

Humpback whale feeding behavior and defecation observed on the Hawaiian breeding grounds

Marc O. Lammers¹ | Julia Zeh² | Adam A. Pack^{3,4} |
Eden Zang¹ | Ed Lyman¹

¹National Oceanic and Atmospheric Administration, Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, Hawaii

²Biology Department, Syracuse University, Syracuse, New York

³Departments of Psychology and Biology, University of Hawai'i at Hilo, Hilo, Hawaii

⁴The Dolphin Institute, Hilo, Hawaii

Correspondence

Marc O. Lammers, National Oceanic and Atmospheric Administration, Hawaiian Islands Humpback Whale National Marine Sanctuary, 726 S. Kihei Road, Kihei, Hawaii 96753.

Email: marc.lammers@noaa.gov

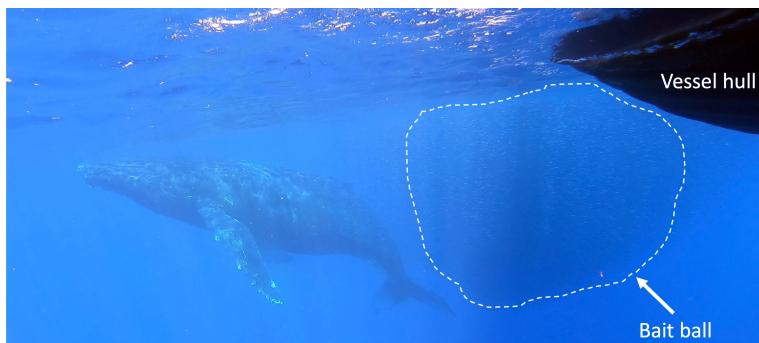
The traditional paradigm of humpback whale (*Megaptera novaeangliae*) behavior involves migration annually between low latitude breeding grounds and high latitude feeding grounds, with limited or no feeding during migration (see Owen et al., 2017), and individuals fasting on the breeding grounds (e.g., Baker et al., 1986; Chittleborough, 1965; Clapham, 2000; Dawbin 1966; Katona & Beard, 1990; cf. Mikhalev, 1997). Humpback whales have been recognized as dietary generalists since the examination of stomach contents during commercial whaling operations (e.g., Clapham et al., 1997). While at high latitudes in the northern hemisphere, humpback whales, known commonly as lunge feeders, typically consume krill (*Euphausia* sp.) and small schooling fish such as capelin (*Mallotus villosus*), herring (*Clupea* sp.), sand-lance (*Ammodytes* sp.), and juvenile salmon (*Oncorhynchus* sp.) (Straley et al., 2018; Szabo, 2015; Witteveen et al., 2008, 2011; Reidy et al., 2022). In the southern hemisphere, researchers have historically maintained that humpback whales rely largely on Antarctic krill (*Euphausia superba*; Groß et al., 2020). However, recent data employing stable isotope techniques have revealed that like the northern hemisphere humpbacks, they too are generalists (Bury et al., 2024), exploiting small schooling fish such as jack mackerel (*Trachurus declivis*), pilchards (*Sardinops neopilchardus*), and redbait (*Emmelichthys nitidus*) along their migration route (Owen et al., 2017). Shifts in the dominant prey source in response to location, variations in ocean temperatures and ecosystem conditions reinforces this dietary flexibility (Fleming et al., 2016). Humpback whales and other baleen whales are considered capital breeders, and during migration and breeding, their metabolic needs are thought to be met by breakdown of adipose tissue, resulting in a loss of body mass while migrating thousands of kilometers and engaging in breeding behaviors (Christiansen et al., 2016).

This is an open access article under the terms of the [Creative Commons Attribution-NonCommercial-NoDerivs License](#), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Published 2024. This article is a U.S. Government work and is in the public domain in the USA. *Marine Mammal Science* published by Wiley Periodicals LLC on behalf of Society for Marine Mammalogy.

While most humpback whales, including all age classes and reproductive conditions, do migrate annually between feeding and breeding grounds (e.g., Chittleborough, 1965; Craig et al., 2003; Straley et al., 1994), there is a growing body of evidence that there may not be strict adherence of foraging behavior to only high-latitude habitats and that there may be more plasticity in these behaviors than previously thought. First, as noted earlier there is evidence of feeding along migratory routes in both hemispheres (Baraff et al., 1991; Owen et al., 2024; Stamation et al., 2007; Swingle et al., 1993). Second, behavior and other evidence of foraging, like defecation and stomach contents of stranded whales, have been observed in winter in tropical waters of the eastern Pacific Ocean off Nicaragua (De Weerdt & Ramos, 2020), Ecuador (Garcia Cegarra et al., 2021), and Mexico (Frisch-Jordan et al., 2019; Gendron & Urban, 1993), as well as in the western Atlantic off the coast of Brazil (Bortolotto et al., 2016; Danilewicz et al., 2009; De Sá Alves et al., 2009) and in the Dominican Republic (Baraff et al., 1991). Thus, although documentation of foraging on low-latitude breeding grounds among migrating whales is limited, opportunistic feeding may not be uncommon (De Sá Alves et al., 2009; Gendron & Urban, 1993).

The principal breeding habitat for humpback whales in the North Pacific is the Hawaiian Islands (Barlow et al., 2011), with large numbers of whales traditionally aggregating particularly in the Maui Nui region that includes the islands of Maui, Moloka'i, Lanai, and Kaho'olawe (Herman & Antinoja, 1977; Mobley et al., 1999). On the Hawaiian breeding ground, this well-studied population exhibits behaviors such as male song, male-male competition, males escorting females, and females nursing their newborn calves (see Herman, 2017 for a review). Foraging behavior by humpback whales in Hawai'i has only rarely been reported anecdotally, including a single apparent feeding lunge by a juvenile whale on a school of Pacific chub mackerel (*Scomber japonicus*) photographed off Maui in 1989 (Salden, 1989, 1990). Here, we report two recent documented instances of humpback whales lunge feeding on schools of fish and on observations of whale defecation in Hawaiian waters during the winter breeding season.


On January 23, 2023, a collaborative research team representing the National Oceanic and Atmospheric Administration's (NOAA) Hawaiian Islands Humpback Whale National Marine Sanctuary, Syracuse University, and the University of Hawai'i at Hilo conducted a mission to deploy instrumented suction-cup data logging tags (CATS, Acousonde & Dtags; see Burgess et al., 1998; Cade et al., 2016; Johnson & Tyack, 2003) on humpback whales off west Maui. A single juvenile-sized (~7–9 m in length) whale was sighted and approached approximately 5.1 km southwest of Olowalu, Maui (20.77°N, 156.65°W). From several hundred meters away, the whale could be seen performing surface lunges, giving the impression of socially engaging with another whale. However, as the research vessel approached closer to attempt to deploy a tag on the whale, the whale performed a distinctive lateral surface feeding lunge <10 m from the bow of the vessel. The whale was observed lunging towards the surface on its right side with its mouth open and its ventral pleats distended, and then closing its mouth once at the surface (Figure 1). A large (~5–8 m diameter) bait ball of darkly colored, slim fish approximately 5–7 cm in length was observed in the location where the whale was feeding (Figure 2). The whale continued to perform feeding lunges after a failed attempt to deploy a tag.

Multiple GoPro video cameras and smartphones were used to film the encounter from the surface and underwater, capturing 13 feeding lunges with an average interval between lunges of 43.3 ± 18.3 s. After about 20 min of feeding, the whale began moving away from the bait ball and was not resighted. We were unable to identify the species of the prey.

Nine days later, on February 1, 2023, the pilot of a commercial helicopter tour operated by GoFly Maui reported an adult-sized whale off the northeast coast of the island of Moloka'i, near Cape Halawa (21.17°N, 156.71°W) apparently lunge-feeding on a bait ball at the surface. A passenger took photographs of the activity using a digital single-lens reflex camera with a zoom lens and documented two lunge-feeding events. In the resulting sequence of images (Figure 3), the whale can be seen approaching a bait ball of fish from below, at which point the fish begin to scatter at the surface. The whale is then seen engulfing a large portion of the bait ball while lunging laterally on its right side. The images show the whale with its mouth open showing baleen and distended ventral pleats. Following the feeding lunge, the whale can be seen expelling air and water out of the sides of its mouth.

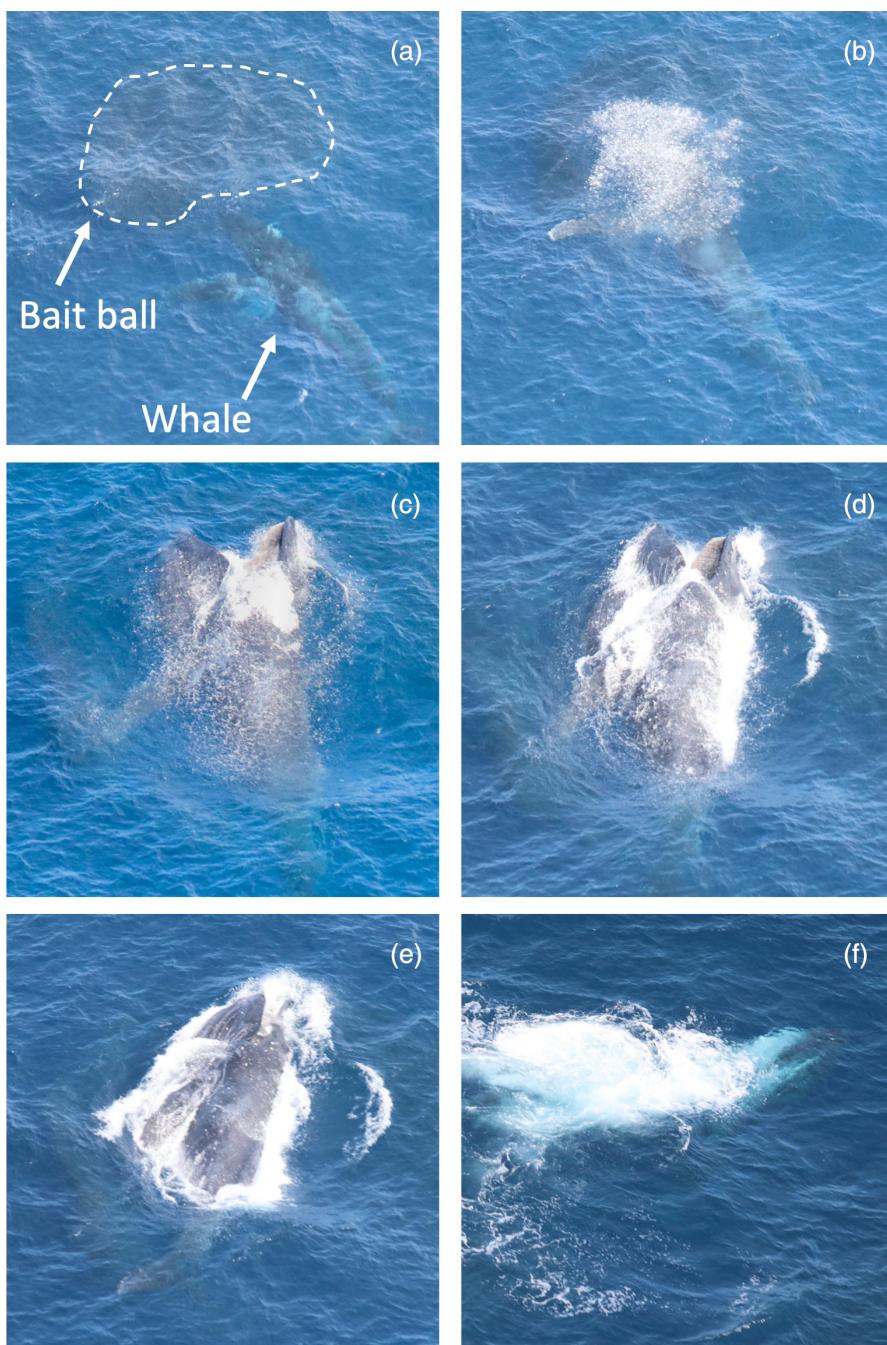


FIGURE 1 Juvenile humpback whale lunge-feeding on a bait ball off Olowalu, Maui documented from two cameras aboard the NOAA R/V Koholā (Photo: Julia Zeh/Marc Lammers, NOAA permit #19655).

FIGURE 2 Underwater image of the whale and the bait ball off Olowalu, Maui (Photo: Eden Zang, NOAA permit #19655).

Although documented cases of whales feeding are historically rare on the Hawaiian breeding ground, documentation of whale defecation is more common (Figure 4). Table S1 in the supplementary materials summarizes 27 observed defecation events compiled from the archives of the authors' field notes from 1998 to 2023. Except in rare cases, no collections of fecal materials were made and no analyses of composition were conducted. Defecation events were observed both from the surface and underwater while researchers gathered video and audio data while snorkeling. Defecation was observed during the four principal months (January–April) of the breeding season in both non-competitive and competitive groups. Both male and female humpback whales occupying various behavioral roles were observed defecating. Defecations were never observed from calves, and only two were from juvenile-sized whales; most were from adult-sized whales (estimated visually). Defecations were observed while whales were slowly traveling as well as when they dove or surfaced. When reported, defecations were brown or brownish green in color, likely reflecting the composition of their prey (e.g., fish). None were red or purple as reported often from humpback whales defecating in the feeding grounds, where the dominant prey is often krill (e.g. Reidy et al., 2022). The consistency of humpback whale feces varied from fine matter in the form of a large dark cloud to, slick-like viscous material, to large cube-like fibrous chunks. In one instance, defecation was associated with a pungent scent at the surface.

FIGURE 3 Sequence of images of a humpback whale feeding off Cape Halawa, Molokai showing (a) the bait ball and the whale approaching, (b) fish scattering at the surface as the whale begins to lunge, (c–e) the whale engulfing portions of the bait ball, and (f) expelling water and air from the sides of the mouth following the lunge (Photo: Erin Ehinger).

The rarity of documented feeding by humpback whales in Hawai'i suggests that it is not a common behavior. However, how uncommon it is, remains an open question. The more frequently observed cases of whale defecation dating back to at least 1998 suggests that more feeding may be occurring in Hawai'i than is witnessed, although it

FIGURE 4 Juvenile whale observed defecating off Lahaina, Maui while milling upside-down at the surface on February 24, 2018 (Photo: NOAA).

remains unclear whether feces could simply represent byproducts of adipose tissue metabolism or fish consumed during migration (e.g., Owen et al., 2017). On high latitude feeding grounds, humpback whales are known to influence the health of the ecosystem by cycling important nutrients via their feces, which contribute to local biological productivity (Roman & McCarthy, 2010) and earning them the label of “marine ecosystem engineers” (Roman et al., 2014). If the observed events of defecation do represent feeding while in Hawai‘i, it suggests similar ecological processes could be occurring and raises some critical questions, namely: what are whales eating, where and when are they eating, and why are they eating while in Hawai‘i?

To be clear, the answers to these questions are unknown. However, clues exist that could point to answers. Salden (1990) described a juvenile whale lunge-feeding on a school of Pacific chub mackerel. This species is not common in Hawai‘i, so it is possible that it may instead have been misidentified for the more prevalent mackerel scad (*Decapterus macarellus*), known in Hawai‘i as ‘opelu, or bigeye scad (*Selar crumenophthalmus*), known as akule. ‘Opelu and akule are commonly found in coastal Hawaiian waters. Thus, it is possible that whales may target larger aggregations of these fish under certain circumstances. However, unlike in the two most recent feeding cases, only one feeding lunge was observed by Salden (1990), despite having visually tracked the whale prior to and after the event. So, if they occur, feeding attempts on these species are likely rare and opportunistic.

In the more recent case of feeding observed off Olowalu, Maui, the bait ball was composed of small, slim fish estimated to be approximately 5–7 cm in length and, darkly colored dorsally. These were neither ‘opelu nor akule, which measure approximately 20 cm in length and have bluish or silver coloration. In winter of 2023 fishermen reported unusually frequent sightings of schools of Hawaiian anchovy (*Engraulisaustralis*), known locally as nehu (Brian Ishida, personal communication, February 21, 2023), that match the description of the fish observed. Another possibility is that these may have been remnant members of the nocturnally present mesopelagic boundary community (MBC; Reid et al., 1991), which migrates from deep offshore waters during the day to shallow coastal waters at night (Benoit-Bird & Au, 2004; Benoit-Bird et al., 2001). Members of the family Myctophidae, which are a major component of the MBC, can also be approximately 5–7 cm in length, darkly colored dorsally, and slim (Benoit-Bird & Au, 2006). Although no direct evidence of whales feeding on the MBC exists, Henderson et al. (2022) report that humpback whales instrumented with satellite-monitored location-dive tags that transited between Hawaiian Islands conducted long, deep dives to depths of 100–300 m during nighttime hours. They hypothesized that whales could be diving to meet the rising MBC, as has been observed in certain odontocete species (Benoit-Bird & Au, 2003; Copeland et al., 2019). This suggestion has also been made by Derville et al. (2020) for humpback whales showing similar diving behavior in New Caledonia.

The question of where and when whales feed in Hawai'i is of course related to the species they may be consuming. If feeding is restricted to daytime hours, then opportunistic exploitation of nearby schools of *Nehu*, *'opelu*, or *akule* may be the primary circumstance in which feeding takes place. These are likely to be rare, stochastic events not tied to specific locations and probably only occur when a whale is simply in the right place at the right time. On the other hand, if whales target the MBC at night, as speculated by Henderson et al. (2022) and Derville et al. (2020), then this would give them regular opportunities for foraging, since the MBC predictably enters shallow coastal waters in Hawai'i nightly (Benoit-Bird & Au, 2003, 2006). If periodic nocturnal feeding does occur, it could help explain the comparatively more common observations of defecation. Future analyses to determine the identification of prey species present in humpback whale fecal samples collected in the Hawaiian breeding grounds (e.g., Reidy et al., 2022), as well as stable isotope analysis of skin/blubber biopsy samples (e.g., Witteveen et al., 2011) could help reveal what humpback whales are consuming in Hawaiian waters.

Why some whales may choose to spend time feeding while in Hawai'i is difficult to surmise but may be informed by the age class of the whales observed. Two out of the three cases described or cited here involved juvenile whales. Juveniles have limited body resources to metabolize and thus typically have shorter residency times in the Hawaiian breeding grounds and earlier departures for the breeding grounds than adult males and mothers of newly born calves (Craig et al., 2001, 2003). It may be that, unlike mature adults, which are primarily focused on reproductive behaviors, juveniles may need to spend some time supplementing their energy reserves built up over the summer on high latitude feeding grounds to sustain themselves on the breeding grounds and facilitate their migration back to the feeding grounds. Alternatively, they may simply be more inclined to capitalize on a feeding opportunity. Moreover, this might be more necessary during some years than others, depending on how productive the feeding season was during the summer. Thus, climate factors such as marine heat waves and El Nino/Southern Oscillation events, which influence productivity on the summer feeding grounds (Frankel et al., 2022; Gentemann et al., 2017), could help determine the need for whales to supplement energy reserves while in the breeding grounds.

Although there is much more that needs to be understood about humpback whale feeding behavior in the Hawaiian breeding grounds, the fact that it does occur, coupled with observed defecation, suggests that the whales may be interacting with the local marine ecosystem in ways that have not been previously examined. The extent to which humpback whales are influencing the Hawai'i marine ecosystem through feeding and defecation is presently unknown but may be a fruitful area of future research.

ACKNOWLEDGMENTS

The authors would like to thank Nick Moran (GoFly Maui), Erin Ehinger and Matt Ehinger for providing the description and sharing images of the whale feeding off Molokai. We are also grateful to Jason Moore and Stuart Gibb for their assistance documenting the whale feeding off Maui, and to Jeannine Rossa and Brian Ishida with the State of Hawai'i's Department of Land and Natural Resources for their assistance with fish identification. Humpback whale data were collected under NMFS Research Permits 19655, 14682, 15240, 20311, 18768, 1071-1770, 707-15631-00, and 941 (Permit Holders: Adam A. Pack or University of Hawai'i at Manoa or National Marine Fisheries Service), and associated University of Hawai'i IACUC approved protocols.

AUTHOR CONTRIBUTIONS

Marc O. Lammers: Conceptualization; data curation; investigation; supervision; writing – original draft. **Julia Zeh:** Conceptualization; investigation; writing – original draft. **Adam A. Pack:** Conceptualization; data curation; writing – original draft. **Ed Lyman:** Conceptualization; data curation. **Eden Zang:** Investigation.

ORCID

Marc O. Lammers <https://orcid.org/0000-0002-7215-4426>

Adam A. Pack <https://orcid.org/0000-0001-8077-269X>

REFERENCES

Baker, C. S., Herman, L. M., Perry, A., Lawton, W. S., Straley, J. M., Wolman, A. A. Kaufman, G D., Winn, H. E., Hall, J. D., Reinke J. M., & Ostman, J. (1986). Migratory movement and population structure of humpback whales (*Megaptera novaeangliae*) in the central and eastern Pacific. *Marine Ecology Progress Series*, 31(2), 105–119. <https://doi.org/10.3354/meps031105>

Baraff, L. S., Clapham, P. J., Mattila, D. K., & Bowman, R. S. (1991). Feeding behavior of a humpback whale in low-latitude waters. *Marine Mammal Science*, 7(2), 197–202. <https://doi.org/10.1111/j.1748-7692.1991.tb00567.x>

Barlow, J., Calambokidis, J., Falcone, E. A., Baker, C. S., Burdin, A. M., Clapham, P. J., Ford, J. K. B., Gabriele, C. M., LeDuc, R., Mattila, D. K., Quinn, T. J., II, Rojas-Bracho, L., Straley, J. M., Taylor, B. L., Urbán, J. R., Wade, P., Weller, D., Witteveen, B. H., & Yamaguchi, M. (2011). Humpback whale abundance in the North Pacific estimated by photographic capture-recapture with bias correction from simulation studies. *Marine Mammal Science*, 27(4), 793–818. <https://doi.org/10.1111/j.1748-7692.2010.00444.x>

Benoit-Bird, K. J., & Au, W. W. (2003). Prey dynamics affect foraging by a pelagic predator (*Stenella longirostris*) over a range of spatial and temporal scales. *Behavioral Ecology and Sociobiology*, 53(6), 364–373. <https://doi.org/10.1007/s00265-003-0585-4>

Benoit-Bird, K. J., & Au, W. W. (2004). Diel migration dynamics of an island-associated sound-scattering layer. *Deep Sea Research Part I: Oceanographic Research Papers*, 51(5), 707–719. <https://doi.org/10.1016/j.dsr.2004.01.004>

Benoit-Bird, K. J., & Au, W. W. (2006). Extreme diel horizontal migrations by a tropical nearshore resident micronekton community. *Marine Ecology Progress Series*, 319, 1–14. <https://doi.org/10.3354/MEPS319001>

Benoit-Bird, K. J., Au, W. W., Brainard, R. E., & Lammers, M. O. (2001). Diel horizontal migration of the Hawaiian mesopelagic boundary community observed acoustically. *Marine Ecology Progress Series*, 217, 1–14. <https://doi.org/10.3354/meps217001>

Bortolotto, G. A., Kolesnikovas, C. K. M., Freire, A. S., & Simões-Lopes, P. C. (2016). Young humpback whale *Megaptera novaeangliae* feeding in Santa Catarina coastal waters, Southern Brazil, and a ship strike report. *Marine Biodiversity Records*, 9(1), 1–6. <https://doi.org/10.1186/s41200-016-0043-4>

Burgess, W. C., Tyack, P. L., Le Boeuf, B. J., & Costa, D. P. (1998). A programmable acoustic recording tag and first results from northern elephant seals. *Deep-Sea Research Part II: Topical Studies in Oceanography*, 45(7), 1327–1351. [https://doi.org/10.1016/S0967-0645\(98\)00032-0](https://doi.org/10.1016/S0967-0645(98)00032-0)

Bury, S. J., Peters, K. J., Sabadel, A. J. M., St. John Glew, K., Trueman, C., Wunder, M. B., Cobain, M. R. D., Schmitt, N., Donnelly, D., Magozzi, S., Owen, K., Brown, J. C. S., Escobar-Flores, P., Constantine, R., O'Driscoll, R. L., Duble, M., Gates, N., Childerhouse, S., & Pinkerton, M. H. (2024). Southern Ocean humpback whale trophic ecology. I. Computing multiple stable isotope methods elucidates diet, trophic position and foraging areas. *Marine Ecology Progress Series*, 734, 123–155. <https://doi.org/10.3354/meps14532>

Cade, D. E., Friedlaender, A. S., Calambokidis, J., & Goldbogen, J. A. (2016). Kinematic diversity in rorqual whale feeding mechanisms. *Current Biology*, 26(19), 2617–2624. <https://doi.org/10.1016/j.cub.2016.07.037>

Chittleborough, R. G. (1965). Dynamics of two populations of the humpback whale, *Megaptera novaeangliae* (Borowski). *Marine and Freshwater Research*, 16(1), 33–128. <https://doi.org/10.1071/MF9650033>

Christiansen, F., Dujon, A. M., Sprogis, K. R., Arnould, J. P., & Bejder, L. (2016). Noninvasive unmanned aerial vehicle provides estimates of the energetic cost of reproduction in humpback whales. *Ecosphere*, 7(10), e01468. <https://doi.org/10.1002/ecs2.1468>

Clapham, P. J. (2000). The humpback whale: seasonal feeding and breeding in a baleen whale. In J. Mann (Ed.), *Cetacean societies: Field studies of dolphins and whales* (pp. 173–196). University of Chicago Press.

Clapham, P., Leatherwood, S., Szczepaniak, I., & Brownell, R. L., Jr. (1997). Catches of humpback and other whales from shore stations at Moss Landing and Trinidad, California, 1919–1926. *Marine Mammal Science*, 13(3), 368–394. <https://doi.org/10.1111/j.1748-7692.1997.tb00646.x>

Copeland, A. M., Au, W. W., & Polovina, J. (2019). Influences of temporal changes in pelagic scattering layers on short-finned pilot whales behavior. *Oceanography & Fisheries*, 9, Article 555758. <https://doi.org/10.19080/OFOAJ.2019.09.555758>

Craig, A. S., Herman, L. M., Gabriele, C. M., & Pack, A. A. (2003). Migratory timing of humpback whales (*Megaptera novaeangliae*) in the central North Pacific varies with age, sex and reproductive status. *Behaviour*, 140(8–9), 981–1001.

Craig, A. S., Herman, L. M., & Pack, A. A. (2001). *Estimating residence times of humpback whales in Hawaii* (Report to the Hawaiian Islands Humpback Whale National Marine Sanctuary). U.S. Department of Commerce and the Department of Land and Natural Resources, State of Hawaii.

Danilewicz, D., Tavares, M., Moreno, I. B., Ott, P. H., & Trigo, C. C. (2009). Evidence of feeding by the humpback whale (*Megaptera novaeangliae*) in mid-latitude waters of the western South Atlantic. *Marine Biodiversity Records*, 2, e88. <https://doi.org/10.1017/S1755267209000943>

Dawbin, W. H. (1966). The seasonal migratory cycle of humpback whales. In K. Norris (Ed.), *Whales, dolphins and porpoises* (pp. 145–170). University of California Press. <https://doi.org/10.1525/9780520321373-011>

De Sá Alves, L. C. P., Andriolo, A., Zerbini, A. N., Pizzorno, J. L. A., & Clapham, P. J. (2009). Record of feeding by humpback whales (*Megaptera novaeangliae*) in tropical waters off Brazil. *Marine Mammal Science*, 25(2), 416–419. <https://doi.org/10.1111/j.1748-7692.2008.00249.x>

De Weerdt, J., & Ramos, E. A. (2020). Feeding of humpback whales (*Megaptera novaeangliae*) on the Pacific coast of Nicaragua. *Marine Mammal Science*, 36(1), 285–292. <https://doi.org/10.1111/mms.12613>

Derville, S., Torres, L. G., Zerbini, A. N., Oremus, M., & Garrigue, C. (2020). Horizontal and vertical movements of humpback whales inform the use of critical pelagic habitats in the western South Pacific. *Scientific Reports*, 10(1), Article 4871. <https://doi.org/10.1038/s41598-020-61771-z>

Fleming, A. H., Clark, C. T., Calambokidis, J., & Barlow, J. (2016). Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. *Global Change Biology*, 22(3), 1214–1224. <https://doi.org/10.1111/gcb.13171>

Frankel, A. S., Gabriele, C. M., Yin, S., & Rickards, S. H. (2022). Humpback whale abundance in Hawai'i: Temporal trends and response to climatic drivers. *Marine Mammal Science*, 38(1), 118–138. <https://doi.org/10.1111/mms.12856>

Frisch-Jordán, A., Ransome, N., Aranda-Mena, O., & Romo-Sirvent, F. (2019). Intensive feeding of humpback whales (*Megaptera novaeangliae*) in the breeding ground of Banderas Bay, Mexico. *Latin American Journal of Aquatic Mammals*, 14(1), 27–33. <https://doi.org/10.5597/00251>

García Cegarra, A. M., Castro, C., & Van Waerebeek, K. (2021). Feeding of humpback whales in low latitudes of the Southeast Pacific Ocean. *Neotropical Biodiversity*, 7(1), 421–430. <https://doi.org/10.20944/preprints202012.0446.v1>

Gendron, D., & Urbán R, J. (1993). Evidence of feeding by humpback whales (*Megaptera novaeangliae*) in the Baja California breeding ground, Mexico. *Marine Mammal Science*, 9(1), 76–81. <https://doi.org/10.1111/j.1748-7693.tb00428.x>

Gentemann, C. L., Fewings, M. R., & García Reyes, M. (2017). Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. *Geophysical Research Letters*, 44(1), 312–319. <https://doi.org/10.1002/2016GL071039>

Groß, J., Virtue, P., Nichols, P. D., Eisenmann, P., Waugh, C. A. & Bengston Nash, S. (2020) Interannual variability in the lipid and fatty acid profiles of east Australia-migrating humpback whales (*Megaptera novaeangliae*) across a 10-year timeline. *Scientific Reports*, 10, Article 18274. <https://doi.org/10.1038/s41598-020-75370-5>

Herman, L. M. (2017). The multiple functions of male song within the humpback whale (*Megaptera novaeangliae*) mating system: review, evaluation, and synthesis. *Biological Reviews*, 92(3), 1795–1818. <https://doi.org/10.1111/brv.12309>

Herman, L. M., & Antinoja, R. C. (1977). Humpback whales in the Hawaiian breeding waters: Population and pod characteristics. *Scientific Reports of the Whales Research Institute*, Tokyo, 29, 59–85.

Henderson, E. E., Deakos, M., Aschettino, J., Englehardt, D., & Alongi, G. (2022). Behavior and inter-island movements of satellite-tagged humpback whales in Hawai'i, USA. *Marine Ecology Progress Series*, 685, 197–213. <https://doi.org/10.3354/meps13976>

Johnson, M. P., & Tyack, P. L. (2003). A digital acoustic recording tag for measuring the response of wild marine mammals to sound. *IEEE Journal of Oceanic Engineering*, 28(1), 3–12. <https://doi.org/10.1109/JOE.2002.808212>

Katona, S. B., & Beard, J. A. (1990). Population size, migrations and feeding aggregations of the humpback whale (*Megaptera novaeangliae*) in the western North Atlantic Ocean. *Reports of the International Whaling Commission, Special Issue No. 12*, 295–305.

Mikhailov, Y. (1997). Humpback whales *Megaptera novaeangliae* in the Arabian sea. *Marine Ecology Progress Series*, 149, 13–21.

Mobley, J. R., Jr., Bauer, G. A., & Herman, L. M. (1999). Changes over a ten-year period in the distribution and relative abundance of humpback whales (*Megaptera novaeangliae*) wintering in Hawaiian waters. *Aquatic Mammals*, 25(2), 63–72.

Owen, K., Kavanagh, A. S., Warren, J. D., Noad, M. J., Donnelly, D., Goldizen, A. W., & Dunlop, R. A. (2017). Potential energy gain by whales outside of the Antarctic: prey preferences and consumption rates of migrating humpback whales (*Megaptera novaeangliae*). *Polar Biology*, 40, 277–289. <https://doi.org/10.1007/s00300-016-1951-9>

Owen, K., Thompson, R. M., Donnelly, D., Noad, M., Bury, S. J., Pinkerton, M. H., & Dunlop, R. (2024). Southern Ocean humpback whale trophic ecology. II. Influence of fasting and opportunistic feeding on skin stable isotope values of migrating whales. *Marine Ecology Progress Series*, 734, 157–171. <https://doi.org/10.3354/meps14539>

Reid, S. B., Hirota, J., Young, R. E., & Hallacher, L. E. (1991). Mesopelagic-boundary community in Hawaii: microneuston at the interface between neritic and oceanic ecosystems. *Marine Biology*, 109, 427–440. <https://doi.org/10.1007/bf01313508>

Reidy, R. D., Lemay, M. A., Innes, K. G., Clemente-Carvalho, R. B. G., Janusson, C., Dower, J. F., Cowen, L. L. E., & Juanes, F. (2022). Fine scale diversity of prey detected in humpback whale feces. *Ecology and Evolution*, 12(12), e9680. <https://doi.org/10.1002/ece3.9680>

Roman, J., Estes, J. A., Morissette, L., Smith, C., Costa, D., McCarthy, J., Nation, J. B., Nicol, S., Pershing, A., & Smetacek, V. (2014). Whales as marine ecosystem engineers. *Frontiers in Ecology and the Environment*, 12(7), 377–385. <https://doi.org/10.1007/BF01313508>

Roman, J., & McCarthy, J. J. (2010). The whale pump: marine mammals enhance primary productivity in a coastal basin. *PLoS ONE*, 5(10), e13255. <https://doi.org/10.1371/journal.pone.0013255>

Salden, D. R. (1989, December 7–11). *An observation of apparent feeding by a sub-adult humpback whale off Maui, Hawaii* [Poster presentation]. Eighth Biennial Conference on the Biology of Marine Mammals, Pacific Grove, CA.

Salden, D. R. (1990). *Apparent feeding by a sub-adult humpback whale (Megaptera novaeangliae) off Maui, Hawaii* (Report No. 4). Hawaii Whale Research Foundation.

Straley, J. M., Moran, J. R., Bosweek, K. M., Vollenweider, J. J. Quinn II T. J., Witteveen, B. H. & Rice, S. D. (2018). Seasonal presence and potential influence of humpback whales on wintering Pacific herring populations in the Gulf of Alaska. *Deep Sea Research Part II: Topical Studies in Oceanography*, 147, 173–186. <https://doi.org/10.1016/J.DSR2.2017.08.008>

Stamation, K.A., Croft, D.B., Shaughnessy, P.D. & Waples, K.A. (2007). Observations of humpback whales (*Megaptera novaeangliae*) feeding during their southward migration along the coast of southeastern New South Wales, Australia: identification of a possible supplemental feeding ground. *Aquatic Mammals*, 33(2), 165–174. <https://doi.org/10.1578/AM.33.2.2007.165>

Swingle, W. M., Barco, S. G., Pitchford, T. D., McClellan, W. A., & Pabst, D. A. (1993). Appearance of juvenile humpback whales feeding in the nearshore waters of Virginia. *Marine Mammal Science*, 9(3), 309–315. <https://doi.org/10.1111/j.1748-7692.1993.tb00458.x>

Szabo, A. (2015). Immature euphausiids do not appear to be prey for humpback whales (*Megaptera novaeangliae*) during spring and summer in Southeast Alaska. *Marine Mammal Science*, 31(2), 677–687. <https://doi.org/10.1111/mms.12183>

Witteveen, B. H., Foy, R. J., Wynne, K. M., & Tremblay, Y. (2008). Investigation of foraging habits and prey selection by humpback whales (*Megaptera novaeangliae*) using acoustic tags and concurrent fish surveys. *Marine Mammal Science*, 24(3), 516–534. <https://doi.org/10.1111/j.1748-7692.2008.00193.x>

Witteveen, B. H., Worthy, G. A., Wynne, K. M., Hirons, A. C., Andrews, A. G., III, & Markel, R. W. (2011). Trophic levels of North Pacific humpback whales (*Megaptera novaeangliae*) through analysis of stable isotopes: Implications on prey and resource quality. *Aquatic Mammals*, 37(2), 101–110. <https://doi.org/10.1578/AM.37.2.2011.101>

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Lammers, M. O., Zeh, J., Pack, A. A., Zang, E., & Lyman, E. (2024). Humpback whale feeding behavior and defecation observed on the Hawaiian breeding grounds. *Marine Mammal Science*, e13177. <https://doi.org/10.1111/mms.13177>