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Abstract

Fish scale microchemistry can be used to make life-history inferences, although eco-

logical studies examining scale composition are relatively rare. Salmon scales have an

external layer of calcium phosphate hydroxyl apatite (HAP). The structure, hardness,

and calcium content of this layer have been shown to vary within and between spe-

cies. This variation may lead to misinterpretation of trace element profiles. This study

uses backscatter scanning electron microscopy with electron dispersive spectrometry

to compare scales from salmon populations and to present a more detailed analysis

of scale HAP than was previously available. Our findings extend the range of salmon

populations for which HAP Ca is available and confirm previous findings that the

HAP Ca is relatively invariable within this species.
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Biomineralized tissue in fish, such as otoliths, scales, and bones, grows

incrementally and incorporates trace elements from the surrounding

environment into its structure (Panfili et al., 2002; Trofimova

et al., 2020). Microchemical composition (e.g., trace elements) of fish

biominerals can vary between groups of fish due to influences of the

environment (Ryan et al., 2019), diet (Bilton & Robins, 1971), and

genetics (Clarke et al., 2011). Variation in fish biomineral trace ele-

ment signals can be used to distinguish life-history patterns (Thorrold

et al., 1998; Vu et al., 2022). Because they are sampled non-lethally,

fish scales are a particularly useful biomineral sample type in studies

of vulnerable species such as Atlantic salmon (Salmo salar L.). From a

conservation perspective, analyses involving non-invasive sampling

methods, such as trace element studies using fish scales, are valuable

for improved understanding of salmonid life history (Tray et al., 2022).

Trace element microchemistry of salmonid scales has previously

been used to differentiate wild and farmed fish (Adey et al., 2009),

track farm origin (Flem et al., 2017, 2018), and distinguish between

marine and freshwater habitat use (Ryan et al., 2019). Fish scale archi-

tecture has been the subject of research in material sciences (Arola

et al., 2018; Ikoma et al., 2003; Torres et al., 2008) although studies

specifically examining salmonid scale structure to inform ecological

microchemical analyses are rare. For example, biomineralization pro-

cesses underlying the uptake and post-depositional behavior of trace

elements in salmonid scales are not well understood (Ryan
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et al., 2016; Tray et al., 2022), even though these processes are of

critical importance for correct interpretation of chemical signals in

scales.

Salmon scales have an external layer composed of calcium phos-

phate hydroxyl apatite (HAP). Previous work from Flem et al. (2005)

has provided a mean calcium value of 37.4± 0.4% for salmon scales

from the pre-smolt stage from four Norwegian salmon populations.

This value was calculated using a scanning electron microscope

equipped with electron dispersive spectrometry (SEM-EDS), and this

study included scales from two fish farm stocks, one cultivated stock

from a river and one wild local stock of salmon. However, there are

limited data to support the view that calcium concentrations are near

invariant within salmon HAP layers.

Some studies have indicated differences in major elemental com-

ponents of fish scale HAP. Arola et al. (2018) reported differences in

scale Ca/P values between species, whereas Kihara et al. (2007) found

that scale calcium content can be affected by diet within juvenile red

sea bream. Specifically, results from the Arola et al. (2018) study show

that differences in Ca/P ratios are due to differences in apatite struc-

ture; in some species scales were harder and more calcified than in

others. This prompts more investigation into the variation in the cal-

cium content of the apatite layer in scales. This also warrants further

investigation into the comparability of scale HAP between different

ontogenetic and geographic/genetic groups of salmonids.

Ca is used as an internal standard in laser ablation inductively

coupled plasma mass spectrometry (LA-ICP-MS) studies for scale

chemistry (Flem et al., 2017; Ryan et al., 2019). If Ca were found to

vary significantly between samples in a trace element study, this might

introduce artifacts when comparing LA-ICP-MS analyses of elements

normalized to Ca. The normalized elemental concentrations would be

consistent within a sample, but not between samples, meaning that

apparent differences in HAP chemistry might be exaggerated, or

masked, due to differences in HAP Ca concentration. If HAP calcium

varies between fish from different groups, it could introduce error into

the calculation of trace element ratios and would potentially mask

accurate signals and inferences of life history.

This study uses backscatter electron microscope equipped with

electron dispersive spectrometry to characterize structure and com-

pare major elemental ratio values between scales taken from different

salmonid populations to better inform interpretations of trace ele-

ments in salmonid scales. Here, high-resolution SEM images of salmon

scales were presented, and elemental concentrations from various

populations were compared. Scales were sourced from wild Canadian

salmon (post-smolt, marine phase) obtained through the North Atlan-

tic Salmon Conservation Organization's Greenland sampling pro-

gramme (Sheehan et al., 2021) and Irish salmon captured at an

ecological monitoring facility (Marine Institute) in Ireland (Tray

et al., 2020). Scale composition was compared between three wild fish

of Canadian origin, sampled on a marine feeding ground off the coast

of Greenland, two wild fish captured as grilse in a river in Ireland

(i.e., salmon that return to spawn after one winter at sea) and three

fish reared in a hatchery in Ireland, released to the wild as smolts and

captured as grilse returning to spawn. Fish life stages were confirmed

using scale reading techniques (Shearer, 1992). The results improve

the understanding of salmonid scale structure, which is essential to

ensure their accurate usage in microchemical studies.

Scale cleaning preparation methods were adapted from Courte-

manche et al. (2006). Briefly, scales were rinsed in Millipore Milli-Q

water, and debris was brushed off with a small blunt acid–washed

paint brush. Samples were cleaned using 5% hydrogen peroxide and

rinsed thrice in Milli-Q water, and air-dried between two glass slides

overnight (Adey et al., 2009). Molds were prepared using SeriForm

cylindrical mounting cups (25 mm internal diameter) for cross-

sectional analysis. Dried scales were placed within the mold and

mounted using EpoThin cold curing Epoxy resin. The molds were

placed in an oven at 30�C overnight to harden. After curing, the molds

were cut cross-sectionally (down the longest axis of the scale), with

an IsoMet low-speed precision saw, fitted with a 12.7 mm diamond

wafering blade. After cutting, the sections were ground on a stainless-

steel plate for 80 s to remove saw marks. The sections were polished

on a LaboPol-21 automatic polisher, fitted with diamond grit polishing

cloths (6 μm for 10 min, followed by 1 μm for 10 min). The sections

were soaked in 5% hydrogen peroxide for 15 min to remove leftover

organic material, air-dried, and carbon-coated (16 nm thick).

The material characterization using backscatter scanning electron

microscopy equipped with electron dispersive spectrometry

(BSEM-EDS) analysis was carried out in the iCRAG Lab at Trinity Col-

lege Dublin in Ireland. Samples were placed in a Tescan TIGER MIRA3

VPFE-SEM (variable pressure field emission), equipped with BSE and

two Oxford Instruments X-Max 150 mm2 detectors. The instrument

was calibrated using three standards: (1) Apatite-Wilberforce, Ontario,

Canada, (2) Tugtupite-Greenland, and (3) Durango Fluroapatite,

Mexico. Aztec software was used for quantitative point analysis

(Astimex 53 calibration) and elemental mapping.

Teleost scales have two distinct compositional layers (Fouda, 1979).

The lower layer, called the basal plate, is comprised of collagen. Salmon

scale cross sections from this study revealed two zones in all samples:

the external HAP layer and the basal plate (collagen). The collagen is

partly mineralized, and stacked in lamellar sheets demonstrated clearly

in Figure 1a. As the scale grows, the new/lower lamellar sheets push

the existent/older collagen upwards, a phenomenon known as under-

plating (Hutchinson & Trueman, 2006). The calcified upper external

layer is a matrix of collagen and HAP (Gil-Duran et al., 2016), which is

the material measured in salmon scale microchemical trace element

studies. As the fish grows, the surface area of the scale increases, and

the external layer periodically forms a circular ridge, called a circulus, at

the edge of the scale (Fisher & Pearcy, 2005; Tzadik et al., 2017) creat-

ing growth bands, which can be used to age the fish (Panfili et al., 2002).

Images of salmonid scale circuli in cross section are shown in Figure 1a.

An elemental map of HAP calcium was created from a cross

section of a scale from an Irish wild salmon (Figure 1c). Slight variation

in colouration (e.g., calcium elemental composition) can be seen on

the compositional map. Fish scale HAP and collagen were recogniz-

able in the cross sections of all scales used in this study. The circuli

ridges on the BSEM images were clearly identifiable. To our knowl-

edge, this is the first study to present BSEM images of cross sections

of salmonid scale circuli. Some images (most notable in the middle fig-

ure of Figure 1a) appear to have the “underplating” phenomena
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within the collagen layer, as described by Hutchinson and Trueman

(2006). Furthermore, the HAP layer was variable in thickness. This

apparent change in HAP thickness could be an artifact of scale orien-

tation with respect to the plane of cutting when preparing the sample

mounts.

The positions of EDS point measurements taken to compare ele-

mental differences between groups are indicated in Figure 1a.

Figure 1b provides an example of a scale HAP spectrum profile. Ten

EDS spectrum measurements were taken for each of the eight scales,

giving a total of 80 measurements for the study. The Tescan TIGER

MIRA3 VPFE-SEM provides EDS measurements in atomic weight %.

When using EDS, and where full elemental quantification is anticipated,

the total % recovered of a material typically equals 100%. Biomineral

EDS data are often presented “normalized” to account for innate water

content. The data have undergone a treatment to account for “missing”
material (raw weight % of element � total % of material

recovered = normalized weight % of element). It was anticipated that

salmon scale EDS totals would be <100%, and slightly variable due to

dissolved OH� groups within scale HAP. Thus, subsequent EDS ele-

mental ratio data can provide insight into salmon scale structure, as

ratios do not depend on % material recovered. To investigate inherent

differences in salmon scale HAP composition, elemental ratios for major

components of HAP (Ca/P and Ca/O) were used.

Data were analysed using R, version 1.1.383 (R Core Team, 2015)

with packages lmerTest (Kuznetsova et al., 2017), pwr

(Champely, 2020), effsize (Torchiano, 2020), and pbkrtest (Halekoh &

Højsgaard, 2014). The mean and range for CaP, CaO, and %Ca are

presented in Table 1 for hatchery Irish grilse (HIG), wild Canadian

post-smolts (WCP), and wild Irish grilse (WIG). The HAP calcium

values are comparable to previously reported values (Flem

et al., 2005). Linear mixed effects (LME) models were used to analyse

variability in major HAP ratios (Ca/P; Ca/O). FishID was included as a

F IGURE 1 (a) Images of salmon scale cross sections; red points indicate locations for 10 electron dispersion spectrometry (EDS) measurements;
settings for images were HV: KV; Mag: 679x; WD: 15 mm; scan speed: 6; circuli ridges, hydroxyl apatite, and collagen regions have been annotated
in upper and lower images, respectively. Scale bar is 25 μm. (b) An example of a spectrum peak (Scale 9219) resulting from an EDS measurement.
(c) Elemental maps, upper images with red box indicate the location of map on scale hydroxyl apatite (HAP), the middle image shows the backscatter
scanning electron microscopy (BSEM) image of the map region, and the lower image shows calcium concentration map (scale id: X12-27); darker
colouration indicates low concentration (elemental concentration scale bar, left side of bottom image). Scale bar is 25 μm.
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random effect, to account for correlation between repeated measure-

ments within each scale, and FishType (hatchery and wild) and FishRe-

gion (Ireland/Canada) were included as fixed effects. To avoid

inflation of type I error rates due to the small sample size, which can

occur when using maximum likelihood estimation (McNeish, 2017),

the significance of the fixed effects was further assessed by employ-

ing estimation with a Kenward-Roger correction (Kenward &

Roger, 1997; Oberfeld & Franke, 2013). The mixed effects model

results found that the fixed effects, FishRegion and FishType, and

covariates did not significantly improve the fit when compared to the

null model in both Ca/P and Ca/O. The result indicates that fish origin

(Canada/Ireland) and fish type (hatchery/wild) do not impact the

major elemental composition of the HAP layer of their scales.

A retrospective effect size determination and power analysis (two-

group independent sample t-tests) was conducted for the fish groups

used in the mixed effects models to investigate if similarity of groups

was due to the low sample size (i.e., type II error) or truly reflected a

lack of variation in scale composition ratios. Effect size was measured

using the Hedges g estimate, which is appropriate when dealing with

sample sizes less than 20 (Grissom & Kim, 2005). The parameters set to

detect type II error were: desired power level = 0.8; alpha level = 0.05;

effect size = Hedges g value. The Hedges g estimate confirmed that

for the comparisons of elemental ratios between scales from Canadian

and Irish fish, the effect sizes were negligible for both Ca/P and Ca/O

(0.08 and �0.11, respectively). For the hatchery and wild scales the

effect sizes for both Ca/P and Ca/O were �0.91 and �0.64, respec-

tively. The power analysis suggests that with a larger sample size

(20 and 39) this study may have detected a difference in CaO and CaP,

respectively, between hatchery and wild fish.

Overall, the results indicate that the composition of scale HAP

does not vary significantly between fish of different geographic ori-

gins, captured at different points during their life history. Although no

difference was detected in composition between scales from wild and

hatchery fish, further analysis using a larger sample size would be

needed to confirm this result. To our knowledge this study represents

the most comprehensive examination of Ca variations in salmon

scales to date. BSEM-EDS was used to present high-resolution images

and an elemental map of scale HAP and internal microstructure. This

study presents a more detailed analysis of scale HAP composition

than was previously available by analysing scales from different types

of fish and fish from different regions. Our findings affirm the use of

microchemical analyses of trace elements and isotope ratios in salmon

scales from different geographical regions for ecological life-history

research.
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