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ABSTRACT  

With comprehensive analysis of the VIIRS DNB on-board calibrator blackbody (OBCBB) data and Earth View (EV) 
data, it is shown that the DNB OBCBB data can only track the dark current component of the DNB HGS EV dark offset. 
The DNB observation of deep space during the spacecraft pitch maneuver was also contaminated by star lights. With 
these acquired knowledge, we propose an improved algorithm for determining the DNB HGS dark offset that is both free 
from light contamination and capable of tracking drifts continously. The new algorithm is expected to improve the DNB 
radiometric performance at low radiance level.  
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1. INTRODUCTION  
The Day/Night Band (DNB) is a panchromatic visible and near-infrared band of the Visible Infrared Imaging 
Radiometer Suite (VIIRS) on-board the Suomi National Polar-orbiting Partnership (S-NPP) satellite.  It is effectively an 
integration of three separate bands which have the same spectral range and measure incident radiances independently. 
They are Low-Gain Stage (LGS) for daytime scenes, Mid-Gain Stage (MGS) for twilight scenes and High-Gain Stage 
(HGS) for nighttime scenes. As a unity, the DNB is able to cover a wide range of radiance measurement from 3 × 10-9 
W·cm-2·sr-1 to 2 × 10-2 W·cm-2·sr-1 [1][2]. One of the most intriguing features of the DNB is its extreme sensitivity to low light. It 
begins a new era of Earth remote sensing at nighttime. An example of its application is monitoring of power outages after 
natural disasters [3]. 

The DNB’s excellent low light detection ability benefits from the special design of its HGS. The HGS consists of two 
identical CCD arrays whose size is 672 (track) × 250 (scan), namely High-Gain Stage A (HGA) and High-Gain Stage B 
(HGB) which in practice are combined to a single output known as HGS for Earth observations. The 250 along-scan 
detectors allow repeated measurement of the same target, effectively increasing the exposure time. It is such so-called 
time delay integration (TDI) that enhances the sensitivity to low light signals [4]. However, the cost of long exposure 
time is susceptibility of the HGS to radiation damage from energetic particles in the space environment. A deleterious 
effect of such damage is continuously increased dark offset, which is a key parameter that needs to be determined for the 
DNB HGS radiometric calibration [5]. 

Dark offset of an imaging radiometer is usually estimated by its measurement of dark target. The original algorithm for 
the DNB dark offset calibration uses the Pacific Ocean as a dark target. In particular, the measurement is performed 
during nighttime of new moon when the moon light contamination is excluded. However, it was discovered that such 
target is not sufficiently dark due to airglow in the Earth atmosphere. In addition, such measurement is performed every 
lunar month through a special process known as the VIIRS recommended operating procedure (VROP). Offline 
processing is required for update of the DNB dark offsets of all three gain stages. To overcome the aforementioned 
drawbacks, an alternative method has been developed, which first determines the baseline HGS dark offset by the DNB 
observation of deep space collected during the spacecraft pitch maneuver early in the mission and then tracks its on-orbit 
drift due to radiation damage from energetic particles in space environment by the onboard calibrator blackbody 
(OBCBB) data collected when the spacecraft is in Earth eclipse and the Moon is less than quarter [6]. Because the 
OBCBB data are recorded in real time, the alternative method can be run automatically to update the DNB HGS dark 
offset. The derived HGS dark offset is also free from airglow as there is no atmosphere in deep space. 
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The alternative method is based on the assumption that the DNB OBCBB data can monitor the EV HGS dark offset drift. 
However, without thorough analysis of the relationship between the DNB OBCBB and EV data, such assumption is 
questionable considering the electronic timing difference between these two views. In addition, it is unclear if the deep 
space is dark enough for HGS given star lights in space environment and the extreme sensitivity of HGS to low lights. 
This paper is devoted to address the above concerns. Through comprehensive analysis, we have shown that the DNB 
OBCBB data can only track the dark current component of the DNB HGS EV dark offset, instead of the total dark offset. 
The DNB observation of deep space during the spacecraft pitch maneuver was also contaminated by star lights in space 
environment. With these acquired knowledge, in this paper we propose an improved algorithm for determining the DNB 
HGS dark offset. By combined use of the DNB OBCBB data and the DNB VROP data, the generated DNB HGS dark 
offset is both free from light contamination and capable of tracking continuous drift. The improved algorithm could 
potentially improve the DNB radiometric performance at low radiance level. 

2. OVERVIEW OF VIIRS DNB DAKR OFFSET CALIBRATION 
On orbit, the DNB, as well as other VIIRS bands, collects data via a rotating telescope assembly and a two-side half 
angle mirror (HAM) which scans four windows of view, OBCBB, solar diffuser (SD), space view (SV) and EV 
successively [4]. The first three are known as the onboard calibrators designed for the VIIRS on-orbit calibration [7]. As 
implied by the name, the EV is used for Earth observation. The entire swath width of an EV scan is about 3000 
kilometers. In order to eliminate the bow-tie effect and keep a constant ground resolution across scan, the whole EV is 
divided into 32 aggregation zones on each side of the nadir where a different number of detectors is grouped according 
to the specific aggregation mode [8]. After aggregation, the size of a single-scan DNB EV data is 16 × 4064 (track × 
scan). The 16 along-track pixels are created by on-board aggregation of 672 along-track detectors. Unless otherwise 
specified, the actual detectors are named as “subpixels”, while the term “detector” used in the rest of the paper is referred 
to as 16 virtual along-track detectors, both following the VIIRS nomenclature [4]. 

Because of the radiation induced dark offset drift, the DNB HGS dark offset as well as MGS and LGS dark offset are 
originally evaluated by the measurement of the Pacific Ocean during nighttime of every new moon (VROP). As these 
VROP data are collected over the EV window, the size of these dark offsets is 16 detectors × 4064 samples × 2 HAM 
side. They can be used for DNB EV calibration directly, thereafter referred to as the EV dark offsets. It was soon 
discovered that the dark Earth scenes collected during VROPs include airglow that can be detected by the DNB HGS, 
resulting in biased HGS dark offset for its EV calibration. The OBCBB operates with nominal temperature 292.5 K. 
According to the Plank’s law, its emitted radiance in the DNB spectral range is undetectable even by the HGS. Therefore 
it is a suitable dark object for the DNB. Processing the DNB OBCBB data collected when the spacecraft is in Earth 
eclipse yields another set of the DNB dark offset, known as the BB dark offset. Because the OBCBB window is much 
narrower than the EV window, the DNB gain stages only collect 16 samples of a specific aggregation mode over a scan. 
The size of the BB dark offset of each gain stage is 32 aggregation modes × 16 detectors × 2 HAM side. 

 
Figure 1. Time series of the measured EV and BB HGS dark offset for detector 1, aggregation mode 1 and HAM A. 

Due to different size and electronic timing, the BB dark offset cannot be used for DNB EV calibration directly. As an 
alternative, it is used to track the on-orbit change of the DNB HGS EV dark offset. Because the HGS OBCBB data is 
contaminated by moon light, only the BB HGS dark offsets determined around new moon are used for tracking purpose. 
On the other hand, a baseline EV HGS dark offset free of airglow was determined by the DNB EV scenes of deep space 
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collected during the spacecraft pitch maneuver early in the mission. Upon adding the on-orbit drift estimated by the BB 
HGS dark offset to the baseline EV HGS dark offset, the estimated EV HGS dark offset at a given time is obtained. 
The pitch maneuver based algorithm relies on an assumption that the BB HGS dark offset can track the EV HGS dark 
offset. Figure 1 shows the time series of these two dark offsets from February 2012 to January 2018, calculated for each 
new moon. Although the EV HGS dark offset evaluated by the monthly VROP data experiences short-term fluctuations, 
which are due to airglow, its long-term drift is similar to the BB HGS dark offset drift. The dark offsets shown in Figure 
1 belong to aggregation mode 1. Their correlation coefficient is 0.97. Such high correlation coefficient suggests that the 
aggregation mode 1 of the EV HGS dark offset may be tracked by the BB HGS dark offset of the same aggregation 
mode. We repeated such calculation of correlation for all 32 aggregation modes, 16 detectors and 2 HAM sides. The 
results of all aggregation modes/detectors for HAM A are shown in Figure 2. It can be seen that the correlation 
coefficient decreases as the aggregation mode increase. This is understandable. Large aggregation mode corresponds to 
large scan angle which means long path between the Earth surface and the on-orbit instrument. Since the detected 
airglow is the airglow integrated over the whole path, the EV HGS dark offsets of large aggregation modes evaluated by 
the VROP data include more airglow which is not correlated to the corresponding BB HGS dark offsets. As a result, the 
correlation coefficient becomes smaller. However, abnormal correlation coefficients are observed for all detectors of 
aggregation modes 29 to 32. They are as high as 0.95 and as low as 0.65. Such large variation can’t be explained by the 
detected airglow. It suggests that relationship between the EV and BB HGS dark offsets must be thoroughly investigated 
before using the BB HGS dark offset to track the EV HGS dark offset drift.  

 
Figure 2. Correlation coefficient between the EV and BB HGS dark offset for all detectors and aggregation modes. The 
HAM side is HAM A. 

 

3. RELATIONSHIP BETWEEN THE EV AND BB HGS DARK OFFSET 
To begin with, it is worthy to introduce the definition of CCD dark offset. It is evaluated through measurement of dark 
object, namely dark images. A CCD dark image usually contains three main components, thermal dark charge, offset 
level and fixed pattern noise [9]. Thermal dark charge, also known as dark current, is referred to as free electrons 
generated in CCD sensor by thermal energy. Its magnitude is proportional to integration time and strongly depends on 
temperature. Offset level and fixed pattern noise are produced by CCD electronics and therefore independent of 
integration time. Dark offset can be mathematically expressed by the following equation 

 dark_offset = Nୈେ + Nୠ୧ୟୱ + Nୡ୭୬୲ୟ୫, (1) 

where Nୈେ stands for dark current. Because both offset level and fixed pattern noise are generated by CCD electronics, 
they are combined into a single term Nୠ୧ୟୱ, named as the electronic bias in this paper. Here we added a light 
contamination term Nୡ୭୬୲ୟ୫ which accounts for possible light contamination included in dark images such as airglow in 
the EV dark offset. It is produced by CCD sensor and proportional to integration time. Because the OBCBB radiation in 
the DNB spectral range is sufficiently weak, Nୡ୭୬୲ୟ୫ is assumed to be 0 when the BB dark offset is analyzed using Eq. 
1. 
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Figure 6. The BB HGS dark current and the nominal EV HGS dark current. Aggregation mode 29, detector 10 and 11, and 
HAM A. 

 

 
Figure 7. Correlation coefficient between the BB HGS dark current and the nominal EV HGS dark current for all detectors 
and aggregation modes (HAM A). 

 

4. IMPROVED ALGORITHM FOR DETERMINATION OF DNB HGS DARK OFFSET  
Determination of HGS dark offset that is free from light contamination is critical for the DNB low light calibration. It 
relies on proper selection of dark reference. The OBCBB is sufficiently dark when viewed by the DNB in nighttime 
around new moon. In addition, it has been shown in Sec. 3 that the dark current component of the BB HGS dark offset 
can track the EV HGS dark offset change. In this section, we propose an improved algorithm to determine the EV HGS 
dark offset free from light contamination through combined use of the DNB OBCBB and VROP data. 

The basic principle is to use the OBCBB data to estimate and then remove light contamination included in the EV HGS 
dark offset determined by the original algorithm that uses the VROP data. For every new moon when the DNB test mode 
data are available, we can calculate the BB HGS dark current by Eq. 1. Meanwhile, we can also calculate the nominal 
EV HGS dark current by subtracting the EV HGS electronic bias from the EV HGS dark offset determined by the 
original algorithm. According to Eq. 1, the nominal EV HGS dark current contains dark current and light contamination. 
However, the BB HGS dark current has been shown to be equal to the EV HGS dark current in Sec. 3. The amount of 
light contamination can be estimated by the difference between the nominal EV HGS dark current and the BB HGS dark 
current, expressed by the following equation,  Nୡ୭୬୲ୟ୫ = ൣHGS_dark_offset_EV୭୰୧୥ − HGS_electronic_bias_EV൧ −  (2) 

 ሾHGS_dark_offset_BB − HGS_electronic_bias_BBሿ,  
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