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ABSTRACT 

The Advanced Baseline Imager (ABI) onboard NOAA’s GOES-16 satellite has been operational as GOES-East since 
December 18th, 2017. It is a multi-channel passive imaging radiometer with 16 spectral bands covering the visible, near 
infrared and infrared (IR) spectra, to captured variable area imagery and radiometric information of the Earth’s surface, 
atmosphere and cloud cover. The Level 1B (L1b) radiance images of these channels are geometrically and 
radiometrically corrected to provide high quality input data to the user communities. Three series of tests are undertaken 
to validate the product maturity levels: Post-launch Test (PLT), Post-launch Product Test (PLPT) and Extended 
Validation (EV). Engineering-focused metrics reflecting the radiometric quality of ABI L1b radiance image are assessed 
in these tests, such as signal-to-noise ratio (SNR)/noise-equivalent-differential temperature (NEdT), background 
coherent noise pattern, detector dynamic range, detector linearity, etc. Direct Earth view image analysis using image 
processing tool such as Fourier transform can also reveal information about its quality. In this presentation, initial results 
of selected PLPTs undertaken by GOES-R Calibration Working Group (CWG) are provided with the focus for IR bands. 
The results show that the general criterion for product maturity have been largely met. Occasional artifacts still existing 
at smaller scale are reported. There has been continuous effort to monitor, analyze and resolve these artifacts to further 
improve the L1b image quality. 
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1. INTRODUCTION 
The Advanced Baseline Imager (ABI) is the main payload onboard NOAA’s Geostationary Operational Environmental 
Satellites (GOES), known as the GOES-R Series. It remotely collects data on the Earth’s land /ocean surface and 
atmosphere in high radiometric sensitivity and spatial resolution comparing to legacy GOES, for the prediction of 
weather and climate monitoring1-2. The first satellite in the series, GOES-R, was launched in 2016 and was renamed 
GOES-16 upon reaching geostationary orbit. GOES-16 became NOAA’s operational GOES-East satellite in December 
2017. ABI scans the Earth in three standard geographic coverage regions: Full Disk, Continental United States 
(CONUS), and Mesoscale3. 

ABI is a multi-spectral channel, 2 axis-scanning imaging radiometer. It has 6 visible/near-infrared (VIS/NIR) bands and 
10 infrared (IR) bands, Key design specifications are listed in Table 14. The ABI Level 1b (L1b) calibrated radiance 
product is computed from Level 0 instrument detector samples that are resampled to pixels on the ABI fixed grid, which 
is a projection relative to the ideal location of a satellite in geostationary orbit. Also, four types of calibration data are 
generated for ABI: Infrared Calibration Target (ICT) looks, space looks, Solar Calibration Target (SCT) looks, and lunar 
scans. ICT and associated space look observation data are used to compute detector gain coefficients M for each of the 
ABI IR bands. SCT and associated space look observation data are used to compute detector gain coefficients for ABI 
VIS/NIR bands. Lunar scans are collected when the moon is in the field of regard of the instrument.  

Similar to other remote sensing instruments, intense post-launch testing has been undertaken to validate or update the 
calibration parameters determined pre-launch to ensure the quality of the ABI image. There are three series of tests to 
validate the product maturity levels: Post-launch Test (PLT), Post-launch Product Test (PLPT) and Extended Validation 
(EV). The PLPTs were conducted for GOES-16 from December 2016 to June 2017 after nominal L1b data products 
became available, in parallel to the successful completion of the PLTs. The PLPTs provide a preliminary assessment of 
L1b product quality by determining baseline performance at Beginning Of Life (BOL) for ABI L1b products5. Results 
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available at the end of the PLPT period were presented at the full validation Peer Stakeholder-Product Validation 
Reviews (PS-PVR) in June 2018 for the determination of Provisional product validation status.  

The GOES-R Calibration Working Group (CWG) and Algorithm Working Group (AWG) lead the PLPTs related to L1b 
and L2/L2+ products, respectively6. CWG also participate in certain PLT activities. Due to the large number of detectors 
for 16 bands, the calibration/validation of ABI during the PLT/PLPT period is particular challenging. This presentation 
introduced the assessment results of selected radiometric parameters, mostly for IR bands, during the PLT by CWG. In 
section 2, the NEdT of IR bands are assessed. In section 3, the dynamic range of IR bands are assessed. In section 4, the 
coherent noise of VIS/NIR bands are assessed. In section 5, the linearity of ABI bands are assessment. Section 6 
documents the investigation and removal of the striping detected in the L1b images of bands 14-16. A summary is given 
in section 7. 

Table 1.  ABI bands key specification. 

Band Center Wavelength 
(µm) 

Nadir 
Resolution (km)

Detector 
Rows 

Primary Function 

1 0.47 1 676 Aerosols 
2 0.64 0.5 1460 Clouds 
3 0.86 1 676 Vegetation 
4 1.38 2 372 Cirrus 
5 1.61 1 676 Snow/Ice discrimination, cloud phase 
6 2.25 2 372 Cloud particle size, snow cloud phase 
7 3.90 2 332 Fog, stratus, fire, volcanism 
8 6.18 2 332 Atmospheric 
9 6.95 2 332 Water vapor 

10 7.34 2 332 Water vapor 
11 8.50 2 332 Cloud-top phase 
12 9.61 2 332 Total column ozone 
13 10.35 2 408 Clouds 
14 11.20 2 408 Clouds 
15 12.30 2 408 Clouds 
16 13.30 2 408 Air temperature clouds 

2. NOISE CHARACTERIZATION FOR IR BANDS 
Noise is random variability in electronic signals. In many scenarios, noise is the major contributor to the overall 
instrument uncertainty so the determination of the system noise level is critical to evaluate instrument performance. For 
VIS/NIR bands, the noise specification of requirement is usually defined by Signal-to-Noise (SNR) ratio. For IR bands, 
the noise specification of requirement is usually defined by Noise Equivalent Delta Temperature (NEdT).  

The system requirement of both for ABI is documented in the GOES-R Mission Requirement Document (MRD)7. For 
IR bands, the requirement is 0.1 K in general except band 16, whose requirement is a loosened 0.3 K7. For this PLPT, 
CWG directly evaluated the NEdT value saved in the instrument calibration data INST-CAL, which are produced by the 
ground system (GS) every 15 minutes. The values are calculated the same way as the ground test and PLT, which is 
based on the statistics of the ICT view and the space look count of IR detectors. The NEdT algorithm is generic and the 
details can be found elsewhere.  

The key results are presented in Fig. 1. For each band, its NEdT are detector dependent and vary with time. The NEdT 
values plotted in the Fig. 1 are the band and daily average values, calculated for the selected dates in 2017, and 2018. 
The NEdT are also monitored by the CWG throughout the mission to evaluate its long-term drift, as well as seasonal and 
diurnal variation. 
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6. STRIPING IN L1B IMAGES 
As a result of the ABI’s scanning mechanism and detector array layout, calibration deficiency of individual detector(s) 
will be reflected as stripes in the L1b image. With the tool STAR-CWG develop, striping in L1b images is regularly 
monitored for all ABI bands8. Among other bands with striping detected, band 14 at 11.20 µm is the long-wave IR 
window band that contributes most satellite derived products. CWG investigated the anomaly and identified the root 
cause of the striping as the improper non-linear gain Q coefficient for three offending detectors. We also found two other 
detectors, one each for band 15 and 16, cause similar striping in the L1b of these bands. 

 

 
Figure 7: The striping detected in the image calibrated with current Q value (top) and the recalibrated image with 
Q = 0 (bottom) for bands 14-16. A spike in striping index is associated with an offending detector. 

Offline test shows setting Q = 0 for these detectors remove the striping. Figure 7 is the offline test results: the top panels 
show the striping detected from the images calibrated with current Q values; the bottom panels show the striping 
detected from the images calibrated with zero Q. CWG updated Q-LUT accordingly and delivered it to GS for 
implementation. 

7. CONCLUSION 
We presented some of CWG’s recent efforts on the assessment of selected radiometric performance parameters of 
GOES-16 ABI during the PLT/PLPT, an intensive cal/val stage. Overall, the performance meet the system requirements 
so the sensor’s readiness for operation is verified. Future CWG work will focus on the GOES-17 ABI PLPT, as well as 
continuous improvement of GOES-16 ABI L1b image quality. 
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