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Abstract

Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-
based approach to study the complex interplay between vegetation and its physical
environment. For example, they help to predict how terrestrial plants interact with
climate, soils, disturbance and competition for resources. We argue that there is un-
tapped potential for the use of DGVMs in ecological and ecophysiological research.
One fundamental barrier to realize this potential is that many researchers with rel-
evant expertize (ecology, plant physiology, soil science, etc.) lack access to the techni-
cal resources or awareness of the research potential of DGVMs. Here we present the
Land Sites Platform (LSP): new software that facilitates single-site simulations with the
Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled
with the Community Land Model. The LSP includes a Graphical User Interface and an
Application Programming Interface, which improve the user experience and lower the
technical thresholds for installing these model architectures and setting up model
experiments. The software is distributed via version-controlled containers; research-
ers and students can run simulations directly on their personal computers or serv-
ers, with relatively low hardware requirements, and on different operating systems.
Version 1.0 of the LSP supports site-level simulations. We provide input data for 20
established geo-ecological observation sites in Norway and workflows to add generic
sites from public global datasets. The LSP makes standard model experiments with
default data easily achievable (e.g., for educational or introductory purposes) while

retaining flexibility for more advanced scientific uses. We further provide tools to
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1 | INTRODUCTION

Vegetation strongly influences energy, water and biogeochemical
(e.g., carbon) exchanges between the land surface and the atmo-
sphere (Bonan & Doney, 2018). The terrestrial biosphere and its
interplay with the Earth system remain one of the largest sources
of uncertainties for ecosystem and climate predictions (IPCC, 2022;
Urban et al., 2016), and complex models are necessary to under-
stand the numerous physical, biogeochemical and ecological pro-
cesses that govern these interactions (Blyth et al., 2021).

Recent developments open up new avenues for integrating
biological and Earth system sciences (Dietze et al., 2013; Kyker-
Snowman et al., 2022): increasing computational capacity facilitates
the use of more complex models on higher spatial resolutions, with
more heterogeneity and more sophisticated ecological process rep-
resentations (Fisher & Koven, 2020; Pettorelli et al., 2021; “Think
Big and Model Small,” 2022). This enables interdisciplinary research
to address classical ecological and ecosystem-level research ques-
tions through a mechanistic modelling lens. For instance, what is the
importance of functional diversity in ecosystem responses to cli-
mate? Which representations of physiological processes are robust,
and how do different representations affect responses to environ-
mental forcing? What biotic interactions influence the outcome of
vegetation-climate feedbacks? Exploring broad and relevant ques-
tions through empirical, experimental, theoretical and modelling
lenses opens up opportunities for cross-disciplinary learning, espe-
cially if the practitioners of these traditionally disparate approaches
can communicate, share data and learn from each other.

Dynamic Global Vegetation Models (DGVMs) simulate emergent
properties of ecosystems from the ‘bottom-up’ across space and
time from physiological principles. DGVMs can simulate transient
responses to climate and pressures on time scales at which ecologi-
cal processes operate, and thereby circumvent some equilibrium as-
sumptions of correlative approaches (Hartig et al., 2012). Advanced
DGVMs, such as vegetation demographic models (see Fisher
et al., 2018), can explore both the mechanistic underpinnings and
the broader-scale consequences of community assembly, tradeoffs,
life history strategies, disturbance and recovery, interactions and the
role of functional biodiversity in the face of global change (Bugmann
& Seidl, 2022; Chitra-Tarak et al., 2021; Rogers et al., 2022).
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visualize the model input and output, including simple examples to relate predictions
to local observations. The LSP improves access to land surface and DGVM modelling
as a building block of community cyberinfrastructure that may inspire new avenues

for mechanistic ecosystem research across disciplines.

Application Programming Interface (API), Community Land Model (CLM), Docker container,
Dynamic Global Vegetation Model (DGVM), ecological modelling, Functionally Assembled
Terrestrial Ecosystem Simulator (FATES), Graphical User Interface (GUI), Land Surface Model

At the same time, increased complexity and realism in these
models invariably present new uncertainties, fuelling a continuous
need to strengthen the models' empirical foundations and expose
process representations to rigorous testing (Collier et al., 2018;
Fisher & Koven, 2020). A plethora of model parameters must be de-
rived individually from empirical relationships or experiments. This
poses limitations on the processes and locations we can currently
model with high confidence (Hartig et al., 2012). Managing the com-
prehensive ambition and complexity of DGVMs thus requires the
mobilization of knowledge from experts across diverse fields (Dietze
et al., 2013). We argue that their use and development by a broader
community will benefit both the science of DGVMs and enhance the
role of trait-based ecology and process understanding in ecological
science.

Widespread utilization and development of DGVMs by special-
ists in, for example, ecology, hydrology, snow and soil science faces
numerous barriers. These models are often linked to and housed
within the software architecture of Earth system models, which
have some of the most complex scientific code in existence and
significant technical requirements. Proprietary code or limited ac-
cess to computational resources often impose additional hurdles.
New modellers experience steep technical and theoretical learning
curves to set up meaningful experiments. At the same time, some
trained modellers lack experience with field- and laboratory-based
approaches and whole-organism ecology. Arguably, the exchange of
technical know-how, knowledge and empirical data could be acceler-
ated if these barriers to communication and hands-on collaboration
were alleviated. Enhancing integration between mechanistic ecosys-
tem modelling and statistical-, laboratory- or field-oriented ecology
requires community cyberinfrastructure tools to improve accessi-
bility to complex model frameworks (Fer et al., 2020; Lombardozzi
etal, n.d.).

To lower the technical barriers to modelling, we present the
Land Sites Platform (LSP; Karimi-Asli, Keetz, Lieungh, Yilmaz,
et al., 2022). It simplifies simulations with recent model versions
of a demographic DGVM embedded in a land surface modelling
framework (Section 2.1). The software is open-source and user-
friendly: it includes a Graphical User Interface (GUI), an Application
Programming Interface (API; Section 2.2) and self-guided analysis
tools for input and output (Section 2.3). Owing to their complexity
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and driver requirements, many land model frameworks require
users to choose and install the correct versions of source code, nu-
merous external libraries and compilers (Fer et al., 2020). Setting
this up on any computer is dependent on the operating system and
requires substantial knowledge of software engineering. The LSP
works on many operating systems and automates the installation of
all software dependencies by virtualizing the software environment
with Docker containers (Section 2.4; Table 1). A set of integrated
sites (Section 2.5) provide a starting point with default atmospheric
and land surface input data, and we provide instructions to add new
sites. The user guide, technical documentation, site descriptions
and analysis notebooks are written in a non-technical language (The
NorESM-LSP Development Team, 2023). Educational workshops,
interdisciplinary research, streamlined workflows for users without
high-performance computing access and model development are
possible with this open and collaborative tool (Section 3). Our goal
is to make state-of-the-art process-based vegetation demographic
modelling accessible to a broader community and to facilitate re-

producible research on vegetation-climate processes.

2 | THE LAND SITES PLATFORM

The LSP software architecture relies on GitHub repositories for
code management and on Docker containers to run the models and

present easy user interfaces (Figure 1). Our software simplifies the

TABLE 1 Glossary of technical terms.

Software engineering

Container

interface between models and users, and between different soft-
ware components, thereby reducing the number of technical chal-

lenges for running a simulation with the model framework.

2.1 | Model framework: NorESM, CLM and
FATES models

The LSP's demographic DGVM relies on the software infrastructure
of an Earth system model, such as a driver and case control system.
It configures, compiles and executes the model, and orchestrates
components providing the DGVM's boundary conditions. Earth
system models numerically simulate the atmosphere, ocean, land,
land ice and sea ice (Figure 2a). By tracing energy, water, carbon
and other substances through these components, they represent
the fundamental processes governing Earth's climate. The LSP's
host model, the Norwegian Earth System Model (NorESM; Seland
et al., 2020), contributed to the Coupled Model Intercomparison
Project Phase 6 (CMIPé; Eyring et al., 2016), a core foundation for
the Intergovernmental Panel on Climate Change's sixth assess-
ment report (IPCC, 2022). The land component of the NorESM is
the Community Land Model (CLM; Lawrence et al., 2019). The CLM
solves process equations in discrete vertical layers for different land
cover types, including natural vegetation (Figure 2b).

To model vegetation demographics within the natural vege-

tation land unit, we use the Functionally Assembled Terrestrial

Container image
Docker

Application Programming
Interface (API)

Graphical User Interface (GUI)

Command line interface

Jupyter notebook
JupyterLab
Jupyter Server
Git

GitHub
Repository

Earth system modelling

Simulation
Case
Model experiment

Model coupling
Model stub
Data model

Forcing data

Containers are isolated, virtualized computer environments based on a read-only image file with source code,
libraries, dependencies and tools. Docker Inc. is a company that provides container solutions.

An interface for computer programs to communicate with each other efficiently.

A visual interface between humans and software or hardware, with clickable buttons.

Also called a terminal emulator; a computer program that receives commands from a user in the form of lines
of text.

Jupyter notebooks combine computer code and rich text elements. They enable data analysis and viewing and
plotting model output. JupyterLab allows users to develop and run notebooks interactively in a browser.
Jupyter Server is responsible for storing and organizing data for Jupyter applications.

Git software enables version control by tracking changes in files. GitHub is an online host of repositories: data
structures of files and their version history.

A simulation is one realization of a model run, where the model advances forward in time from some initial
state. A simulation is performed from a case folder containing one specific model configuration. Research
questions may be answered by model experiments consisting of one or more simulations.

A coupled Earth system model passes information dynamically between model components (atmosphere,
land, ocean, etc.), allowing for direct interactions and feedbacks. Alternatively, model components can
be deactivated stubs with placeholders that do not send or receive data, or they can be forced with data
from observations or previous simulations.

Forcing data are not impacted by the model, but are provided as input to define the necessary boundary
conditions to the model, for example, temperature and precipitation.
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FIGURE 1 Simplified illustration of the main software structure of the Land Sites Platform (LSP) that serves the user interfaces. Users
(left) access the user interfaces through their internet browser (Browser box): the documentation describes the workflow for customizing
and running simulations with the Graphical User Interface (GUI), and for analysing the inputs and outputs with an integrated development
environment (JupyterLab). Containers (centre) automate the installation of all software components, provide the interfaces (GUI/Jupyter
server) and handle model configuration and simulations (API tasks). The code for the LSP, as well as the NorESM-CLM-FATES models, is
managed in public GitHub repositories (top right). Model input data for the integrated field sites are automatically downloaded from external
web storage, while the model output is stored on the user's computer (bottom right).

Ecosystem Simulator (FATES; Fisher et al.,, 2015; Koven
et al., 2020; see Figure 2c). FATES is a vegetation demographic
model (Fisher et al., 2018) that is an optional component of the
CLM (hereafter CLM-FATES). In the LSP default setup, it models
potential vegetation where distributions emerge via trait filter-
ing. FATES condenses the tremendous functional diversity of the
world's vegetation into cohorts of plant functional types (PFTs)
and represents community dynamics by tracking cohort size and
successional stage. Within each model grid cell's natural vege-
tation fraction, cohorts of different PFTs grow and compete for
water and nutrient resources. Heterogeneity is created by differ-
entiating patches of different ages since disturbance (Figure 2c
illustrates four patches). Within a patch, cohorts of different PFTs
compete with each other for light in the canopy and understory
(Figure 2c illustrates cohorts as separate plant symbols). The num-
ber of PFTs and their functional traits can easily be modified, for
example to better represent local ecological observations (Buotte
et al., 2021; Koven et al., 2020). The 12 default PFTs represent
trees, shrubs and grasses in broad non-phylogenetic categories
based on, for example, leaf shape (needleleaf or broadleaf), phe-
nology (cold deciduous, drought deciduous or evergreen) and
photosynthetic pathway (C3 or C4). Grouping multiple individu-
als and species with similar functional properties into cohorts and
PFTs endows FATES the computational efficiency for global sim-
ulations while also accounting for competition and recovery after
disturbance. The default PFTs are experimental starting points for
global simulations, and need regional or local tuning to represent
specific ecosystems (e.g. Sulman et al., 2021).

2.2 | Accessible interfaces: APl and GUI

We created an API as a user-friendly and scalable solution enabling
communication between different components of the software
(Karimi-Asli, Keetz, & Lieungh, 2022a). An API allows users to inter-
act with a program by sending action commands with optional inputs
(requests) to trigger processes. After performing a task, the API re-
turns the results. The LSP's APl handles creation of new cases, run-
ning cases and checking their status, deleting cases and downloading
the outputs. Requests to create or run a case provide the desired
model configuration. The API then generates and executes scripts
that call the corresponding model functionalities via the model's orig-
inal interfaces. By communicating with the model through an API, we
hide the model's complexities and add validation of the user's input,
making the process of setting up and running a case easier and less
error-prone. The API allows us to automate parts of the workflow by
bundling specific steps into fewer actions. For example, input data
download and building a case are bundled into one action. Another
advantage is that LSP developers can modify the code that processes
the requests and responses for a specific version without changing
the API's user-facing part.

Table 2 exemplifies an API request for creating a 1-year de-
fault simulation for site ‘BOR1’ with GSWP3 forcing starting from
1 January 1901. The API then retrieves other required information
from a configuration file (e.g., the input data URL), executes the
model tools to create and configure the case (e.g., "./create_newcase’
and ‘./xmlchange’), checks or downloads the input data and orches-
trates the case settings and states via an internal database. Finally,
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FIGURE 2 The Land Sites Platform model framework. a) the Earth system model (Norwegian Earth System Model; NorESM). The
coupler—Common Infrastructure for Modeling the Earth (CIME)—connects components for the atmosphere, ocean, sea and land ice

and land. The text in parentheses refers to the LSP model component setup: the Community Land Model (CLM) is the actively simulated
land surface model, an observationally derived dataset replaces the atmosphere component (data mode), and the other components are
deactivated (‘stub’ mode). b) the CLM divides the land surface into grid cells with urban, ice, vegetated, crop and freshwater fractions. c) the
Dynamic Global Vegetation Model (Functionally Assembled Terrestrial Ecosystem Simulator; FATES) divides vegetated land fractions into
age-since-disturbance patches, where cohorts of Plant Functional Types (PFTs) grow.

it returns a success or error response. Additional information about
the API is in the LSP technical documentation (The NorESM-LSP
Development Team, 2023), and all endpoints including usage exam-
ples are described under http://localhost:8000/api/v1/docs when
the containers are running.

The LSP's GUI (Figure 3; Karimi-Asli, Lieungh, & Keetz, 2022) is an
interactive tool to communicate with the API. Users can select among
integrated sites, add new sites with their own data (Section 2.3), and
see details of all existing model experiments (cases) they have created.
After selecting an integrated site, the Create Case button triggers a
pop-up with settings for a new simulation, such as the simulation pe-
riod, CO, concentration, output types and a subset of FATES' parame-
ters per PFT. Checkboxes allow disabling individual PFTs. An open text
field adds flexibility for experienced users to change additional CLM
parameters. Once a case is created, status information (pending, ready
or failed) and new buttons appear to view the model settings and run,
copy or delete the case. Note that the GUI presents a subset of the
model framework's capabilities, which includes a large suite of optional
process representations (e.g. plant hydraulics, nitrogen and phospho-
rus cycling, fire, logging and land use change). Advanced settings may
require additional changes to the model, cases or input data, which
experienced users can modify independent of the GUI or API.

2.3 | Data processing and analysis

The LSP by default performs simulations in ‘land-only mode’ where
the land model is not dynamically coupled to the atmospheric

model, but rather uses atmospheric datasets to force the land
model (Figure 2). For version 1.0, we use the CLM default, obser-
vationally derived reanalysis dataset GSWP3 (Global Soil Wetness
Project, Phase 3; Dirmeyer et al., 2006), which consists of gridded
values with 0.5°x0.5° spatial resolution in three-hourly time steps
from 1901 to 2014. It includes the incident (incoming) solar radia-
tion (Wm™2), atmospheric temperature (K), precipitation (mms™), at-
mospheric wind (ms™?), atmospheric pressure (Pa) and atmospheric
specific humidity (kgkg™). The CLM also requires background in-
formation describing the land surface—for example, the fraction of
the grid cell occupied by different land cover types, soil properties
or human population density over time. Finally, the model needs pa-
rameter files for CLM and FATES with values for parameters needed
for the calculations.

To prevent users from having to download large global datasets,
for example, climate forcing, we extracted grid-cell values from
coordinates for the integrated sites. The data were compressed
and uploaded to a web storage domain (Karimi-Asli, Keetz, &
Lieungh, 2022b). When users set up a model experiment (case),
the software downloads all required input data and configures the
model accordingly. Workflows for adding new sites with custom
data, based on model tutorials (https://ncar.github.io/CTSM-Tutor
ial-2022/, accessed 1 November 2022), are described in the LSP doc-
umentation (The NorESM-LSP Development Team, 2023).

The LSP also features Jupyter notebooks (Project Jupyter, 2014),
interactive scripting environments with examples for visualizing the
input data and analysing some of the many possible output vari-
ables (see Section 3). An additional container hosts Panoply (NASA
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TABLE 2 Anexample API request and success response for creating a 1-year default case for an integrated site (BOR1). Long response
strings were truncated and some entries removed for readability. See the NorESM-LSP Development Team (2023) for an overview of the

API endpoints.

Request Response body
curl -X 'POST"\ {
'http://localhost:8000/api/v1/sites/' \ "id": "eda42eff3f4f29e3a37cb42e372e7fc4",
-H 'accept: application/json' \ "name": "MyCase",
-H 'Content-Type: application/json' \ "model_version": "a5e48a...",
-d{ "status": "INITIALISED",
"site_name": "BOR1", "date_created": "2022-10-31T17:59:23...",
"case_name": "MyCase", "compset": "2000_DATM%GSWP3v1l_CLM...",
"variables": [ "lat": 61.0355,
"name": "STOP_OPTION", "value": "nyears"}, "lon": 9.07876,
"name": "STOP_N", "value": 1}, "variables": [
"name": "DATM_YR_START", "value": "2000"}, "name": "STOP_N", "value": 1},
"name": "DATM_YR_END", "value": "2001"}, "name": "STOP_OPTION", "value":
"name": "DATM_YR_ALIGN", "value": "2000"}, | "nyears"},
{
"name": "RUN_STARTDATE", 1,
"value": "2000-01-01" "driver": "nuopc",
} "data_url": "https://.../BOR1.zip",
1, "site": "BOR1",
"driver": "nuopc" “create_task": {
} "task_id": "b30d000...", "status": "PENDING",
"result": null, "error": null
2
“run_task": {
"task_id": null, "status": null,
"result": null, "error": null
}
}

GISS, 2022), external software that facilitates model data explora-

tion. Model outputs are stored in the local LSP repository.

2.4 | Containerization with Docker

Containerization with Docker (Docker, 2023) permits the LSP to
work on current versions of macOS, Linux and Windows. Through
this setup, we provide images and containers (Table 1) to configure
a virtualized computing environment with source code, external li-
braries and compilers. Fixing the computing environment with the
corresponding versions of the LSP, model and input data facilitates
access to and reproducibility of model experiments. The LSP's con-
tainerization of CLM-FATES also allows easy integration into ser-
vices such as cloud computing infrastructures, where users sign up
or apply for computing resources without needing to install software
locally. For example, a pilot version of a tool to run CLM-FATES is

accessible on the open-source cloud infrastructure Galaxy (Fouilloux
& Tang, 2021). See Melton et al. (2020) for another containerization
example with the CLASSIC model, and Nist et al. (2020) for best
practice advice for writing Dockerfiles for reproducible data science.

2.5 | Integrated field sites

The LSP version 1.0 supports site-level simulations. As a starting
point, it provides forcing data to run the model at 20 established
geo-ecological observation sites in Norway (see the NorESM-
LSP Development Team, 2023). Of these 20 sites, eight have
flux tower (eddy covariance) measurements, and local climate
and surface data (e.g., Pirk et al., 2017). The other 12 represent
semi-natural grassland sites used in vegetation experiments ex-
amining climate change impacts on plants at the individual, popu-
lation, community and ecosystem levels (Althuizen et al., 2018;
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FIGURE 3 The LSP Graphical User Interface (edited screenshot). Users can choose among integrated sites (green markers), add custom
sites (purple markers) and are guided through creating and running a case (i.e. simulation or model experiment) by customizing a selection of
settings and model parameters. Existing cases are listed along with options to view model settings, run the case, copy and edit the case, or
to delete it. The GUI sends requests to the API to operate the model. Background map by Carto. Map lines delineate study areas and do not

necessarily depict accepted national boundaries.

Klanderud et al., 2015; Lynn et al., 2021; Topper et al.,, 2018).
Existing data from these sites include microclimate, weather,
vegetation composition, plant traits and demography (Vandvik
et al., 2022).

2.6 | Educational example application

We present a simplistic, educational application of the LSP to show-
case its capabilities and the model outputs (Keetz et al., 2022). We
also emphasize some possible pitfalls with land surface modelling at
sites where the realized vegetation cover differs from predictions
with a default model setup. Highlighting challenges serves to stimu-
late users to think carefully about how to set up and interpret model
experiments, and to facilitate cross-disciplinary understanding along
with some suggested ways forward.

We ran two simulations at the BOR1 site, a moderately grazed
semi-natural grassland in Western Norway surrounded by boreal for-
est (approx. 61°N, 9°E; 589 m asl.; mean summer temperature 10.3°C;
mean annual precipitation 600mm; Klanderud et al., 2015). The first
simulation included all 12 default PFTs to simulate potential natural
vegetation, whereas the second only included the default ‘cool C3
grass’ and ‘Arctic grass’' PFTs. Each simulation ran for 1000years while
cycling the default GSWP3 climate forcing data from 2004 to 2014,
with a constant atmospheric CO, concentration of 367 ppm. We kept

the other CLM-FATES parameters at default values in both cases.

3 | PERSPECTIVES AND ADVANCES

Improvement of DGVMs and building process understanding in

vegetation ecology requires a broad range of scientists to access,

use, scrutinize and develop models like the CLM-FATES. Our educa-
tional example application (Figure 4) highlights several benefits and
challenges.

The coarse-scale reanalysis climate data used to force the model,
while capturing the seasonal variability, exhibit differences to the tem-
perature measurements at the site (Figure 4a). This is not surprising, as
the averaging of environmental variables across heterogeneous grid
cells rarely represents the conditions at specific locations accurately.
Considering input data uncertainties for model output interpretation
is especially important in areas with high topographic variation, such
as Norway. To adjust model experiments to local conditions, the forc-
ing could be replaced with data products with higher spatial resolution
or with local observations. While observations can also be valuable
to adjust (e.g. bias-correct) coarse datasets (e.g. Yang et al., 2011), the
default data provide continuous environmental information that can
complement incomplete or short-term field observations.

Tracking the modelled growth of plant cohorts through time
shows community assembly through trait filtering. The succes-
sion of simulated potential natural vegetation with all default PFTs
(Figure 4b) predicts needleleaf evergreen trees as the only remain-
ing PFT after reaching a steady state from initial bare-ground con-
ditions. This is in line with the potential natural vegetation at this
site (Bryn et al., 2013), and highlights how locally realized and mod-
elled potential natural vegetation can diverge (Somodi et al., 2021).
Previous DGVM studies over Scandinavia show limited ability to
capture realized vegetation patterns (Hickler et al., 2012; Horvath
et al., 2021). At the BOR1 site, an important explanation is likely the
traditional farming practices, which are not currently included as ex-
plicit processes in the model.

To give a simplistic example of how changing the model con-
figuration with the LSP allows emulating specific ecological condi-

tions, we narrowed down the PFT list to two grass PFTs most closely



KEETZ T AL.

—_
Q
~
N
o
1

-20 1

Air temperature
(°C)

—— Default forcing
‘‘‘‘‘‘ Local observations

—40
2004

2015
Year

2020

—_
(2]
~

Total annual flux
(kg C/ m2/ year)

T

GPP Ra Ry NEP

ST e L

(b) 14.0
‘g ~
8 E 10.5 A
5O
Yo
g ﬁ 7.0 1 -~ Needleleaf evergreen tree
Q n - Broadleaf evergreen tree
© % —— Cool C3 grass
c
© £ 3.5
(]
=5
0.0
0 250 500 750 1000
Simulation year
1.6
(d) I Modelled
| Cool C3 grass
- I Arctic grass
cC 1.2 :- Total
2E | Observed
=~ |l Graminoids
‘E}g : Forbs
_8 “; 0.8 - I- Total
© ©
C
55
g 5 0.4 1

0.0 -
Modelled

Observed
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grow, versus observed for graminoids and forbs (n=16; harvested in July 2015). Error bars represent one standard deviation.

resembling the realized vegetation (Figure 4c,d). CLM-FATES could
also be configured to, for example, prescribe PFT distributions from
satellite observations (Fisher & Koven, 2020). Once a suitable model
experiment is set up, CLM-FATES yields, for example, productivity
measures that are difficult to collect continuously in situ but are
important for the ecosystem's impact on the global carbon budget
under given climatic conditions (Figure 4c).

The biomass comparison to observed data in this simple example
underlines that the global default PFTs are not expected to repre-
sent specific regional plant traits, nor to represent this semi-natural
ecosystem (Figure 4d). The CLM-FATES currently models potential
natural vegetation without domestic grazing, which would, for ex-
ample, remove biomass from the vegetation. Adding such processes
and calibrating model parameters with local observations could im-
prove the model's fit to the site (Lambert et al., 2022). Both process
understanding and data are required to disentangle biased predic-
tions like overestimated biomass (Figure 4d). Biomass is an emergent
property of productivity and turnover. Establishing which of these
is biased high or low is the first task. For instance, new model sen-
sitivity experiments where individual parameters are varied can be

evaluated against data such as flux measurements of carbon assimi-
lation and respiration.

While the basic capabilities of the LSP are targeted at new mod-
ellers, the software may serve as a shortcut to advanced model
experiments, data integration and efficient cross-disciplinary com-
munication that could inspire future model development (Figure 5).
The advanced DGVM model framework (CLM-FATES) presents
opportunities to test ecological hypotheses and scale up con-
cepts through time and space in future research (Kyker-Snowman
et al., 2022). We already know that ecological data and theory can
improve DGVM parameters and structure (Nevalainen et al., 2022;
Norby et al., 2016; Pastorello et al., 2020; Wullschleger et al., 2011,
2014). Observations, for example in plant trait databases, can in-
form the direct or inverse estimation of model parameters (Dietze
et al., 2014; Hartig et al., 2012; LeBauer et al., 2013). Other mod-
elling approaches using ecological assumptions can refine or val-
idate DGVM parameterization, such as machine learning (Beigaité
et al., 2022) and distribution modelling (Horvath et al.,, 2021).
Laboratory experiments in plant physiology can inform parame-
ter values or build the foundations of process formulations (Ball
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etal., 1987). Concepts from community assembly theory may inform
DGVMs' process representation (Scheiter et al., 2013). Vice versa,
DGVMs may complement ecological hypothesis testing by tracing
simulated plant growth from parameters through model processes
to predicted states in a controlled environment. The LSP is well
suited for interdisciplinary work on these issues because it lowers
the technical thresholds and provides supporting materials for anal-
ysis and interpretation, thereby helping researchers focus on the
scientific questions.

Modellers and field ecologists increasingly adopt open develop-
ment and FAIR data sharing to facilitate community engagement,
accessibility and data flow (e.g., Danabasoglu et al., 2020; Melton
et al., 2020; Wilkinson et al., 2016). Tools and protocols conveniently
relating observations to model outputs exist in different contexts
and configurations (e.g. Fer et al., 2018; Hoffman et al., 2017).
Several software-oriented efforts already aim to ease land surface
model and DGVM usability and interpretation (Wang et al., 2014; Xu
etal., 2017) and provide beginner-friendly instruments for education
(e.g., LPJ-GUESS Education; Smith et al., 2001). Each solution comes
with individual advantages but also limitations, such as missing
cross-platform support, proprietary code or restricted possibilities
to adapt the incorporated models and versions. The latter is crucial
for collaborative efforts aiming at model advancement. The LSP is
designed to be a flexible research tool, while simultaneously serving
as a modern interface for education. We chose software solutions
that are transferable to similar model frameworks, for example,
with CESM instead of NorESM, or that could be merged with other

initiatives to build on synergies. Further developments with the LSP
may expand modelling capabilities with additional input datasets, cli-
matic scenarios, model calibration workflows and alternative modes
of the FATES model (see Fisher & Koven, 2020).

The LSP development was driven by needs to overcome tech-
nical challenges with land surface modelling, including knowledge
transfer across institutional and geographical barriers, training
resources for new modellers and setting up a shared software
environment available to everyone. We combined ideas and ex-
periences from biologists and geoscientists and involved research
software engineers to pull the developments together and create
the GUI, APl and containers. Because the Earth system's com-
plexity inspires increasingly complex scientific code structures,
engaging software engineers is crucial to enhance the efficiency
and scientific standards of model development (Purgar et al., 2022;
Wieters & Fritzsch, 2018). The LSP was tested on many different
computers by varied users, including students and professors at
an interdisciplinary Master- and PhD-level course in Ecological
Climatology (Bryn & Stordal, 2022; see also the NorESM-LSP
Development Team, 2023, for performance and disc usage tests).
Their feedback confirmed that they felt enabled to run the model
and understand the results. They also stressed the need for train-
ing in Earth system science and DGVMs to set up robust simula-
tions and interpret the outputs properly. This underlines the need
for cross-disciplinary collaboration and training, and for creating
community cyberinfrastructure beyond the mainly technical facil-
itation of the LSP.
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4 | CONCLUSION

The scientific community needs interdisciplinary, open-access mod-
elling tools and data, and stronger connections between geo- and
biosciences to integrate global climate change and biodiversity
science-policy agendas (Dietze et al., 2018; Pettorelli et al., 2021).
Our experiences with building the LSP showed that this task requires
lowering technical thresholds. Cross-disciplinary education with the
LSP may stimulate collaboration and mutual understanding that lead
to model development and improved process understanding. The
full importance of the many aspects of natural diversity and ecologi-
cal processes for global systems is still unknown (IPBES, 2019), and
will remain unknown until collaborative research is strengthened.
Dynamic, process-based models are increasingly important and so-
phisticated and can help understand the role of ecology within the
Earth system, but require improved accessibility to be more widely
adopted (Fer et al., 2020; Kyker-Snowman et al., 2022). While set-
ting up and interpreting model experiments tailored to small-scale
ecological research still requires additional model expertize, the
LSP contributes to providing more accessible community cyberin-
frastructure. It simplifies the modelling process for researchers and
students without advanced programming skills while retaining the
flexibility to set up custom and reproducible model experiments
with a state-of-the-art model framework (NorESM-CLM-FATES).
Engaging new users may ultimately improve our collective under-
standing of ecology within the Earth system, and of global environ-

mental change as a result.
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