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Acoustic detection range and population density of Cuvier’s
beaked whales estimated from near-surface hydrophones
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ABSTRACT:

The population density of Cuvier’s beaked whales is estimated acoustically with drifting near-surface hydrophone
recorders in the Catalina Basin. Three empirical approaches (trial-based, distance-sampling, and spatially explicit
capture-recapture) are used to estimate the probability of detecting the echolocation pulses as a function of range.
These detection functions are used with two point-transect methods (snapshot and dive-cue) to estimate density.
Measurement errors result in a small range of density estimates (3.9-5.4 whales per 1000km?). Use of multiple
approaches and methods allows comparison of the required information and assumptions of each. The distance-
sampling approach with snapshot-based density estimates has the most stringent assumptions but would be the easi-
est to implement for large scale surveys of beaked whale density. Alternative approaches to estimating detection
functions help validate this approach. The dive cue method of density estimation has promise, but additional work is
needed to understand the potential bias caused by animal movement during a dive. Empirical methods are a viable
alternative to the theoretical acoustic modeling approaches that have been used previously to estimate beaked whale

density. https://doi.org/10.1121/10.0002881

(Received 23 June 2020; revised 26 October 2020; accepted 17 November 2020; published online 5 January 2021)

[Editor: Aaron M. Thode]

I. INTRODUCTION

There is a growing interest in using passive acoustic
methods to estimate the population density and abundance
of cetaceans (Marques et al., 2013; Heinemann et al., 2016).
Previously, most cetacean abundance estimates were based
on visual sighting surveys (Dawson et al., 2008) or capture-
recapture methods with photographic identification of
individuals (Urian et al., 2015). However, some species of
cetaceans, such as beaked whales, are difficult to see or pho-
tograph because they spend very little time at the surface
and are relatively inconspicuous (Barlow and Gisiner,
2006). Because beaked whales make relatively loud echolo-
cation pulses (224 dBp, re 1 uPa; Gassmann et al., 2015)
when foraging and because these pulses appear to have
species-specific characteristics (Baumann-Pickering et al.,
2013), passive acoustic abundance estimation may be espe-
cially effective for these species. In some Navy test facilities
with large arrays of permanent, bottom-mounted hydro-
phones, it is possible to estimate abundance by completely
enumerating the number of beaked whale foraging dives and
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adjusting for the dive rate and group size (Moretti et al.,
2010; Marques et al., 2019). However, for most areas, fewer
hydrophones are available, and a sampling approach must
be taken. Various approaches have been proposed (Marques
et al., 2013), most of which are based on point-transect
sampling.

A key component of point-transect sampling for animal
density or abundance is estimating the probability of
detecting an animal or group of animals as a function of
their distance from a point (e.g., a single hydrophone). This
function, referred to here as a detection function, can be esti-
mated by a variety of approaches. One approach is based on
theoretical models that use estimated sound levels at the
source, propagation losses with range, and the required sig-
nal-to-noise level at the hydrophone for an acoustic signal to
be recognized. This approach is more complicated for
higher-frequency sounds that are highly directional and
have a broad bandwidth (Au, 1993; Zimmer et al., 2008;
Ainslie, 2013). For such highly directional sounds, such as
beaked whale echolocation pulses, a detailed simulation
model of animal behavior is also needed to predict the
detection range (Zimmer et al., 2008; Kiisel et al., 2011;
Hildebrand et al., 2015). However, these acoustic models
are typically based on a large number of untested assump-
tions and unquantified sources of uncertainty regarding

0001-4966/2021/149(1)/111/15/$30.00 111

00:92:9} G20T Yd1en 02


https://doi.org/10.1121/10.0002881
mailto:jay.barlow@noaa.gov
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0002881&domain=pdf&date_stamp=2021-01-05

individual and group foraging behaviors. Empirical methods
for estimating detection functions include distance-
sampling, mark-recapture distance-sampling, trial-based,
and spatially explicit capture-recapture (SECR) approaches
(Marques et al., 2013). Empirically estimated detection
functions are likely to be more robust (Marques et al., 2013)
but require a survey design that collects information on
detection distances.

Conventional distance-sampling uses only the empirical
distribution of ranges to actual detections and does not
require knowledge of the range to missed detections
(Buckland et al., 2015). A detection function is estimated
from the observed decrease in the number of detections with
range (relative to the expected number of detections if range
did not affect detectability). However, the empirical estima-
tion of range to an acoustic detection is not a trivial prob-
lem, especially when using a single hydrophone. In some
special cases, range from a single hydrophone to an acoustic
source can be estimated using surface and bottom reflections
(McDonald and Fox, 1999) or waveform dispersion caused
by waveguide propagation (Wiggins et al., 2004; Marques
et al., 2011). Additional methods are available for two
hydrophones in a vertical array (Mathias er al., 2013;
Barlow and Griffiths, 2017). Distance-sampling requires an
independent measurement of the probability of detection at
zero distance (or the assumption that detection is certain)
and typically assumes that detection probability decreases
monotonically with distance.

The trial-based approach uses both detections and
missed detections to estimate the detection function. In a
passive acoustic application, this approach requires that the
location of the animal be estimated both when signals are
being received and when they are not being received on a
given instrument. The information on the range to missed
detections can come from other instruments which did
detect the animal (such as an acoustic recording tag on the
animal; Marques et al., 2009) or from a modeled track of
animal movement that estimates locations over a continuous
time period from intermittent acoustic detections. The trial-
based method used with nonparametric smoothing functions
does not assume that detection is certain at zero distance or
declines monotonically.

The SECR approach estimates a detection function
using multiple receivers distributed in a known spatial
arrangement. When the same call is detected on multiple
receivers, each detection is essentially a “recapture” event,
and the source location of the detected call can be estimated
from the pattern of recaptures (Marques et al., 2012;
Stevenson et al., 2015). SECR methods do not (necessarily)
assume that detection is certain at zero distance; they do typ-
ically assume a monotonic decreasing detection function
because of the parametric detection functions used, although
non-monotonic functions may be possible in theory.

The effective detection radius (EDR) is a useful sum-
mary statistic for the detection function. The EDR is the dis-
tance at which the number of missed detections at closer
distances equals the number of detections made at greater
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distance (within a defined maximum truncation distance).
This can be readily converted into the effective area sur-
veyed (m x EDR?), which is a key component of density
estimation (see Sec. II, Methods). For the SECR approach,
this area depends on the spatial distribution of instruments.

Much recent research has addressed the range at which
echolocation pulses of beaked whales can be detected using
acoustic modeling and empirical approaches. Zimmer et al.
(2008) used a sound propagation theory and a simulation
model of animal behavior to estimate the probability of
detecting a Cuvier’s beaked whale (Ziphius cavirostris) as a
function of range within a finite time period (taken to be the
acoustically active phase of one foraging dive). Sound prop-
agation theory and a simulation model of animal behavior
were used to estimate the probability of detecting individual
echolocation pulses for Blainville’s beaked whales (Kiisel
et al., 2011), Cuvier’s beaked whales, and Gervais’ beaked
whales (Mesoplodon europaeus; Hildebrand et al., 2015).
Hildebrand et al. (2015) also used an acoustic model to esti-
mate the probability of detecting Cuvier’s and Gervais’
beaked whale groups within a five-minute time window.
Marques et al. (2009) used a trial-based approach to empiri-
cally estimate the probability of detecting individual echolo-
cation pulses for Blainville’s beaked whales using pulses
detected on an acoustic recording tag to set up trials for
detection or non-detection on bottom-mounted hydrophones
at varying distances. A fundamental difference in the unit of
measure (detection of a dive vs a finite time window vs an
individual echolocation pulse) prevents a detailed compari-
son of the EDR from these papers, but Zimmer et al. (2008),
Kiusel et al. (2011), and Hildebrand ef al. (2015) all indicate
a maximum likely detection range of slightly greater than
4km, whereas Marques et al. (2009) extend that to a little
over 6 km.

In this paper, three approaches (distance-sampling, trial-
based, and SECR) are used to empirically estimate the acoustic
detection function for Cuvier’s beaked whales on drifting
near-surface hydrophones. Acoustic detection data are taken
from a study that used a nested array of drifting hydrophone
recorders to track the three-dimensional (3D) diving behavior
of this species (Barlow et al., 2018). Estimated detection func-
tions are used to estimate the effective survey area of the drift-
ing instruments, and that area is used to estimate the density of
Cuvier’s beaked whales in a small study area.

II. METHODS
A. Field methods

We use acoustic detections of echolocation pulses from
Cuvier’s beaked whales that were recorded as part of a beaked
whale acoustic tracking study (Barlow et al., 2018). That study
was conducted in the Catalina Basin off southern California in
July and August 2016 and used drifting arrays of hydrophones
to localize and track foraging whales based on their echoloca-
tion pulses. Detailed field methods are given by Barlow et al.
(2018); here, we present a brief summary.

Barlow et al.
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Acoustic detections are from four Drifting Acoustic
Spar Buoy Recorders (DASBRs). Each consists of a vertical
array of two hydrophones at ~105-m and 115-m depths
(separated by 10m) and a Wildlife Acoustics (Maynard,
MA, USA) SM3M digital recorder with a 256 kHz sampling
rate. The instruments drifted together with prevailing cur-
rents and were repositioned daily with an initial separation
of approximately 1 km. The location of each instrument was
recorded approximately every 30min with a Global
Positioning System (GPS)-based geo-location device. Drift
paths were generally in a northwesterly direction during this
study (Fig. 1). Eleven drifts (a single deployment of one
instrument) were completed with each of the four recorders.

B. Beaked whale acoustic detections

Cuvier’s beaked whales were identified from their char-
acteristic echolocation pulses (Baumann-Pickering et al.,
2013). Digitally recorded .wav files were analyzed using
PAMGuard (Beta v1.15.03) software (Gillespie et al.,
2009), which identified impulsive sounds (clicks and pulses)
using an energy detector and classified those sounds based
on peak frequencies and, for some, the presence of a fre-
quency sweep within an echolocation pulse (Keating and
Barlow, 2013). PAMGuard also estimates a vertical bearing
angle to the sound source based on the time-difference-of-
arrival for the signal on the two hydrophones in the vertical
array using a cross-correlation algorithm. Potential

334°N

Santa Catalina
Island

332N [

118.7° W 1186 W 1185 W 1184° W

FIG. 1. (Color online) Locations of DASBR drifts in the Catalina Basin
(black lines). Four DASBRs were typically deployed in a rectangular con-
figuration separated by ~900m (as exemplified by black circles showing
deployment locations for one drift) and drifted northwest. Locations of
Cuvier’s beaked whales are illustrated as white squares with black outlines.
Bathymetry contours are every 200 m from 200 to 1200 m (light gray lines)
with the 1000m contour emphasized with the darker, thicker gray line.
Bathymetry data are from National Oceanic and Atmospheric
Administration’s (NOAA’s) National Centers for Environmental
Information (Amante and Eakins, 2009). The inset shows the location of the
detailed map within the Southern California Bight.
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echolocation pulses from beaked whales were reviewed by
an experienced analyst (E.T.G.), who used PAMGuard
Viewer software to determine whether signals are from
Cuvier’s beaked whales, based on their frequency character-
istics and contextual cues. Echolocation pulses of Cuvier’s
beaked whales characteristically have a peak frequency of
32-40kHz and secondary energy peaks at 18—19kHz and
2224 kHz. As with other beaked whales, the echolocation
pulses of Cuvier’'s beaked whales have a frequency
upsweep. Important contextual cues include the direction to
the sound source (always below the hydrophone pair), the
consistency of that direction (changing only slowly over a
two-minute sound file), and the inter-pulse interval (typi-
cally 0.33-0.50 s). Because not all echolocation pulses can
be classified unequivocally, three clicks within a one-minute
sound file are required to qualify as a positive detection of a
beaked whale. If a series of potential beaked whale echolo-
cation pulses differs from those of Cuvier’s beaked whales
in any of the diagnostic criteria, it was excluded from subse-
quent analyses. Our multiple-criteria approach is assumed to
eliminate any false positive detections; however, false nega-
tives (missed detections) are likely and are the motivation
for estimating detection functions.

C. Point-transect density estimation

Two methods are used for acoustic density estimation,
both based on a point-transect framework (Marques et al.,
2013; Buckland et al., 2015), using groups as the sampling
unit. The first method uses a one-minute “snapshot” sample
during which a group of Cuvier’s beaked whales can be either
detected or not. In point-transect surveys, the choice of snap-
shot duration should be long enough to have a high probability
of detecting close groups (as we will show to be true for one-
minute snapshots) but should be as short as possible to reduce
the bias caused by animal movement and the likelihood of
detecting multiple groups (Buckland et al., 2015). Because
fewer than 2% of the snapshots include whale detections, we
are confident in assuming that a one-minute snapshot detection
includes only one group of beaked whales. The density of indi-
viduals, D, is estimated as

D=—, (1)

where 7 is the number of snapshot time periods with detec-
tions of Cuvier’s beaked whales, k is the total number of
snapshot time periods, 7 is the estimated effective area sur-
veyed (which includes the effect of the detection function),
A is the estimated probability that a group will be available
for detection (echo-locating) within a one-minute snapshot,
and § is the estimated population mean group size. The
mean group size (1.9, coefficient of variation, CV =0.07) is
estimated as the mean of the observed group sizes from 63
Cuvier’s beaked whale sightings on 7 prior visual sighting
surveys in the California Current (Barlow, 2016). The
instantaneous proportion of time that an individual Cuvier’s
beaked whale echo-locates (0.199, CV =0.04) is taken from
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a tagging study in similar habitat in southern California
(Barlow et al., 2020). The probability, 4, of a Cuvier’s
beaked whale group echo-locating during a one-minute time
window is approximately one percentage point higher than
this proportion of time echo-locating (Barlow et al., 2013).
Individuals in a group are assumed to begin and end echolo-
cation synchronously, thus, from this instanta}\neous propor-
tion, availability for a one-minute snapshot, /, is estimated
as 0.209 (CV =0.04). Three methods are used to estimate
the probability of detection as a function of horizontal range
(Sec. IID) and the effective detection area v (Sec. II F).

The second density estimation method is cue counting
using foraging dives as cues. The density of individuals, D,
is estimated as

nd§

5:77
TI/Rd

2
where n, is the number of detected dives of Cuvier’s beaked
whales during a time period T hours, 5 is the population
mean group size, v is the estimated effective area surveyed,
and I?d is the estimated dive rate (dives hr!). This method
is based on that of Moretti et al. (2010) except that the
Moretti study used data from a Navy testing range and was
able to assume that all dives within a known area were
detected, whereas here detection of group dives is not cer-
tain and so the effective area surveyed is estimated. The
group size is again taken as 1.9 (CV =0.07) from visual
sighting surveys. Again, at least three beaked-whale-like
echolocation signals detected within a one-minute period
are required to qualify as a detection. In this region, individ-
ual Cuvier’s beaked whale foraging dives have a mean dura-
tion of 67.4 min (standard deviation, s.d. = 6.9) and a mean
period between foraging dives of 102.3 min (s.d. = 30.8)
(Schorr et al., 2014). This species typically does not produce
echolocation clicks during the descent or ascent phases of
these dives, therefore, the period of echolocation is consid-
erably shorter than the length of a foraging dive. A dive is
counted in n, if the time since the detection of a previous
dive was greater than 50 min. The dive rate (0.319 dives
hr!, CV =0.13) is taken from a southern California tagging
study (Barlow et al., 2020). Each detected dive is assumed
to contain only one group, and individuals within a group
are assumed to be diving synchronously. Two dive detection
functions are estimated (Sec. II E) to bracket the likely range
of EDR values, and both are used to estimate 7 (Sec. II F).
Animal movement during a dive is likely to bias density
estimates by this method (see Sec. IV, Discussion).

The precision of both density estimation methods is
estimated with the delta method. The square of the CV of
the density is estimated as the sum of the squared CVs of
each multiplicative component in Egs. (1) and (2).

D. Detection function estimation for one-minute
snapshots

Three approaches are used to estimate the probability of
detection as a function of range (trial-based, modified

114 J. Acoust. Soc. Am. 149 (1), January 2021

distance-sampling, and SECR). The trial-based approach
only used data from 10 dives of solitary individuals that
could be tracked by Barlow et al. (2018), whereas the other
2 approaches used data from all 29 dives detected in that
study, some of which included multiple individuals. For all
approaches, the EDR is estimated from detection functions
using the identity

EDR = ZJ rg(r)dr, 3)
r=0

where r is the horizontal range in meters, g(r) is the proba-
bility of detection at range r, and w is a range beyond which
detection probability is essentially zero (Buckland et al.,
2015). Given the knowledge of the beaked whale acoustic
detection (Zimmer et al., 2008), the chosen value of w was
6000 m. In practice, the integration was approximated by a
sum taken over integer ranges. The estimated effective sur-
veyed area, v Egs. (1) and (2), is calculated as the area of a
circle with a radius of the EDR:

7 = nEDR?. 4)

1. Trial-based detection probability

The trial-based approach uses data on whether an ani-
mal at a given horizontal range and orientation was detected
or not within a one-minute snapshot on each of the four
DASBRs (Fig. 2). Barlow et al. (2018) developed a
Bayesian state-space model to estimate the locations of indi-
vidual Cuvier’s beaked whales at 1-minute intervals during
10 dive segments of 9-32-minute duration using a subset of
the data used in this study (see the supplementary material
in Barlow et al., 2018). These estimated locations were used
to compute the horizontal range and relative heading from
each DASBR. The relative heading is informative because
beaked whale echolocation pulses are highly directional
and, hence, the detection range depends on an animal’s ori-
entation relative to the hydrophone. Although an animal’s
precise orientation is not known, it is likely to be correlated
with its direction of travel and, therefore, the horizontal ori-
entation is estimated from the time series of tracking loca-
tions and converted to a heading in degrees relative to each
DASBR (with 0° being directly toward the DASBR and
180° directly away from the DASBR).

A generalized additive model (GAM) is fit to estimate
the per-minute detection probability as a function of the
range and relative heading. Using GAMs avoids the need to
specify a parametric form for the function; instead, it is
modeled using spline functions, which are smooth but flexi-
ble (Wood, 2017). The model does not assume that the prob-
ability of detection at zero range is one, nor does it assume
that the detection probability decreases monotonically with
range. The response variable is detection/non-detection per
minute, modeled as a Bernoulli trial with a logit link func-
tion; the two explanatory variables (horizontal range and

Barlow et al.
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FIG. 2. (Color online) Acoustic detections (red circles) and non-detections
(black circles) on a DASBR during a one-minute time window as a function
of horizontal distance from that DASBR and heading of travel relative to
that DASBR. Data are from an acoustic tracking study (Barlow et al.,
2018).

relative heading) are included as univariate thin plate regres-
sion splines. Fitting is via maximum likelihood with the
amount of smoothness of the splines being selected as part
of the maximization. In doing so, it is important to recognize
that the binary trials on each DASBR in each minute are not
statistically independent because each minute of tracking
generates four trials (one on each DASBR) and trials within
tracks are based on the same diving group. Hence, indepen-
dent random effects were included in the model for a minute
within track and for DASBR. Fitting was performed using
the R (R Core Team, 2017) function gamm4 (version 0.2-5;
Wood and Scheipl, 2017; see supplementary material 1 for
R codel).

To derive the detection probability as a function of the
horizontal distance alone, the relative heading was
“integrated out” by assuming a uniform distribution of
headings between 0° and 180° and averaging the detection
probabilities for all angles at a given range. The EDR was
then calculated using Eq. (3). For increased robustness, the
variance was estimated using a jackknife procedure (see
Sec. IIF).

2. Distance-sampling detection probability

A variety of parametric and semi-parametric models
can be used to model a detection function in distance-
sampling (see, e.g., Buckland et al., 2015), and these are
typically fitted to the observed distance data using the maxi-
mum likelihood. In our case, with acoustic data from
drifting buoys, detection distances are not directly observed.
Instead, our observations are of detection angles (in a verti-
cal orientation). However, by combining these angles with
separate information about the distribution of echolocation
depths, it is possible to make inferences about the distribu-
tion of the detection distance and, hence, detectability. The
mean depth of echolocation (976 m, s.d. = 112m) is taken
from the ten dive segments for which tracks were available

J. Acoust. Soc. Am. 149 (1), January 2021

(Barlow et al., 2018), and the distribution of depths was
assumed to be log-normal. Rather than the maximum likeli-
hood, the maximum simulated likelihood is used to find the
detection function that provides the best fit to the observed
angles (see supplementary material 2 for details'). The max-
imum simulated likelihood was first developed in the field
of economics as an approach for fitting complex likelihoods
(Arias and Cox, 1999). In the present application, the full
likelihood involves integration over the depth distribution,
and the simulation approach avoids this integration step
[although full likelihood methods have been developed
for the half-normal model (Thomas and Matias, 2014)—see
Sec. IV, Discussion]. Fitting was done using custom-written
code in R (see supplementary material 3 for R code').

Half-normal (Buckland er al., 2015) and compound
half-normal (Efford and Dawson, 2009) detection functions
(Table I) are fit to the observed distribution of detection
angles. Unlike conventional distance-sampling, both are
modeled as functions of the slant (i.e., direct) range to detec-
tion rather than the horizontal range. A simulation is used to
re-express these detection probabilities as functions of the
horizontal range for estimating the EDR (see supplementary
materials 2 and 3'). Detection angles are truncated at 81.8°
(corresponding to the horizontal truncation distance of
6000 m at the mean echolocation depth of 976 m). The best
model is selected as the model with the lowest AIC
(Akaike’s information criteria) value.

3. SECR detection probability

Traditionally, SECR uses data from a set of physical
traps that are deployed to catch animals over a set of discrete
time periods called sampling occasions. Captured animals
are individually identifiable or marked on first capture to
make them so. The data are summarized in the form of cap-
ture histories, which records the history of which traps each
detected animal was caught in and on which occasions. The
number and pattern of detection locations can be used to
estimate the detection function and effective area surveyed
and, hence, density (see Borchers, 2012, for an introductory
overview of SECR). When applying SECR in the context of
passive acoustics, sounds act as animals and hydrophones
act as traps—the number of individual sounds detected and
the pattern of detection locations are used to estimate an
acoustic detection function, effective area, and density

TABLE 1. Maximum simulated likelihood fits of the detection model for
the distance-sampling approach. Detection probability is a function of the
slant range, r. In the formulas, ¢ and z are estimated parameters. The effec-
tive detection radii are given for the maximum simulated likelihood fits to
each model. Relative model fits are indicated by Akaike’s information crite-
ria (AIC) and the probabilities are indicated from a Kolmogorov-Smirnov
test [Pr(K-S)] of the differences between the observed and simulated distri-
butions of detection angles.

Detection model Formula EDR (m) AIC Pr(K-S)
Half-normal e /2o 2254 4099.7 0.0003
Compound half-normal 1 — (1 —e~(*/27))" 3000  4072.1 0.529
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(Efford et al., 2009b). Unlike with physical traps, a single
sound can be detected on multiple hydrophones in the same
time window, and so only one sampling occasion is needed.

SECR surveys can be divided into sessions (groups of
sampling occasions separated by time or space), and the
effective survey area and density are calculated for each ses-
sion. This allows for comparison across sessions (Efford
et al., 2009b; Royle et al., 2013). Conversely, sessions can
be collapsed together to look at the mean density for all ses-
sions (e.g., Marques et al., 2012). Sessions can also be use-
ful because they allow for changes in trap or recorder
configurations in time (Efford, 2019a) as occurred with the
DASBR array.

Similar to the trial-based method, an upper limit to the
feasible detection distances must be specified in the form of
a buffer around the sensors—this defines the area, or mask
of grid points, over which the likelihood is integrated
(Borchers and Efford, 2008). Density estimates should not
change with increased buffer size if the buffer is sufficiently
large (Royle et al., 2013).

Detection probability as a function of the horizontal
range is modeled in the R package secr (v3.2.1; Efford,
2019b; see supplementary material 4 for R code'). Each
minute of recording with at least three beaked whale clicks
on at least one instrument (n =275) makes up a single cap-
ture history with the binary presence or absence of clicks on
each of the four recorders. To account for movement of the
array through time, each single capture history is treated as
a separate session with a unique array configuration. The
half-normal and compound half-normal detection functions
(defined in Table I) are fit by maximum likelihood using the
more stable conditional likelihood option in secr (Borchers
and Efford, 2008).

A secr buffer size of 8km is used as a generous
buffer beyond estimated detection ranges found with the
distance-sampling and trial-based methods. AIC is used to
identify the best model. Both detection function parameters
[including the probability of detection at horizontal distance
zero, g(0)] are estimated by the secr program. SECR esti-
mates the effective survey area for the entire array rather
than a single instrument as is the case with distance-
sampling and the trial-based approaches. The array configu-
ration may not lead to an exactly circular effective survey
area, therefore, an estimate of the EDR is not typically
calculated. In the present case, for comparison, a “pseudo”
effective detection range (pEDR) is calculated for a single
instrument of the array using the mean of the jackknife esti-
mates for the SECR parameters g(0), o, and z (see Table I
for definitions) to define g(r) in Eq. (3).

E. Estimation of a dive detection function

Our dive-based cue-count approach requires an estimate
of the effective area surveyed or, equivalently, the EDR.
The EDR is expected to be greater for a dive than for a one-
minute snapshot because there are many more opportunities
(minutes) to detect a dive. Also, animal orientation relative
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to the hydrophone is likely to change during a dive (Barlow
et al., 2018), which would also increase the probability that
a dive will be detected. Based on measurements taken from
Cuvier’s beaked whales, tagged off southern California
(Barlow et al., 2020), the average duration of the foraging
portion of a dive (when echolocation pulses are made) can
be estimated from the mean foraging dive duration
(65.5 min) minus the descent time to the depth where echo-
location begins (462m at 1.45m s~ ' equals 5.3 min) and
minus the ascent time from the depth where echolocation
ends (881 m at 1.45m s ! equals 21.0 min). Therefore, this
echolocation period is approximately 39 min for an average
dive. If the probability of detection during each minute were
assumed to be independent, the probability of detecting a
dive at a given range could be estimated as the converse of
the probability that echolocation pulses would not be
detected at that range for 39 consecutive minutes. If 1 - g(7)
is the probability of not detecting an echolocating whale
during a 1-minute period at range r, the probability of
detecting a 39-minute dive at that range would be 1 - (1 -
g(r))39. Because the assumption of independence is not
likely to be met, the true dive detection probability is likely
to be less than that predicted by this formula. In applying
our cue-count approach, this 39-minute detection function
and the 1-minute detection function are used to bracket the
feasible range of dive detection functions. The 1-minute
detection function from the distance-sampling approach
with a compound half-normal model is used to estimate the
39-minute detection function.

F. Estimation of effective survey area

Calculation of the effective area surveyed, v, depends
on the method used to estimate the detection function. For
the trial-based and distance-sampling approaches, the effec-
tive survey area is measured as the area around each instru-
ment [Eq. (4)].

For the SECR approach, the effective survey area is the
total area for all four instruments and depends on the spatial
distribution of the instruments. This area is estimated within
the program secr.

To calculate the CV of all estimates of the effective sur-
vey area, a jackknife approach (Efron, 1982) was used with
each of the 11 drifts as replicates (for the distance-sampling
and SECR approaches) or the 10 tracked individuals as rep-
licates (for the trial-based approach).

lll. RESULTS
A. EDR

1. Trial-based approach

The tracking methods used by Barlow et al. (2018)
resulted in 224 estimated locations in 1-minute intervals
over the 10 tracks. Because the tracks were continuous and
positions were interpolated based on a movement model
even when no echolocation pulses were received, these loca-
tions included both one-minute periods with and without
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recorded pulses. The actual number of detection-positive
minutes was 135, 146, 117, and 167 for the four DASBRs.
These 565 total detection-positive minutes, thus, represent
63% of the 896 potential periods for the 4 DASBRs and
224 localizations used in this study. The horizontal distan-
ces from the localized positions to a DASBR ranged from
0.53 to 4.45 km; however, no detections were made at dis-
tances over 4.15km. Detections and non-detections are
shown in Fig. 2 as functions of the horizontal distance and
direction of travel relative to a DASBR. These results
show that most tracked groups had a net travel heading that
was toward the DASBRs (<90°), likely because such
groups were more trackable (a potential bias in the trial-
based method—see Sec. 1V, Discussion). However, even
when the net travel heading was away from the DASBR
(>90°), beaked whales within 1 km were very likely to be
detected.

These results are reflected in the GAM fit, where esti-
mated detection probability generally declines with an
increasing range and increasing orientation angle (Fig. 3),
although the decrease with the range is not monotonic. The
estimated detection probability, averaged over all travel
directions (Fig. 3), is 1.0 at zero horizontal range and
decreases non-monotonically at greater ranges; the esti-
mated detection probability is essentially 0.0 at ranges
greater than 5 km. The estimate of the EDR is 2.79 km (jack-
knife CV =0.19).

One minor issue noted during the jackknife procedure
was that the estimated average detection probability at 6 km
was not close to zero [g(w) = 0.079] in one of the ten jack-
knife replicates. Given that our limit of integration for esti-
mating the EDR is 6km, this will cause a slight
underestimation of the EDR for that replicate and, thus, a
slight underestimation of the jackknife CV. [This was not an
issue in the other nine jackknife replicates: mean g(w) over
these nine was <0.001.]

Detection Probability

0 1 2 3 4 5
Horizontal Range (km)

FIG. 3. Trial-based estimates of the detection probability as a function of
the horizontal range and relative heading from a GAM fit to detection and
non-detection data (Fig. 2). Solid lines (gray scale) represent probabilities
of detection in a one-minute snapshot for orientations of 0°, 30°, 60°, 90°,
120°, 150°, and 180° (respectively, from black to light gray). The dashed
line represents the one-minute detection probability averaged over all
headings.
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FIG. 4. The observed distribution of beaked whale acoustic detection angles
for one-minute snapshots. Zero corresponds to straight down. The dotted
vertical line indicates the truncation angle of 81.7°; greater angles were not
used to fit the detection functions for the conventional distance-sampling
method.

2. Distance-sampling approach

The distribution of mean detection angles for each one-
minute snapshot (Fig. 4) shows a peak at 70°, which corre-
sponds to a horizontal distance of 2.4 km for an animal at
the mean depth of 967 m. The truncation angle (81.8°, corre-
sponding to a horizontal distance of 6.0km at this mean
depth) excludes only 0.7% of the observed detection angles.
The compound half-normal is better than the half-normal
both in terms of having a lower AIC and higher
Kolmogorov-Smirnov (K-S) goodness of fit p-value (Table
I; see supplementary material 5 for cumulative distribution
plots'). The compound half-normal shows a high probability
of detection (nearly certain) out to approximately 2km,
whereas the simple half-normal shows an initial detection
probability of approximately 0.88 at zero horizontal distance
(Fig. 5). Both models show a low probability of detection at
4km (<0.1) and a very low probability of detection at 5 km
(<0.05). The compound half-normal estimate of the EDR is
3.00 km (jackknife CV =0.15).

Detection Probability

Horizontal Range (km)

FIG. 5. Distance-sampling estimates of the detection probability as a func-
tion of the horizontal range for 1-minute snapshots and for a 39-minute
dive. Detection models are half-normal (dashed) and compound half-
normal (solid). The dotted line shows the expected detection function for a
dive based on 39 independent 1-minute observations with the compound
half-normal detection function.
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TABLE II. Summary of capture data used in the SECR analysis. Click posi-
tive minutes is the number of one-minute snapshots containing at least three
Cuvier’s beaked whale clicks for each recorder and the sum of all recorders.
Unique click positive minutes are all one-minute snapshots with three
Cuvier’s beaked whale clicks on at least one DASBR and made up each ses-
sion of the SECR analysis. The capture frequency is the distribution of how
many unique click positive minutes were detected on either one, two, three,
or all four DASBRs.

Click positive minutes Capture frequency

Bl B2 B3 B4 ALL Unique click positive minutes 1 2 3 4

147 195 140 162 644 275 84 73 58 60

3. SECR approach

A total of 275 1-minute snapshots contain Cuvier’s
beaked whale detections on at least 1 instrument, resulting
in 275 unique click-positive minutes as 275 SECR sessions
(Table II). The compound half-normal model (Fig. 6) gives
a much better fit than the half-normal model (AAIC =47.2).
In addition, estimates from the half-normal are sensitive to
the choice of buffer size, likely because the data did not sup-
port the half-normal model. Hence, the compound half-
normal is used for inference. With this model, the g(0) is 1.0
(jackknife CV =0.048); the estimated detection probability
remains near certain to about 1.8 km, and then drops steeply
at greater distances and approaches zero by 4km. The
SECR estimate of the pseudo-EDR for a single instrument
(pEDR) is 2.4km (jackknife CV =0.17). The mean effec-
tive survey area of the drifting array across all 275 sessions
is 30.9 km? (jackknife CV = 0.29).

B. Population density
1. Snapshot-based estimates

Approximately 1.22% of one-minute snapshot samples
from individual instruments have Cuvier’s beaked whale
detections (Table III). This increases to 1.85% of the
minutes if detection is considered on at least one of the four
instruments (as used in the SECR estimates; Table III). The

o
-

0.8
I

Detection Probability
0.4

0.2

0.0

Horizontal Range (m)

FIG. 6. SECR estimates of the detection function of a single DASBR.
Detection models are the half-normal (dashed) and the compound half-
normal (solid).
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estimated effective survey area for single instruments ranges
from 24.5 to 28.9km? for different fitting methods and
detection models. The mean effective survey area for the
collection of four instruments is 30.9 km? from the SECR
method. For the snapshot approaches, population density
estimates range from 3.9 to 5.4 animals per 1000 km? for
three combinations of the estimation method and detection
model (Table III).

2. Dive-cue based estimates

During the 2-week study, Cuvier’s beaked whale detec-
tions defined 29 distinct foraging dives (Barlow et al.,
2018). The numbers of these dives as detected by the four
DASBRs used in this study are 15, 21, 17, and 19. The
recording effort varies between 246 and 249 h for the four
instruments. The resulting overall dive detection rate is
0.073 dives hr ' (CV =0.24; Table IV). Assuming that the
detection function for a dive is the same as the detection
probability of a one-minute snapshot results in a density
estimate of 15.4 animals per 1000 km? (Table IV).
Assuming that each 1-minute period within an average 39-
minute dive has an independent probability of detection, the
density estimate is 6.7 animals per 1000 km?® (Table IV).
Ignoring the potential for movement bias, these values are
expected to bracket the true dive detection probabilities, and
the true density is, therefore, expected to be within this
range of estimates.

IV. DISCUSSION
A. Detection ranges

By using three alternative approaches to estimating the
detection functions, differences in the estimates can be com-
pared among the approaches (Table III). For a single instru-
ment, the EDR is 2.8 km for the trial-based approach and
3.0km for the best-fitting compound half-normal model in
the distance-sampling approach. For SECR, the equivalent
pEDR for a single instrument is less (2.4km). Although
these differences in estimates of detection ranges are rela-
tively small given their CVs, it is still informative to explore
the source of these differences by examining the effect of
assumptions and potential biases for each. All three esti-
mates are based on empirical approaches that may be spe-
cific to the sound propagation conditions and animal
behavior in our study area. It would not be appropriate to
assume the same detection functions for other areas. These
empirical approaches lead to more robust density estimates
if data are used from the survey area to estimate the detec-
tion functions.

1. Trial-based

The trial-based approach is unique in that it uses the
information when an animal is both heard and not heard to
estimate detection probability. The primary assumptions of
the trial-based approach are that the detection probability for
the sample of whales at known distances is representative
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TABLE III. Estimates of the population density of Cuvier’s beaked whales in the study area based on snapshot methods [Eq. (1)]. The methods for fitting
the detection models include the trial-based, distance-sampling, and SECR approaches. The mean group size (1.9, CV =0.07) and the probability of echolo-
cation (0.209, CV =0.04) are the same for all approaches and models. The effective survey area is for a single DASBR for the trial-based and distance-
sampling approaches and for all four DASBRs for the SECR approach. The mean and CV for the effective survey area were calculated using a jackknife
approach. The CV for the density is estimated by the delta method from the CVs of the quantities used to estimate it. Lower 95% confidence intervals
(L95%CTI) and upper 95% confidence intervals (U95%CI) are based on a log-normal distribution. The EDR for a single DASBR is a pseudo-EDR, calculated
from the jackknife means of the estimated detection function parameters.

Proportion of minutes
with detections n/k

Effective survey Density D per

area v (km?) 1000 km?
EDR (m) for a

Fitting method Detection model Mean CvV single DASBR  Mean Jackknife CV. Mean CV  L95%CI U95%CI
Trial-based Nonparametric 0.0122 0.32 2,791 24.47 0.40 454 0.52 1.74 11.87
Distance-sampling ~ Compound half-normal 0.0122 0.32 3,000 28.28 0.29 393 044 1.71 9.01
SECR Compound half-normal 0.0185 0.37 2,376 30.90 0.29 544 048 2.23 13.28

of the population and distances are estimated without error.
This method does not assume that animals are randomly dis-
tributed in space, detection probability declines monotoni-
cally, or the probability of detection at zero horizontal range
is 1.0. Also, because this method uses a smoothing spline, it
does not constrain the detection function to a parametric
shape. However, because our estimates are based on a small
sample size (those ten animals that were tracked in the study
by Barlow et al., 2018), there is a greater chance of a sam-
pling error in applying the results to a larger set of acoustic
detections.

All the tracked locations are believed to represent soli-
tary individuals (because tracking was not feasible for larger
groups; Barlow et al., 2018). Groups are more likely to be
detected at a given range than a solitary individual would be
because in a group, the likelihood that the relatively
narrow echolocation beam of at least one individual would
be pointing toward a hydrophone would be greater. If indi-
viduals moved independently when foraging as a group,
the detection probability of a group of a given size could be
estimated from the detection probability of an individual.
Unfortunately, studies that tracked multiple individuals
(Gassmann et al., 2015) show that although individuals are
typically separated by several hundred meters when forag-
ing, their overall movement is coordinated and cannot be
considered independent. Detection probabilities for groups
of individuals moving independently are expected to be
higher than they are for solitary individuals.

Another potential predisposition in the trial-based
method is that trackable individuals may be a biased subset

of all individuals. Most of the tracked individuals were
headed toward our group of hydrophones. By using a contin-
uous tracking model of animal positions and multiple hydro-
phones, observed data include a wide distribution of animal
movement relative to a potential receiving hydrophone
(Fig. 2). Thus, some of this potential bias was removed by
modeling the effect of orientation and averaging over all
possible horizontal angles relative to a hydrophone.
Although some animals were detected when their net direc-
tion of movement was away from the hydrophone, animals
moving consistently away from the hydrophone array do not
provide enough observations to develop a tracking model.
Using a biased sample of more easily tracked individuals
may result in overestimating detection probabilities (the
opposite of the potential underestimation caused by includ-
ing only individuals rather than groups).

Errors in estimating ranges can also bias point-transect
density estimates (Buckland, 2006). Because the effective
survey area is proportional to the square of the EDR, an
unbiased error in the estimating range results in a biased
overestimate of the area. Standard errors in tracking loca-
tions used in this study range up to 0.2 km for distant whales
(see the supplementary material in Barlow er al., 2018).
This leads to an overestimate of the EDR and an underesti-
mate of the density.

The trial-based approach offers several advantages over
the other two approaches in estimating a detection function.
This method does not require the assumptions that animals
are uniformly distributed or all animals are continuously
available during the echolocation portion of their dives, and

TABLE IV. Estimates of the population density of Cuvier’s beaked whales in the study area based on the dive cue-counting approach [Eq. (2)] with trial-
based estimates of the detection probability. The estimates include two methods of calculating the EDR (see text). The mean group size (1.9, CV =0.07)
and the mean dive rate (0.319hr~', CV = 0.13) are the same for both methods. The CV and mean for the effective survey area were calculated using a jack-
knife approach. The CV for the density is estimated by the delta method from the CVs of the quantities used to estimate it. L95%CI and U95%CI are based
on a log-normal distribution.

Number of dives
detected hr ! (ngy/T)

Effective survey Density D
area v (km?) per 1000 km?

Fitting method Mean Cv EDR (m) Mean Jackknife CV  Mean CV  L95%CI U95%CI

15.44 041 7.19 33.14
6.74 0.32 3.64 12.51

Distance-sampling, 1-minute detection probability 0.0733 0.24 3000 28.28 0.29
Distance-sampling, 39-minute detection probability 0.0733 0.24 4539 64.73 0.16
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assumptions are less restrictive then for distance-sampling
or SECR. However, in part due to the small sample size of
tracked individuals, the CV of the effective area surveyed
was higher for this method than for other methods. Only one
track included observations at the greatest range (>3.8 km;
Fig. 2), and the jackknife sample that excluded that track
estimated a much higher EDR (3.3 km), which contributed
substantially to the higher CV for this approach.

Potential biases in the trial-based method could be mini-
mized in future studies by using a larger array of recorders.
Having a wider array would provide more information on
missed detections at a greater range and might thereby stabi-
lize the estimates and reduce the associated CV. A larger
array may also increase sample size and reduce the localiza-
tion error and its associated bias. The potential bias caused
by not being able to track multiple animals in a group is
harder to address. Gassmann et al. (2015) tracked multiple
independent beaked whales in a group using precisely time-
aligned four-channel recording systems with a spatial hydro-
phone array of bottom-moored instruments. Although that
configuration is difficult to replicate with a free-floating sys-
tem, it may be possible to use such a system to track multi-
ple individuals in a group and introduce the addition of
drifting instruments to a bottom-moored tracking system to
better quantify the detection probability of the drifting
instruments as a function of the group size. If multiple indi-
viduals can be tracked in future studies, it will be important
to model the detection probability as a function of the range
to the center of the group to meet point-transect sampling
assumptions.

2. Distance-sampling

Because distance-sampling uses only information on
positive detections to estimate a detection function, more
assumptions are required than for the trial-based approach.
The usual assumptions are that animals are distributed ran-
domly in horizontal space, the probability of detecting indi-
viduals at zero horizontal distance is certain (or can be
estimated from other sources), and the horizontal distance is
estimated without error. We modify the conventional
distance-sampling approach considerably to match the avail-
able data from our acoustic study. Because the horizontal
range could not be measured directly, we instead adapt this
approach to use vertical detection angles measured from
near-surface hydrophones. Information on horizontal dis-
tance is inferred from distributions of the detection angles
(from this study) and echolocation depths (from another
study). Detection probability is modeled as a function of a
whale’s absolute distance from a hydrophone (slant range)
rather than the horizontal distance. By using a slant-range
detection function, the assumption that a whale would be
detected with certainty at zero range can be met, which
would not necessarily be true when using the horizontal
range because an animal at zero horizontal range may still
be >1-2km below the hydrophone. The simulated likeli-
hood allows the use of maximum likelihood methods to fit a
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detection function in this case, where the likelihood is com-
plex. Whereas full likelihood methods for incorporating a
depth distribution in distance-sampling have been developed
for the half-normal model (Thomas and Matias, 2014), the
simulated likelihood is particularly flexible, allowing us to
easily include the angular measurement error in our parame-
ter estimation. Incorporating the angular error in the estima-
tion procedure may be particularly important because the
angular error has a much greater effect on the inferred range
at greater distances. The distance-sampling assumptions for
our modified approach are that echolocating whales can be
detected with certainty at zero absolute distance (slant
range), the depth distribution of echolocating whales is
known without error, and the angular measurement is unbi-
ased and its error has been accurately measured. The func-
tional form of our parametric detection model (compound or
simple half-normal) adds the further assumption that the
detection function monotonically decreases and can be
approximated with these functions.

Although the distance-sampling approach has more
assumptions than the trial-based approach, this analysis was
not limited to the subset of acoustic detections that could be
tracked and, therefore, is not subject to the potential censor-
ing biases identified for the trial-based approach. The acous-
tic data used to fit the distance-sampling detection function
included groups of multiple individuals and a larger sample
size than the trial-based approach. Perhaps most impor-
tantly, our distance-sampling approach does not require an
array of instruments (which must be maintained daily) to
estimate a detection function.

3. SECR

The conditional likelihood SECR approach differs from
the other two approaches by not requiring an independent
estimate of the distance from a hydrophone to the sound
source and not requiring estimates of the vertical angle (and,
consequently, not requiring two vertically spaced hydro-
phones). This method assumes that animals are distributed
randomly in horizontal space and source locations of the
calls are independent. Previous work has shown that the
SECR is quite robust to nonuniform animal distribution
(Efford et al., 2009a). The independence assumption did not
hold true in this work as subsequent minutes containing
clicks were, for some snapshots, known to be tracked indi-
viduals. However, it has been shown that violating the inde-
pendence assumption leads to negligible bias in density
estimates (Stevenson et al., 2015). Because nonindepen-
dence can lead to underestimation of the variance
(Stevenson et al., 2015), the jackknife approach was used to
estimate the variance. Additionally, acoustic SECR assumes
that a detected call can be identified across hydrophones, the
calls are omnidirectional, and the mean source levels do not
differ by individual (Efford et al., 2009b). Although individ-
ual echolocation pulses are highly directional, we are essen-
tially assuming that animals turn often enough during a one-
minute snapshot that the detection probability is
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omnidirectional. Whale group densities were low in our
study area, but in areas with higher densities, the assumption
that each detection represented a single group would need to
be evaluated.

Work has been done to improve precision and reduce
bias in the parameter estimates when using SECR with
acoustic data by incorporating information on signal
strength, time difference of arrival, and bearing (Efford
et al., 2009b; Stevenson, 2016; Stevenson et al., 2015). If
signal strength information is available, directionality can
also be modeled and accounted for (Stevenson, 2016). None
of those improvements were used in this study because the
hydrophones of each drifter were not time synchronized,
and horizontal bearing information to the signals was not
available. Further, because a snapshot approach was used
(to overcome slow instrument movement), individual clicks
(and their received levels) are not the object of interest and
so signal strength information could not be incorporated in
the model. Simulations demonstrate that the spacing of the
four recorders and their movements during the survey are
sufficient to reasonably estimate the effective survey area
for these data but are likely not ideal (Fregosi, 2020). A
more widely spaced array (~1.5km between recorders)
would likely have provided increased precision of the
parameter estimates and is recommended for future SECR
studies of beaked whales.

Like the distance-sampling approach, the SECR analy-
sis is not limited to the subset of acoustic detections that
could be tracked and, therefore, is also not subject to the
potential censoring biases identified for the trial-based
approach, but it does require an array of instruments.

4. Dive detection

For the dive-based cue counting density estimates, the
probability of detecting a dive as a function of the distance
is needed. Our approach, assuming that the probability of
detection for every minute in a typical 39-minute echoloca-
tion period is independent, is likely to overestimate the EDR
if, as expected, detection is positively correlated between
minutes. This 39-minute detection function is estimated
only as a preliminary exploration of an alternative to the
snapshot approach. The EDR for 39 independent 1-minute
snapshots (4.5km) is considerably greater than for a 1-
minute snapshot (3.0 km). There are several impediments to
estimating the actual detection function for a dive. First, ani-
mal movement within a 39-minute time window is not triv-
ial. Barlow et al. (2018) estimate that the net travel speed
during tracked dives used in this study was 0.63m s~ ' or
approximately 1.5 km in 39 min. The dive tracks of Cuvier’s
beaked whales are also on the order of 1-2km in another
southern California study (Fig. 5 in Gassmann et al., 2015).
Dive detection probability is likely to depend mostly on the
closest distance to the hydrophone during a dive, but using
that range to estimate the effective detection probability
would result in a biased estimate of the population density.
A simulation approach using a group movement model
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(Stevenson et al., 2015) may be required to accurately esti-
mate the dive detection probability or to at least quantify the
likely bias caused by movement.

5. Comparison to acoustic modeling

Most previous estimates of detection functions for
beaked whales are based on acoustic models which include
the echolocation pulse source level, echolocation beam pat-
terns, propagation losses, ambient noise levels, detector
characteristics, and a simulation of an animal’s acoustic
search behavior and movement. Many details of beaked
whale searching behavior (e.g., head turning behavior as
animals scan for prey with their narrow echolocation beams)
are unknown and have not been included in these models,
but these details could also affect the detection probability.
Different authors have modeled detection probabilities for
individual echolocation clicks (Kusel et al., 2011; Marques
et al., 2009), time snapshots (Hildebrand et al., 2015), and
entire dives (Zimmer et al., 2008). Detection probabilities
for individual echolocation clicks are typically very small
and not generally comparable to our estimates. Hildebrand
et al. (2015) estimate that the mean probability of detecting
a group of Cuvier’s beaked whales within a radius of 4km
of a bottom-moored recorder in a time window of 5min is
0.359, which corresponds to an EDR of 2.4 km. The Zimmer
et al. (2008) model predicts that the dive detection probabil-
ity for a solitary Cuvier’s beaked whale using a single
hydrophone at 100 m depth depends on whether the animal
periodically reversed direction during the course of a dive.
If it continues straight during a dive, the detection probabil-
ity was ~1.0 until 0.7km, dropped to ~0.5 at 2km, and
then dropped to zero at 4 km. If animals turn during a dive,
the detection probability remained near 1.0 to a range of
2km and then dropped steeply to zero at 4km. Zimmer
et al. (2008) does not estimate the effective detection radii
for their models, but based on the similarity in shapes, their
model with periodic direction reversals would have an EDR
for dive detections that would be very similar to those of our
compound half-normal model fit by distance-sampling
(3.0km). These acoustic models do not consider all sources
of uncertainty and most are for seafloor hydrophones, there-
fore, it is not possible to statistically compare our empiri-
cally based estimates of the detection probability; however,
our empirical estimates of the detection range are near the
upper ranges of estimates based on the acoustic modeling.

6. Detection probability at zero distance: g(0)

All three empirical approaches to estimating detection
functions estimate a nearly certain probability of detection
at zero horizontal distance. However, the data used in this
study had no observations that were closer than 0.5km to a
hydrophone (Fig. 2), hence, this result should be considered
with caution. An acoustic “shadow” could exist with a lower
probability of detection for animals that are directly below a
hydrophone. This would be expected if animals primarily
search horizontally with their echolocation “beams” and
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seldom search straight up. There is little data on the details
of beaked whale foraging behavior, but Laplanche et al.
(2015) modeled the 3D diving behavior of a tagged
Blainville’s beaked whale and found that its pitch angle
during foraging was centered at 0° (relative to horizontal)
and seldom exceeded =50° (Laplanche et al., 2015, supple-
mental appendix S5). Our trial-based study shows a high
probability of detection at ranges of 0.5—1.0km (Fig. 2). In
point-transect sampling, a lowered probability of detection
near the sampling location has a small effect on the EDR
because the sampled area close to that point is small com-
pared to the area at greater distances. Nonetheless, it would
be good to have more data at close range to evaluate
whether a shadow effect may be real.

7. Recommendations

Because distance-sampling can estimate a detection
function with data from a single instrument, this is clearly
the most efficient and practical approach for future large-
scale acoustic surveys of beaked whale density and abun-
dance. The SECR approach requires data from an array of at
least four instruments, and the trial-based approach requires
data from a tracking model that was developed using an
array of five instruments. For a short study in a small study
area, it was practical to reestablish the array configuration
needed for the SECR and tracking on a daily basis. This
would not be the case with an acoustic survey over greater
temporal and spatial scales.

Although simultaneous use of three approaches to esti-
mate the EDR may be impractical for large-scale acoustic
surveys, the use of all three in one area is informative. The
distance-sampling approach depends critically on some key
assumptions which are, to some extent, validated by the
other two approaches. All methods estimated a very high
probability of detection at ranges up to 1.5km. The EDR
estimates from the distance-sampling approach with the
compound half-normal model (3.0 km) are generally consis-
tent with the estimate from the trial-based approach (2.8 km)
given that the latter is likely to be biased low by only includ-
ing solitary individuals. It is not clear why the pEDR from
the SECR (2.4km) is less than the EDR of the other two;
however, the measurement error could explain at least part
of the observed differences among all the approaches. A bet-
ter understanding of the differences among the methods
could be obtained with a larger sample size collected from a
larger array of instruments.

B. Density estimates
1. Availability bias

Snapshot-based point-transect estimates of density are
sensitive to availability bias when using our empirically esti-
mated detection functions. This is addressed in our density
formula [Eq. (1)] by including a term that corrects for times
when animals are not foraging and producing echolocation
pulses. However, whales may not be detectable during the
entirety of the echolocation periods, and periods of
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unavailability could result in an underestimate of abundance
if they last longer than the time period of a snapshot. In prin-
ciple, our trial-based method should correct for short periods
of unavailability because that method uses information on
missed detections; however, our sample of tracked individu-
als may be a biased subset of dives that did not include long
periods of unavailability. Intermittent availability during the
echolocation portion of a dive could result from a variety of
factors. During the initial descent phase of a foraging dive,
beaked whales descend steeply from the surface until they
reach their foraging depth (Tyack et al., 2006; Laplanche
et al., 2015, supplemental appendix S5). As an animal
descends vertically from when the echolocation starts
(~500m) until it reaches its foraging depth (>800m), its
highly directional echolocation beam is not likely to be
detected at a near-surface hydrophone unless the absolute dis-
tance to the hydrophone is less than 700 m (Zimmer et al.,
2008). Also, during foraging, an animal might be intermit-
tently unavailable for detection when it is headed away from
a hydrophone. The shadow effect (low detectability for ani-
mals directly below the hydrophone) may contribute to inter-
mittent availability. Overall, the fraction of time available for
detection is likely overestimated by assuming availability
during the entirety of their echolocation period and, thus, the
beaked whale density may be underestimated. Because the
distance-sampling and SECR approaches are based only on
detections, their estimated detection functions only apply to
times when animals are available to be detected. The trial-
based approach is less susceptible to this type of bias because
it uses data both from times when animals are detected and
when they are not. Trial-based detection functions, thus,
include an element of availability, which might also explain
why trial-based estimates of the EDR are lower than for the
other two approaches.

Availability bias in the snapshot approach can be
reduced by using longer snapshots (increasing the likelihood
that a group will be available at some point during the snap-
shot); however, animal movement within a longer time
snapshot can also bias abundance estimates (Buckland et al.,
2015). Additional work is needed to determine the optimum
time window for use with the snapshot approach to mini-
mize the potential biases from movement and intermittent
availability.

In estimating availability, we have assumed that indi-
vidual whales in a group start and end echolocation synchro-
nously during a dive. Aguilar de Soto (2018) found beaked
whale group dives to be highly synchronous with a 98%
overlap in the echolocation period when two animals in the
same group were tagged with acoustic recording tags.
Asynchrony would increase the availability by increasing
the time available for group detection, but this effect appears
to be small.

2. Snapshot vs dive cue methods

Both the snapshot and dive cue methods of density esti-
mation depend on information that is external to an acoustic
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survey. Both depend on estimates of the group size, which
are taken here from visual surveys. The snapshot density
estimates also depend on the fraction of time in which
whales are available to be detected, which is estimated from
tagging studies as the fraction of time at foraging depths
(Barlow et al., 2020). The dive cue-count density estimates
also depend on the dive rate estimated from the tagging
studies (Barlow et al., 2020). In this study, all these external
sources of information were collected in the vicinity of our
study area. This may not be the case for other studies, and
there is a need to quantify the variability of these parameters
between study sites if our methods are to be applied more
widely (Warren et al., 2017). Sampling-based density esti-
mates are most robust if all the needed parameters can be
estimated empirically within a single survey (Buckland
et al., 2015). Although it may never be practical to estimate
availability (the proportion of time echolocating) from an
acoustic-only survey, it may be possible to empirically esti-
mate the depth distribution of echolocating whales from a
single instrument using surface reflections (Barlow and
Griffiths, 2017). In some cases, it may also be possible to
estimate dive rates from the time period between the echolo-
cation signals received from successive dives by the same
group.

The dive cue-counting approach has an advantage over
the snapshot-based approach because the assumption that all
dives are detected at zero horizontal distance should be eas-
ier to meet than the assumption that all one-minute snap-
shots are detected. Intermittent availability would also be
less of a problem for dive cue-counting because there are
many more opportunities to detect a group during a dive
than there are during a one-minute snapshot. Our dive-based
density estimate is higher than any of the snapshot-based
estimates, which is consistent with expectations if the snap-
shot estimates are biased low by intermittent availability.
The CV of the dive-based density estimate is also lower
than any of the other approaches. At this time, given the
uncertainty in estimating an acoustic detection function for
dives and the potential for bias caused by animal movement
during a dive (Glennie et al., 2015), the dive cue-count
method cannot be considered reliable. A full consideration
of variation in dive lengths is also needed (instead of simply
using a mean dive duration). Additional research is needed,
but this approach has great potential.

In contrast, there are few impediments to the immediate
use of the snapshot-based method to estimate beaked whale
densities. Using the distance-sampling approach, the pri-
mary sources of information for this method (depth distribu-
tions of echolocation, fraction of time echolocating, and
mean group size) are well quantified for Cuvier’s beaked
whales. Less external information (outside of what can be
collected on a survey) is needed for the empirical
approaches developed here than for previous acoustic
modeling approaches. Because estimates of dive rates or
acoustic availability are needed to apply these methods to
other beaked whale species, tagging studies should be
expanded to include more species.
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3. Comparison to previous density estimates

Our acoustic-based estimates of Cuvier’s beaked
whale density (3.9-6.7 animals per 1000 km?) are higher
than a previous visual survey estimate for the entire U.S.
west coast study area (3.2 animals per 1000km,’
CV =0.35; calculated from Barlow, 2016, Tables 2 and 7).
There are insufficient sighting data to make visual esti-
mates of the beaked whale density within the tiny area sur-
veyed in this study. Indeed, there were only 63 sightings of
Cuvier’s beaked whales on 7 visual sighting surveys from
1991 to 2014. Those surveys covered transect lines totaling
72123 km, and each survey required several months on a
large research ship. Our ability to detect 29 distinct dives
of Cuvier’s beaked whales in a 2-week period illustrates
the potential power of acoustic-based survey methods to
improve density and abundance estimations for this
species.

The only previous estimates of Cuvier’s beaked whale
density from an acoustic survey in Southern California were
made by Hildebrand et al. (2016). Their snapshot-based and
cue-count-based mean estimates for a single location (their
site N) range from 1.7 to 1.9 animals per 1000 km?, respec-
tively. For both estimates, detection functions were esti-
mated using an acoustic modeling approach.

Although the CVs of our density estimates are moder-
ately high (0.32-0.52), estimates from visual sighting sur-
veys are typically much higher. The CVs of the visual
estimates of Cuvier’s beaked whale abundance along the
U.S. west coast range from 0.51 to 0.68 for five visual sur-
veys from 1996 to 2014 (Table 8 in Barlow, 2016). Each of
those surveys required 3—5 months of ship time and a much
greater operational cost. Obtaining CVs in the range of
0.32-0.52 with two weeks of field effort is remarkable and
hints at the potential benefit of passive acoustic surveys for
beaked whales.
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