same color. In (B), long-term carbon losses from deforestation and forest fires
are shown in purple; short-term carbon losses from small clearing and agricultural
fires and savanna and grassland fires are shown in orange. Insets show the contri-
bution of different fire types per 1° bin of latitude and longitude (see fig. S15 for
more details about the Amazon biome).

global carbon cycle (Fig. 2B). In particular, carbon emissions from
deforestation (69 Tg) and forest (19 Tg) fires contribute to long-
term changes in atmospheric concentrations of greenhouse gases.
Although emissions from forest fires were comparatively small, our
estimates of forest fire emissions exclude larger committed carbon
losses from tree mortality ranging from 30 to more than 50% of total
aboveground biomass (14, 30). Savanna (15 Tg) and small clearing
and agricultural (8 Tg) fires also contributed to total carbon emis-
sions and regional impacts on air quality, but these fire events
account for much smaller net carbon emissions than forest fire types
based on rapid regrowth of herbaceous vegetation in the following
wet season.

Deforestation fire activity in the southern Amazon increased
rapidly at the end of July 2019 (Fig. 3), with a peak in deforestation
fire detections (>20,000 day ') shortly after the coordinated day
of burning in the Brazilian state of Pard (31). Satellite detections of
deforestation and other fire types were already declining by the time
the Amazon smoke plume reached Sdo Paulo, Brazil, and declined
further in the lead up to the G7 summit of world leaders. Total fire
activity after the G7 summit remained at or below the average fire
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activity from 2012 to 2018, especially in Para (fig. S15), consistent
with regional fire suppression efforts and policy interventions in
response to global attention to Amazon fires in 2019 (32). Never-
theless, new deforestation fires started after August 26 added 23 Tg
C emissions, or 34% of the total deforestation fire emissions from
the southern Amazon in 2019.

Rainfall was the dominant driver of temporal variability in 2019
Amazon fire activity. The effect of rainfall on fire activity is clear
and immediate, as rainfall patterns synchronize regional variations
in flammability. In all major southern Amazon biomass burning
regions, the increase in rainfall in late August and early September
led to sharp declines in fire activity (fig. S16). Forest fires accounted
for more than half of all active fire detections for the larger study
region in September and contributed disproportionally to the peak
day of forest fire detections (>50,000 day ') on September 12. About
half of the area affected by forest fires occurred in Bolivia (Table 1),
where fires burned for months in remote forests (fig. S17), and the
total area affected by forest fires (85,500 km?) nearly equaled the
area affected by deforestation fires (99,200 km?) across the Southern
Hemisphere study region, in contrast to previous reports of burning
predominantly in existing cleared areas (23). Last, widespread rainfall
across the region during mid-September and early October extin-
guished understory fires and brought the fire season to an early end
in 2019 compared to previous years (2012-2018).

Amazon fire types can be accurately identified in near real time
using patterns of fire detections and land cover information. On the
basis of estimates of 2019 deforestation in the Brazilian Amazon (6), we
were able to accurately identify 67% of active fire detections (fig. S6)
associated with 2019 deforestation in Brazil after the second day of
a new fire start. These accuracies improved to 80% for fire detec-
tions after 7 days. Our dataset also identified active fire detections
from deforestation fires not mapped as deforestation (26%; fig. S8).
These fires represent burning likely associated with deforestation in
secondary forests or new clearing activity after the cutoff dates
for annual deforestation assessments from Project for Monitoring
Amazon Deforestation (PRODES). Our classification algorithm also
showed that most of the forest fires were not associated with 2019
deforestation, suggesting that these fires originated from other igni-
tion sources such as small but numerous management fires (fig. S9).
A comparison against independent fire type data from MAAP (2099
large fire events) revealed strong agreement, with our approach cor-
rectly identifying 75% of deforestation, 69% of grassland, and 64%
of forest fire events from the MAAP dataset (fig. S10). A lower
percentage of active fire detections classified as deforestation (57%),
savanna (18%), and forest (47%) in our study had the same classifi-
cation in MAAP, for example, because the MAAP dataset includes
a separate “cropland and pasture” fire class that overlaps with the
savanna fire type in our classification. Differences between datasets
therefore reflect both errors of omission and commission along
with differences in the definitions of the various fire types. A further
quality assessment based on 10-m-resolution pre- and postfire
Sentinel-2 image pairs revealed that our algorithm was able to sep-
arate deforestation from forest fires events with 66% accuracy,
increasing to 92% accuracy for fire detections (table S2; see the Sup-
plementary Materials for further details).

The long duration of most Amazon fires aids near-real-time
classification, as only 14% of daily fire detections were associated
with new fire starts during the middle of the fire season (Fig. 4).
During August and September, 76% of all detections associated
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Fig. 3. Deforestation caused anomalous fire activity early in the 2019 Amazon fire season. Daily fire detections in forest ecosystems (tree cover greater than 50%)
classified into three fire types for (A) the southern Amazon and (B) tropical southern hemisphere South America (0° to 25°S; see Fig. 2). Light shades highlight the contribution
from new fires started after the G7 Summit on 24 to 26 August. The solid black line (right y axis) indicates historic average (2012-2018) daily fire detections based on a
single VIIRS sensor, and the intermittent blue line (second right y axis) shows mean daily precipitation across all 0.1° grid cells with 50 or more VIIRS fire detections in 2019.

with deforestation fires were correctly classified on the day of detection
and more than 95% of all fire detections were correctly classified by
fire type within 1 week. The importance of multiday fires for the
total burned area (81%) and fire emissions (92%) from the southern
Amazon region in 2019 also underscores the value of early detection
and fire type information. Near-real-time assessments of individual
fire locations by fire type could revolutionize regional fire manage-
ment strategies and improve scientific understanding of fire-climate
interactions to support Amazon forest conservation efforts.

DISCUSSION

Fire is an important landscape management tool across the Amazon
biome (12), but expansion of the agricultural frontier (12) and an
increasing frequency of drought conditions (33) have elevated the
risk of fire-driven degradation of Amazon forests. Improving fire
management is therefore essential to counter this threat, promote
sustainable development in the region, and achieve global climate
change mitigation objectives, including the Paris Agreement. Here,
we developed a new approach that uses VIIRS active fire detections
to cluster and classify fire types in near real time and estimate fire
carbon emissions associated with individual fire events. An initial
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quality assessment revealed strong agreement with independent
deforestation data, fire types from the MAAP project, and reference
data from visual interpretation of Sentinel-2 image pairs. Classification
accuracy increased for larger fires with higher carbon emissions, while
small fires, or fires burning through multiple cover types, were more
challenging to classify accurately.

Deforestation fires were responsible for most carbon emissions
early during the 2019 fire season (23), but extensive forest fires in
the southern Amazon and Bolivia contributed most emissions during
September and October. Our results represent a step forward in terms
of near-real-time emission attribution, as existing inventories (13, 34)
do not account for different fire types within the Amazon region,
such as the separation of deforestation and forest degradation fires.
The classification into new fire starts and different fire types confirms
the importance of deforestation fires to overall fire activity and
emissions in 2019 and provides the basis for more targeted responses
to future fire emergencies in the region.

MATERIALS AND METHODS
NASA’s MODIS instruments on board the Terra and Aqua satellites
have provided routine daily estimates of global fire activity since
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Fig. 4. Accurate classification of satellite active fire detections by fire types is possible in near real time based on unique characteristics of land cover and fire
behavior, including the long duration of deforestation and forest fire types. Daily fire detections from new fire starts (dark shades) and fires that burned between 1
and 10 days or longer than 10 days (lighter shades) in forest ecosystems classified into three fire types for (A) the southern Amazon and (B) tropical southern hemisphere
South America (0° to 25°S). (C to F) Daily fraction of active fire detections attributed to their final end of season fire type, for 1- (solid), 2- (dot dash), and 7-day (dotted) lag
times, for (C) deforestation fires, (D) forest fires, (E) small clearing and agricultural fires, and (F) all fire types combined. (G) Daily fraction of satellite active fire detections

from fires burning for 1 day, 2 to 10 days, and >10 days, respectively.

2000 (22). Nevertheless, the relatively coarse resolution of the
MODIS thermal imagery, with effective pixel resolution increasing
from 1 km? at nadir to about 10 km? at off-nadir angles, leads to an
underestimate of total fire activity, especially for low-energy fires
(35, 36). Together, the VIIRS instruments on board Suomi NPP
(launched in 2012) and NOAA-20 (launched in 2017) improve
global coverage for fire detection with higher spatial resolution of
individual fire detections (0.14 km?), more accurate geolocation in-
formation, and more consistent fire detection sensitivity across the
full image swath.

In this study, we combined active fire detections from both VIIRS
instruments to map the extent of individual fires using the Global
Fire Atlas algorithm (25). For each fire event, we combined attributes
of adjacent and sequential daily fire detections to estimate fire
behavior. These metrics of fire behavior were then combined with
data on vegetation carbon stocks and historic land use for rapid
identification of specific fire types. We used an expert-guided ap-
proach for fire type classification because no consistent training data
were available, and the separation of fire events into four distinct
classes matches regional information needs for fire management
and emission estimation. We assessed the quality of our fire type
classification using independent data on 2019 deforestation and fire
type information for a subset of Amazon fires from MAAP and
Sentinel-2 image pairs to evaluate the performance of both the end-
of-year product and the near-real-time approach. To better under-
stand the relative contribution of different fire types to regional
greenhouse gas emissions, we scaled VIIRS active fires to fire carbon
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emissions using the MCD64A1 collection 6 burned-area dataset
(28), fuel consumption estimates from field observations (29), and
emissions factors from GFED4 (13). Last, we provide a regional
analysis of the evolving 2019 fire season and its drivers.

Tracking individual fires based on VIIRS data and the
Global Fire Atlas approach

The Global Fire Atlas uses a new algorithm to track the daily devel-
opment of individual wildfires and derive a number of metrics on
fire behavior, including fire size, duration, and rate of spread (25).
The Global Fire Atlas algorithm was initially applied to the MCD64A1
collection 6 burned-area product, a daily estimate of global burned
area at 500-m resolution (28). However, burned-area data have two
important limitations compared to active fire detections for the
development of a near-real-time algorithm to track fires across the
Amazon basin. First, burned-area data are not available in near real
time, as the MCD64A1 algorithm relies on time series of data before
and after the fire, leading to a 2- to 3-month delay in the production
of the global product. Second, coarse-resolution (500 m) satellite
observations are often unable to accurately map the burned area
associated with small fire types or low-intensity forest fires burning
beneath a dense forest canopy (24). By contrast, active fire detec-
tions are available in near real time, and previous studies have
demonstrated that active fire data can provide a robust estimate of
burned area in forested ecosystems based a persistent thermal signal
within each larger grid cell from the slow spread rates and residual
smoldering (37, 38).
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Here, we combined 375-m active fire detections (26) from the
Suomi-NPP and NOAA-20 VIIRS instruments to map individual
forest fires across tropical southern hemisphere South America
(between 0°S and 25°S). We analyzed VIIRS data available through
NOAA for April to December 2019, including fire detections in all
confidence classes. This interval started well before the onset of the
southern hemisphere burning season and extended past the onset of
the wet-season conditions. Even though NOAA-20 was launched in
2017, fire detection data only became available starting in April 2019.

Combined, the two VIIRS instruments provide three major
improvements compared to the MODIS instruments on board
NASA’s Terra and Aqua satellites. First, the VIIRS 375-m product
is more sensitive to small and low-intensity fire types because of the
higher spatial resolution and enhanced nighttime sensitivity (26).
This improved sensitivity increases the probability for early detec-
tion of new fire starts and offers a more complete picture of total fire
activity, including agricultural and forest fires. Second, the VIIRS
instruments maintain a more consistent pixel area across a wider
swath (39), improving the ability to detect and locate low-energy
fires, even at off-nadir view angles, and reducing coverage gaps
across the tropics (40). Better spatial resolution and geolocation in-
formation of VIIRS 375-m active fire detections also improves the
accuracy of land cover information associated with each fire loca-
tion. Third, the constellation of both VIIRS instruments provides
global daily daytime and nighttime observations at near-nadir
observational angles; near-nadir observations have a shorter atmo-
spheric path length and less interception by the canopy layer, mini-
mizing signal loss to retain sensitivity to smaller fire events and
understory burning in Amazon forests (41).

To map individual fire perimeters from VIIRS active fire detec-
tions, we first gridded active fire detections at a 0.005° (~550 m)
resolution based on the center location of each fire pixel (fig. S1).
We selected this spatial resolution to accommodate typical under-
story forest fire spread rates of 100 to 400 m day ™" (30, 42) and re-
duce potential effects of any residual geolocation error on derived
estimates of fire persistence, an important indicator of deforestation
activity (12, 43). To prepare the data for the Fire Atlas algorithm, we
selected the earliest active fire detection within each 550-m grid cell.
Following the Global Fire Atlas approach, we then applied a spatial
filter to remove inconsistencies in the estimated burn date within
each fire to identify the ignition location (25). Because fire use is
widespread across the tropics, an additional threshold is required to
separate adjacent fires that burned at different times during the fire
season. This threshold sets the maximum number of days for a single
contiguous fire to spread into an adjacent grid cell; here, we set this
threshold as <5 days after the last active fire detection within any
given 550-m grid cell. For example, in fig. S1 (C and D), a deforestation
fire in an adjacent field burned into the understory of neighboring
forest area, resulting in fire detections adjacent to our example fire
on day 220, 8 days before the example fire was ignited. In this case,
the algorithm successfully classified these as two separate fire events
despite their spatial proximity. In line with previous work (25, 38),
we found that savanna fires typically spread several kilometers per
day, resulting in artificial fragmentation of individual events on our
finer 550-m grid (e.g., see Fig. 1C). We therefore used land cover
data to distinguish savanna from forest fires across the region. The
Fire Atlas algorithm is computationally efficient and can be applied
on a daily basis to track individual fire perimeters in near real time
as new active fire data becomes available.
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Thermal anomalies detected from space are most often fires, but
these products also capture other features that are hotter than their
surroundings such as volcanoes, gas flares, and industrial activity
(22, 26). To remove the influence of static sources on our analysis,
we excluded 224 fire events (47,128 fire detections) containing 550-m
grid cells with more than 20 active fire detections in at least three of
seven historic fire years (2012-2018) based on the VIIRS sensor on
board Suomi-NPP. On the other hand, clouds or dense smoke may
reduce the ability of the VIIRS instruments to detect active fires.
Although this will affect the absolute numbers of active fire detec-
tions on any given day, the persistent (multiday) fire signal within
each larger grid cell in this analysis mitigates the influence of un-
observed fire activity on the estimated extent of each fire. The com-
bination of both VIIRS instruments also reduces the effect of cloud
cover or smoke on daily fire detections because the instruments are
spaced 50 min apart and observe the same fire at different view
angles. Therefore, the VIIRS data in this study are not corrected for
cloud cover, because statistical models used in other studies to
account for cloud cover cannot be easily attributed to specific fire
events [e.g., (34)].

Fire type classification: Selection of training data

We combined attributes of individual fire events derived from the
Global Fire Atlas algorithm with existing land cover and land use
change information to classify each fire as one of four fire types: (i)
deforestation fires, (ii) forest fires, (iii) small clearing and agricul-
tural fires, and (iv) savanna and grassland fires (Fig. 1). Savanna and
grassland fires in both natural vegetation and managed lands were
separated on the basis of a simple tree cover threshold (<50%) within
the fire-affected area. The remaining three fire types all occur in
landscapes with >50% tree cover and therefore cannot be separated
on the basis of land cover data alone. We used a training dataset of
deforestation and forest fires to develop a multivariate classification
approach to separate deforestation, forest, and small clearing and
agricultural fires.

We used deforestation data from the PRODES from the Brazilian
National Institute for Space Research (6) to explore the relationship
between historic deforestation in the Brazilian Amazon and associated
fire activity. PRODES deforestation estimates are produced annually
using 30-m resolution Landsat and other high-resolution imagery
and available within 1 year of the end date for image collection. Here,
we compared the VIIRS active fire detections and mapped defor-
estation polygons on the regional 550-m grid (fig. S2). Within each
550-m grid cell, we attributed all active fire detections associated
with deforestation activity to the year with largest extent of de-
forestation registered by PRODES. Consistent with previous studies
(12, 43), we found elevated fire activity up to 5 years after the year in
which deforestation was initially mapped, based on the repeated use
of fire to remove woody debris after initial clearing (fig. S2). On the
basis of this finding, all individual fire events identified by our algo-
rithm with >25% of 550-m grid cells associated with historic
deforestation (2014-2018) were classified as deforestation fires. In
addition to evidence for multiple years of fire activity after the year
of deforestation, historic deforestation data also provide a strong
indicator of active deforestation frontiers and hence the likelihood
of new deforestation and associated fires in 2019. We used this
threshold of >25% overlap with historic deforestation (2014-2018)
to create a dataset of 12,039 deforestation fire events in 2019 to
identify their characteristics.
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Deforestation and forest fires are particularly challenging to
separate, because both fire types may exhibit similar patterns of per-
sistent burning across large forested areas. We therefore manually
selected 77 forest fires across both the Amazon biome and the larger
study region, tropical southern hemisphere South America (0° to
25°S), to identify unique characteristics of this fire type (table S1).
We selected only large forest fires to train the classification for two
primary reasons. First, contiguous areas of recent deforestation typ-
ically do not exceed 50 km?, while large forest fires can easily exceed
100 km? Second, large forest fires typically develop circular patterns
of fire progression based on well-developed fire fronts (fig. S1A) (14)
that can be easily identified through visual interpretation in standard
Geographic Information System (GIS) software. For all selected forest
fires in the Brazilian Amazon, less than 5% of 550-m grid cells within
each larger understory forest fire event contained historic deforesta-
tion (2014-2018) based on PRODES data.

Fire type classification: Identifying thresholds of

fire type characteristics

We used three types of information about each fire event to rapidly
identify fire types and assign confidence intervals (fig. S3). First, we
used data on land cover and historic land use, including fractional
tree cover, historic deforestation, and a pantropical biomass map.
To accommodate delayed effects of tree cover losses on fire, we used
estimated forest cover in 2014 to separate savanna from forest fire
types, calculated on the basis of the difference between the 2000
fractional tree cover map and 2000-2013 tree cover losses from the
Global Forest Change dataset at 30-m resolution (10). Historic de-
forestation (2014-2018) was estimated on the basis of 30-m-resolution
PRODES data available for Brazil (6). We used a pan-tropical bio-
mass map at 1-km resolution (44), a product developed from the
fusion of two existing biomass maps (45, 46) with additional bio-
mass training data. We combined these data with grid cell-level
fire characteristics, such as fire persistence and fire radiative power
(FRP), and multiday metrics of fire events such as fire size and total
fire detections (figs. S3 and S4). Gridded metrics, such as fire per-
sistence (calculated for each 550-m grid cell), were averaged across
all grid cells within each fire event, while metrics per fire event, such
as FRP, were based on equal weight of all satellite fire detections
within the fire perimeter. Together, these metrics provide a robust
path to classifying fire events by fire type. To mimic near-real-time
classification of the active fire data, all variables were computed on
a daily basis during the 2019 study period to track the evolution of
individual fire events.

Deforestation fires were identified on the basis of historic maps of
deforestation and differences in fire behavior compared to other fire
types (fig. S3). Fires containing >25% of grid cells with overlapping
historic PRODES deforestation during 2014 to 2018 were classified
as deforestation fires with high confidence and used to characterize
typical deforestation fire behavior (fig. S4). For all other large fires
(>5 fire detections and persistence >1) with >50% forest cover, we
developed a multivariate approach to separate fire activity from de-
forestation and forest fire events. On the basis of the subset of refer-
ence fires, we selected five indicators of fire behavior to separate
deforestation from forest fires (figs. S4 and S5). In addition, we used
a threshold of 120 metric ton ha™" biomass to select between metrics
of fire behavior for forest fires in moist versus dry forest types. In
high-biomass Amazon forests, deforestation fires consistently have
higher FRP than forest fires, allowing for detection of deforestation
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fires with high confidence. In lower-biomass forests, typical of drier
regions, forest fire behavior was more similar to savanna fires, with
higher average FRP, lower fire persistence (based on faster spread),
and a pronounced diurnal cycle resulting in a larger fraction of
daytime fire detections. In low-biomass forest systems, deforestation
fires were therefore not easily separable from forest fires using FRP.
Instead, high-confidence deforestation fires were distinguished on
the basis of higher fire persistence. Deforestation fires were also typ-
ically small compared to forest fires, and we therefore included fire
size as an additional indicator of fire type. Fires smaller than 40 km?
were more likely to be associated with deforestation, whereas fires
larger than 100 km” were classified as high-confidence forest fires.
For those fires that could not be directly classified as either defor-
estation or forest fire on the basis of these primary indicators, we
combined all five metrics to estimate the fire type with three different
confidence levels. For each indicator, we set a threshold suggesting
either deforestation or forest fire activity; if all five metrics indicated
deforestation, we assigned five points resulting in a high-confidence
deforestation fire. At the other extreme, if all five metrics indicated
a forest fire, then the total of points would be zero, resulting in
high-confidence forest fire (see purple box in fig. S3).

Small fires for clearing and agricultural management were iden-
tified on the basis of the small total number of active fire detections
(=5) and low fire persistence (1 day), consistent with fast-spreading
fires in herbaceous or other low-biomass fuel loads or short duration.
Improved geolocation of the VIIRS 375-m active fire data enables a
more robust combination of fire location with land cover data to
rapidly identify fires burning in open-cover types. Last, we used
fractional tree cover data to assign all fires with a majority of fire-
affected area in landscapes with <50% tree cover to savanna fires
with high (<20% tree cover), medium (20 to 40% tree cover), and
low (40 to 50% tree cover) confidence. All fire type estimates were
based on daily per-fire averages, such that a fire that started in a
savanna adjacent to forest cover would be classified as a forest fire
once the average tree cover across all grid cells within the perimeter
exceeded 50%.

Fire type classification: Quality evaluation

We evaluated the 2019 fire type classification using four different
approaches. First, we compared our classification to independent
maps of 2019 deforestation. We assessed the time needed to accu-
rately identify new deforestation fires (fig. S6) and explored the sen-
sitivity of the end-of-year classification of deforestation fires to the
availability of historic deforestation data (fig. S7), data that were only
available for the Brazilian Amazon. For this evaluation, we classified
all 4984 fires with >25% of grid cells overlapping with 2019 defor-
estation with and without the use of historic deforestation data. In
addition, we compare the overlap between deforestation fires, forest
fires, and observed deforestation rates from PRODES for 2014 to
2018 and 2019 separately, to explore data quality and understand
the underlying causes of forest fires (figs. S8 and S9). Second, we
generated data for the 2020 fire season using the same classification
approach (fig. S3) to compare our fire type classification to inde-
pendent data from the MAAP project that was only available for
2020 (27). We selected all fires (2099) from the MAAP database for
Brazil that had overlap with fires identified in our study. MAAP
classified fires that produce substantial smoke and aerosols into four
distinct classes, “deforestation fires” following forest clearing, “forest
fires,” “cropland and pasture fires,” and “grassland fires” on the basis
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of expert-guided interpretation of various satellite data products
including high-resolution commercial imagery. We weighted these
comparisons by the number of active fire detections associated with
each fire. The results provide a first estimate of omission and com-
mission errors, with close agreement between datasets for more
similar fire types and less agreement for fire types with different
definitions (fig. S10). Third, we assessed the classification accuracy
for the separation of deforestation and understory forest fires, the
two primary types of multiday fires in the Amazon, and a critical
distinction for accurate estimates of carbon emissions from defor-
estation and forest degradation (table S2). Because of the class im-
balance, we selected a stratified random sample of 100 deforestation
and 100 understory fires across the South American study domain
in 2019. We focused on fires that started in August, to avoid issues
of cloud cover, and used pre- and postfire Sentinel-2 images at 10-m
resolution to interpret the reference fire type. Fourth, we investigated
how well we were able to identify different fire types in near real time,
as compared to our final, end-of-year classification (Fig. 4).

Estimating fire carbon emissions

In this study, we combined our fire classification with estimates of
burned area (square meters) and fuel consumption (grams per square
meter) to derive estimates of total dry matter burned (grams) and
carbon emissions per fire. First, we translated fire perimeters derived
here to estimates of area burned (fig. S11). On average, the MCD64A1
collection 6 burned-area product performs well for large continuous
burned areas (28, 47), including savanna ecosystems or fires following
large deforestation events. In contrast, moderate-resolution satellite
data may not capture small fires (47), or fires burning under dense
canopy (24). Therefore, we scaled burned area for savanna and
deforestation fires to the MCD64A1 burned-area data but used sep-
arate scaling factors for small clearing and agricultural fires and forest
fires. First, to scale burned area from savanna and deforestation fires
separately, we identified the fire type of each cluster of continuous
burned area (adjacent 500-m burned pixels) within the MCD64A1
burned-area product for 2019. For each continuous cluster of
MCD64A1 burned area, we determined the fire type on the basis of
the overlap with fire events based on clustering of active fire detec-
tions in this study and used the dominant fire type within each cluster
(largest overlapping area). A small fraction of total MCD64A1 burned
area (about 0.7%) did not have overlap with fires detected in our
study, usually short-lived fires in low-fuel systems. Second, we
derived burned-area scaling factors for savanna and deforestation
fires per grid cell based on the ratio between MCD64A1 burned area
and the total pixel area (at ~550-m resolution) within the perimeters
of individual fire events identified by our approach. An iterative
region-growing analysis initially estimated scaling factors for all
0.5° grid cells that contained at least 50-km” burned area from both
MCD64A1 and the area within the fire perimeters derived here. Next,
we clustered remaining 0.5° grid cells that did not meet the criteria
to 1° and evaluated the larger regions using the same fitting criteria.
The grid cell aggregation and evaluation were repeated at 1°, 2°, and
4° resolutions before all remaining grid cells were combined into a
single continental-scale region (fig. S11). We found overall good
performance of MCD64A1 burned area for forest fires in the Xingu
region (e.g., fig. S1) and other forested areas that might have burned
previously. However, considerable omission occurred for fires in areas
of dense forest that had not burned since 2000 (fig. S12). Because the
combination of active fire detections from the VIIRS instruments
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on board Suomi-NPP and NOAA20 typically resulted in dense point
clouds of active fire detections for forest fires (fig. S12; on average >10
active fire detections per square kilometer of burned area), and the
average forest fire size was large (11.4 km?), we used our estimate of
burned area associated with forest fires without further adjustments.
For small clearing and agricultural fires, we used a scaling factor of
0.1; a comparison to Landsat-derived burned-area data for 2019 from
MapBiomas for small clearing and agricultural fires indicated that
this was a reasonable scaling factor.

We evaluate burned-area estimates by comparing results to
Landsat burned-area estimates from the MapBiomas (48) for Brazil
(fig. S13). First, we classified the MapBiomas burned area into burned
area from different fire types using the same approach as used for
the MODIS data. Continuous clusters of burned area were overlayed
with fire perimeters derived here, and their fire type was assigned
on the basis of the fire type that had most overlap with the burned
area clusters. Burned-area clusters that remained entirely undetected
by our approach were assigned to the savanna class if average tree
cover was below 50% (consistent with our approach) or to a “residual”
class if tree cover was above 50%.

In addition to burned area, carbon emissions from fires depend
on fuel consumption (grams per square meter), the product of
aboveground biomass and combustion completeness. Building on
the development of existing near-real-time fire emission inventories
(34, 49, 50), we developed conversion factors between VIIRS active
fire detections and fuel consumption to estimate 2019 carbon emis-
sions for each fire in the study region. These conversion factors
scale FRP to dry matter burned, a required step because satellite
observations provide estimates of instantaneous energy release (FRP),
but how this translates into total fire radiated energy and emissions
is further modified by instrument characteristics (51), the fire diurnal
cycle (52), vegetation (41), and cloud cover (34). We derived con-
version factors by fitting observed distributions of fuel consumption
(metric tons per hectare) during field experiments (29) to the ob-
served total of FRP per area burned (megawatts per hectare; fig. S14).
This approach resulted in average fuel consumption estimates that
are close to field observations of each fire type but distributes fuel
consumption per fire based on the cumulative FRP. For savanna
fires, we included fuel consumption from eight field observations
including two observations for Campo limpo, Campo Sujo, Cerrado
aberto, and Cerrado denso, the dominant savanna types (53, 54).
For deforestation fires, we included 19 field measurements associated
with fires following tropical forest clearing in Brazil [summarized in
(29)]. In our classification approach, small clearing and agricultural
fires are associated with >50% forest cover, and we therefore used
four fuel consumption measurements of pasture burning in Brazil,
a fire type that often includes residual clearing [summarized in
(29)]. Last, for forest fires, we used a single fuel consumption esti-
mate from (42).

To convert cumulative FRP per area burned (megawatts per
hectare) to the fuel consumption estimates, we used a q-q plot to
match the distributions of observed fuel consumption from field
measurements to FRP per area burned (fig. S14). First, both the dis-
tribution of observed fuel consumption (metric tons per hectare) and
FRP per area burned (megawatts per hectare) were log-transformed
to accommodate their nonlinear relationship and retain the long tail
of both datasets. Second, a q-q plot was generated for each fire type
(savanna, deforestation, and small clearing and agricultural fires),
and their relationship was captured using a linear model. To remove
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the influence of occasional extremes in observed FRP, we used the
2nd to 98th percentile of FRP per area burned to fit the model and
identify minimum and maximum fuel consumption. This resulted
in a model mean, minimum, and maximum value close to the ob-
servations. The same approach could not be applied to forest fires
because only a single fuel consumption measurement was available
for this fire type (fig. S14, F and G). For forest fires, we directly
translated the distribution of FRP per area burned into fuel con-
sumption by matching the mean values for the Amazon biome. As
this approach potentially results in more outliers, we used a more
conservative 10th and 90th percentile threshold to cap minimum
and maximum fuel consumption estimates.

Last, we translated per-fire estimates of dry matter burned to
carbon emissions (fig. S15), using GFED4 (13) emissions factors
(grams of species per kilogram of dry matter combusted): deforesta-
tion fires (491 g C per kg dry matter), forest fires (491 g C per kg dry
matter), small clearing and agricultural fires (480 g C per kg dry
matter), and savanna and grassland fires (488 g C per kg dry matter).
Because deforestation and forest fires are not separated in GFED4s,
we used the same emissions factors for both fire types. We note,
however, that total carbon emissions per kilogram of dry matter
burned are highly constant across land cover types, in contrast to
emissions of the actual trace gasses (e.g., CO,, CO, CHy, etc.).

2019 analysis of variability in fire activity by fire type

To better understand the drivers of regional fire activity in forested
systems, we explored time series of fire detections by fire type for
the southern hemisphere Amazon and a larger study region (Fig. 3)
as well as for Brazil and the five Brazilian states along the arc of de-
forestation (fig. S16). This analysis included deforestation fires, forest
fires, and small and agricultural fires, the three fire types characterized
by >50% tree cover (fig. S3). We compared results to long-term
(2012-2018) average daily fire detections from Suomi NPP VIIRS
using a 50% tree cover threshold at 0.005° resolution. To investigate
the impact of climate on temporal variability, we calculated average
daily rainfall from the Global Precipitation Measurement Integrated
Multi-satellite Retrievals version 06 (55) across all 0.1° grid cells, the
spatial resolution of precipitation data, with greater than 50 fire de-
tections. Last, we investigate the relative contribution of long-duration
fires, and we explore the relative contribution new fire starts, fires
that burned 1 to 10 days, and fires that burned longer than 10 days
to daily fire activity (Fig. 4 and fig. S17).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abd2713
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